diff --git a/.github/workflows/tests.yaml b/.github/workflows/tests.yaml
new file mode 100644
index 00000000..1255ed2e
--- /dev/null
+++ b/.github/workflows/tests.yaml
@@ -0,0 +1,154 @@
+
+name: Testing
+
+on:
+ push:
+ branches:
+ - '*'
+ pull_request:
+ branches:
+ - '*'
+
+jobs:
+ setup-build:
+ name: Ex1 (${{ matrix.python-version }}, ${{ matrix.os }})
+ runs-on: ${{ matrix.os }}
+ defaults:
+ run:
+ shell: bash
+ strategy:
+ fail-fast: false
+ matrix:
+ os: ["ubuntu-latest"]
+ python-version: ["3.10", "3.11", "3.12"]
+
+ steps:
+ - uses: actions/checkout@v4
+
+ - name: Install uv
+ uses: astral-sh/setup-uv@v3
+ with:
+ version: "latest"
+
+ - name: Set up Python ${{ matrix.python-version }}
+ run: uv python install ${{ matrix.python-version }}
+
+ - name: Cache MTH5 test files
+ uses: actions/cache@v4
+ with:
+ path: ~/.cache/aurora
+ key: mth5-test-files-${{ runner.os }}-${{ hashFiles('tests/conftest.py') }}
+ restore-keys: |
+ mth5-test-files-${{ runner.os }}-
+
+ - name: Create virtual environment and install dependencies
+ run: |
+ uv venv --python ${{ matrix.python-version }}
+ source .venv/bin/activate
+ uv pip install --upgrade pip
+ uv pip install -e ".[dev,test]"
+ # uv pip install mt_metadata[obspy]
+ uv pip install "mt_metadata[obspy] @ git+https://github.com/kujaku11/mt_metadata.git@patches"
+ uv pip install git+https://github.com/kujaku11/mth5.git@patches
+
+ # uv pip install mth5
+ uv pip install git+https://github.com/kujaku11/mth5_test_data.git
+ # Explicitly include nbconvert & ipykernel
+ uv pip install jupyter nbconvert nbformat ipykernel pytest pytest-cov pytest-timeout codecov
+ python -m ipykernel install --user --name "python3"
+
+ - name: Install system dependencies
+ run: |
+ sudo apt-get update
+ sudo apt-get install -y pandoc
+
+ - name: Set kernel and execute Jupyter Notebooks
+ run: |
+ source .venv/bin/activate
+ python << 'EOF'
+ import nbformat
+ import subprocess
+ import sys
+
+ notebooks = [
+ "docs/examples/dataset_definition.ipynb",
+ "docs/examples/operate_aurora.ipynb",
+ "docs/tutorials/pkd_units_check.ipynb",
+ "docs/tutorials/pole_zero_fitting/lemi_pole_zero_fitting_example.ipynb",
+ "docs/tutorials/processing_configuration.ipynb",
+ "docs/tutorials/process_cas04_multiple_station.ipynb",
+ "docs/tutorials/synthetic_data_processing.ipynb"
+ ]
+
+ failures = []
+
+ for nb_path in notebooks:
+ # Update kernel spec
+ print(f"Updating kernel in {nb_path}")
+ try:
+ with open(nb_path, "r", encoding="utf-8") as f:
+ nb = nbformat.read(f, as_version=4)
+
+ nb["metadata"]["kernelspec"]["name"] = "python3"
+ nb["metadata"]["kernelspec"]["display_name"] = "Python (python3)"
+
+ with open(nb_path, "w", encoding="utf-8") as f:
+ nbformat.write(nb, f)
+ print(f"✓ Updated kernel in {nb_path}")
+ except Exception as e:
+ print(f"✗ Failed to update kernel in {nb_path}: {e}")
+ failures.append(nb_path)
+ continue
+
+ # Execute notebook
+ print(f"Executing {nb_path}")
+ result = subprocess.run(
+ ["jupyter", "nbconvert", "--to", "notebook", "--execute", nb_path],
+ capture_output=True,
+ text=True
+ )
+
+ if result.returncode != 0:
+ print(f"✗ Failed to execute {nb_path}")
+ print(result.stderr)
+ failures.append(nb_path)
+ else:
+ print(f"✓ Successfully executed {nb_path}")
+
+ if failures:
+ print("\n======= Summary =======")
+ print(f"Failed notebooks: {failures}")
+ sys.exit(1)
+ else:
+ print("\n✓ All notebooks executed successfully!")
+ EOF
+
+ - name: Run Tests
+ run: |
+ source .venv/bin/activate
+ pytest -s -v --cov=./ --cov-report=xml --cov=aurora -n auto tests
+
+ - name: "Upload coverage reports to Codecov"
+ uses: codecov/codecov-action@v4
+ with:
+ CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }}
+ fail_ci_if_error: false
+ flags: tests
+
+ # Note: these conditions won't match python-version 3.10; adjust if desired.
+ - name: Build Doc
+ if: ${{ (github.ref == 'refs/heads/main') && (matrix.python-version == '3.8') }}
+ run: |
+ source .venv/bin/activate
+ cd docs
+ make html
+ cd ..
+
+ - name: GitHub Pages
+ if: ${{ (github.ref == 'refs/heads/main') && (matrix.python-version == '3.8') }}
+ uses: crazy-max/ghaction-github-pages@v2.5.0
+ with:
+ build_dir: docs/_build/html
+ jekyll: false
+ env:
+ GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml
deleted file mode 100644
index c72b31da..00000000
--- a/.github/workflows/tests.yml
+++ /dev/null
@@ -1,109 +0,0 @@
-name: Testing
-
-on:
- push:
- branches:
- - '*'
- pull_request:
- branches:
- - '*'
-jobs:
- setup-build:
- name: Ex1 (${{ matrix.python-version }}, ${{ matrix.os }})
- runs-on: ${{ matrix.os }}
- defaults:
- run:
- shell: bash -l {0}
- strategy:
- fail-fast: false
- matrix:
- os: ["ubuntu-latest"]
- python-version: [3.8, 3.9, "3.10", "3.11"]
-
- steps:
- - uses: actions/checkout@v4
-
- - name: Setup Miniconda
- uses: conda-incubator/setup-miniconda@v2.1.1
- with:
- activate-environment: aurora-test
- python-version: ${{ matrix.python-version }}
-
-
- - name: Install uv and project dependencies
- run: |
- python --version
- echo $CONDA_PREFIX
- pip install uv
- uv pip install -e ".[dev]"
- uv pip install "mt_metadata[obspy] @ git+https://github.com/kujaku11/mt_metadata.git"
- uv pip install git+https://github.com/kujaku11/mth5.git
- conda install -c conda-forge certifi">=2017.4.17" pandoc
-
- - name: Install Our Package
- run: |
- echo $CONDA_PREFIX
- uv pip install -e .
- echo "Install complete"
- conda list
- pip freeze
-
- - name: Install Jupyter and dependencies
- run: |
- pip install jupyter
- pip install ipykernel
- python -m ipykernel install --user --name aurora-test
- # Install any other dependencies you need
-
- - name: Execute Jupyter Notebooks
- run: |
- jupyter nbconvert --to notebook --execute docs/examples/dataset_definition.ipynb
- jupyter nbconvert --to notebook --execute docs/examples/operate_aurora.ipynb
- jupyter nbconvert --to notebook --execute docs/tutorials/pkd_units_check.ipynb
- jupyter nbconvert --to notebook --execute docs/tutorials/pole_zero_fitting/lemi_pole_zero_fitting_example.ipynb
- jupyter nbconvert --to notebook --execute docs/tutorials/processing_configuration.ipynb
- jupyter nbconvert --to notebook --execute docs/tutorials/process_cas04_multiple_station.ipynb
- jupyter nbconvert --to notebook --execute docs/tutorials/synthetic_data_processing.ipynb
- # Replace "notebook.ipynb" with your notebook's filename
-
-# - name: Commit changes (if any)
-# run: |
-# git config --local user.email "action@github.com"
-# git config --local user.name "GitHub Action"
-# git commit -a -m "Execute Jupyter notebook"
-# git push
-# if: ${{ success() }}
-
-
- - name: Run Tests
- run: |
- # pytest -s -v tests/synthetic/test_fourier_coefficients.py
- # pytest -s -v tests/config/test_config_creator.py
- pytest -s -v --cov=./ --cov-report=xml --cov=aurora
-
- - name: "Upload coverage reports to Codecov"
- uses: codecov/codecov-action@v4
- with:
- CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }}
- fail_ci_if_error: false
- flags: tests
- # token: ${{ secrets.CODECOV_TOKEN }}
-
- - name: Build Doc
- if: ${{ (github.ref == 'refs/heads/main') && (matrix.python-version == '3.8')}}
- run: |
- cd docs
- make html
- cd ..
-
- - name: GitHub Pages
- if: ${{ (github.ref == 'refs/heads/main') && (matrix.python-version == '3.8')}}
- uses: crazy-max/ghaction-github-pages@v2.5.0
- with:
- build_dir: docs/_build/html
- # Write the given domain name to the CNAME file
- # fqdn: aurora.simpeg.xyz
- # Allow Jekyll to build your site
- jekyll: false # optional, default is true
- env:
- GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml
index c2bcdcad..dd0e273b 100644
--- a/.pre-commit-config.yaml
+++ b/.pre-commit-config.yaml
@@ -1,10 +1,45 @@
+# .pre-commit-config.yaml
repos:
-- repo: https://github.com/ambv/black
- rev: 22.6.0
+- repo: https://github.com/pre-commit/pre-commit-hooks
+ rev: v4.4.0
hooks:
- - id: black
- language_version: python3.10
-- repo: https://github.com/pycqa/flake8
- rev: 3.9.2
+ - id: trailing-whitespace
+ types: [python]
+ - id: end-of-file-fixer
+ types: [python]
+ - id: check-yaml
+ exclude: '^(?!.*\.py$).*$'
+
+- repo: https://github.com/pycqa/isort
+ rev: 5.12.0
hooks:
- - id: flake8
+ - id: isort
+ types: [python]
+ exclude: (__init__.py)$
+ files: \.py$
+ args: ["--profile", "black",
+ "--skip-glob","*/__init__.py",
+ "--force-alphabetical-sort-within-sections",
+ "--order-by-type",
+ "--lines-after-imports=2"]
+
+- repo: https://github.com/psf/black
+ rev: 23.3.0
+ hooks:
+ - id: black
+ types: [python]
+ files: \.py$
+ language_version: python3
+
+- repo: https://github.com/pycqa/autoflake
+ rev: v2.1.1
+ hooks:
+ - id: autoflake
+ types: [python]
+ files: \.py$
+ args: [
+ "--remove-all-unused-imports",
+ "--expand-star-imports",
+ "--ignore-init-module-imports",
+ "--in-place"
+ ]
\ No newline at end of file
diff --git a/aurora/__init__.py b/aurora/__init__.py
index 0b97cec7..065baaa3 100644
--- a/aurora/__init__.py
+++ b/aurora/__init__.py
@@ -13,7 +13,7 @@
"sink": sys.stdout,
"level": "INFO",
"colorize": True,
- "format": "{time} | {level: <3} | {name} | {function} | {message}",
+ "format": "{time} | {level: <3} | {name} | {function} | line: {line} | {message}",
},
],
"extra": {"user": "someone"},
diff --git a/aurora/config/config_creator.py b/aurora/config/config_creator.py
index 44eccd28..76df065a 100644
--- a/aurora/config/config_creator.py
+++ b/aurora/config/config_creator.py
@@ -16,7 +16,7 @@
from aurora.config.metadata import Processing
from aurora.sandbox.io_helpers.emtf_band_setup import EMTFBandSetupFile
from mth5.processing.kernel_dataset import KernelDataset
-from mt_metadata.transfer_functions.processing.window import Window
+from mt_metadata.processing.window import Window
import pathlib
@@ -127,11 +127,13 @@ def create_from_kernel_dataset(
kernel_dataset: KernelDataset,
input_channels: Optional[list] = None,
output_channels: Optional[list] = None,
+ remote_channels: Optional[list] = None,
estimator: Optional[str] = None,
emtf_band_file: Optional[Union[str, pathlib.Path]] = None,
band_edges: Optional[dict] = None,
decimation_factors: Optional[list] = None,
num_samples_window: Optional[int] = None,
+ **kwargs,
) -> Processing:
"""
This creates a processing config from a kernel dataset.
