@@ -12,10 +12,11 @@ The ADS SDK can be downloaded from [PyPi](https://pypi.org/project/oracle-ads/),
1212
1313
1414## Topics
15- <img src="https://img.shields.io/badge/deploy model-7-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/register model-7-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/train model-7-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/automlx-5-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/data flow-4-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/pyspark-4-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/bds-3-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/oracle open data-3-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/scikit learn-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/big data service-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/nlp-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/autonomous database-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/language services-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/string manipulation-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/regex-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/regular expression-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/natural language processing-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/NLP-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/part of speech tagging-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/named entity recognition-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/sentiment analysis-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/custom plugins-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/data catalog metastore-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/xgboost-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/text classification-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/classification-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/regression-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/intel-1-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/intel extension-1-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/scikit learn-1-brightgreen?style=for-the-badge&logo=pypi&logoColor=white">
15+ <img src="https://img.shields.io/badge/deploy model-7-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/register model-7-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/train model-7-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/automlx-5-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/data flow-4-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/pyspark-4-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/oracle open data-3-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/bds-3-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/scikit learn-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/classification-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/language services-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/string manipulation-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/regex-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/regular expression-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/natural language processing-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/NLP-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/part of speech tagging-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/named entity recognition-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/sentiment analysis-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/custom plugins-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/regression-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/text classification-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/big data service-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/nlp-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/autonomous database-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/data catalog metastore-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/xgboost-2-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/intel-1-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/intel extension-1-brightgreen?style=for-the-badge&logo=pypi&logoColor=white"> <img src="https://img.shields.io/badge/scikit learn-1-brightgreen?style=for-the-badge&logo=pypi&logoColor=white">
1616
1717## Contents
1818 - [ Audi Autonomous Driving Dataset Repository] ( #audi-autonomous_driving-oracle_open_data.ipynb )
19+ - [ Bank Graph Example Notebook] ( #graph_insight-autonomous_database.ipynb )
1920 - [ Building a Forecaster using AutoMLx] ( #automlx-forecasting.ipynb )
2021 - [ Building and Explaining a Classifier using AutoMLx] ( #automlx-classifier.ipynb )
2122 - [ Building and Explaining a Regressor using AutoMLx] ( #automlx-regression.ipynb )
@@ -73,34 +74,34 @@ This notebook was developed on the conda pack with slug: `automlx_p38_cpu_v2`
7374<sub >Universal Permissive License v 1.0</sup >
7475
7576---
76- ### <a name =" automlx-text_classification .ipynb " ></a > - Building and Explaining a Text Classifier using AutoMLx
77+ ### <a name =" automlx-classifier .ipynb " ></a > - Building and Explaining a Classifier using AutoMLx
7778
7879<sub >Updated: 05/29/2023</sub >
79- #### [ ` automlx-text_classification .ipynb ` ] ( automlx-text_classification .ipynb )
80+ #### [ ` automlx-classifier .ipynb ` ] ( automlx-classifier .ipynb )
8081
8182
82- build a classifier using the Oracle AutoMLx tool for the public 20newsgroup dataset
83+ Build a classifier using the Oracle AutoMLx tool and binary data set of Census income data.
8384
8485This notebook was developed on the conda pack with slug: ` automlx_p38_cpu_v3 `
8586
8687
87- ` automlx ` ` text classification` ` text classifier`
88+ ` automlx ` ` classification ` ` classifier `
8889
89- <sub >Universal Permissive License v 1.0. </sup >
90+ <sub >Universal Permissive License v 1.0</sup >
9091
9192---
92- ### <a name =" automlx-classifier .ipynb " ></a > - Building and Explaining a Classifier using AutoMLx
93+ ### <a name =" automlx-fairness .ipynb " ></a > - Fairness with AutoMLx
9394
9495<sub >Updated: 05/29/2023</sub >
95- #### [ ` automlx-classifier .ipynb ` ] ( automlx-classifier .ipynb )
96+ #### [ ` automlx-fairness .ipynb ` ] ( automlx-fairness .ipynb )
9697
9798
98- Build a classifier using the Oracle AutoMLx tool and binary data set of Census income data.
