@@ -17,32 +17,35 @@ Stable Diffusion 是一种基于潜在扩散模型的文本到图像生成模型
1717- ** 使用modelscope下载模型文件**
1818
1919 - ** 创建存储模型文件的目录**
20- <NewCodeBlock tip = " Linux PC" type = " PC" >
2120
22- ``` bash
23- mkdir sd-lcm-rknn && cd sd-lcm-rknn
24- ```
21+ <NewCodeBlock tip = " Linux PC" type = " PC" >
2522
26- </NewCodeBlock >
23+ ``` bash
24+ mkdir sd-lcm-rknn && cd sd-lcm-rknn
25+ ```
26+
27+ </NewCodeBlock >
2728
28- - ** pip安装modelscope包**
29- <NewCodeBlock tip = " Linux PC" type = " PC" >
29+ - ** pip安装modelscope包**
3030
31- ``` bash
32- # 尽量使用较新的python版本避免兼容问题
33- pip3 install modelscope
34- ```
31+ <NewCodeBlock tip = " Linux PC" type = " PC" >
3532
36- </NewCodeBlock >
33+ ``` bash
34+ # 尽量使用较新的python版本避免兼容问题
35+ pip3 install modelscope
36+ ```
3737
38- - ** 克隆Stable-Diffusion-LCM_RKNN仓库**
39- <NewCodeBlock tip = " Linux PC" type = " PC" >
38+ </NewCodeBlock >
4039
41- ``` bash
42- modelscope download --model radxa/Stable-Diffusion-LCM_RKNN
43- ```
40+ - ** 克隆Stable-Diffusion-LCM_RKNN仓库**
4441
45- </NewCodeBlock >
42+ <NewCodeBlock tip = " Linux PC" type = " PC" >
43+
44+ ``` bash
45+ modelscope download --model radxa/Stable-Diffusion-LCM_RKNN
46+ ```
47+
48+ </NewCodeBlock >
4649
4750## (可选)模型转换
4851
@@ -51,122 +54,132 @@ Stable Diffusion 是一种基于潜在扩散模型的文本到图像生成模型
5154- ** 从HuggingFace下载ONNX模型并转换为RKNN模型**
5255
5356 - ** 创建存储模型文件的目录**
54- <NewCodeBlock tip = " Linux PC" type = " PC" >
5557
56- ``` bash
57- mkdir sd-lcm-rknn && cd sd-lcm-rknn
58- ```
58+ <NewCodeBlock tip = " Linux PC" type = " PC" >
5959
60- </NewCodeBlock >
60+ ``` bash
61+ mkdir sd-lcm-rknn && cd sd-lcm-rknn
62+ ```
6163
62- - ** 克隆模型仓库**
63- <NewCodeBlock tip = " Linux PC" type = " PC" >
64+ </NewCodeBlock >
6465
65- ``` bash
66- # 需要使用git lfs,如未安装请自行安装
67- git lfs install
68- git clone https://huggingface.co/thanhtantran/Stable-Diffusion-1.5-LCM-ONNX-RKNN2
69- ```
66+ - ** 克隆模型仓库**
7067
71- </ NewCodeBlock >
68+ < NewCodeBlock tip = " Linux PC " type = " PC " >
7269
73- - ** 激活虚拟环境**
74- <NewCodeBlock tip = " Linux PC" type = " PC" >
70+ ``` bash
71+ # 需要使用git lfs,如未安装请自行安装
72+ git lfs install
73+ git clone https://huggingface.co/thanhtantran/Stable-Diffusion-1.5-LCM-ONNX-RKNN2
74+ ```
7575
76- ``` bash
77- conda activate your_rknn_env
78- ```
76+ </NewCodeBlock >
7977
80- </ NewCodeBlock >
78+ - ** 激活虚拟环境 **
8179
82- - ** 可先运行 _ run_onnx-lcm.py_ 测试模型完整性**
83- <NewCodeBlock tip = " Linux PC" type = " PC" >
80+ <NewCodeBlock tip = " Linux PC" type = " PC" >
8481
85- ``` bash
82+ ``` bash
83+ conda activate your_rknn_env
84+ ```
85+
86+ </NewCodeBlock >
87+
88+ - ** 可先运行 _ run_onnx-lcm.py_ 测试模型完整性**
89+
90+ <NewCodeBlock tip = " Linux PC" type = " PC" >
91+
92+ ``` bash
8693 # 使用-h参数查看参数帮助
8794 python run_onnx-lcm.py -i ./model -o ./images --prompt " Majestic mountain landscape with snow-capped peaks, autumn foliage in vibrant reds and oranges, a turquoise river winding through a valley, crisp and serene atmosphere, ultra-realistic style."