@@ -166,6 +168,8 @@ def create_from_kernel_dataset(
List of the input channels that will be used in TF estimation (usually "hx", "hy")
output_channels: list
List of the output channels that will be estimated by TF (usually "ex", "ey", "hz")
+ remote_channels: list
+ List of the remote reference channels (usually "hx", "hy" at remote site)
estimator: Optional[Union[str, None]]
The name of the regression estimator to use for TF estimation.
emtf_band_file: Optional[Union[str, pathlib.Path, None]]
@@ -176,6 +180,12 @@ def create_from_kernel_dataset(
List of decimation factors, normally [1, 4, 4, 4, ... 4]
num_samples_window: Optional[Union[int, None]]
The size of the window (usually for FFT)
+ **kwargs:
+ Additional keyword arguments passed to Processing constructor. Could contain:
+ - save_fcs: bool
+ - If True, save Fourier coefficients during processing.
+ - save_fcs_type: str
+ - File type for saving Fourier coefficients. Options are "h5" or "csv".
Returns
-------
@@ -241,8 +251,17 @@ def create_from_kernel_dataset(
else:
decimation_obj.output_channels = output_channels
+ if remote_channels is None:
+ if kernel_dataset.remote_channels is not None:
+ decimation_obj.reference_channels = kernel_dataset.remote_channels
+
if num_samples_window is not None:
decimation_obj.stft.window.num_samples = num_samples_window[key]
+
+ if kwargs.get("save_fcs", False):
+ decimation_obj.save_fcs = True
+ decimation_obj.save_fcs_type = kwargs.get("save_fcs_type", "h5")
+
# set estimator if provided as kwarg
if estimator:
try:
diff --git a/aurora/config/metadata/processing.py b/aurora/config/metadata/processing.py
index 35e911e1..ce59aacf 100644
--- a/aurora/config/metadata/processing.py
+++ b/aurora/config/metadata/processing.py
@@ -1,6 +1,6 @@
# -*- coding: utf-8 -*-
"""
-Extend the mt_metadata.transfer_functions.processing.aurora.processing.Processing class
+Extend the mt_metadata.processing.aurora.processing.Processing class
with some aurora-specific methods.
"""
@@ -10,10 +10,10 @@
from aurora.time_series.windowing_scheme import window_scheme_from_decimation
from loguru import logger
-from mt_metadata.transfer_functions.processing.aurora.processing import (
+from mt_metadata.processing.aurora.processing import (
Processing as AuroraProcessing,
)
-from mt_metadata.utils.list_dict import ListDict
+from mt_metadata.common.list_dict import ListDict
from typing import Optional, Union
import json
@@ -192,7 +192,7 @@ class EMTFTFHeader(ListDict):
def __init__(self, **kwargs):
"""
Parameters
- _local_station : mt_metadata.transfer_functions.tf.station.Station()
+ _local_station : mt_metadata.processing.tf.station.Station()
Station metadata object for the station to be estimated (
location, channel_azimuths, etc.)
_remote_station: same object type as local station
diff --git a/aurora/config/templates/processing_configuration_template.json b/aurora/config/templates/processing_configuration_template.json
index 1ba0f15f..436e4da5 100644
--- a/aurora/config/templates/processing_configuration_template.json
+++ b/aurora/config/templates/processing_configuration_template.json
@@ -1,13 +1,14 @@
{
"processing": {
- "band_setup_file": "/home/kkappler/software/irismt/aurora/aurora/config/emtf_band_setup/bs_test.cfg",
+ "band_setup_file": "C:\\Users\\peaco\\OneDrive\\Documents\\GitHub\\aurora\\aurora\\config\\emtf_band_setup\\bs_test.cfg",
"band_specification_style": "EMTF",
"channel_nomenclature": {
"ex": "ex",
"ey": "ey",
"hx": "hx",
"hy": "hy",
- "hz": "hz"
+ "hz": "hz",
+ "keyword": "default"
},
"decimations": [
{
@@ -18,10 +19,11 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 0,
- "frequency_max": 0.23828125,
- "frequency_min": 0.19140625,
+ "frequency_max": 0.119140625,
+ "frequency_min": 0.095703125,
"index_max": 30,
- "index_min": 25
+ "index_min": 25,
+ "name": "0.107422"
}
},
{
@@ -29,10 +31,11 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 0,
- "frequency_max": 0.19140625,
- "frequency_min": 0.15234375,
+ "frequency_max": 0.095703125,
+ "frequency_min": 0.076171875,
"index_max": 24,
- "index_min": 20
+ "index_min": 20,
+ "name": "0.085938"
}
},
{
@@ -40,10 +43,11 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 0,
- "frequency_max": 0.15234375,
- "frequency_min": 0.12109375,
+ "frequency_max": 0.076171875,
+ "frequency_min": 0.060546875,
"index_max": 19,
- "index_min": 16
+ "index_min": 16,
+ "name": "0.068359"
}
},
{
@@ -51,10 +55,11 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 0,
- "frequency_max": 0.12109375,
- "frequency_min": 0.09765625,
+ "frequency_max": 0.060546875,
+ "frequency_min": 0.048828125,
"index_max": 15,
- "index_min": 13
+ "index_min": 13,
+ "name": "0.054688"
}
},
{
@@ -62,10 +67,11 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 0,
- "frequency_max": 0.09765625,
- "frequency_min": 0.07421875,
+ "frequency_max": 0.048828125,
+ "frequency_min": 0.037109375,
"index_max": 12,
- "index_min": 10
+ "index_min": 10,
+ "name": "0.042969"
}
},
{
@@ -73,10 +79,11 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 0,
- "frequency_max": 0.07421875,
- "frequency_min": 0.05859375,
+ "frequency_max": 0.037109375,
+ "frequency_min": 0.029296875,
"index_max": 9,
- "index_min": 8
+ "index_min": 8,
+ "name": "0.033203"
}
},
{
@@ -84,10 +91,11 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 0,
- "frequency_max": 0.05859375,
- "frequency_min": 0.04296875,
+ "frequency_max": 0.029296875,
+ "frequency_min": 0.021484375,
"index_max": 7,
- "index_min": 6
+ "index_min": 6,
+ "name": "0.025391"
}
},
{
@@ -95,19 +103,21 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 0,
- "frequency_max": 0.04296875,
- "frequency_min": 0.03515625,
+ "frequency_max": 0.021484375,
+ "frequency_min": 0.017578125,
"index_max": 5,
- "index_min": 5
+ "index_min": 5,
+ "name": "0.019531"
}
}
],
+ "channel_weight_specs": [],
"decimation": {
- "level": 0,
+ "anti_alias_filter": "default",
"factor": 1.0,
+ "level": 0,
"method": "default",
- "sample_rate": 1.0,
- "anti_alias_filter": "default"
+ "sample_rate": 1.0
},
"estimator": {
"engine": "RME_RR",
@@ -127,33 +137,32 @@
"hy"
],
"regression": {
- "minimum_cycles": 10,
"max_iterations": 10,
"max_redescending_iterations": 2,
+ "minimum_cycles": 1,
"r0": 1.5,
- "u0": 2.8,
"tolerance": 0.005,
- "verbosity": 0
+ "u0": 2.8,
+ "verbosity": 1
},
"save_fcs": false,
"save_fcs_type": null,
"stft": {
- "harmonic_indices": [
- -1
- ],
+ "harmonic_indices": null,
"method": "fft",
- "min_num_stft_windows": 2,
+ "min_num_stft_windows": 0,
"per_window_detrend_type": "linear",
"pre_fft_detrend_type": "linear",
"prewhitening_type": "first difference",
"recoloring": true,
"window": {
- "num_samples": 128,
- "overlap": 32,
- "type": "boxcar",
- "clock_zero_type": "ignore",
+ "additional_args": {},
"clock_zero": "1980-01-01T00:00:00+00:00",
- "normalized": true
+ "clock_zero_type": "ignore",
+ "normalized": true,
+ "num_samples": 256,
+ "overlap": 32,
+ "type": "boxcar"
}
}
}
@@ -166,10 +175,11 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 1,
- "frequency_max": 0.0341796875,
- "frequency_min": 0.0263671875,
+ "frequency_max": 0.01708984375,
+ "frequency_min": 0.01318359375,
"index_max": 17,
- "index_min": 14
+ "index_min": 14,
+ "name": "0.015137"
}
},
{
@@ -177,10 +187,11 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 1,
- "frequency_max": 0.0263671875,
- "frequency_min": 0.0205078125,
+ "frequency_max": 0.01318359375,
+ "frequency_min": 0.01025390625,
"index_max": 13,
- "index_min": 11
+ "index_min": 11,
+ "name": "0.011719"
}
},
{
@@ -188,10 +199,11 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 1,
- "frequency_max": 0.0205078125,
- "frequency_min": 0.0166015625,
+ "frequency_max": 0.01025390625,
+ "frequency_min": 0.00830078125,
"index_max": 10,
- "index_min": 9
+ "index_min": 9,
+ "name": "0.009277"
}
},
{
@@ -199,10 +211,11 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 1,
- "frequency_max": 0.0166015625,
- "frequency_min": 0.0126953125,
+ "frequency_max": 0.00830078125,
+ "frequency_min": 0.00634765625,
"index_max": 8,
- "index_min": 7
+ "index_min": 7,
+ "name": "0.007324"
}
},
{
@@ -210,10 +223,11 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 1,
- "frequency_max": 0.0126953125,
- "frequency_min": 0.0107421875,
+ "frequency_max": 0.00634765625,
+ "frequency_min": 0.00537109375,
"index_max": 6,
- "index_min": 6
+ "index_min": 6,
+ "name": "0.005859"
}
},
{
@@ -221,19 +235,21 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 1,
- "frequency_max": 0.0107421875,
- "frequency_min": 0.0087890625,
+ "frequency_max": 0.00537109375,
+ "frequency_min": 0.00439453125,
"index_max": 5,
- "index_min": 5
+ "index_min": 5,
+ "name": "0.004883"
}
}
],
+ "channel_weight_specs": [],
"decimation": {
- "level": 1,
+ "anti_alias_filter": "default",
"factor": 4.0,
+ "level": 1,
"method": "default",
- "sample_rate": 0.25,
- "anti_alias_filter": "default"
+ "sample_rate": 0.25
},
"estimator": {
"engine": "RME_RR",
@@ -253,33 +269,32 @@
"hy"
],
"regression": {
- "minimum_cycles": 10,
"max_iterations": 10,
"max_redescending_iterations": 2,
+ "minimum_cycles": 1,
"r0": 1.5,
- "u0": 2.8,
"tolerance": 0.005,
- "verbosity": 0
+ "u0": 2.8,
+ "verbosity": 1
},
"save_fcs": false,
"save_fcs_type": null,
"stft": {
- "harmonic_indices": [
- -1
- ],
+ "harmonic_indices": null,
"method": "fft",
- "min_num_stft_windows": 2,
+ "min_num_stft_windows": 0,
"per_window_detrend_type": "linear",
"pre_fft_detrend_type": "linear",
"prewhitening_type": "first difference",
"recoloring": true,
"window": {
- "num_samples": 128,
- "overlap": 32,
- "type": "boxcar",
- "clock_zero_type": "ignore",
+ "additional_args": {},
"clock_zero": "1980-01-01T00:00:00+00:00",
- "normalized": true
+ "clock_zero_type": "ignore",
+ "normalized": true,
+ "num_samples": 256,
+ "overlap": 32,
+ "type": "boxcar"
}
}
}
@@ -292,10 +307,11 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 2,
- "frequency_max": 0.008544921875,
- "frequency_min": 0.006591796875,
+ "frequency_max": 0.0042724609375,
+ "frequency_min": 0.0032958984375,
"index_max": 17,
- "index_min": 14
+ "index_min": 14,
+ "name": "0.003784"
}
},
{
@@ -303,10 +319,11 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 2,
- "frequency_max": 0.006591796875,
- "frequency_min": 0.005126953125,
+ "frequency_max": 0.0032958984375,
+ "frequency_min": 0.0025634765625,
"index_max": 13,
- "index_min": 11
+ "index_min": 11,
+ "name": "0.002930"
}
},
{