99+ Develop a model and evaluate its fairness
99100
100101This notebook was developed on the conda pack with slug: ` automlx_p38_cpu_v3 `
101102
102103
103- ` automlx ` ` classification ` ` classifier `
104+ ` automlx ` ` fairness `
104105
105106<sub >Universal Permissive License v 1.0</sup >
106107
@@ -121,20 +122,20 @@ This notebook was developed on the conda pack with slug: `automlx_p38_cpu_v3`
121122<sub >Universal Permissive License v 1.0</sup >
122123
123124---
124- ### <a name =" automlx-fairness .ipynb " ></a > - Fairness with AutoMLx
125+ ### <a name =" automlx-text_classification .ipynb " ></a > - Building and Explaining a Text Classifier using AutoMLx
125126
126127<sub >Updated: 05/29/2023</sub >
127- #### [ ` automlx-fairness .ipynb ` ] ( automlx-fairness .ipynb )
128+ #### [ ` automlx-text_classification .ipynb ` ] ( automlx-text_classification .ipynb )
128129
129130
130- Develop a model and evaluate its fairness
131+ build a classifier using the Oracle AutoMLx tool for the public 20newsgroup dataset
131132
132133This notebook was developed on the conda pack with slug: ` automlx_p38_cpu_v3 `
133134
134135
135- ` automlx ` ` fairness `
136+ ` automlx ` ` text classification ` ` text classifier `
136137
137- <sub >Universal Permissive License v 1.0</sup >
138+ <sub >Universal Permissive License v 1.0. </sup >
138139
139140---
140141### <a name =" audi-autonomous_driving-oracle_open_data.ipynb " ></a > - Audi Autonomous Driving Dataset Repository
@@ -280,6 +281,22 @@ This notebook was developed on the conda pack with slug: `generalml_p38_cpu_v1`
280281
281282<sub >Universal Permissive License v 1.0</sup >
282283
284+ ---
285+ ### <a name =" graph_insight-autonomous_database.ipynb " ></a > - Bank Graph Example Notebook
286+
287+ <sub >Updated: 06/02/2023</sub >
288+ #### [ ` graph_insight-autonomous_database.ipynb ` ] ( graph_insight-autonomous_database.ipynb )
289+
290+
291+ Access
292+
293+ This notebook was developed on the conda pack with slug: ` pypgx2310_p38_cpu_v1 `
294+
295+
296+ ` graph_insight ` ` autonomous_database `
297+
298+ <sub >Universal Permissive License v 1.0</sup >
299+
283300---
284301### <a name =" train-register-deploy-huggingface-pipeline.ipynb " ></a > - Train, register, and deploy HuggingFace Pipeline
285302
@@ -345,31 +362,31 @@ This notebook was developed on the conda pack with slug: `pyspark30_p37_cpu_v5`
345362<sub >Universal Permissive License v 1.0</sup >
346363
347364---
348- ### <a name =" natural_language_processing .ipynb" ></a > - Natural Language Processing
365+ ### <a name =" automlx-forecasting .ipynb" ></a > - Building a Forecaster using AutoMLx
349366
350- <sub >Updated: 03/26 /2023</sub >
351- #### [ ` natural_language_processing .ipynb` ] ( natural_language_processing .ipynb)
367+ <sub >Updated: 05/29 /2023</sub >
368+ #### [ ` automlx-forecasting .ipynb` ] ( automlx-forecasting .ipynb)
352369
353370
354- Use the ADS SDK to process and manipulate strings. This notebook includes regular expression matching and natural language (NLP) parsing, including part-of-speech tagging, named entity recognition, and sentiment analysis. It also shows how to create and use custom plugins specific to your specific needs .
371+ Use Oracle AutoMLx to build a forecast model with real-world data sets .
355372
356- This notebook was developed on the conda pack with slug: ` nlp_p37_cpu_v2 `
373+ This notebook was developed on the conda pack with slug: ` automlx_p38_cpu_v3 `
357374
358375
359376` language services ` ` string manipulation ` ` regex ` ` regular expression ` ` natural language processing ` ` NLP ` ` part-of-speech tagging ` ` named entity recognition ` ` sentiment analysis ` ` custom plugins `
360377
361378<sub >Universal Permissive License v 1.0</sup >
362379
363380---
364- ### <a name =" automlx-forecasting .ipynb" ></a > - Building a Forecaster using AutoMLx
381+ ### <a name =" natural_language_processing .ipynb" ></a > - Natural Language Processing
365382
366- <sub >Updated: 05/29 /2023</sub >
367- #### [ ` automlx-forecasting .ipynb` ] ( automlx-forecasting .ipynb)
383+ <sub >Updated: 03/26 /2023</sub >
384+ #### [ ` natural_language_processing .ipynb` ] ( natural_language_processing .ipynb)
368385
369386
370- Use Oracle AutoMLx to build a forecast model with real-world data sets .
387+ Use the ADS SDK to process and manipulate strings. This notebook includes regular expression matching and natural language (NLP) parsing, including part-of-speech tagging, named entity recognition, and sentiment analysis. It also shows how to create and use custom plugins specific to your specific needs .
