|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "raw", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "@notebook{deploy-langchain-as-oci-data-science-model-deployment.ipynb,\n", |
| 8 | + " title: Deploy LangChain Application as OCI Data Science Model Deployment,\n", |
| 9 | + " summary: Deploy LangChain applications as OCI data science model deployment,\n", |
| 10 | + " developed_on: pytorch21_p39_gpu_v1,\n", |
| 11 | + " keywords: langchain, deploy model, register model, LLM,\n", |
| 12 | + " license: Universal Permissive License v 1.0\n", |
| 13 | + "}" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "markdown", |
| 18 | + "metadata": {}, |
| 19 | + "source": [ |
| 20 | + "<font color=gray>Oracle Data Science service sample notebook.\n", |
| 21 | + "\n", |
| 22 | + "Copyright (c) 2023 Oracle, Inc. All rights reserved.\n", |
| 23 | + "Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl.\n", |
| 24 | + "</font>\n", |
| 25 | + "\n", |
| 26 | + "***\n", |
| 27 | + "# <font color=red>Deploy LangChain Application as OCI Data Science Model Deployment</font>\n", |
| 28 | + "<p style=\"margin-left:10%; margin-right:10%;\">by the <font color=teal> Oracle Cloud Infrastructure Data Science Service Team </font></p>\n", |
| 29 | + "\n", |
| 30 | + "***\n", |
| 31 | + "\n", |
| 32 | + "## Overview\n", |
| 33 | + "\n", |
| 34 | + "The notebook demonstrates how to deploy LangChain application as OCI Data Science Model Deployment using Oracle Accelerated Data Science (ADS) SDK.\n", |
| 35 | + "\n", |
| 36 | + "The `ChainDeployment` class in ADS allows you to rapidly get a LangChain application into production. The `.prepare()` method serializes the LangChain application as `chain.yaml` file and generates `score.py` file which can further be uploaded to OCI model catalog. The uploaded model can be subsequently deployed into production.\n", |
| 37 | + "\n", |
| 38 | + "Compatible conda pack: [pytorch21_p39_gpu_v1](https://docs.oracle.com/en-us/iaas/data-science/using/conda-gml-fam.htm) for CPU on Python 3.9 (version 1.0)\n", |
| 39 | + "\n", |
| 40 | + "### Prequisites\n", |
| 41 | + "\n", |
| 42 | + "This notebook requires authorization to work with the OCI Data Science Service. Details can be found [here](https://accelerated-data-science.readthedocs.io/en/latest/user_guide/cli/authentication.html#). For the purposes of this notebook what is important to to know is that resource principals will be used absent api_key authentication.\n", |
| 43 | + "\n", |
| 44 | + "---\n", |
| 45 | + "\n", |
| 46 | + "## Contents\n", |
| 47 | + "\n", |
| 48 | + "* <a href='#intro'>Introduction</a>\n", |
| 49 | + "* <a href='#create'>Create a LangChain Application</a>\n", |
| 50 | + "* <a href='#deploy'>Deploy LangChain Application as OCI Model Deployment</a>\n", |
| 51 | + " * <a href='#deploy_chaindeployment'>Create a ChainDeployment</a>\n", |
| 52 | + " * <a href='#deploy_prepare'>Prepare</a>\n", |
| 53 | + " * <a href='#deploy_verify'>Verify</a>\n", |
| 54 | + " * <a href='#deploy_save'>Save</a>\n", |
| 55 | + " * <a href='#deploy_deploy'>Deploy</a>\n", |
| 56 | + " * <a href='#deploy_predict'>Predict</a>\n", |
| 57 | + "* <a href='#clean_up'>Clean Up</a>\n", |
| 58 | + "* <a href='#ref'>References</a> \n", |
| 59 | + "\n", |
| 60 | + "---" |
| 61 | + ] |
| 62 | + }, |
| 63 | + { |
| 64 | + "cell_type": "code", |
| 65 | + "execution_count": null, |
| 66 | + "metadata": {}, |
| 67 | + "outputs": [], |