@@ -314,10 +331,11 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 2,
- "frequency_max": 0.005126953125,
- "frequency_min": 0.004150390625,
+ "frequency_max": 0.0025634765625,
+ "frequency_min": 0.0020751953125,
"index_max": 10,
- "index_min": 9
+ "index_min": 9,
+ "name": "0.002319"
}
},
{
@@ -325,10 +343,11 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 2,
- "frequency_max": 0.004150390625,
- "frequency_min": 0.003173828125,
+ "frequency_max": 0.0020751953125,
+ "frequency_min": 0.0015869140625,
"index_max": 8,
- "index_min": 7
+ "index_min": 7,
+ "name": "0.001831"
}
},
{
@@ -336,10 +355,11 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 2,
- "frequency_max": 0.003173828125,
- "frequency_min": 0.002685546875,
+ "frequency_max": 0.0015869140625,
+ "frequency_min": 0.0013427734375,
"index_max": 6,
- "index_min": 6
+ "index_min": 6,
+ "name": "0.001465"
}
},
{
@@ -347,19 +367,21 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 2,
- "frequency_max": 0.002685546875,
- "frequency_min": 0.002197265625,
+ "frequency_max": 0.0013427734375,
+ "frequency_min": 0.0010986328125,
"index_max": 5,
- "index_min": 5
+ "index_min": 5,
+ "name": "0.001221"
}
}
],
+ "channel_weight_specs": [],
"decimation": {
- "level": 2,
+ "anti_alias_filter": "default",
"factor": 4.0,
+ "level": 2,
"method": "default",
- "sample_rate": 0.0625,
- "anti_alias_filter": "default"
+ "sample_rate": 0.0625
},
"estimator": {
"engine": "RME_RR",
@@ -379,33 +401,32 @@
"hy"
],
"regression": {
- "minimum_cycles": 10,
"max_iterations": 10,
"max_redescending_iterations": 2,
+ "minimum_cycles": 1,
"r0": 1.5,
- "u0": 2.8,
"tolerance": 0.005,
- "verbosity": 0
+ "u0": 2.8,
+ "verbosity": 1
},
"save_fcs": false,
"save_fcs_type": null,
"stft": {
- "harmonic_indices": [
- -1
- ],
+ "harmonic_indices": null,
"method": "fft",
- "min_num_stft_windows": 2,
+ "min_num_stft_windows": 0,
"per_window_detrend_type": "linear",
"pre_fft_detrend_type": "linear",
"prewhitening_type": "first difference",
"recoloring": true,
"window": {
- "num_samples": 128,
- "overlap": 32,
- "type": "boxcar",
- "clock_zero_type": "ignore",
+ "additional_args": {},
"clock_zero": "1980-01-01T00:00:00+00:00",
- "normalized": true
+ "clock_zero_type": "ignore",
+ "normalized": true,
+ "num_samples": 256,
+ "overlap": 32,
+ "type": "boxcar"
}
}
}
@@ -418,10 +439,11 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 3,
- "frequency_max": 0.00274658203125,
- "frequency_min": 0.00213623046875,
+ "frequency_max": 0.001373291015625,
+ "frequency_min": 0.001068115234375,
"index_max": 22,
- "index_min": 18
+ "index_min": 18,
+ "name": "0.001221"
}
},
{
@@ -429,10 +451,11 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 3,
- "frequency_max": 0.00213623046875,
- "frequency_min": 0.00164794921875,
+ "frequency_max": 0.001068115234375,
+ "frequency_min": 0.000823974609375,
"index_max": 17,
- "index_min": 14
+ "index_min": 14,
+ "name": "0.000946"
}
},
{
@@ -440,10 +463,11 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 3,
- "frequency_max": 0.00164794921875,
- "frequency_min": 0.00115966796875,
+ "frequency_max": 0.000823974609375,
+ "frequency_min": 0.000579833984375,
"index_max": 13,
- "index_min": 10
+ "index_min": 10,
+ "name": "0.000702"
}
},
{
@@ -451,10 +475,11 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 3,
- "frequency_max": 0.00115966796875,
- "frequency_min": 0.00079345703125,
+ "frequency_max": 0.000579833984375,
+ "frequency_min": 0.000396728515625,
"index_max": 9,
- "index_min": 7
+ "index_min": 7,
+ "name": "0.000488"
}
},
{
@@ -462,19 +487,21 @@
"center_averaging_type": "geometric",
"closed": "left",
"decimation_level": 3,
- "frequency_max": 0.00079345703125,
- "frequency_min": 0.00054931640625,
+ "frequency_max": 0.000396728515625,
+ "frequency_min": 0.000274658203125,
"index_max": 6,
- "index_min": 5
+ "index_min": 5,
+ "name": "0.000336"
}
}
],
+ "channel_weight_specs": [],
"decimation": {
- "level": 3,
+ "anti_alias_filter": "default",
"factor": 4.0,
+ "level": 3,
"method": "default",
- "sample_rate": 0.015625,
- "anti_alias_filter": "default"
+ "sample_rate": 0.015625
},
"estimator": {
"engine": "RME_RR",
@@ -494,33 +521,32 @@
"hy"
],
"regression": {
- "minimum_cycles": 10,
"max_iterations": 10,
"max_redescending_iterations": 2,
+ "minimum_cycles": 1,
"r0": 1.5,
- "u0": 2.8,
"tolerance": 0.005,
- "verbosity": 0
+ "u0": 2.8,
+ "verbosity": 1
},
"save_fcs": false,
"save_fcs_type": null,
"stft": {
- "harmonic_indices": [
- -1
- ],
+ "harmonic_indices": null,
"method": "fft",
- "min_num_stft_windows": 2,
+ "min_num_stft_windows": 0,
"per_window_detrend_type": "linear",
"pre_fft_detrend_type": "linear",
"prewhitening_type": "first difference",
"recoloring": true,
"window": {
- "num_samples": 128,
- "overlap": 32,
- "type": "boxcar",
- "clock_zero_type": "ignore",
+ "additional_args": {},
"clock_zero": "1980-01-01T00:00:00+00:00",
- "normalized": true
+ "clock_zero_type": "ignore",
+ "normalized": true,
+ "num_samples": 256,
+ "overlap": 32,
+ "type": "boxcar"
}
}
}
@@ -528,11 +554,66 @@
],
"id": "test1_rr_test2_sr1",
"stations": {
+ "local": {
+ "id": "test1",
+ "mth5_path": "C:\\Users\\peaco\\OneDrive\\Documents\\GitHub\\mth5\\mth5\\data\\mth5\\test12rr.h5",
+ "remote": false,
+ "runs": [
+ {
+ "run": {
+ "id": "001",
+ "input_channels": [
+ {
+ "channel": {
+ "id": "hx",
+ "scale_factor": 1.0
+ }
+ },
+ {
+ "channel": {
+ "id": "hy",
+ "scale_factor": 1.0
+ }
+ }
+ ],
+ "output_channels": [
+ {
+ "channel": {
+ "id": "ex",
+ "scale_factor": 1.0
+ }
+ },
+ {
+ "channel": {
+ "id": "ey",
+ "scale_factor": 1.0
+ }
+ },
+ {
+ "channel": {
+ "id": "hz",
+ "scale_factor": 1.0
+ }
+ }
+ ],
+ "sample_rate": 1.0,
+ "time_periods": [
+ {
+ "time_period": {
+ "end": "1980-01-01T11:06:39+00:00",
+ "start": "1980-01-01T00:00:00+00:00"
+ }
+ }
+ ]
+ }
+ }
+ ]
+ },
"remote": [
{
"station": {
"id": "test2",
- "mth5_path": "/home/kkappler/software/irismt/mth5/mth5/data/mth5/test12rr.h5",
+ "mth5_path": "C:\\Users\\peaco\\OneDrive\\Documents\\GitHub\\mth5\\mth5\\data\\mth5\\test12rr.h5",
"remote": true,
"runs": [
{
@@ -586,62 +667,7 @@
]
}
}
- ],
- "local": {
- "id": "test1",
- "mth5_path": "/home/kkappler/software/irismt/mth5/mth5/data/mth5/test12rr.h5",
- "remote": false,
- "runs": [
- {
- "run": {
- "id": "001",
- "input_channels": [
- {
- "channel": {
- "id": "hx",
- "scale_factor": 1.0
- }
- },
- {
- "channel": {
- "id": "hy",
- "scale_factor": 1.0
- }
- }
- ],
- "output_channels": [
- {
- "channel": {
- "id": "ex",
- "scale_factor": 1.0
- }
- },
- {
- "channel": {
- "id": "ey",
- "scale_factor": 1.0
- }
- },
- {
- "channel": {
- "id": "hz",
- "scale_factor": 1.0
- }
- }
- ],
- "sample_rate": 1.0,
- "time_periods": [
- {
- "time_period": {
- "end": "1980-01-01T11:06:39+00:00",
- "start": "1980-01-01T00:00:00+00:00"
- }
- }
- ]
- }
- }
- ]
- }
+ ]
}
}
}
\ No newline at end of file
diff --git a/aurora/pipelines/feature_weights.py b/aurora/pipelines/feature_weights.py
index a2ceff76..d88490ce 100644
--- a/aurora/pipelines/feature_weights.py
+++ b/aurora/pipelines/feature_weights.py
@@ -1,17 +1,15 @@
+import pandas as pd
+import xarray as xr
from loguru import logger
-from mt_metadata.transfer_functions.processing.aurora.decimation_level import (
+from mt_metadata.processing.aurora.decimation_level import (
DecimationLevel as AuroraDecimationLevel,
)
from mth5.processing import KernelDataset
-import pandas as pd
-import xarray as xr
-
def extract_features(
dec_level_config: AuroraDecimationLevel, tfk_dataset: KernelDataset
) -> pd.DataFrame:
-
"""
Temporal place holder.
@@ -42,20 +40,22 @@ def extract_features(
except Exception as e:
msg = f"Features could not be accessed from MTH5 -- {e}\n"
msg += "Calculating features on the fly (development only)"
- logger.warning(msg)
+ logger.info(msg)
for (
chws
) in dec_level_config.channel_weight_specs: # This refers to solving a TF equation
# Loop over features and compute them
msg = f"channel weight spec:\n {chws}"
- logger.info(msg)
+ logger.debug(msg)
for fws in chws.feature_weight_specs:
msg = f"feature weight spec: {fws}"
- logger.info(msg)
+ logger.debug(msg)
feature = fws.feature
msg = f"feature: {feature}"
- logger.info(msg)
+ logger.debug(msg)
+ msg = f"feature type: {type(feature).__name__}, has validate_station_ids: {hasattr(feature, 'validate_station_ids')}"
+ logger.debug(msg)
feature_chunks = []
if feature.name == "coherence":
msg = f"{feature.name} is not supported as a data weighting feature"
@@ -81,9 +81,9 @@ def extract_features(
# Loop the runs (or run-pairs) ... this should be equivalent to grouping on start time.
# TODO: consider mixing in valid run info from processing_summary here, (avoid window too long for data)
# Desirable to have some "processing_run" iterator supplied by KernelDataset.
- from aurora.pipelines.time_series_helpers import (
+ from aurora.pipelines.time_series_helpers import ( # TODO: consider storing clock-zero-truncated data
truncate_to_clock_zero,
- ) # TODO: consider storing clock-zero-truncated data
+ )
tmp = tfk_dataset.df.copy(deep=True)
group_by = [
@@ -95,18 +95,22 @@ def extract_features(
for start, df in grouper:
end = df.end.unique()[0] # nice to have this for info log
logger.debug("Access ch1 and ch2 ")
- ch1_row = df[df.station == feature.station1].iloc[0]
- ch1_data = ch1_row.run_dataarray.to_dataset("channel")[feature.ch1]
+ ch1_row = df[df.station == feature.station_1].iloc[0]
+ ch1_data = ch1_row.run_dataarray.to_dataset("channel")[
+ feature.channel_1
+ ]
ch1_data = truncate_to_clock_zero(
decimation_obj=dec_level_config, run_xrds=ch1_data
)
- ch2_row = df[df.station == feature.station2].iloc[0]
- ch2_data = ch2_row.run_dataarray.to_dataset("channel")[feature.ch2]
+ ch2_row = df[df.station == feature.station_2].iloc[0]
+ ch2_data = ch2_row.run_dataarray.to_dataset("channel")[
+ feature.channel_2
+ ]
ch2_data = truncate_to_clock_zero(
decimation_obj=dec_level_config, run_xrds=ch2_data
)
msg = f"Data for computing {feature.name} on {start} -- {end} ready"
- logger.info(msg)
+ logger.debug(msg)
# Compute the feature.
freqs, coherence_spectrogram = feature.compute(ch1_data, ch2_data)
# TODO: consider making get_time_axis() a method of the feature class
@@ -133,8 +137,12 @@ def extract_features(
)
feature_chunks.append(coherence_spectrogram_xr)
feature_data = xr.concat(feature_chunks, "time")
+ # should fill NaNs with 0s, otherwise thing break downstream.
