Skip to content

Commit 184c5d6

Browse files
Add new graph notebook (#321)
* Add graph notebook including ADB client Signed-off-by: Rahul Tasker <rahul.tasker@oracle.com> * add graph notebook * Updated index and README --------- Signed-off-by: Rahul Tasker <rahul.tasker@oracle.com> Co-authored-by: John DeSanto <202220+jdesanto@users.noreply.github.com>
1 parent 6e4b2d5 commit 184c5d6

File tree

3 files changed

+1828
-91
lines changed

3 files changed

+1828
-91
lines changed

notebook_examples/README.md

Lines changed: 56 additions & 39 deletions
Original file line numberDiff line numberDiff line change
@@ -12,10 +12,11 @@ The ADS SDK can be downloaded from [PyPi](https://pypi.org/project/oracle-ads/),
1212

1313

1414
## Topics
15-
<img src="https://img.shields.io/badge/deploy model-7-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/register model-7-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/train model-7-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/automlx-5-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/data flow-4-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/pyspark-4-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/bds-3-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/oracle open data-3-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/scikit learn-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/big data service-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/nlp-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/autonomous database-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/language services-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/string manipulation-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/regex-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/regular expression-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/natural language processing-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/NLP-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/part of speech tagging-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/named entity recognition-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/sentiment analysis-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/custom plugins-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/data catalog metastore-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/xgboost-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/text classification-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/classification-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/regression-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/intel-1-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/intel extension-1-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/scikit learn-1-brightgreen?style=for-the-badge&logo=pypi&logoColor=white">
15+
<img src="https://img.shields.io/badge/deploy model-7-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/register model-7-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/train model-7-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/automlx-5-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/data flow-4-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/pyspark-4-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/oracle open data-3-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/bds-3-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/scikit learn-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/classification-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/language services-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/string manipulation-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/regex-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/regular expression-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/natural language processing-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/NLP-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/part of speech tagging-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/named entity recognition-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/sentiment analysis-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/custom plugins-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/regression-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/text classification-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/big data service-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/nlp-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/autonomous database-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/data catalog metastore-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/xgboost-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/intel-1-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/intel extension-1-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/scikit learn-1-brightgreen?style=for-the-badge&logo=pypi&logoColor=white">
1616

1717
## Contents
1818
- [Audi Autonomous Driving Dataset Repository](#audi-autonomous_driving-oracle_open_data.ipynb)
19+
- [Bank Graph Example Notebook](#graph_insight-autonomous_database.ipynb)
1920
- [Building a Forecaster using AutoMLx](#automlx-forecasting.ipynb)
2021
- [Building and Explaining a Classifier using AutoMLx](#automlx-classifier.ipynb)
2122
- [Building and Explaining a Regressor using AutoMLx](#automlx-regression.ipynb)
@@ -73,34 +74,34 @@ This notebook was developed on the conda pack with slug: `automlx_p38_cpu_v2`
7374
<sub>Universal Permissive License v 1.0</sup>
7475

7576
---
76-
### <a name="automlx-text_classification.ipynb"></a> - Building and Explaining a Text Classifier using AutoMLx
77+
### <a name="automlx-classifier.ipynb"></a> - Building and Explaining a Classifier using AutoMLx
7778

7879
<sub>Updated: 05/29/2023</sub>
79-
#### [`automlx-text_classification.ipynb`](automlx-text_classification.ipynb)
80+
#### [`automlx-classifier.ipynb`](automlx-classifier.ipynb)
8081

8182

82-
build a classifier using the Oracle AutoMLx tool for the public 20newsgroup dataset
83+
Build a classifier using the Oracle AutoMLx tool and binary data set of Census income data.
8384

8485
This notebook was developed on the conda pack with slug: `automlx_p38_cpu_v3`
8586

8687

87-
`automlx` `text classification` `text classifier`
88+
`automlx` `classification` `classifier`
8889

89-
<sub>Universal Permissive License v 1.0.</sup>
90+
<sub>Universal Permissive License v 1.0</sup>
9091

9192
---
92-
### <a name="automlx-classifier.ipynb"></a> - Building and Explaining a Classifier using AutoMLx
93+
### <a name="automlx-fairness.ipynb"></a> - Fairness with AutoMLx
9394

9495
<sub>Updated: 05/29/2023</sub>
95-
#### [`automlx-classifier.ipynb`](automlx-classifier.ipynb)
96+
#### [`automlx-fairness.ipynb`](automlx-fairness.ipynb)
9697

9798

98-
Build a classifier using the Oracle AutoMLx tool and binary data set of Census income data.
99+
Develop a model and evaluate its fairness
99100