| 68 | + "source": [ |
| 69 | + "import ads\n", |
| 70 | + "import os\n", |
| 71 | + "import tempfile\n", |
| 72 | + "\n", |
| 73 | + "from ads.llm.deploy import ChainDeployment\n", |
| 74 | + "from langchain.llms import Cohere\n", |
| 75 | + "from langchain.chains import LLMChain\n", |
| 76 | + "from langchain.prompts import PromptTemplate\n", |
| 77 | + "from shutil import rmtree" |
| 78 | + ] |
| 79 | + }, |
| 80 | + { |
| 81 | + "cell_type": "markdown", |
| 82 | + "metadata": {}, |
| 83 | + "source": [ |
| 84 | + "<a id='intro'></a>\n", |
| 85 | + "# Introduction\n", |
| 86 | + "\n", |
| 87 | + "In this notebook, you will create a custom LangChain application that links prompt and Cohere model and deploy it on OCI model deployment. It is designed to demonstrate how to use the `ChainDeployment` class in Oracle ADS SDK.\n", |
| 88 | + "\n", |
| 89 | + "The `.prepare()` method will serialize the LangChain application as `chain.yaml` file. It will also generate a `score.py` file that will load the LangChain yaml and call the `predict()` method. The `.save()` and `.deploy()` methods will upload the artifacts to OCI model catalog and deploy the uploaded model, respectively." |
| 90 | + ] |
| 91 | + }, |
| 92 | + { |
| 93 | + "cell_type": "markdown", |
| 94 | + "metadata": {}, |
| 95 | + "source": [ |
| 96 | + "### Authenticate\n", |
| 97 | + "\n", |
| 98 | + "Authentication to the OCI Data Science service is required. Here we default to resource principals." |
| 99 | + ] |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "code", |
| 103 | + "execution_count": null, |
| 104 | + "metadata": {}, |
| 105 | + "outputs": [], |
| 106 | + "source": [ |
| 107 | + "ads.set_auth(auth=\"resource_principal\")" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "markdown", |
| 112 | + "metadata": {}, |
| 113 | + "source": [ |
| 114 | + "<a id='create'></a>\n", |
| 115 | + "# Create a LangChain Application\n", |
| 116 | + "\n", |
| 117 | + "The next cell creates a LangChain application that links prompt and Cohere model. The LangChain application will utilize Cohere model to generate a joke based on the subject that user provides. Remember to replace the `<cohere_api_key>` with the actual api key as Cohere model needs it. You can acquire this key by registering on [Cohere](https://dashboard.cohere.com/welcome/register)." |
| 118 | + ] |
| 119 | + }, |
| 120 | + { |
| 121 | + "cell_type": "code", |
| 122 | + "execution_count": null, |
| 123 | + "metadata": {}, |
| 124 | + "outputs": [], |
| 125 | + "source": [ |
| 126 | + "os.environ[\"COHERE_API_KEY\"] = \"<cohere_api_key>\"\n", |
| 127 | + "\n", |
| 128 | + "cohere = Cohere() \n", |
| 129 | + "prompt = PromptTemplate.from_template(\"Tell me a joke about {subject}\")\n", |
| 130 | + "llm_chain = LLMChain(prompt=prompt, llm=cohere, verbose=True)" |
| 131 | + ] |
| 132 | + }, |
| 133 | + { |
| 134 | + "cell_type": "markdown", |
| 135 | + "metadata": {}, |
| 136 | + "source": [ |
| 137 | + "Now you have a LangChain object `llm_chain`. Try running it with the prompt `{\"subject\": \"animals\"}` and it should give you the corresponding answer." |
| 138 | + ] |
| 139 | + }, |
| 140 | + { |
| 141 | + "cell_type": "code", |
| 142 | + "execution_count": null, |
| 143 | + "metadata": {}, |
| 144 | + "outputs": [], |
| 145 | + "source": [ |
| 146 | + "llm_chain.run({\"subject\": \"animals\"})" |
| 147 | + ] |
| 148 | + }, |
| 149 | + { |
| 150 | + "cell_type": "markdown", |
