@@ -72,6 +72,7 @@ def __init__(
7272 sampler_config : Dictionary, optional
7373 dictionary of parameters that initialise sampler configuration.
7474 Class-default defined by the user default_sampler_config method.
75+
7576 Examples
7677 --------
7778 >>> class MyModel(ModelBuilder):
@@ -150,6 +151,7 @@ def default_model_config(self) -> dict:
150151 """
151152 Returns a class default config dict for model builder if no model_config is provided on class initialization
152153 Useful for understanding structure of required model_config to allow its customization by users
154+
153155 Examples
154156 --------
155157 >>> @classmethod
@@ -436,28 +438,28 @@ def fit(
436438 Fit a model using the data passed as a parameter.
437439 Sets attrs to inference data of the model.
438440
439-
440441 Parameters
441442 ----------
442- X : array-like if sklearn is available, otherwise array, shape (n_obs, n_features)
443- The training input samples.
444- y : array-like if sklearn is available, otherwise array, shape (n_obs,)
445- The target values (real numbers).
443+ X : array-like | array, shape (n_obs, n_features)
444+ The training input samples. If scikit-learn is available, array-like, otherwise array.
445+ y : array-like | array, shape (n_obs,)
446+ The target values (real numbers). If scikit-learn is available, array-like, otherwise array.
446447 progressbar : bool
447- Specifies whether the fit progressbar should be displayed
448- predictor_names: Optional[List[str]] = None,
449- Allows for custom naming of predictors given in a form of 2dArray
448+ Specifies whether the fit progress bar should be displayed.
449+ predictor_names : Optional[List[str]] = None,
450+ Allows for custom naming of predictors when given in a form of a 2D array.
450451 Allows for naming of predictors when given in a form of np.ndarray, if not provided
451452 the predictors will be named like predictor1, predictor2...
452453 random_seed : Optional[RandomState]
453- Provides sampler with initial random seed for obtaining reproducible samples
454+ Provides sampler with initial random seed for obtaining reproducible samples.
454455 **kwargs : Any
455456 Custom sampler settings can be provided in form of keyword arguments.
456457
457458 Returns
458459 -------
459460 self : az.InferenceData
460- returns inference data of the fitted model.
461+ Returns inference data of the fitted model.
462+
461463 Examples
462464 --------
463465 >>> model = MyModel()
@@ -522,9 +524,10 @@ def predict(
522524
523525 Parameters
524526 ----------
525- X_pred : array-like if sklearn is available, otherwise array, shape (n_pred, n_features)
526- The input data used for prediction.
527- extend_idata : Boolean determining whether the predictions should be added to inference data object.
527+ X_pred : array-like | array, shape (n_pred, n_features)
528+ The input data used for prediction. If scikit-learn is available, array-like, otherwise array.
529+ extend_idata : Boolean
530+ Determine whether the predictions should be added to inference data object.
528531 Defaults to True.
529532 **kwargs: Additional arguments to pass to sample_posterior_predictive method
530533
@@ -575,9 +578,11 @@ def sample_prior_predictive(
575578 samples : int
576579 Number of samples from the prior parameter distributions to generate.
577580 If not set, uses sampler_config['draws'] if that is available, otherwise defaults to 500.
578- extend_idata : Boolean determining whether the predictions should be added to inference data object.
581+ extend_idata : Boolean
582+ Determine whether the predictions should be added to inference data object.
579583 Defaults to True.
580- combined: Combine chain and draw dims into sample. Won't work if a dim named sample already exists.
584+ combined: Boolean
585+ Combine chain and draw dims into sample. Won't work if a dim named sample already exists.
581586 Defaults to True.
582587 **kwargs: Additional arguments to pass to pymc.sample_prior_predictive
583588
@@ -624,9 +629,11 @@ def sample_posterior_predictive(
624629 ----------
625630 X_pred : array, shape (n_pred, n_features)
626631 The input data used for prediction using prior distribution..
627- extend_idata : Boolean determining whether the predictions should be added to inference data object.
632+ extend_idata : Boolean
633+ Determine whether the predictions should be added to inference data object.
628634 Defaults to True.
629- combined: Combine chain and draw dims into sample. Won't work if a dim named sample already exists.
635+ combined: Boolean
636+ Combine chain and draw dims into sample. Won't work if a dim named sample already exists.
630637 Defaults to True.
631638 **sample_posterior_predictive_kwargs: Additional arguments to pass to pymc.sample_posterior_predictive
632639
@@ -704,18 +711,21 @@ def predict_posterior(
704711
705712 Parameters
706713 ----------
707- X_pred : array-like if sklearn is available, otherwise array, shape (n_pred, n_features)
708- The input data used for prediction.
709- extend_idata : Boolean determining whether the predictions should be added to inference data object.
714+ X_pred : array-like | array, shape (n_pred, n_features)
715+ The input data used for prediction. If scikit-learn is available, array-like, otherwise array.
716+ extend_idata : Boolean
717+ Determine whether the predictions should be added to inference data object.
710718 Defaults to True.
711- combined: Combine chain and draw dims into sample. Won't work if a dim named sample already exists.
719+ combined: Boolean
720+ Combine chain and draw dims into sample. Won't work if a dim named sample already exists.
712721 Defaults to True.
713722 **kwargs: Additional arguments to pass to sample_posterior_predictive method
714723
715724 Returns
716725 -------
717- y_pred : DataArray, shape (n_pred, chains * draws) if combined is True, otherwise (chains, draws, n_pred)
718- Posterior predictive samples for each input X_pred
726+ y_pred : DataArray
727+ Posterior predictive samples for each input X_pred.
728+ Shape is (n_pred, chains * draws) if combined is True, otherwise (chains, draws, n_pred).
719729 """
720730
721731 X_pred = self ._validate_data (X_pred )
0 commit comments