100101
This notebook was developed on the conda pack with slug: `automlx_p38_cpu_v3`
101102

102103

103-
`automlx` `classification` `classifier`
104+
`automlx` `fairness`
104105

105106
<sub>Universal Permissive License v 1.0</sup>
106107

@@ -121,20 +122,20 @@ This notebook was developed on the conda pack with slug: `automlx_p38_cpu_v3`
121122
<sub>Universal Permissive License v 1.0</sup>
122123

123124
---
124-
### <a name="automlx-fairness.ipynb"></a> - Fairness with AutoMLx
125+
### <a name="automlx-text_classification.ipynb"></a> - Building and Explaining a Text Classifier using AutoMLx
125126

126127
<sub>Updated: 05/29/2023</sub>
127-
#### [`automlx-fairness.ipynb`](automlx-fairness.ipynb)
128+
#### [`automlx-text_classification.ipynb`](automlx-text_classification.ipynb)
128129

129130

130-
Develop a model and evaluate its fairness
131+
build a classifier using the Oracle AutoMLx tool for the public 20newsgroup dataset
131132

132133
This notebook was developed on the conda pack with slug: `automlx_p38_cpu_v3`
133134

134135

135-
`automlx` `fairness`
136+
`automlx` `text classification` `text classifier`
136137

137-
<sub>Universal Permissive License v 1.0</sup>
138+
<sub>Universal Permissive License v 1.0.</sup>
138139

139140
---
140141
### <a name="audi-autonomous_driving-oracle_open_data.ipynb"></a> - Audi Autonomous Driving Dataset Repository
@@ -280,6 +281,22 @@ This notebook was developed on the conda pack with slug: `generalml_p38_cpu_v1`
280281

281282
<sub>Universal Permissive License v 1.0</sup>
282283

284+
---
285+
### <a name="graph_insight-autonomous_database.ipynb"></a> - Bank Graph Example Notebook
286+
287+
<sub>Updated: 06/02/2023</sub>
288+
#### [`graph_insight-autonomous_database.ipynb`](graph_insight-autonomous_database.ipynb)
289+
290+
291+
Access
292+
293+
This notebook was developed on the conda pack with slug: `pypgx2310_p38_cpu_v1`
294+
295+
296+
`graph_insight` `autonomous_database`
297+
298+
<sub>Universal Permissive License v 1.0</sup>
299+
283300
---
284301
### <a name="train-register-deploy-huggingface-pipeline.ipynb"></a> - Train, register, and deploy HuggingFace Pipeline
285302

@@ -345,31 +362,31 @@ This notebook was developed on the conda pack with slug: `pyspark30_p37_cpu_v5`
345362
<sub>Universal Permissive License v 1.0</sup>
346363

347364
---
348-
### <a name="natural_language_processing.ipynb"></a> - Natural Language Processing
365+
### <a name="automlx-forecasting.ipynb"></a> - Building a Forecaster using AutoMLx
349366

350-
<sub>Updated: 03/26/2023</sub>
351-
#### [`natural_language_processing.ipynb`](natural_language_processing.ipynb)
367+
<sub>Updated: 05/29/2023</sub>
368+
#### [`automlx-forecasting.ipynb`](automlx-forecasting.ipynb)
352369

353370

354-
Use the ADS SDK to process and manipulate strings. This notebook includes regular expression matching and natural language (NLP) parsing, including part-of-speech tagging, named entity recognition, and sentiment analysis. It also shows how to create and use custom plugins specific to your specific needs.
371+
Use Oracle AutoMLx to build a forecast model with real-world data sets.
355372

356-
This notebook was developed on the conda pack with slug: `nlp_p37_cpu_v2`
373+
This notebook was developed on the conda pack with slug: `automlx_p38_cpu_v3`
357374

358375

359376
`language services` `string manipulation` `regex` `regular expression` `natural language processing` `NLP` `part-of-speech tagging` `named entity recognition` `sentiment analysis` `custom plugins`
360377

361378
<sub>Universal Permissive License v 1.0</sup>
362379

363380
---
364-
### <a name="automlx-forecasting.ipynb"></a> - Building a Forecaster using AutoMLx
381+
### <a name="natural_language_processing.ipynb"></a> - Natural Language Processing
365382

366-
<sub>Updated: 05/29/2023</sub>
367-
#### [`automlx-forecasting.ipynb`](automlx-forecasting.ipynb)
383+
<sub>Updated: 03/26/2023</sub>
384+
#### [`natural_language_processing.ipynb`](natural_language_processing.ipynb)
368385

369386

370-
Use Oracle AutoMLx to build a forecast model with real-world data sets.
387+
Use the ADS SDK to process and manipulate strings. This notebook includes regular expression matching and natural language (NLP) parsing, including part-of-speech tagging, named entity recognition, and sentiment analysis. It also shows how to create and use custom plugins specific to your specific needs.
371388