+ feature_data = feature_data.fillna(0)
feature.data = feature_data # bind feature data to feature instance (maybe temporal workaround)
+ logger.info(f"Feature {feature.name} computed. Data has shape {feature_data.shape}")
+
return
@@ -189,9 +197,8 @@ def calculate_weights(
# loop the channel weight specs
for chws in dec_level_config.channel_weight_specs:
-
msg = f"{chws}"
- logger.info(msg)
+ logger.debug(msg)
# TODO: Consider calculating all the weight kernels in advance, case switching on the combination style.
if chws.combination_style == "multiplication":
print(f"chws.combination_style {chws.combination_style}")
@@ -199,13 +206,17 @@ def calculate_weights(
weights = None
# loop the feature weight specs
for fws in chws.feature_weight_specs:
+ if fws.weight_kernels is None:
+ msg = f"Feature weight spec {fws} has no weight kernels defined, skipping"
+ logger.warning(msg)
+ continue # skip this feature weight spec
msg = f"feature weight spec: {fws}"
- logger.info(msg)
+ logger.debug(msg)
feature = fws.feature
msg = f"feature: {feature}"
- logger.info(msg)
+ logger.debug(msg)
# TODO: confirm that the feature object has its data
- print("feature.data", feature.data, len(feature.data))
+ #print("feature.data", feature.data, len(feature.data))
# TODO: Now apply the fws weighting to the feature data
# Hopefully this is independent of the feature.
@@ -217,9 +228,10 @@ def calculate_weights(
weights *= wk.evaluate(feature.data)
# chws.weights[fws.feature.name] = weights
chws.weights = weights
+ logger.info(f"Computed weights for {str(chws.output_channels)} using {str(chws.combination_style)} combination style.")
else:
- msg = f"chws.combination_style {chws.combination_style} not implemented"
+ msg = f"chws.combination_style {str(chws.combination_style)} not implemented"
raise ValueError(msg)
return
diff --git a/aurora/pipelines/helpers.py b/aurora/pipelines/helpers.py
index f05a7b77..782d239b 100644
--- a/aurora/pipelines/helpers.py
+++ b/aurora/pipelines/helpers.py
@@ -5,7 +5,7 @@
"""
-from mt_metadata.transfer_functions.processing.aurora import Processing
+from mt_metadata.processing.aurora import Processing
from typing import Union
import pathlib
@@ -24,7 +24,7 @@ def initialize_config(
Returns
-------
- config: mt_metadata.transfer_functions.processing.aurora.Processing
+ config: mt_metadata.processing.aurora.Processing
Object that contains the processing parameters
"""
if isinstance(processing_config, (pathlib.Path, str)):
diff --git a/aurora/pipelines/process_mth5.py b/aurora/pipelines/process_mth5.py
index 3be59bfc..ce86af0a 100644
--- a/aurora/pipelines/process_mth5.py
+++ b/aurora/pipelines/process_mth5.py
@@ -27,33 +27,29 @@
"""
-import mth5.groups
+from typing import Optional, Tuple, Union
+
+import xarray as xr
+from loguru import logger
+from mth5.helpers import close_open_files
+
+import aurora.config.metadata.processing
# =============================================================================
# Imports
# =============================================================================
-from aurora.pipelines.feature_weights import calculate_weights
-from aurora.pipelines.feature_weights import extract_features
+from aurora.pipelines.feature_weights import calculate_weights, extract_features
from aurora.pipelines.transfer_function_helpers import (
process_transfer_functions,
process_transfer_functions_with_weights,
)
from aurora.pipelines.transfer_function_kernel import TransferFunctionKernel
-from aurora.time_series.spectrogram_helpers import get_spectrograms
-from aurora.time_series.spectrogram_helpers import merge_stfts
+from aurora.time_series.spectrogram_helpers import get_spectrograms, merge_stfts
from aurora.transfer_function.transfer_function_collection import (
TransferFunctionCollection,
)
from aurora.transfer_function.TTFZ import TTFZ
-from loguru import logger
-from mth5.helpers import close_open_files
-from mth5.processing import KernelDataset
-from typing import Literal, Optional, Tuple, Union
-
-import aurora.config.metadata.processing
-import pandas as pd
-import xarray as xr
SUPPORTED_PROCESSINGS = [
"legacy",
@@ -117,12 +113,21 @@ def process_tf_decimation_level(
f"with exception: {e}"
)
logger.warning(msg)
- transfer_function_obj = process_transfer_functions(
- dec_level_config=dec_level_config,
- local_stft_obj=local_stft_obj,
- remote_stft_obj=remote_stft_obj,
- transfer_function_obj=transfer_function_obj,
- )
+ try:
+ transfer_function_obj = process_transfer_functions(
+ dec_level_config=dec_level_config,
+ local_stft_obj=local_stft_obj,
+ remote_stft_obj=remote_stft_obj,
+ transfer_function_obj=transfer_function_obj,
+ )
+ except Exception as e:
+ msg = (
+ f"Processing transfer functions without weights also failed for decimation level {i_dec_level} "
+ f"with exception: {e}"
+ )
+ logger.error(msg)
+ logger.exception(msg)
+ raise e
return transfer_function_obj
@@ -140,7 +145,7 @@ def process_mth5_legacy(
Parameters
----------
- config: mt_metadata.transfer_functions.processing.aurora.Processing or path to json
+ config: mt_metadata.processing.aurora.Processing or path to json
All processing parameters
tfk_dataset: aurora.tf_kernel.dataset.Dataset or None
Specifies what datasets to process according to config
@@ -193,21 +198,28 @@ def process_mth5_legacy(
calculate_weights(dec_level_config, tfk_dataset)
except Exception as e:
msg = f"Feature weights calculation Failed -- procesing without weights -- {e}"
- logger.warning(msg)
-
- ttfz_obj = process_tf_decimation_level(
- tfk.config,
- i_dec_level,
- local_merged_stft_obj,
- remote_merged_stft_obj,
- )
+ # logger.warning(msg)
+ logger.exception(msg)
+ try:
+ ttfz_obj = process_tf_decimation_level(
+ tfk.config,
+ i_dec_level,
+ local_merged_stft_obj,
+ remote_merged_stft_obj,
+ )
+ except Exception as e:
+ msg = (
+ f"Processing transfer functions failed for decimation level {i_dec_level} "
+ f"with exception: {e}. Skipping this decimation level."
+ )
+ logger.error(msg)
+ logger.exception(msg)
+ continue
ttfz_obj.apparent_resistivity(tfk.config.channel_nomenclature, units=units)
tf_dict[i_dec_level] = ttfz_obj
if show_plot:
- from aurora.sandbox.plot_helpers import plot_tf_obj
-
- plot_tf_obj(ttfz_obj, out_filename="")
+ fig = ttfz_obj.plot()
tf_collection = TransferFunctionCollection(
tf_dict=tf_dict, processing_config=tfk.config
@@ -252,7 +264,7 @@ def process_mth5(
Parameters
----------
- config: mt_metadata.transfer_functions.processing.aurora.Processing or path to json
+ config: mt_metadata.processing.aurora.Processing or path to json
All processing parameters
tfk_dataset: aurora.tf_kernel.dataset.Dataset or None
Specifies what datasets to process according to config
diff --git a/aurora/pipelines/time_series_helpers.py b/aurora/pipelines/time_series_helpers.py
index 5450a452..1deac495 100644
--- a/aurora/pipelines/time_series_helpers.py
+++ b/aurora/pipelines/time_series_helpers.py
@@ -9,13 +9,12 @@
from loguru import logger
from aurora.time_series.windowing_scheme import window_scheme_from_decimation
-from mt_metadata.transfer_functions.processing import TimeSeriesDecimation
-from mt_metadata.transfer_functions.processing.aurora.decimation_level import (
+from mt_metadata.processing import TimeSeriesDecimation
+from mt_metadata.processing.aurora.decimation_level import (
DecimationLevel as AuroraDecimationLevel,
)
-from mt_metadata.transfer_functions.processing.fourier_coefficients import (
- Decimation as FCDecimation,
-)
+from mt_metadata.processing.fourier_coefficients import Decimation as FCDecimation
+
from mth5.groups import RunGroup
from typing import Union
@@ -132,7 +131,7 @@ def prototype_decimate(
#
# Parameters
# ----------
-# config : mt_metadata.transfer_functions.processing.aurora.Decimation
+# config : mt_metadata.processing.aurora.Decimation
# run_xrds: xr.Dataset
# Originally from mth5.timeseries.run_ts.RunTS.dataset, but possibly decimated
# multiple times
@@ -156,7 +155,7 @@ def prototype_decimate(
#
# Parameters
# ----------
-# config : mt_metadata.transfer_functions.processing.aurora.Decimation
+# config : mt_metadata.processing.aurora.Decimation
# run_xrds: xr.Dataset
# Originally from mth5.timeseries.run_ts.RunTS.dataset, but possibly decimated
# multiple times
diff --git a/aurora/pipelines/transfer_function_helpers.py b/aurora/pipelines/transfer_function_helpers.py
index 9ee25cdf..dcd490fd 100644
--- a/aurora/pipelines/transfer_function_helpers.py
+++ b/aurora/pipelines/transfer_function_helpers.py
@@ -18,7 +18,7 @@
from aurora.transfer_function.weights.edf_weights import (
effective_degrees_of_freedom_weights,
)
-from mt_metadata.transfer_functions.processing.aurora.decimation_level import (
+from mt_metadata.processing.aurora.decimation_level import (
DecimationLevel as AuroraDecimationLevel,
)
from loguru import logger
diff --git a/aurora/pipelines/transfer_function_kernel.py b/aurora/pipelines/transfer_function_kernel.py
index b9826150..9da61766 100644
--- a/aurora/pipelines/transfer_function_kernel.py
+++ b/aurora/pipelines/transfer_function_kernel.py
@@ -1,29 +1,28 @@
"""
- This module contains the TrasnferFunctionKernel class which is the main object that
- links the KernelDataset to Processing configuration.
+This module contains the TrasnferFunctionKernel class which is the main object that
+links the KernelDataset to Processing configuration.
"""
-from aurora.config.metadata.processing import Processing
-from aurora.pipelines.helpers import initialize_config
-from aurora.pipelines.time_series_helpers import prototype_decimate
-from aurora.time_series.windowing_scheme import WindowingScheme
-from aurora.transfer_function import TransferFunctionCollection
-from loguru import logger
-from mth5.utils.exceptions import MTH5Error
-from mth5.utils.helpers import path_or_mth5_object
-from mt_metadata.transfer_functions.core import TF
-from mt_metadata.transfer_functions.processing.aurora import (
- DecimationLevel as AuroraDecimationLevel,
-)
-from mth5.processing.kernel_dataset import KernelDataset
-
+import pathlib
from typing import List, Union
import numpy as np
import pandas as pd
-import pathlib
import psutil
+from loguru import logger
+from mt_metadata.processing.aurora import DecimationLevel as AuroraDecimationLevel
+from mt_metadata.transfer_functions.core import TF
+from mth5.processing.kernel_dataset import KernelDataset
+from mth5.utils.exceptions import MTH5Error
+from mth5.utils.helpers import path_or_mth5_object
+
+from aurora import __version__ as aurora_version
+from aurora.config.metadata.processing import Processing
+from aurora.pipelines.helpers import initialize_config
+from aurora.pipelines.time_series_helpers import prototype_decimate
+from aurora.time_series.windowing_scheme import WindowingScheme
+from aurora.transfer_function import TransferFunctionCollection
class TransferFunctionKernel(object):
@@ -150,7 +149,7 @@ def update_dataset_df(self, i_dec_level: int) -> None:
run_xrds = row["run_dataarray"].to_dataset("channel")
decimation = self.config.decimations[i_dec_level].decimation
decimated_xrds = prototype_decimate(decimation, run_xrds)
- self.dataset_df["run_dataarray"].at[i] = decimated_xrds.to_array(
+ self.dataset_df.at[i, "run_dataarray"] = decimated_xrds.to_array(
"channel"
) # See Note 1 above
@@ -315,7 +314,7 @@ def update_processing_summary(self):
raise ValueError(msg)
def validate_decimation_scheme_and_dataset_compatability(
- self, min_num_stft_windows=None
+ self, min_num_stft_windows=1
):
"""
Checks that the decimation_scheme and dataset are compatable.
@@ -545,9 +544,7 @@ def make_decimation_dict_for_tf(
Keyed by a string representing the period
Values are a custom dictionary.