| 151 | + "metadata": {}, |
| 152 | + "source": [ |
| 153 | + "<a id='deploy'></a>\n", |
| 154 | + "# Deploy LangChain Application as OCI Model Deployment\n", |
| 155 | + "\n", |
| 156 | + "<a id='deploy_chaindeployment'></a>\n", |
| 157 | + "## Create a ChainDeployment\n", |
| 158 | + "\n", |
| 159 | + "The next cell creates a model artifact directory. This directory is used to store the artifacts that are needed to deploy the model. It also creates the `ChainDeployment` object. The `ChainDeployment` requires the LangChain object `llm_chain` as `chain` parameter." |
| 160 | + ] |
| 161 | + }, |
| 162 | + { |
| 163 | + "cell_type": "code", |
| 164 | + "execution_count": null, |
| 165 | + "metadata": {}, |
| 166 | + "outputs": [], |
| 167 | + "source": [ |
| 168 | + "artifact_dir = tempfile.mkdtemp()\n", |
| 169 | + "\n", |
| 170 | + "chain_deployment = ChainDeployment(\n", |
| 171 | + " chain=llm_chain,\n", |
| 172 | + " artifact_dir=artifact_dir\n", |
| 173 | + ")" |
| 174 | + ] |
| 175 | + }, |
| 176 | + { |
| 177 | + "cell_type": "markdown", |
| 178 | + "metadata": {}, |
| 179 | + "source": [ |
| 180 | + "<a id='deploy_prepare'></a>\n", |
| 181 | + "## Prepare\n", |
| 182 | + "\n", |
| 183 | + "The prepare step is performed by the `.prepare()` method of the `ChainDeployment` class. It creates a number of customized files that are used to run the model once it is deployed. These include:\n", |
| 184 | + "\n", |
| 185 | + "* `chain.yaml`: A YAML file that is serialized from the LangChain application and can be deserialized in `load_model` in `score.py`.\n", |
| 186 | + "* `runtime.yaml`: This file contains information that is needed to set up the runtime environment on the deployment server.\n", |
| 187 | + "* `score.py`: This script contains the `load_model()` and `predict()` functions. The `load_model()` function understands the format the model file was saved in, and loads it into memory. The `.predict()` method is used to make inferences in a deployed model.\n", |
| 188 | + "\n", |
| 189 | + "To create the model artifacts, you use the `.prepare()` method\n", |
| 190 | + "\n", |
| 191 | + "* `inference_conda_env` variable defines the slug of the conda environment that is used to train the model\n", |
| 192 | + "\n", |
| 193 | + "Note that you can only pass in slug for service conda environment. For custom conda environment, you have to pass in the full path along with the `inference_python_version`. \n", |
| 194 | + "\n", |
| 195 | + "Here, replace `<custom_conda_environment_uri>` with your conda environment uri that has the latest ADS 2.9.1 and replace `<python_version>` with your conda environment python version. For how to customize and publish conda environment, take reference to [Publishing a Conda Environment to an Object Storage Bucket](https://docs.oracle.com/en-us/iaas/data-science/using/conda_publishs_object.htm)." |
| 196 | + ] |
| 197 | + }, |
| 198 | + { |
| 199 | + "cell_type": "code", |
| 200 | + "execution_count": null, |
| 201 | + "metadata": {}, |
| 202 | + "outputs": [], |
| 203 | + "source": [ |
| 204 | + "chain_deployment.prepare(\n", |
| 205 | + " inference_conda_env=\"<custom_conda_environment_uri>\",\n", |
| 206 | + " inference_python_version=\"<python_version>\",\n", |
| 207 | + ")" |
| 208 | + ] |
| 209 | + }, |
| 210 | + { |
| 211 | + "cell_type": "markdown", |
| 212 | + "metadata": {}, |
| 213 | + "source": [ |
| 214 | + "<a id='deploy_verify'></a>\n", |
| 215 | + "## Verify\n", |
