|
| 1 | +--- |
| 2 | +title: "Parquet data format and using it in Denmark Statistics" |
| 3 | +exclude-from-listing: true |
| 4 | +author: "Luke W. Johnston" |
| 5 | +date: "2025-10-24" |
| 6 | +format: |
| 7 | + revealjs: |
| 8 | + theme: |
| 9 | + - brand |
| 10 | + - theme.scss |
| 11 | + logo: /_extensions/seedcase-project/seedcase-theme/logos/seedcase-logo.svg |
| 12 | + slide-number: true |
| 13 | +--- |
| 14 | + |
| 15 | +# Outline for this presentation {.center} |
| 16 | + |
| 17 | +1. Refresher: How Denmark Statistics currently stores data. |
| 18 | + |
| 19 | +2. Intro to Parquet file format. |
| 20 | + |
| 21 | +3. Problems that Parquet solves. |
| 22 | + |
| 23 | +# Denmark Statistics data storage |
| 24 | + |
| 25 | +## Data format: Proprietary SAS format {.center} |
| 26 | + |
| 27 | +For example, BEF register: |
| 28 | + |
| 29 | +``` text |
| 30 | +bef2018.sas7bdat |
| 31 | +bef2019.sas7bdat |
| 32 | +bef2020.sas7bdat |
| 33 | +bef2021.sas7bdat |
| 34 | +bef2022.sas7bdat |
| 35 | +``` |
| 36 | + |
| 37 | +. . . |
| 38 | + |
| 39 | +Challenge: Takes many minutes to load one year of data (in R). |
| 40 | + |
| 41 | +::: notes |
| 42 | +This means, if you use R, or Python, or Stata, you have to load these, |
| 43 | +which can take many minutes per file, just to load it. |
| 44 | +::: |
| 45 | + |
| 46 | +## Data updates make more work for us {.center} |
| 47 | + |
| 48 | +``` text |
| 49 | +bef2021.sas7bdat |
| 50 | +bef2022.sas7bdat |
| 51 | +December_2023/bef2022.sas7bdat |
| 52 | +December_2023/bef2023.sas7bdat |
| 53 | +``` |
| 54 | + |
| 55 | +> Can you see the issue? |
| 56 | +
|
| 57 | +::: notes |
| 58 | +One problem, sometimes there's a new version of a year you already had. |
| 59 | +But you don't know what's been changed. You have to spend time checking |
| 60 | +what changed and if it messes things up for you. The second problem is, |
| 61 | +the updates are in a new folder. So trying to build an automated |
| 62 | +pipeline to load the data in is a bit of a pain because the structure |
| 63 | +changes for each update. |
| 64 | +::: |
| 65 | + |
| 66 | +## Metadata is confusing and poorly documented {.center} |
| 67 | + |
| 68 | +- Variables are not consistent across years. |
| 69 | + |
| 70 | +- Finding the metadata is difficult. |
| 71 | + |
| 72 | +- Some variables are numeric but actually categorical. |
| 73 | + |
| 74 | +::: notes |
| 75 | +Metadata is a big problem. Documentation is relatively poor for most of |
| 76 | +the variables, it's in another location that requires you to dig into |
| 77 | +it. Values in some variables that are numbers but actually are |
| 78 | +categories... but the documentation for what those numbers mean isn't in |
| 79 | +the same place. So requires searching. |
| 80 | +::: |
| 81 | + |
| 82 | +## Use something other than SAS? Data gets duplicated {.center} |
| 83 | + |
| 84 | +E.g. Stata will create `.dta` files, doubling storage needs. |
| 85 | + |
| 86 | +# Parquet file format {.center} |
| 87 | + |
| 88 | +::: aside |
| 89 | +<https://parquet.apache.org/> |
| 90 | +::: |
| 91 | + |
| 92 | +## Parquet is a column-based data storage format {.center} |
| 93 | + |
| 94 | +Most data formats are row-based, like CSV. Newer formats tend to be |
| 95 | +column-based. |
| 96 | + |
| 97 | +## Row vs column-based storage {.center} |
| 98 | + |
| 99 | +::::: columns |
| 100 | +::: column |
| 101 | +### Row-based |
| 102 | + |
| 103 | +``` text |
| 104 | +name,sex,age |
| 105 | +Tim,M,30 |