371388
372- This notebook was developed on the conda pack with slug: ` automlx_p38_cpu_v3 `
389+ This notebook was developed on the conda pack with slug: ` nlp_p37_cpu_v2 `
373390
374391
375392` language services ` ` string manipulation ` ` regex ` ` regular expression ` ` natural language processing ` ` NLP ` ` part-of-speech tagging ` ` named entity recognition ` ` sentiment analysis ` ` custom plugins `
@@ -505,47 +522,47 @@ This notebook was developed on the conda pack with slug: `pypgx2310_p38_cpu_v1`
505522<sub >Universal Permissive License v 1.0</sup >
506523
507524---
508- ### <a name =" pyspark-data_flow_studio-introduction .ipynb " ></a > - Introduction to the Oracle Cloud Infrastructure Data Flow Studio
525+ ### <a name =" pyspark-data_flow-application .ipynb " ></a > - PySpark
509526
510- <sub >Updated: 03/26 /2023</sub >
511- #### [ ` pyspark-data_flow_studio-introduction .ipynb ` ] ( pyspark-data_flow_studio-introduction .ipynb )
527+ <sub >Updated: 03/30 /2023</sub >
528+ #### [ ` pyspark-data_flow-application .ipynb ` ] ( pyspark-data_flow-application .ipynb )
512529
513530
514- Run interactive Spark workloads on a long lasting Oracle Cloud Infrastructure Data Flow Spark cluster through Apache Livy integration. Data Flow Spark Magic is used for interactively working with remote Spark clusters through Livy, a Spark REST server, in Jupyter notebooks. It includes a set of magic commands for interactively running Spark code .
531+ Develop local PySpark applications and work with remote clusters using Data Flow .
515532
516- This notebook was developed on the conda pack with slug: ` pyspark32_p38_cpu_v2 `
533+ This notebook was developed on the conda pack with slug: ` pyspark24_p37_cpu_v3 `
517534
518535
519536` pyspark ` ` data flow `
520537
521538<sub >Universal Permissive License v 1.0</sup >
522539
523540---
524- ### <a name =" pyspark-data_flow_studio-spark_nlp .ipynb " ></a > - Spark NLP within Oracle Cloud Infrastructure Data Flow Studio
541+ ### <a name =" pyspark-data_flow_studio-introduction .ipynb " ></a > - Introduction to the Oracle Cloud Infrastructure Data Flow Studio
525542
526543<sub >Updated: 03/26/2023</sub >
527- #### [ ` pyspark-data_flow_studio-spark_nlp .ipynb ` ] ( pyspark-data_flow_studio-spark_nlp .ipynb )
544+ #### [ ` pyspark-data_flow_studio-introduction .ipynb ` ] ( pyspark-data_flow_studio-introduction .ipynb )
528545
529546
530- Demonstrates how to use Spark NLP within a long lasting Oracle Cloud Infrastructure Data Flow cluster.
547+ Run interactive Spark workloads on a long lasting Oracle Cloud Infrastructure Data Flow Spark cluster through Apache Livy integration. Data Flow Spark Magic is used for interactively working with remote Spark clusters through Livy, a Spark REST server, in Jupyter notebooks. It includes a set of magic commands for interactively running Spark code .
531548
532- This notebook was developed on the conda pack with slug: ` pyspark32_p38_cpu_v1 `
549+ This notebook was developed on the conda pack with slug: ` pyspark32_p38_cpu_v2 `
533550
534551
535552` pyspark ` ` data flow `
536553
537554<sub >Universal Permissive License v 1.0</sup >
538555
539556---
540- ### <a name =" pyspark-data_flow-application .ipynb " ></a > - PySpark
557+ ### <a name =" pyspark-data_flow_studio-spark_nlp .ipynb " ></a > - Spark NLP within Oracle Cloud Infrastructure Data Flow Studio
541558
542- <sub >Updated: 03/30 /2023</sub >
543- #### [ ` pyspark-data_flow-application .ipynb ` ] ( pyspark-data_flow-application .ipynb )
559+ <sub >Updated: 03/26 /2023</sub >
560+ #### [ ` pyspark-data_flow_studio-spark_nlp .ipynb ` ] ( pyspark-data_flow_studio-spark_nlp .ipynb )
544561
545562
546- Develop local PySpark applications and work with remote clusters using Data Flow.
563+ Demonstrates how to use Spark NLP within a long lasting Oracle Cloud Infrastructure Data Flow cluster .
547564
548- This notebook was developed on the conda pack with slug: ` pyspark24_p37_cpu_v3 `
565+ This notebook was developed on the conda pack with slug: ` pyspark32_p38_cpu_v1 `
549566
550567
551568` pyspark ` ` data flow `
0 commit comments