| 216 | + "\n", |
| 217 | + "The `.verify()` method takes a set of test parameters and performs the prediction by calling the `predict` function in `score.py`. It also runs the `load_model` function." |
| 218 | + ] |
| 219 | + }, |
| 220 | + { |
| 221 | + "cell_type": "code", |
| 222 | + "execution_count": null, |
| 223 | + "metadata": {}, |
| 224 | + "outputs": [], |
| 225 | + "source": [ |
| 226 | + "chain_deployment.verify({\"subject\": \"animals\"})" |
| 227 | + ] |
| 228 | + }, |
| 229 | + { |
| 230 | + "cell_type": "markdown", |
| 231 | + "metadata": {}, |
| 232 | + "source": [ |
| 233 | + "<a id='deploy_save'></a>\n", |
| 234 | + "## Save\n", |
| 235 | + "\n", |
| 236 | + "Call `.save()` to pack and upload the artifacts under `artifact_dir` to OCI data science model catalog. Once the artifacts are successfully uploaded, you should be able to see the id of the model." |
| 237 | + ] |
| 238 | + }, |
| 239 | + { |
| 240 | + "cell_type": "code", |
| 241 | + "execution_count": null, |
| 242 | + "metadata": {}, |
| 243 | + "outputs": [], |
| 244 | + "source": [ |
| 245 | + "chain_deployment.save(display_name=\"LangChain Model\")" |
| 246 | + ] |
| 247 | + }, |
| 248 | + { |
| 249 | + "cell_type": "markdown", |
| 250 | + "metadata": {}, |
| 251 | + "source": [ |
| 252 | + "<a id='deploy_deploy'></a>\n", |
| 253 | + "## Deploy\n", |
| 254 | + "\n", |
| 255 | + "Deploy the LangChain model from previous step by calling `.deploy()`. For more information regarding the allowed parameters, see [here](https://accelerated-data-science.readthedocs.io/en/latest/user_guide/model_serialization/genericmodel.html#deploy). Remember to replace the `<cohere_api_key>` with the actual cohere api key in the `environment_variables`. It usually takes a couple of minutes to deploy the model and you should see the model deployment in the output once the process completes." |
| 256 | + ] |
| 257 | + }, |
| 258 | + { |
| 259 | + "cell_type": "code", |
| 260 | + "execution_count": null, |
| 261 | + "metadata": {}, |
| 262 | + "outputs": [], |
| 263 | + "source": [ |
| 264 | + "chain_deployment.deploy(\n", |
| 265 | + " display_name=\"LangChain Model Deployment\",\n", |
| 266 | + " environment_variables={\"COHERE_API_KEY\":\"<cohere_api_key>\"}, \n", |
| 267 | + ")" |
| 268 | + ] |
| 269 | + }, |
| 270 | + { |
| 271 | + "cell_type": "markdown", |
| 272 | + "metadata": {}, |
| 273 | + "source": [ |
| 274 | + "<a id='deploy_predict'></a>\n", |
| 275 | + "## Predict\n", |
| 276 | + "\n", |
| 277 | + "After the deployment is active, you can call the `predict()` on the `ChainDeployment` object to send request to the deployed endpoint. " |
| 278 | + ] |
| 279 | + }, |
| 280 | + { |
| 281 | + "cell_type": "code", |
| 282 | + "execution_count": null, |
| 283 | + "metadata": {}, |
| 284 | + "outputs": [], |
| 285 | + "source": [ |
| 286 | + "chain_deployment.predict(data={\"subject\": \"animals\"})" |
| 287 | + ] |
| 288 | + }, |
| 289 | + { |
| 290 | + "cell_type": "markdown", |
| 291 | + "metadata": {}, |
| 292 | + "source": [ |
| 293 | + "<a id='clean_up'></a>\n", |
| 294 | + "# Clean Up\n", |
| 295 | + "\n", |
| 296 | + "This notebook created a model deployment and a model. This section deletes those resources. \n", |
| 297 | + "\n", |
| 298 | + "The model deployment must be deleted before the model can be deleted. You can use the `.delete_deployment()` method on the `ChainDeployment` object to do this." |
| 299 | + ] |
