@@ -70,7 +70,7 @@ pub use lapack_traits::{Pivot, Transpose};
7070///
7171/// If you plan to solve many equations with the same `A` matrix but different
7272/// `b` vectors, it's faster to factor the `A` matrix once using the
73- /// `Factorize` trait, and then solve using the `Factorized ` struct.
73+ /// `Factorize` trait, and then solve using the `LUFactorized ` struct.
7474pub trait Solve < A : Scalar > {
7575 /// Solves a system of linear equations `A * x = b` where `A` is `self`, `b`
7676 /// is the argument, and `x` is the successful result.
@@ -125,15 +125,15 @@ pub trait Solve<A: Scalar> {
125125}
126126
127127/// Represents the LU factorization of a matrix `A` as `A = P*L*U`.
128- pub struct Factorized < S : Data > {
128+ pub struct LUFactorized < S : Data > {
129129 /// The factors `L` and `U`; the unit diagonal elements of `L` are not
130130 /// stored.
131131 pub a : ArrayBase < S , Ix2 > ,
132132 /// The pivot indices that define the permutation matrix `P`.
133133 pub ipiv : Pivot ,
134134}
135135
136- impl < A , S > Solve < A > for Factorized < S >
136+ impl < A , S > Solve < A > for LUFactorized < S >
137137where
138138 A : Scalar ,
139139 S : Data < Elem = A > ,
@@ -218,24 +218,24 @@ where
218218pub trait Factorize < S : Data > {
219219 /// Computes the LU factorization `A = P*L*U`, where `P` is a permutation
220220 /// matrix.
221- fn factorize ( & self ) -> Result < Factorized < S > > ;
221+ fn factorize ( & self ) -> Result < LUFactorized < S > > ;
222222}
223223
224224/// An interface for computing LU factorizations of matrices.
225225pub trait FactorizeInto < S : Data > {
226226 /// Computes the LU factorization `A = P*L*U`, where `P` is a permutation
227227 /// matrix.
228- fn factorize_into ( self ) -> Result < Factorized < S > > ;
228+ fn factorize_into ( self ) -> Result < LUFactorized < S > > ;
229229}
230230
231231impl < A , S > FactorizeInto < S > for ArrayBase < S , Ix2 >
232232where
233233 A : Scalar ,
234234 S : DataMut < Elem = A > ,
235235{
236- fn factorize_into ( mut self ) -> Result < Factorized < S > > {
236+ fn factorize_into ( mut self ) -> Result < LUFactorized < S > > {
237237 let ipiv = unsafe { A :: lu ( self . layout ( ) ?, self . as_allocated_mut ( ) ?) ? } ;
238- Ok ( Factorized {
238+ Ok ( LUFactorized {
239239 a : self ,
240240 ipiv : ipiv,
241241 } )
@@ -247,10 +247,10 @@ where
247247 A : Scalar ,
248248 Si : Data < Elem = A > ,
249249{
250- fn factorize ( & self ) -> Result < Factorized < OwnedRepr < A > > > {
250+ fn factorize ( & self ) -> Result < LUFactorized < OwnedRepr < A > > > {
251251 let mut a: Array2 < A > = replicate ( self ) ;
252252 let ipiv = unsafe { A :: lu ( a. layout ( ) ?, a. as_allocated_mut ( ) ?) ? } ;
253- Ok ( Factorized { a : a, ipiv : ipiv } )
253+ Ok ( LUFactorized { a : a, ipiv : ipiv } )
254254 }
255255}
256256
@@ -268,7 +268,7 @@ pub trait InverseInto {
268268 fn inv_into ( self ) -> Result < Self :: Output > ;
269269}
270270
271- impl < A , S > InverseInto for Factorized < S >
271+ impl < A , S > InverseInto for LUFactorized < S >
272272where
273273 A : Scalar ,
274274 S : DataMut < Elem = A > ,
@@ -287,15 +287,15 @@ where
287287 }
288288}
289289
290- impl < A , S > Inverse for Factorized < S >
290+ impl < A , S > Inverse for LUFactorized < S >
291291where
292292 A : Scalar ,
293293 S : Data < Elem = A > ,
294294{
295295 type Output = Array2 < A > ;
296296
297297 fn inv ( & self ) -> Result < Array2 < A > > {
298- let f = Factorized {
298+ let f = LUFactorized {
299299 a : replicate ( & self . a ) ,
300300 ipiv : self . ipiv . clone ( ) ,
301301 } ;
0 commit comments