| 106 | +Jenny,F,25 |
| 107 | +``` |
| 108 | +::: |
| 109 | + |
| 110 | +::: {.column .fragment} |
| 111 | +### Column-based |
| 112 | + |
| 113 | +``` text |
| 114 | +name,Tim,Jenny |
| 115 | +sex,M,F |
| 116 | +age,30,25 |
| 117 | +``` |
| 118 | +::: |
| 119 | +::::: |
| 120 | + |
| 121 | +## Column-based storage has better compression {.center} |
| 122 | + |
| 123 | +``` text |
| 124 | +sex,M,F,F,M,M,F,F,F |
| 125 | +age,30,30,25,32,31,40,39,50 |
| 126 | +diabetes,0,1,0,0,1,0,0,0 |
| 127 | +``` |
| 128 | + |
| 129 | +...becomes... |
| 130 | + |
| 131 | +``` text |
| 132 | +sex,M,F{2},M{2},F{3} |
| 133 | +age,30{2},25,32,31,40,39,50 |
| 134 | +diabetes,0,1,0{2},1,0{3} |
| 135 | +``` |
| 136 | + |
| 137 | +### Loading |
| 138 | + |
| 139 | +- Computers read by lines. |
| 140 | +- Per line = same data type. |
| 141 | +- Only read needed columns. |
| 142 | + |
| 143 | +Only need age? Only read that line: |
| 144 | + |
| 145 | +::::: columns |
| 146 | +::: column |
| 147 | +``` text |
| 148 | +sex,M,F |
| 149 | +age,30,25 |
| 150 | +diabetes,0,1 |
| 151 | +``` |
| 152 | +::: |
| 153 | + |
| 154 | +::: column |
| 155 | +``` text |
| 156 | +age,30,25 |
| 157 | +``` |
| 158 | +::: |
| 159 | +::::: |
| 160 | + |
| 161 | +## Parquet is 50-75% smaller than other formats {.center} |
| 162 | + |
| 163 | +| File type | Size (MB) | |
| 164 | +|----------------------|--------------| |
| 165 | +| SAS (`.sas7bdat`) | 1.45 Gb | |
| 166 | +| CSV (`.csv`) | \~90% of SAS | |
| 167 | +| Stata (`.dta`) | 745 Mb | |
| 168 | +| Parquet (`.parquet`) | 398 Mb | |
| 169 | + |
| 170 | +: File size between CSV, Parquet, Stata, and SAS for `bef` register for |
| 171 | +2017. |
| 172 | + |
| 173 | +## Personal experience: 500 GB SAS = 80 GB Parquet {.center} |
| 174 | + |
| 175 | +## Can partition data by a value (e.g. year) {.center} |
| 176 | + |
| 177 | +``` text |
| 178 | +bef/ |
| 179 | +├── year=2018/ |
| 180 | +│ └── part-0.parquet |
| 181 | +├── year=2019/ |
| 182 | +│ └── part-0.parquet |
| 183 | +├── year=2020/ |
| 184 | +│ └── part-0.parquet |
| 185 | +└── year=2021/ |
| 186 | + └── part-0.parquet |
| 187 | +``` |
| 188 | + |
| 189 | +## Partitioned Parquet dataset can be loaded all at once {.center} |
| 190 | + |
| 191 | +Load in R with `arrow` package: |
| 192 | + |
| 193 | +``` r |
| 194 | +bef <- arrow::open_dataset("bef") |
| 195 | +``` |
| 196 | + |
| 197 | +> Loads all years in fraction of a second, compared to \~5 min for one |
| 198 | +> year without using Parquet. |
| 199 | +
|
| 200 | +## Easy connection to DuckDB engine {.center} |
| 201 | + |
| 202 | +DuckDB <https://duckdb.org/> is a recent powerful SQL engine designed |
| 203 | +for analytical queries. |
| 204 | + |
| 205 | +``` r |
| 206 | +bef <- arrow::open_dataset("bef") |> |
| 207 | + arrow::to_duckdb() |
| 208 | +``` |
| 209 | + |
| 210 | +## SAS and Python can load Parquet but not Stata {.center} |
| 211 | + |
| 212 | +(But we should be pushing for R or Python use anyway.) |
| 213 | + |
| 214 | +# Problems Parquet solves {.center} |
| 215 | + |
| 216 | +## Less space used = less money spent {.center} |
| 217 | + |
| 218 | +DST charges for storage used. |
| 219 | + |
| 220 | +## Faster loading and analysis times {.center} |
| 221 | + |
| 222 | +Parquet loads multiple files in seconds, compared to minutes for other |
| 223 | +formats. |
| 224 | + |
| 225 | +## Sooner that researcher is done = less money spent {.center} |
| 226 | + |
| 227 | +DST charges per user on a project. |
0 commit comments