"""
- from mt_metadata.transfer_functions.io.zfiles.zmm import (
- PERIOD_FORMAT,
- )
+ from mt_metadata.transfer_functions.io.zfiles.zmm import PERIOD_FORMAT
decimation_dict = {}
# dec_level_cfg is an AuroraDecimationLevel
@@ -563,7 +560,9 @@ def make_decimation_dict_for_tf(
i_dec
].num_segments.data[0, i_band]
except KeyError:
- logger.warning("Possibly invalid decimation level")
+ logger.warning(
+ f"Decimation level {i_dec} band {i_band} is invalid, not enough points."
+ )
period_value["npts"] = 0
decimation_dict[period_key] = period_value
@@ -599,32 +598,71 @@ def make_decimation_dict_for_tf(
res_cov = res_cov.rename(renamer_dict)
tf_cls.residual_covariance = res_cov
- # Set key as first el't of dict, nor currently supporting mixed surveys in TF
- tf_cls.survey_metadata = self.dataset.local_survey_metadata
-
- # pack the station metadata into the TF object
- # station_id = self.processing_config.stations.local.id
- # station_sub_df = self.dataset_df[self.dataset_df["station"] == station_id]
- # station_row = station_sub_df.iloc[0]
- # station_obj = station_obj_from_row(station_row)
-
- # modify the run metadata to match the channel nomenclature
- # TODO: this should be done inside the TF initialization
- for i_run, run in enumerate(tf_cls.station_metadata.runs):
- for i_ch, channel in enumerate(run.channels):
- new_ch = channel.copy()
- default_component = channel.component
- new_component = channel_nomenclature_dict[default_component]
- new_ch.component = new_component
- tf_cls.station_metadata.runs[i_run].remove_channel(default_component)
- tf_cls.station_metadata.runs[i_run].add_channel(new_ch)
-
- # set processing type
- tf_cls.station_metadata.transfer_function.processing_type = self.processing_type
-
- # tf_cls.station_metadata.transfer_function.processing_config = (
- # self.processing_config
- # )
+ # Set survey metadata from the dataset
+ # self.dataset.survey_metadata now returns a Survey object (not a dict)
+ # Only set it if the TF object doesn't already have survey metadata
+ # if tf_cls.survey_metadata is None or (
+ # hasattr(tf_cls.survey_metadata, "__len__")
+ # and len(tf_cls.survey_metadata) == 0
+ # ):
+ survey_obj = self.dataset.survey_metadata
+ if survey_obj is not None:
+ tf_cls.survey_metadata = survey_obj
+
+ # Set station metadata and processing info
+ tf_cls.station_metadata.provenance.creation_time = pd.Timestamp.now()
+ tf_cls.station_metadata.provenance.processing_type = self.processing_type
+ tf_cls.station_metadata.transfer_function.processed_date = pd.Timestamp.now()
+
+ # Get runs processed from the dataset dataframe
+ runs_processed = self.dataset_df.run.unique().tolist()
+ tf_cls.station_metadata.transfer_function.runs_processed = runs_processed
+ # TODO: tf_cls.station_metadata.transfer_function.processing_config = self.processing_config
+
+ tf_cls.station_metadata.transfer_function.software.author = "K. Kappler"
+ tf_cls.station_metadata.transfer_function.software.name = "Aurora"
+ tf_cls.station_metadata.transfer_function.software.version = aurora_version
+
+ # modify the run metadata to match the channel nomenclature, this should only be done if the
+ # channels are different than the expected channel_nomenclature
+ channels_named_incorrectly = False
+ for ch in tf_cls.station_metadata.channels_recorded:
+ if ch not in channel_nomenclature_dict.values():
+ logger.warning(
+ f"Channel '{ch}' not found in channel_nomenclature_dict values"
+ )
+ logger.warning(
+ f"Available values: {list(channel_nomenclature_dict.values())}"
+ )
+ channels_named_incorrectly = True
+
+ # This should be a last ditch effor to rename channels, the nomenclature should
+ # propagate from the MTH5 through the processing to the TF object
+ if channels_named_incorrectly:
+ logger.info(
+ "Modifying channel nomenclature in station metadata to match specified channel_nomenclature"
+ )
+ for i_run, run in enumerate(tf_cls.station_metadata.runs):
+ for channel in run.channels:
+ new_ch = channel.copy()
+ default_component = channel.component
+ if default_component not in channel_nomenclature_dict:
+ logger.error(
+ f"Component '{default_component}' not found in channel_nomenclature_dict"
+ )
+ logger.error(
+ f"Available keys: {list(channel_nomenclature_dict.keys())}"
+ )
+ raise KeyError(
+ f"Component '{default_component}' not found in channel_nomenclature_dict. Available: {list(channel_nomenclature_dict.keys())}"
+ )
+ new_component = channel_nomenclature_dict[default_component]
+ new_ch.component = new_component
+ tf_cls.station_metadata.runs[i_run].remove_channel(
+ default_component
+ )
+ tf_cls.station_metadata.runs[i_run].add_channel(new_ch)
+
return tf_cls
def memory_check(self) -> None:
diff --git a/aurora/sandbox/io_helpers/make_mth5_helpers.py b/aurora/sandbox/io_helpers/make_mth5_helpers.py
index 8eb5c085..3efee6c8 100644
--- a/aurora/sandbox/io_helpers/make_mth5_helpers.py
+++ b/aurora/sandbox/io_helpers/make_mth5_helpers.py
@@ -3,21 +3,25 @@
"""
import pathlib
-
-import obspy
from pathlib import Path
+from typing import Optional, Union
-from aurora.sandbox.obspy_helpers import align_streams
-from aurora.sandbox.obspy_helpers import make_channel_labels_fdsn_compliant
-from aurora.sandbox.obspy_helpers import trim_streams_to_common_timestamps
-from aurora.sandbox.triage_metadata import triage_missing_coil_hollister
-from aurora.sandbox.triage_metadata import triage_mt_units_electric_field
-from aurora.sandbox.triage_metadata import triage_mt_units_magnetic_field
+import obspy
+from loguru import logger
from mt_metadata.timeseries.stationxml import XMLInventoryMTExperiment
-from mth5.utils.helpers import initialize_mth5
from mth5.timeseries import RunTS
-from loguru import logger
-from typing import Optional, Union
+from mth5.utils.helpers import initialize_mth5
+
+from aurora.sandbox.obspy_helpers import (
+ align_streams,
+ make_channel_labels_fdsn_compliant,
+ trim_streams_to_common_timestamps,
+)
+from aurora.sandbox.triage_metadata import (
+ triage_missing_coil_hollister,
+ triage_mt_units_electric_field,
+ triage_mt_units_magnetic_field,
+)
def create_from_server_multistation(
@@ -110,9 +114,12 @@ def create_from_server_multistation(
streams_dict[station_id] = obspy.core.Stream(station_traces)
station_groups[station_id] = mth5_obj.get_station(station_id)
run_metadata = experiment.surveys[0].stations[i_station].runs[0]
- run_metadata.id = run_id
+ run_metadata.id = (
+ run_id # This seems to get ignored by the call to from_obspy_stream below
+ )
run_ts_obj = RunTS()
run_ts_obj.from_obspy_stream(streams_dict[station_id], run_metadata)
+ run_ts_obj.run_metadata.id = run_id # Force setting run id
run_group = station_groups[station_id].add_run(run_id)
run_group.from_runts(run_ts_obj)
mth5_obj.close_mth5()
diff --git a/aurora/sandbox/io_helpers/zfile_murphy.py b/aurora/sandbox/io_helpers/zfile_murphy.py
index b961c869..8d397e9b 100644
--- a/aurora/sandbox/io_helpers/zfile_murphy.py
+++ b/aurora/sandbox/io_helpers/zfile_murphy.py
@@ -1,9 +1,11 @@
"""
- This module contains a class that was contributed by Ben Murphy for working with EMTF "Z-files"
+This module contains a class that was contributed by Ben Murphy for working with EMTF "Z-files"
"""
+
import pathlib
-from typing import Optional, Union
import re
+from typing import Optional, Union
+
import numpy as np
@@ -138,7 +140,6 @@ def load(self):
# now read data for each period
for i in range(self.nfreqs):
-
# extract period
line = f.readline().strip()
match = re.match(
@@ -236,10 +237,10 @@ def impedance(self, angle: Optional[float] = 0.0):
u[hx_index, hy_index] = np.sin(
(self.orientation[hx_index, 0] - angle) * np.pi / 180.0
)
- u[hy_index, hx_index] = np.sin(
+ u[hy_index, hx_index] = np.cos(
(self.orientation[hy_index, 0] - angle) * np.pi / 180.0
)
- u[hy_index, hy_index] = np.cos(
+ u[hy_index, hy_index] = np.sin(
(self.orientation[hy_index, 0] - angle) * np.pi / 180.0
)
u = np.linalg.inv(u) # Identity if angle=0
diff --git a/aurora/sandbox/plot_helpers.py b/aurora/sandbox/plot_helpers.py
index dfe3cd2e..567542a9 100644
--- a/aurora/sandbox/plot_helpers.py
+++ b/aurora/sandbox/plot_helpers.py
@@ -5,11 +5,12 @@
TODO: review which of these can be replaced with methods in MTpy-v2
"""
-from matplotlib.gridspec import GridSpec
from typing import Optional, Union
+
import matplotlib.pyplot as plt
import numpy as np
import scipy.signal as ssig
+from matplotlib.gridspec import GridSpec
def _is_flat_amplitude(array) -> bool:
@@ -145,7 +146,6 @@ def plot_response_pz(
# plot observed (lab) response as amplitude and phase
if w_obs is not None and resp_obs is not None:
-
response_amplitude = np.absolute(resp_obs)
if _is_flat_amplitude(resp_obs):
response_amplitude[:] = response_amplitude[0]
@@ -154,7 +154,7 @@ def plot_response_pz(
ax_amp.plot(
x_values,
response_amplitude,
- color="tab:blue",
+ color="steelblue",
linewidth=1.5,
linestyle="-",
label="True",
@@ -162,7 +162,7 @@ def plot_response_pz(
ax_phs.plot(
x_values,
np.angle(resp_obs, deg=True),
- color="tab:blue",
+ color="steelblue",
linewidth=1.5,
linestyle="-",
)
@@ -172,7 +172,7 @@ def plot_response_pz(
ax_amp.plot(
x_values,
np.absolute(resp_obs),
- color="tab:blue",
+ color="steelblue",
linewidth=1.5,
linestyle="-",
label="True",
@@ -180,7 +180,7 @@ def plot_response_pz(
ax_phs.plot(
x_values,
np.angle(resp_obs, deg=True),
- color="tab:blue",
+ color="steelblue",
linewidth=1.5,
linestyle="-",
)
@@ -189,7 +189,7 @@ def plot_response_pz(
np.imag(zpk_obs.zeros),
s=75,
marker="o",
- ec="tab:blue",
+ ec="steelblue",
fc="w",
label="True Zeros",
)
@@ -198,8 +198,8 @@ def plot_response_pz(
np.imag(zpk_obs.poles),
s=75,
marker="x",
- ec="tab:blue",
- fc="tab:blue",
+ ec="steelblue",
+ fc="steelblue",
label="True Poles",
)
@@ -211,7 +211,7 @@ def plot_response_pz(
ax_amp.plot(
x_values,
np.absolute(resp_pred),
- color="tab:red",
+ color="firebrick",
linewidth=3,
linestyle=":",
label="Fit",
@@ -220,7 +220,7 @@ def plot_response_pz(
ax_phs.plot(
x_values,
np.angle(resp_pred, deg=True),
- color="tab:red",
+ color="firebrick",
linewidth=3,
linestyle=":",
)
@@ -229,7 +229,7 @@ def plot_response_pz(
np.imag(zpk_pred.zeros),
s=35,
marker="o",
- ec="tab:red",
+ ec="firebrick",
fc="w",
label="Fit Zeros",
)
@@ -299,9 +299,10 @@ def plot_tf_obj(tf_obj, out_filename=None, show=True):
Where to save the file. No png is saved if this is False
"""
- from aurora.transfer_function.plot.rho_plot import RhoPlot
import matplotlib.pyplot as plt
+ from aurora.transfer_function.plot.rho_plot import RhoPlot
+
plotter = RhoPlot(tf_obj)
fig, axs = plt.subplots(nrows=2)
ttl_str = tf_obj.tf_header.local_station.id
diff --git a/aurora/sandbox/triage_metadata.py b/aurora/sandbox/triage_metadata.py
index 0d30966f..2c876e7e 100644
--- a/aurora/sandbox/triage_metadata.py
+++ b/aurora/sandbox/triage_metadata.py
@@ -2,11 +2,13 @@
This module contains various helper functions that were used to fix errors in metadata.