88- ```
89-
90- </NewCodeBlock >
91-
92- - ** 运行 _ convert-onnx-to-rknn.py_ 转换模型**
93- <NewCodeBlock tip = " Linux PC" type = " PC" >
94-
95- ``` bash
96- # 使用-h参数查看参数帮助,将N替换为你实际需要的分辨率,转换之后模型只可输出该分辨率图像
97- python convert-onnx-to-rknn.py -i ./model -r NxN
98- ```
99-
100- </NewCodeBlock >
101-
102- - ** 将文件整理为下面的目录结构,即可进行下一环节**
103-
104- ``` txt
105- ---sd-lcm-rknn
106- ---model
107- ---scheduler
108- ---scheduler_config.json
109- ---text_encoder
110- ---config.json
111- ---model.rknn
112- ---unet
113- ---config.json
114- ---model.rknn
115- ---vae_decoder
116- ---config.json
117- ---model.rknn
118- ---run_rknn-lcm.py
119- ```
95+ ```
96+
97+ </NewCodeBlock >
98+
99+ - ** 运行 _ convert-onnx-to-rknn.py_ 转换模型**
100+
101+ <NewCodeBlock tip = " Linux PC" type = " PC" >
102+
103+ ``` bash
104+ # 使用-h参数查看参数帮助,将N替换为你实际需要的分辨率,转换之后模型只可输出该分辨率图像
105+ python convert-onnx-to-rknn.py -i ./model -r NxN
106+ ```
107+
108+ </NewCodeBlock >
109+
110+ - ** 将文件整理为下面的目录结构,即可进行下一环节**
111+
112+ ``` txt
113+ ---sd-lcm-rknn
114+ ---model
115+ ---scheduler
116+ ---scheduler_config.json
117+ ---text_encoder
118+ ---config.json
119+ ---model.rknn
120+ ---unet
121+ ---config.json
122+ ---model.rknn
123+ ---vae_decoder
124+ ---config.json
125+ ---model.rknn
126+ ---run_rknn-lcm.py
127+ ```
120128
121129## 板端部署
122130
123131- ** 将转换后的RKNN模型及可执行文件拷贝到板端**
124132
125133 - ** 进入板端对应目录**
126- <NewCodeBlock tip = " Radxa SBC" type = " device" >
127134
128- ``` bash
129- cd sd-lcm-rknn
130- ```
135+ <NewCodeBlock tip = " Radxa SBC" type = " device" >
131136
132- </NewCodeBlock >
137+ ``` bash
138+ cd sd-lcm-rknn
139+ ```
133140
134- - ** 创建python虚拟环境**
135- <NewCodeBlock tip = " Radxa SBC" type = " device" >
141+ </NewCodeBlock >
136142
137- ``` bash
138- python -m venv .venv
139- ```
143+ - ** 创建python虚拟环境**
140144
141- </ NewCodeBlock >
145+ < NewCodeBlock tip = " Radxa SBC " type = " device " >
142146
143- - ** 激活虚拟环境**
144- <NewCodeBlock tip = " Radxa SBC" type = " device" >
147+ ``` bash
148+ python -m venv .venv
149+ ```
145150
146- ``` bash
147- source .venv/bin/activate
148- ```
151+ </NewCodeBlock >
149152
150- </ NewCodeBlock >
153+ - ** 激活虚拟环境 **
151154
152- - ** 安装相关依赖**
153- <NewCodeBlock tip = " Radxa SBC" type = " device" >
155+ <NewCodeBlock tip = " Radxa SBC" type = " device" >
154156
155- ``` bash
156- pip3 install diffusers pillow " numpy<2.0" torch transformers rknn-toolkit-lite2
157- ```
157+ ``` bash
158+ source .venv/bin/activate
159+ ```
160+
161+ </NewCodeBlock >
162+
163+ - ** 安装相关依赖**
164+
165+ <NewCodeBlock tip = " Radxa SBC" type = " device" >
158166
159- </NewCodeBlock >
167+ ``` bash
168+ pip3 install diffusers pillow " numpy<2.0" torch transformers rknn-toolkit-lite2
169+ ```
170+
171+ </NewCodeBlock >
160172
161- - ** 执行脚本**
162- <NewCodeBlock tip = " Radxa SBC" type = " device" >
173+ - ** 执行脚本**
163174
164- ``` bash
165- # 使用-h参数查看参数帮助,自行转换的模型需要替换分辨率参数
166- python ./run_rknn-lcm.py -i ./model -o ./images -s 256x256 --prompt " Majestic mountain landscape with snow-capped peaks, autumn foliage in vibrant reds and oranges, a turquoise river winding through a valley, crisp and serene atmosphere, ultra-realistic style."
167- ```
175+ <NewCodeBlock tip = " Radxa SBC" type = " device" >
176+
177+ ``` bash
178+ # 使用-h参数查看参数帮助,自行转换的模型需要替换分辨率参数
179+ python ./run_rknn-lcm.py -i ./model -o ./images -s 256x256 --prompt " Majestic mountain landscape with snow-capped peaks, autumn foliage in vibrant reds and oranges, a turquoise river winding through a valley, crisp and serene atmosphere, ultra-realistic style."
180+ ```
168181
169- </NewCodeBlock >
182+ </NewCodeBlock >
170183
171184## 模型结果及性能分析
172185
0 commit comments