| 300 | + }, |
| 301 | + { |
| 302 | + "cell_type": "code", |
| 303 | + "execution_count": null, |
| 304 | + "metadata": {}, |
| 305 | + "outputs": [], |
| 306 | + "source": [ |
| 307 | + "delete = chain_deployment.delete_deployment(wait_for_completion=True)" |
| 308 | + ] |
| 309 | + }, |
| 310 | + { |
| 311 | + "cell_type": "markdown", |
| 312 | + "metadata": {}, |
| 313 | + "source": [ |
| 314 | + "Use the `.delete()` method to delete the model:" |
| 315 | + ] |
| 316 | + }, |
| 317 | + { |
| 318 | + "cell_type": "code", |
| 319 | + "execution_count": null, |
| 320 | + "metadata": {}, |
| 321 | + "outputs": [], |
| 322 | + "source": [ |
| 323 | + "chain_deployment.delete()" |
| 324 | + ] |
| 325 | + }, |
| 326 | + { |
| 327 | + "cell_type": "markdown", |
| 328 | + "metadata": {}, |
| 329 | + "source": [ |
| 330 | + "The next cell removes the model artifacts that were stored on your local drive:" |
| 331 | + ] |
| 332 | + }, |
| 333 | + { |
| 334 | + "cell_type": "code", |
| 335 | + "execution_count": null, |
| 336 | + "metadata": {}, |
| 337 | + "outputs": [], |
| 338 | + "source": [ |
| 339 | + "rmtree(artifact_dir)" |
| 340 | + ] |
| 341 | + }, |
| 342 | + { |
| 343 | + "cell_type": "markdown", |
| 344 | + "metadata": {}, |
| 345 | + "source": [ |
| 346 | + "<a id='ref'></a>\n", |
| 347 | + "# References\n", |
| 348 | + "- [ADS Library Documentation](https://accelerated-data-science.readthedocs.io/en/latest/index.html)\n", |
| 349 | + "- [Data Science YouTube Videos](https://www.youtube.com/playlist?list=PLKCk3OyNwIzv6CWMhvqSB_8MLJIZdO80L)\n", |
| 350 | + "- [OCI Data Science Documentation](https://docs.cloud.oracle.com/en-us/iaas/data-science/using/data-science.htm)\n", |
| 351 | + "- [Oracle Data & AI Blog](https://blogs.oracle.com/datascience/)\n", |
| 352 | + "- [Understanding Conda Environments](https://docs.cloud.oracle.com/en-us/iaas/data-science/using/use-notebook-sessions.htm#conda_understand_environments)\n", |
| 353 | + "- [Use Resource Manager to Configure Your Tenancy for Data Science](https://docs.cloud.oracle.com/en-us/iaas/data-science/using/orm-configure-tenancy.htm)\n", |
| 354 | + "- [runtime.yaml](https://docs.content.oci.oracleiaas.com/en-us/iaas/data-science/using/model_runtime_yaml.htm#model_runtime_yaml)\n", |
| 355 | + "- [score.py](https://docs.content.oci.oracleiaas.com/en-us/iaas/data-science/using/model_score_py.htm#model_score_py)\n", |
| 356 | + "- [Model artifact](https://docs.content.oci.oracleiaas.com/en-us/iaas/data-science/using/models_saving_catalog.htm#create-models)" |
| 357 | + ] |
| 358 | + } |
| 359 | + ], |
| 360 | + "metadata": { |
| 361 | + "kernelspec": { |
| 362 | + "display_name": "Python [conda env:pytorch110_p38_cpu_v1]", |
| 363 | + "language": "python", |
| 364 | + "name": "conda-env-pytorch110_p38_cpu_v1-py" |
| 365 | + }, |
| 366 | + "language_info": { |
| 367 | + "codemirror_mode": { |
| 368 | + "name": "ipython", |
| 369 | + "version": 3 |
| 370 | + }, |
| 371 | + "file_extension": ".py", |
| 372 | + "mimetype": "text/x-python", |
| 373 | + "name": "python", |
| 374 | + "nbconvert_exporter": "python", |
| 375 | + "pygments_lexer": "ipython3", |
| 376 | + "version": "3.8.13" |
| 377 | + }, |
| 378 | + "vscode": { |
| 379 | + "interpreter": { |
| 380 | + "hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49" |
| 381 | + } |
| 382 | + } |
| 383 | + }, |
| 384 | + "nbformat": 4, |
| 385 | + "nbformat_minor": 4 |
| 386 | +} |
0 commit comments