"""
-from mt_metadata.timeseries import Experiment
-from mt_metadata.timeseries.filters.helper_functions import MT2SI_ELECTRIC_FIELD_FILTER
-from mt_metadata.timeseries.filters.helper_functions import MT2SI_MAGNETIC_FIELD_FILTER
-from loguru import logger
import mth5.groups
+from loguru import logger
+from mt_metadata.timeseries import Experiment
+from mt_metadata.timeseries.filters.helper_functions import (
+ MT2SI_ELECTRIC_FIELD_FILTER,
+ MT2SI_MAGNETIC_FIELD_FILTER,
+)
def triage_mt_units_electric_field(experiment: Experiment) -> Experiment:
@@ -41,8 +43,8 @@ def triage_mt_units_electric_field(experiment: Experiment) -> Experiment:
channels = station.runs[0].channels
for channel in channels:
if channel.component[0] == "e":
- channel.filter.name.insert(0, filter_name)
- channel.filter.applied.insert(0, True)
+ channel.add_filter(name=filter_name, applied=True, stage=0)
+
return experiment
@@ -77,8 +79,8 @@ def triage_mt_units_magnetic_field(experiment: Experiment) -> Experiment:
channels = station.runs[0].channels
for channel in channels:
if channel.component[0] == "h":
- channel.filter.name.insert(0, filter_name)
- channel.filter.applied.insert(0, True)
+ channel.add_filter(name=filter_name, applied=True, stage=0)
+
return experiment
diff --git a/aurora/test_utils/dataset_definitions.py b/aurora/test_utils/dataset_definitions.py
index 9c184b89..11ee754b 100644
--- a/aurora/test_utils/dataset_definitions.py
+++ b/aurora/test_utils/dataset_definitions.py
@@ -1,10 +1,12 @@
"""
- This module contains methods that are used to define datasets to build from FDSN servers.
+This module contains methods that are used to define datasets to build from FDSN servers.
- These datasets are in turn used for testing.
+These datasets are in turn used for testing.
"""
+
from obspy import UTCDateTime
+
from aurora.sandbox.io_helpers.fdsn_dataset import FDSNDataset
@@ -27,7 +29,7 @@ def make_pkdsao_test_00_config(minitest=False) -> FDSNDataset:
test_data_set.network = "BK"
test_data_set.station = "PKD,SAO"
test_data_set.starttime = UTCDateTime("2004-09-28T00:00:00.000000Z")
- test_data_set.endtime = UTCDateTime("2004-09-28T01:59:59.975000Z")
+ test_data_set.endtime = UTCDateTime("2004-09-28T02:00:00.000000Z")
if minitest:
test_data_set.endtime = UTCDateTime("2004-09-28T00:01:00") # 1 min
test_data_set.channel_codes = "BQ2,BQ3,BT1,BT2,BT3"
diff --git a/aurora/test_utils/parkfield/calibration_helpers.py b/aurora/test_utils/parkfield/calibration_helpers.py
index bfa5a530..4a15bb71 100644
--- a/aurora/test_utils/parkfield/calibration_helpers.py
+++ b/aurora/test_utils/parkfield/calibration_helpers.py
@@ -1,15 +1,16 @@
"""
This module contains methods that are used in the Parkfield calibration tests.
"""
+import pathlib
+from typing import Optional, Union
+
import matplotlib.pyplot as plt
import mth5.groups.run
import numpy as np
-import pathlib
-
import xarray
-from scipy.signal import medfilt
from loguru import logger
-from typing import Optional, Union
+from scipy.signal import medfilt
+
plt.ion()
@@ -35,11 +36,12 @@ def load_bf4_fap_for_parkfield_test_using_mt_metadata(frequencies: np.ndarray):
bf4_resp: np.ndarray
Complex response of the filter at the input frequencies
"""
- from aurora.general_helper_functions import DATA_PATH
from mt_metadata.timeseries.filters.helper_functions import (
make_frequency_response_table_filter,
)
+ from aurora.general_helper_functions import DATA_PATH
+
bf4_file_path = DATA_PATH.joinpath("parkfield", "bf4_9819.csv")
bf4_obj = make_frequency_response_table_filter(bf4_file_path, case="bf4")
bf4_resp = bf4_obj.complex_response(frequencies)
@@ -190,8 +192,8 @@ def parkfield_sanity_check(
# Do Plotting (can factor this out)
plt.figure(2)
plt.clf()
- bf4_colour = "red"
- pz_color = "blue"
+ bf4_colour = "firebrick"
+ pz_color = "steelblue"
if show_raw:
plt.loglog(
diff --git a/aurora/test_utils/parkfield/path_helpers.py b/aurora/test_utils/parkfield/path_helpers.py
index b0af20d6..17b15952 100644
--- a/aurora/test_utils/parkfield/path_helpers.py
+++ b/aurora/test_utils/parkfield/path_helpers.py
@@ -1,10 +1,21 @@
"""
This module contains helper functions to control where the parkfield test data
and test results are stored /accessed.
+
+ Development Notes
+ -----------------
+ - Initially, the parkfield data was stored in DATA_PATH/parkfield, but this
+ caused issues with write permissions on some systems (e.g., GitHub Actions runners)
+ and GADI HPC systems. Therefore, the base path was changed to ~/.cache/aurora/parkfield
+ to ensure that the user has write permissions.
"""
+
from aurora.general_helper_functions import DATA_PATH
+# import pathlib
+
+
def make_parkfield_paths() -> dict:
"""
Makes a dictionary with information about where to store/access PKD test data and results.
@@ -15,6 +26,8 @@ def make_parkfield_paths() -> dict:
Dict containing paths to "data", "aurora_results", "config", "emtf_results"
"""
base_path = DATA_PATH.joinpath("parkfield")
+ # base_path = pathlib.Path.home().joinpath(".cache", "aurora", "parkfield")
+
parkfield_paths = {}
parkfield_paths["data"] = base_path
parkfield_paths["aurora_results"] = base_path.joinpath("aurora_results")
diff --git a/aurora/test_utils/synthetic/make_processing_configs.py b/aurora/test_utils/synthetic/make_processing_configs.py
index ec92277a..46d30525 100644
--- a/aurora/test_utils/synthetic/make_processing_configs.py
+++ b/aurora/test_utils/synthetic/make_processing_configs.py
@@ -3,13 +3,14 @@
used in aurora's tests of processing synthetic data.
"""
-from aurora.config import BANDS_DEFAULT_FILE
-from aurora.config import BANDS_256_26_FILE
+from typing import Optional, Union
+
+from loguru import logger
+from mth5.processing import KernelDataset, RunSummary
+
+from aurora.config import BANDS_256_26_FILE, BANDS_DEFAULT_FILE
from aurora.config.config_creator import ConfigCreator
from aurora.test_utils.synthetic.paths import SyntheticTestPaths
-from loguru import logger
-from mth5.processing import RunSummary, KernelDataset
-from typing import Optional, Union
synthetic_test_paths = SyntheticTestPaths()
@@ -138,6 +139,7 @@ def create_test_run_config(
decimation.stft.window.type = "boxcar"
if save == "json":
+ CONFIG_PATH.mkdir(parents=True, exist_ok=True)
filename = CONFIG_PATH.joinpath(p.json_fn())
p.save_as_json(filename=filename)
@@ -214,8 +216,8 @@ def test_to_from_json():
"""
# import pandas as pd
- from mt_metadata.transfer_functions.processing.aurora import Processing
- from mth5.processing import RunSummary, KernelDataset
+ from mt_metadata.processing.aurora import Processing
+ from mth5.processing import KernelDataset, RunSummary
# Specify path to mth5
data_path = MTH5_PATH.joinpath("test1.h5")
@@ -263,7 +265,6 @@ def test_to_from_json():
def main():
"""Allow the module to be called from the command line"""
- pass
# TODO: fix test_to_from_json and put in tests.
# - see issue #222 in mt_metadata.
test_to_from_json()
diff --git a/aurora/test_utils/synthetic/processing_helpers.py b/aurora/test_utils/synthetic/processing_helpers.py
index 19e2b29e..cfcc5378 100644
--- a/aurora/test_utils/synthetic/processing_helpers.py
+++ b/aurora/test_utils/synthetic/processing_helpers.py
@@ -3,18 +3,21 @@
execution of aurora's tests of processing on synthetic data.
"""
-import mt_metadata.transfer_functions
import pathlib
+from typing import Optional, Union
+
+import mt_metadata.transfer_functions
+from mth5.data.make_mth5_from_asc import (
+ create_test1_h5,
+ create_test2_h5,
+ create_test12rr_h5,
+)
+
from aurora.pipelines.process_mth5 import process_mth5
from aurora.test_utils.synthetic.make_processing_configs import (
make_processing_config_and_kernel_dataset,
)
-from mth5.data.make_mth5_from_asc import create_test1_h5
-from mth5.data.make_mth5_from_asc import create_test2_h5
-from mth5.data.make_mth5_from_asc import create_test12rr_h5
-
-from typing import Optional, Union
def get_example_kernel_dataset(num_stations: int = 1):
"""
@@ -27,7 +30,7 @@ def get_example_kernel_dataset(num_stations: int = 1):
The kernel dataset from a synthetic, single station mth5
"""
- from mth5.processing import RunSummary, KernelDataset
+ from mth5.processing import KernelDataset, RunSummary
if num_stations == 1:
mth5_path = create_test1_h5(force_make_mth5=False)
@@ -65,8 +68,9 @@ def tf_obj_from_synthetic_data(
- Helper function for test_issue_139
"""
+ from mth5.processing import KernelDataset, RunSummary
+
from aurora.config.config_creator import ConfigCreator
- from mth5.processing import RunSummary, KernelDataset
run_summary = RunSummary()
run_summary.from_mth5s(list((mth5_path,)))
@@ -96,6 +100,7 @@ def process_synthetic_1(
return_collection: Optional[bool] = False,
channel_nomenclature: Optional[str] = "default",
reload_config: Optional[bool] = False,
+ mth5_path: Optional[Union[str, pathlib.Path]] = None,
):
"""
@@ -113,15 +118,18 @@ def process_synthetic_1(
usual, channel-by-channel method
file_version: str
one of ["0.1.0", "0.2.0"]
+ mth5_path: str or path, optional
+ Path to an existing test1.h5 MTH5 file. If None, will create one.
Returns
-------
tf_result: TransferFunctionCollection or mt_metadata.transfer_functions.TF
Should change so that it is mt_metadata.TF (see Issue #143)
"""
- mth5_path = create_test1_h5(
- file_version=file_version, channel_nomenclature=channel_nomenclature
- )
+ if mth5_path is None:
+ mth5_path = create_test1_h5(
+ file_version=file_version, channel_nomenclature=channel_nomenclature
+ )
mth5_paths = [
mth5_path,
]
@@ -143,14 +151,14 @@ def process_synthetic_1(
"hy": 5.0,
"hz": 100.0,
}
- tfk_dataset.df["channel_scale_factors"].at[0] = scale_factors
+ tfk_dataset.df.at[0, "channel_scale_factors"] = scale_factors
else:
tfk_dataset.df.drop(columns=["channel_scale_factors"], inplace=True)
# Relates to issue #172
# reload_config = True
# if reload_config:
- # from mt_metadata.transfer_functions.processing.aurora import Processing
+ # from mt_metadata.processing.aurora import Processing
# p = Processing()
# config_path = pathlib.Path("config")
# json_fn = config_path.joinpath(processing_config.json_fn())
@@ -177,22 +185,25 @@ def process_synthetic_1(
ttl_str=ttl_str,
show=False,
figure_basename=out_png_name,
- figures_path=AURORA_RESULTS_PATH,
+ figures_path=z_file_path.parent, # TODO: check this works
)
return tf_result
+
def process_synthetic_2(
force_make_mth5: Optional[bool] = True,
z_file_path: Optional[Union[str, pathlib.Path, None]] = None,
save_fc: Optional[bool] = False,
file_version: Optional[str] = "0.2.0",
channel_nomenclature: Optional[str] = "default",
+ mth5_path: Optional[Union[str, pathlib.Path]] = None,
):
""""""
station_id = "test2"
- mth5_path = create_test2_h5(
- force_make_mth5=force_make_mth5, file_version=file_version
- )
+ if mth5_path is None:
+ mth5_path = create_test2_h5(
+ force_make_mth5=force_make_mth5, file_version=file_version
+ )
mth5_paths = [
mth5_path,
]
@@ -217,12 +228,15 @@ def process_synthetic_2(
)
return tfc
+
def process_synthetic_1r2(
config_keyword="test1r2",
channel_nomenclature="default",
return_collection=False,
+ mth5_path: Optional[Union[str, pathlib.Path]] = None,
):
- mth5_path = create_test12rr_h5(channel_nomenclature=channel_nomenclature)
+ if mth5_path is None:
+ mth5_path = create_test12rr_h5(channel_nomenclature=channel_nomenclature)
mth5_paths = [
mth5_path,
]
@@ -240,4 +254,4 @@ def process_synthetic_1r2(
tfk_dataset=tfk_dataset,
return_collection=return_collection,
)
- return tfc
\ No newline at end of file
+ return tfc
diff --git a/aurora/test_utils/synthetic/triage.py b/aurora/test_utils/synthetic/triage.py
index 7f2ff8a9..4cebbdf5 100644
--- a/aurora/test_utils/synthetic/triage.py
+++ b/aurora/test_utils/synthetic/triage.py
@@ -1,5 +1,5 @@
"""
- Helper functions to handle workarounds.
