|
1863 | 1863 | "source": [ |
1864 | 1864 | "# Acute stroke unit\n", |
1865 | 1865 | "plot_occupancy_freq(base_overall[\"asu\"], unit=\"asu\",\n", |
1866 | | - " file=\"occupancy_freq_asu.png\")\n", |
| 1866 | + " file=\"figure1_asu.png\")\n", |
1867 | 1867 | "\n", |
1868 | 1868 | "# Rehabilitation unit\n", |
1869 | 1869 | "plot_occupancy_freq(base_overall[\"rehab\"], unit=\"rehab\",\n", |
1870 | | - " file=\"occupancy_freq_rehab.png\")" |
| 1870 | + " file=\"figure1_rehab.png\")" |
1871 | 1871 | ] |
1872 | 1872 | }, |
1873 | 1873 | { |
|
3768 | 3768 | } |
3769 | 3769 | ], |
3770 | 3770 | "source": [ |
3771 | | - "plot_delay_prob(base_overall[\"asu\"], unit=\"asu\", file=\"delay_prob_asu.png\")\n", |
3772 | | - "plot_delay_prob(base_overall[\"rehab\"], unit=\"rehab\",\n", |
3773 | | - " file=\"delay_prob_rehab.png\")" |
| 3771 | + "plot_delay_prob(base_overall[\"asu\"], unit=\"asu\", file=\"figure3_asu.png\")\n", |
| 3772 | + "plot_delay_prob(base_overall[\"rehab\"], unit=\"rehab\", file=\"figure3_rehab.png\")" |
3774 | 3773 | ] |
3775 | 3774 | }, |
3776 | 3775 | { |
|
4327 | 4326 | "# Display and save to csv\n", |
4328 | 4327 | "display(adj_full_tab_2)\n", |
4329 | 4328 | "adj_full_tab_2.to_csv(\n", |
4330 | | - " os.path.join(OUTPUT_DIR, \"delay_scenario1.csv\"), index=False)" |
| 4329 | + " os.path.join(OUTPUT_DIR, \"table2.csv\"), index=False)" |
4331 | 4330 | ] |
4332 | 4331 | }, |
4333 | 4332 | { |
|
4557 | 4556 | "\n", |
4558 | 4557 | "# Display and save to csv\n", |
4559 | 4558 | "display(sup_tab1)\n", |
4560 | | - "sup_tab1.to_csv(os.path.join(OUTPUT_DIR, \"delay_scenario4.csv\"), index=False)" |
| 4559 | + "sup_tab1.to_csv(os.path.join(OUTPUT_DIR, \"suptable1.csv\"), index=False)" |
4561 | 4560 | ] |
4562 | 4561 | }, |
4563 | 4562 | { |
|
5604 | 5603 | ], |
5605 | 5604 | "source": [ |
5606 | 5605 | "# Convert to a dataframe\n", |
5607 | | - "tab2 = pd.DataFrame(pool_result_list)\n", |
| 5606 | + "tab3 = pd.DataFrame(pool_result_list)\n", |
5608 | 5607 | "\n", |
5609 | 5608 | "for delay_type in [\"acute\", \"rehab\"]:\n", |
5610 | 5609 | " # Round probabilities to 3 decimal places\n", |
5611 | | - " tab2[f\"pdelay_{delay_type}\"] = round(tab2[f\"pdelay_{delay_type}\"], 3)\n", |
| 5610 | + " tab3[f\"pdelay_{delay_type}\"] = round(tab3[f\"pdelay_{delay_type}\"], 3)\n", |
5612 | 5611 | " # Convert 1-in-n counts to integers\n", |
5613 | | - " tab2[f\"1_in_n_delay_{delay_type}\"] = (\n", |
5614 | | - " tab2[f\"1_in_n_delay_{delay_type}\"].astype(int))\n", |
| 5612 | + " tab3[f\"1_in_n_delay_{delay_type}\"] = (\n", |
| 5613 | + " tab3[f\"1_in_n_delay_{delay_type}\"].astype(int))\n", |
5615 | 5614 | "\n", |
5616 | 5615 | "# Display and save to csv\n", |
5617 | | - "display(tab2)\n", |
5618 | | - "tab2.to_csv(\n", |
5619 | | - " os.path.join(OUTPUT_DIR, \"pooling.csv\"), index=False)" |
| 5616 | + "display(tab3)\n", |
| 5617 | + "tab3.to_csv(\n", |
| 5618 | + " os.path.join(OUTPUT_DIR, \"table3.csv\"), index=False)" |
5620 | 5619 | ] |
5621 | 5620 | } |
5622 | 5621 | ], |
|
0 commit comments