372-
This notebook was developed on the conda pack with slug: `automlx_p38_cpu_v3`
389+
This notebook was developed on the conda pack with slug: `nlp_p37_cpu_v2`
373390

374391

375392
`language services` `string manipulation` `regex` `regular expression` `natural language processing` `NLP` `part-of-speech tagging` `named entity recognition` `sentiment analysis` `custom plugins`
@@ -505,47 +522,47 @@ This notebook was developed on the conda pack with slug: `pypgx2310_p38_cpu_v1`
505522
<sub>Universal Permissive License v 1.0</sup>
506523

507524
---
508-
### <a name="pyspark-data_flow_studio-introduction.ipynb"></a> - Introduction to the Oracle Cloud Infrastructure Data Flow Studio
525+
### <a name="pyspark-data_flow-application.ipynb"></a> - PySpark
509526

510-
<sub>Updated: 03/26/2023</sub>
511-
#### [`pyspark-data_flow_studio-introduction.ipynb`](pyspark-data_flow_studio-introduction.ipynb)
527+
<sub>Updated: 03/30/2023</sub>
528+
#### [`pyspark-data_flow-application.ipynb`](pyspark-data_flow-application.ipynb)
512529

513530

514-
Run interactive Spark workloads on a long lasting Oracle Cloud Infrastructure Data Flow Spark cluster through Apache Livy integration. Data Flow Spark Magic is used for interactively working with remote Spark clusters through Livy, a Spark REST server, in Jupyter notebooks. It includes a set of magic commands for interactively running Spark code.
531+
Develop local PySpark applications and work with remote clusters using Data Flow.
515532

516-
This notebook was developed on the conda pack with slug: `pyspark32_p38_cpu_v2`
533+
This notebook was developed on the conda pack with slug: `pyspark24_p37_cpu_v3`
517534

518535

519536
`pyspark` `data flow`
520537

521538
<sub>Universal Permissive License v 1.0</sup>
522539

523540
---
524-
### <a name="pyspark-data_flow_studio-spark_nlp.ipynb"></a> - Spark NLP within Oracle Cloud Infrastructure Data Flow Studio
541+
### <a name="pyspark-data_flow_studio-introduction.ipynb"></a> - Introduction to the Oracle Cloud Infrastructure Data Flow Studio
525542

526543
<sub>Updated: 03/26/2023</sub>
527-
#### [`pyspark-data_flow_studio-spark_nlp.ipynb`](pyspark-data_flow_studio-spark_nlp.ipynb)
544+
#### [`pyspark-data_flow_studio-introduction.ipynb`](pyspark-data_flow_studio-introduction.ipynb)
528545

529546

530-
Demonstrates how to use Spark NLP within a long lasting Oracle Cloud Infrastructure Data Flow cluster.
547+
Run interactive Spark workloads on a long lasting Oracle Cloud Infrastructure Data Flow Spark cluster through Apache Livy integration. Data Flow Spark Magic is used for interactively working with remote Spark clusters through Livy, a Spark REST server, in Jupyter notebooks. It includes a set of magic commands for interactively running Spark code.
531548

532-
This notebook was developed on the conda pack with slug: `pyspark32_p38_cpu_v1`
549+
This notebook was developed on the conda pack with slug: `pyspark32_p38_cpu_v2`
533550

534551

535552
`pyspark` `data flow`
536553

537554
<sub>Universal Permissive License v 1.0</sup>
538555

539556
---
540-
### <a name="pyspark-data_flow-application.ipynb"></a> - PySpark
557+
### <a name="pyspark-data_flow_studio-spark_nlp.ipynb"></a> - Spark NLP within Oracle Cloud Infrastructure Data Flow Studio
541558

542-
<sub>Updated: 03/30/2023</sub>
543-
#### [`pyspark-data_flow-application.ipynb`](pyspark-data_flow-application.ipynb)
559+
<sub>Updated: 03/26/2023</sub>
560+
#### [`pyspark-data_flow_studio-spark_nlp.ipynb`](pyspark-data_flow_studio-spark_nlp.ipynb)
544561

545562

546-
Develop local PySpark applications and work with remote clusters using Data Flow.
563+
Demonstrates how to use Spark NLP within a long lasting Oracle Cloud Infrastructure Data Flow cluster.
547564

548-
This notebook was developed on the conda pack with slug: `pyspark24_p37_cpu_v3`
565+
This notebook was developed on the conda pack with slug: `pyspark32_p38_cpu_v1`
549566

550567

551568
`pyspark` `data flow`

0 commit comments

Comments
 (0)