+Helper functions to handle workarounds.
"""
import numpy as np
@@ -33,6 +33,10 @@ def tfs_nearly_equal(tf1: TF, tf2: TF) -> bool:
tf2_copy.station_metadata.provenance.creation_time = (
tf1.station_metadata.provenance.creation_time
)
+ # Triage the processed_date
+ tf2_copy.station_metadata.transfer_function.processed_date = (
+ tf1.station_metadata.transfer_function.processed_date
+ )
return tf1 == tf2_copy
else:
diff --git a/aurora/time_series/frequency_band_helpers.py b/aurora/time_series/frequency_band_helpers.py
index 113e447f..c7eb9a03 100644
--- a/aurora/time_series/frequency_band_helpers.py
+++ b/aurora/time_series/frequency_band_helpers.py
@@ -3,10 +3,10 @@
TODO: Move these methods to mth5.processing.spectre.frequency_band_helpers
"""
from loguru import logger
-from mt_metadata.transfer_functions.processing.aurora import (
+from mt_metadata.processing.aurora import (
DecimationLevel as AuroraDecimationLevel,
)
-from mt_metadata.transfer_functions.processing.aurora import Band
+from mt_metadata.processing.aurora import Band
from mth5.timeseries.spectre.spectrogram import extract_band
from typing import Optional, Tuple
import xarray as xr
@@ -23,7 +23,7 @@ def get_band_for_tf_estimate(
Parameters
----------
- band : mt_metadata.transfer_functions.processing.aurora.Band
+ band : mt_metadata.processing.aurora.Band
object with lower_bound and upper_bound to tell stft object which
subarray to return
config : AuroraDecimationLevel
@@ -129,7 +129,7 @@ def get_band_for_coherence_sorting(
Parameters
----------
- band : mt_metadata.transfer_functions.processing.aurora.FrequencyBands
+ band : mt_metadata.processing.aurora.FrequencyBands
object with lower_bound and upper_bound to tell stft object which
subarray to return
config : AuroraDecimationLevel
diff --git a/aurora/time_series/spectrogram_helpers.py b/aurora/time_series/spectrogram_helpers.py
index 7f165c85..3cbd0019 100644
--- a/aurora/time_series/spectrogram_helpers.py
+++ b/aurora/time_series/spectrogram_helpers.py
@@ -1,7 +1,7 @@
"""
- This module contains aurora methods associated with spectrograms or "STFTs".
- In future these tools should be moved to MTH5 and made methods of the Spectrogram class.
- For now, we can use this module as a place to aggregate functions to migrate.
+This module contains aurora methods associated with spectrograms or "STFTs".
+In future these tools should be moved to MTH5 and made methods of the Spectrogram class.
+For now, we can use this module as a place to aggregate functions to migrate.
"""
from aurora.config.metadata.processing import Processing as AuroraProcessing
@@ -14,9 +14,7 @@
from aurora.time_series.windowed_time_series import WindowedTimeSeries
from aurora.time_series.windowing_scheme import window_scheme_from_decimation
from loguru import logger
-from mt_metadata.transfer_functions.processing.aurora import (
- DecimationLevel as AuroraDecimationLevel,
-)
+from mt_metadata.processing.aurora import DecimationLevel as AuroraDecimationLevel
from mth5.groups import RunGroup
from mth5.processing.spectre.prewhitening import apply_prewhitening
from mth5.processing.spectre.prewhitening import apply_recoloring
@@ -35,7 +33,6 @@ def make_stft_objects(
run_xrds: xr.Dataset,
units: Literal["MT", "SI"] = "MT",
) -> xr.Dataset:
-
"""
Applies STFT to all channel time series in the input run.
@@ -45,7 +42,7 @@ def make_stft_objects(
Parameters
----------
- processing_config: mt_metadata.transfer_functions.processing.aurora.Processing
+ processing_config: mt_metadata.processing.aurora.Processing
Metadata about the processing to be applied
i_dec_level: int
The decimation level to process
@@ -327,7 +324,7 @@ def save_fourier_coefficients(
Parameters
----------
- dec_level_config: mt_metadata.transfer_functions.processing.aurora.decimation_level.DecimationLevel
+ dec_level_config: mt_metadata.processing.aurora.decimation_level.DecimationLevel
The information about decimation level associated with row, run, stft_obj
row: pd.Series
A row of the TFK.dataset_df
@@ -561,7 +558,7 @@ def calibrate_stft_obj(
include_decimation=False, include_delay=False
)
indices_to_flip = [
- i for i in indices_to_flip if channel.metadata.filter.applied[i]
+ i for i in indices_to_flip if channel.metadata.filters[i].applied
]
filters_to_remove = [channel_response.filters_list[i] for i in indices_to_flip]
if not filters_to_remove:
diff --git a/aurora/time_series/windowed_time_series.py b/aurora/time_series/windowed_time_series.py
index 72f7b82b..399afd59 100644
--- a/aurora/time_series/windowed_time_series.py
+++ b/aurora/time_series/windowed_time_series.py
@@ -11,7 +11,7 @@
"""
from aurora.time_series.decorators import can_use_xr_dataarray
-from mt_metadata.transfer_functions.processing.window import get_fft_harmonics
+from mt_metadata.processing.window import get_fft_harmonics
from typing import Optional, Union
from loguru import logger
diff --git a/aurora/time_series/windowing_scheme.py b/aurora/time_series/windowing_scheme.py
index 61bd30ca..39b1753e 100644
--- a/aurora/time_series/windowing_scheme.py
+++ b/aurora/time_series/windowing_scheme.py
@@ -74,10 +74,10 @@
from aurora.time_series.windowed_time_series import WindowedTimeSeries
from aurora.time_series.window_helpers import available_number_of_windows_in_array
from aurora.time_series.window_helpers import SLIDING_WINDOW_FUNCTIONS
-from mt_metadata.transfer_functions.processing.aurora.decimation_level import (
+from mt_metadata.processing.aurora.decimation_level import (
DecimationLevel as AuroraDecimationLevel,
)
-from mt_metadata.transfer_functions.processing.window import get_fft_harmonics
+from mt_metadata.processing.window import get_fft_harmonics
from loguru import logger
from typing import Optional, Union
diff --git a/aurora/transfer_function/TTFZ.py b/aurora/transfer_function/TTFZ.py
index 128c8912..835a1322 100644
--- a/aurora/transfer_function/TTFZ.py
+++ b/aurora/transfer_function/TTFZ.py
@@ -7,9 +7,11 @@
iris_mt_scratch/egbert_codes-20210121T193218Z-001/egbert_codes/matlabPrototype_10-13-20/TF/classes
TODO: This should be replaced by methods in mtpy.
"""
+
import numpy as np
import xarray as xr
from loguru import logger
+from matplotlib import pyplot as plt
from aurora.transfer_function.base import TransferFunction
@@ -86,7 +88,7 @@ def apparent_resistivity(self, channel_nomenclature, units="SI"):
units: str
one of ["MT","SI"]
channel_nomenclature:
- mt_metadata.transfer_functions.processing.aurora.channel_nomenclature.ChannelNomenclature
+ mt_metadata.processing.aurora.channel_nomenclature.ChannelNomenclature
has a dict that maps the channel names in TF to the standard channel labellings.
"""
@@ -134,3 +136,385 @@ def apparent_resistivity(self, channel_nomenclature, units="SI"):
self.phi_se = np.vstack((pxy_se, pyx_se)).T
return
+
+ def plot(self, out_filename=None, **kwargs):
+ """Plot the transfer function using mtpy's built in plot function."""
+
+ plot_object = RhoPlot(self)
+ plt.ion()
+ return plot_object.plot(
+ station_id=self.tf_header.local_station.id,
+ out_filename=out_filename,
+ **kwargs,
+ )
+
+
+plt.ioff()
+
+
+class RhoPlot(object):
+ """
+ TF plotting object class; some methods are only relevant to
+ specific types of TFs (or for derived parameters such as rho/phi)
+
+ Development Notes:
+ This should be deprecated and replaced with MTpy
+ The only place this class is used is in aurora/sandbox/plot_helpers.py in the
+ plot_tf_obj method.
+
+ """
+
+ def __init__(self, tf_obj):
+ """
+ Constructor
+
+ TODO: Replace tf_obj with mt_metadata tf if this method not replaced with mtpy.
+
+ Parameters
+ ----------
+ tf_obj: aurora.transfer_function.TTFZ.TTFZ
+ Object with TF information
+
+
+ """
+ self.tf = tf_obj
+ self._blue = "steelblue"
+ self._red = "firebrick"
+
+ def err_log(
+ self,
+ x: np.ndarray,
+ y: np.ndarray,
+ yerr: np.ndarray,
+ x_axis_limits: list,
+ log_x_axis: bool = True,
+ barsize: float = 0.0075,
+ ):
+ """
+ Returns the coordinates for the line segments that make up the error bars.
+
+ Development Notes:
+ This function returns 6 numbers per data point.
+ There is no documentation for what it does.
+ A reasonable guess would be that the six numbers define 3 line segments.
+ One line segment for the error bar, and one line segment at the top of the error bar, and one at the bottom.
+ The vectors xb and yb each have six elements per data point assigned as follows
+ xb = [x-dx, x+dx, x, x, x-dx, x+dx,]
+ yb = [y-dy, y-dy, y-dy, y+dy, y+dy, y+dy,]
+ and if log_x_axis is True
+ [log(x)-dx, log(x)+dx, log(x), log(x), log(x)-dx, log(x)+dx,]
+
+ Matlab Documentation
+ err_log : used for plotting error bars with a y-axis log scale
+ takes VECTORS x and y and outputs matrices (one row per data point) for
+ plotting error bars ll = 'XLOG' for log X axis
+
+ Parameters
+ ----------
+ x : np.ndarray
+ The x-axis values. Usually these are periods with units of seconds
+ y : np.ndarray
+ The x-axis values. Usually apparent resistivity or phase
+ yerr: np.ndarray
+ A value associated with the error in the y measurement.
+ It seems that this is the "half height" of the error bar.
+ log_x_axis : bool
+ If True the xaxis is logarithmic
+ Not tested for False
+ x_axis_limits: list
+ The lower and upper limits for the xaxis in position 0, 1 respectively.
+ barsize: float
+ The width of the top and bottom horizontal error bar lines.
+
+ Returns
+ -------
+ xb, yb: tuple
+ Each is np.ndarray, 6 rows and one column per data point
+ These are the six points needed to draw the error bars.
+ """
+ num_observations = len(x)
+ xb = np.zeros((6, num_observations))
+ yb = np.zeros((6, num_observations))
+ if log_x_axis:
+ dx = (
+ np.log(x_axis_limits[1] / x_axis_limits[0]) * barsize
+ ) # natural log in matlab & python
+ xb[2, :] = np.log(x)
+ else:
+ dx = (x_axis_limits[1] - x_axis_limits[0]) * barsize
+ xb[2, :] = x
+ xb[3, :] = xb[2, :]
+ xb[0, :] = xb[2, :] - dx
+ xb[1, :] = xb[2, :] + dx
+ xb[4, :] = xb[2, :] - dx
+ xb[5, :] = xb[2, :] + dx
+
+ if log_x_axis:
+ xb = np.exp(xb)
+
+ yb[0, :] = (y - yerr).T
+ yb[1, :] = (y - yerr).T
+ yb[2, :] = (y - yerr).T
+ yb[3, :] = (y + yerr).T
+ yb[4, :] = (y + yerr).T
+ yb[5, :] = (y + yerr).T
+
+ return xb, yb
+
+ def phase_sub_plot(self, ax, ttl_str="", pred=None, linewidth=2):
+ """
+ place a phase subplot on given figure axis
+
+ Development notes:
+ Originally this took an optional input argument `axRect`
+ but it was never used. It looks as it it was intended to be able to set the
+ position of the figure. There was also some hardcoded control of linewidth
+ and markersize which has been removed for readability.
+
+
+ Parameters
+ ----------
+ ax
+ pred
+
+ Returns
+ -------
+
+ """
+
+ phi = self.tf.phi
+ # rotate phases so all are positive:
+ negative_phi_indices = np.where(phi < 0)[0]
+ phi[negative_phi_indices] += 180.0
+
+ Tmin, Tmax = self.set_period_limits()
+ axis_limits = [Tmin, Tmax, 0, 90]
+
+ [xb, yb] = self.err_log(
+ np.transpose(self.tf.periods),
+ self.tf.phi[:, 0],
+ self.tf.phi_se[:, 0],
+ axis_limits,
+ log_x_axis=True,
+ )
+
+ ax.semilogx(xb, yb, ls="-", color=self._blue)
+ ax.semilogx(self.tf.periods, phi[:, 0], marker="o", ls="--", color=self._blue)
+
+ xb, yb = self.err_log(
+ np.transpose(self.tf.periods),
+ self.tf.phi[:, 1],
+ self.tf.phi_se[:, 1],
+ axis_limits,
+ log_x_axis=True,
+ )
+ ax.semilogx(xb, yb, ls="-", color=self._red)
+ ax.semilogx(self.tf.periods, phi[:, 1], marker="o", ls="--", color=self._red)
+ # set(lines, 'LineWidth', 1, 'MarkerSize', 7);
+ if pred is not None:
+ plt.plot(pred.tf.periods, pred.tf.phi[:, 0], "b-")
+ plt.plot(pred.tf.periods, pred.tf.phi[:, 1], "r-")
+
+ # (lims_ph);
+ ax.set_xlim(axis_limits[0], axis_limits[1])
+ ax.set_ylim(axis_limits[2], axis_limits[3])
+
+ # ax.set_subtitle( ttl_str, fontsize=14, fontweight="demi")
+ # set(gca, 'FontWeight', 'bold', 'FontSize', 11, 'Xtick', xticks);
+ ax.set_xlabel("Period (s)")
+ ax.set_ylabel("Degrees")
+ return ax
+
+ def rho_sub_plot(self, ax, ttl_str="", pred=None):
+ """
+ Makes an apparent resistivity plot on the input axis.
+
+ Matlab Documentation:
+ Calls plotrhom, standard plotting routine; uses some other routines in
+ EMTF/matlab/Zplt; this version is for putting multiple curves on the
+ same plot ... set plotting limits now that rho is known
+
+
+ Parameters
+ ----------
+ ax: matplotlib.axes._axes.Axes
+ pred
+
+ Returns
+ -------
+
+ """
+ lims = self.set_lims() # get the axes limits
+ x_axis_limits = lims[0:2]
+ y_axis_limits = lims[2:4]
+
+ # get and plot error bars:
+ [xb, yb] = self.err_log(
+ self.tf.periods,
+ self.tf.rho[:, 0],
+ self.tf.rho_se[:, 0],
+ x_axis_limits,
+ log_x_axis=True,
+ )
+ ax.loglog(xb, yb, ls="--", color=self._blue)
+
+ # plot rho dots
+ ax.loglog(
+ self.tf.periods,
+ self.tf.rho[:, 0],
+ marker="o",
+ ls="--",
+ color=self._blue,
+ label="$Z_{xy}$",
+ )
+
+ [xb, yb] = self.err_log(
+ self.tf.periods,
+ self.tf.rho[:, 1],
+ self.tf.rho_se[:, 1],
+ x_axis_limits,
+ log_x_axis=True,
+ )
+ ax.loglog(xb, yb, ls="-", color=self._red)
+ ax.loglog(
+ self.tf.periods,
+ self.tf.rho[:, 1],
+ marker="o",
+ ls="--",
+ color=self._red,
+ label="$Z_{yx}$",
+ )
+
+ if pred is not None:
+ ax.plot(
+ pred.tf.periods,
+ pred.tf.rho[:, 0],
+ "b-",
+ label="$Z_{xy}$",
+ )
+ ax.plot(
+ pred.tf.periods,
+ pred.tf.rho[:, 1],
+ "r-",
+ label="$Z_{yx}$",
+ )
+
+ # axis(lims_rho);
+ ax.set_xlim(x_axis_limits[0], x_axis_limits[1])
+ ax.set_ylim(y_axis_limits[0], y_axis_limits[1])
+ ax.legend()
+ ax.set_ylabel(r"$\Omega$-m")
+ return ax
+
+ def set_period_limits(self):
+ """
+ Returns a set of limits for the x-axis of plots based on periods to display.
+
+ Original Matlab Notes:
+ "set nicer period limits for logartihmic period scale plots"
+
+ Returns
+ -------
+ Tmin, Tmax: tuple
+ The minimum and maximum periods for the x-axis
+ """
+
+ x_min = self.tf.minimum_period
+ x_max = self.tf.maximum_period
+
+ Tmin = 10 ** (np.floor(np.log10(x_min) * 2) / 2)
+ if (np.log10(x_min) - np.log10(Tmin)) < 0.15:
+ Tmin = 10 ** (np.log10(Tmin) - 0.3)
+
+ Tmax = 10 ** (np.ceil(np.log10(x_max) * 2) / 2)
+ if (np.log10(Tmax) - np.log10(x_max)) < 0.15:
+ Tmax = 10 ** (np.log10(Tmax) + 0.3)
+ return Tmin, Tmax
+
+ def set_rho_limits(self):
+ """
+ Returns a set of limits for the x-axis of plots based on periods to display.
+
+ Original Matlab Notes:
+ "set nicer period limits for logartihmic period scale plots"
+
+ Returns
+ -------
+ Tmin, Tmax: tuple
+ The minimum and maximum periods for the x-axis
+ """
+ y_min = max(self.tf.rho.min(), 1e-20)
+ y_max = max(self.tf.rho.max(), 1e-20)
+
+ yy_min = 10 ** (np.floor(np.log10(y_min)))
+ if (np.log10(y_min) - np.log10(yy_min)) < 0.15:
+ yy_min = 10 ** (np.log10(yy_min) - 0.3)
+
+ yy_max = 10 ** (np.ceil(np.log10(y_max)))
+ if (np.log10(yy_max) - np.log10(y_max)) < 0.15:
+ yy_max = 10 ** (np.log10(yy_max) + 0.3)
+
+ return yy_min, yy_max
+
+ def set_lims(self) -> list:
+ """
+ Set limits for the plotting axes
+
+ TODO: Add doc or start using MTpy
+
+ Matlab Notes:
+ set default limits for plotting; QD, derived from ZPLT use max/min limits of periods, rho to set limits
+
+ function[lims, orient] = set_lims(obj)
+ Returns
+ lims : list
+ x_max, x_min, y_max, y_min, 0, 90
+ orient: 0
+
+ Returns
+ -------
+ lims: list
+ The plotting limits for period, rho and phi.
+ """
+ period_min, period_max = self.set_period_limits() # get limits for the x-axis
+ rho_min, rho_max = self.set_rho_limits()
+ phi_min = 0
+ phi_max = 90
+
+ if abs(rho_max - rho_min) <= 1:
+ rho_min = 0.01
+ rho_max = 1e4
+ lims = [period_min, period_max, rho_min, rho_max, phi_min, phi_max]
+
+ # orient = 0.0
+ return lims # , orient
+
+ def plot(self, station_id="Transfer Function", out_filename=None, **kwargs):
+ """
+ Plot the apparent resistivity and phase.
+
+ Parameters
+ ----------
+ station_id: str
+
+ Returns
+ -------
+ fig: matplotlib.figure.Figure
+ The figure object containing the plots
+ """
+ fig, axs = plt.subplots(nrows=2)
+ fig.suptitle(f"Station: {station_id}", fontsize=16, fontweight="demi")
+
+ ax_res = self.rho_sub_plot(axs[0], ttl_str="", pred=None)
+ ax_phase = self.phase_sub_plot(axs[1], ttl_str="", pred=None)
+
+ for ax in [ax_res, ax_phase]:
+ ax.grid(
+ which="both", linestyle="--", linewidth=0.5, color="gray", alpha=0.7
+ )
+ plt.tight_layout()
+ plt.show()
+
+ if out_filename is not None:
+ fig.savefig(out_filename, **kwargs)
+ return fig
diff --git a/aurora/transfer_function/base.py b/aurora/transfer_function/base.py
index f26ac2e7..1c984e46 100644
--- a/aurora/transfer_function/base.py
+++ b/aurora/transfer_function/base.py
@@ -12,7 +12,7 @@
import xarray as xr
from aurora.config.metadata.processing import Processing
from loguru import logger
-from mt_metadata.transfer_functions.processing.aurora import FrequencyBands
+from mt_metadata.processing.aurora import FrequencyBands
from typing import Optional, Union
diff --git a/aurora/transfer_function/compare.py b/aurora/transfer_function/compare.py
new file mode 100644
index 00000000..5e6cb814
--- /dev/null
+++ b/aurora/transfer_function/compare.py
@@ -0,0 +1,406 @@
+"""
+Module to compare two transfer functions.
+
+"""
+
+import pathlib
+from typing import Union
+
+import numpy as np
+from loguru import logger
+from matplotlib import pyplot as plt
+from mt_metadata.transfer_functions.core import TF
+from scipy.interpolate import interp1d
+
+
+class CompareTF:
+ def __init__(
+ self,
+ tf_01: Union[str, pathlib.Path, TF],
+ tf_02: Union[str, pathlib.Path, TF],
+ ):
+ """
+ Class to compare two transfer functions.
+
+ Parameters
+ ----------
+ tf_01
+ First transfer function (file path or TF object)
+ tf_02
+ Second transfer function (file path or TF object)
+ """
+ self._comp_dict = {
+ 1: "$Z_{xx}$",
+ 2: "$Z_{xy}$",
+ 3: "$Z_{yx}$",
+ 4: "$Z_{yy}$",
+ }
+
+ self._compare_keys = [
+ "impedance_amplitude_close",
+ "impedance_phase_close",
+ "impedance_error_close",
+ "impedance_ratio",
+ "impedance_std",
+ "impedance_correlation",
+ "tipper_amplitude_close",
+ "tipper_phase_close",
+ "tipper_error_close",
+ "tipper_ratio",
+ "tipper_correlation",
+ "tipper_std",
+ ]
+
+ self._impedance_keys = [
+ ckey for ckey in self._compare_keys if "impedance" in ckey
+ ]
+ self._tipper_keys = [ckey for ckey in self._compare_keys if "tipper" in ckey]
+
+ if isinstance(tf_01, (str, pathlib.Path)):
+ self.tf_01 = TF()
+ self.tf_01.read(tf_01)
+ elif isinstance(tf_01, TF):
+ self.tf_01 = tf_01
+ else:
+ raise TypeError("tf_01 must be a file path or TF object")
+
+ if isinstance(tf_02, (str, pathlib.Path)):
+ self.tf_02 = TF()
+ self.tf_02.read(tf_02)
+ elif isinstance(tf_02, TF):
+ self.tf_02 = tf_02
+ else:
+ raise TypeError("tf_02 must be a file path or TF object")
+
+ def plot_two_transfer_functions(
+ self,
+ label_01="emtf",
+ label_02="aurora",
+ save_plot_path=None,
+ ):
+ """
+ Plots two transfer functions for comparison.
+
+ Parameters
+ ----------
+ label_01
+ Label for the first transfer function
+ label_02
+ Label for the second transfer function
+ save_plot_path
+ Path to save the plot (optional)
+
+ Returns
+ -------
+
+ """
+ fig = plt.figure(figsize=(12, 6))
+
+ for ii in range(2):
+ for jj in range(2):
+ plot_num_res = 1 + ii * 2 + jj
+ plot_num_phase = 5 + ii * 2 + jj
+ ax = fig.add_subplot(2, 4, plot_num_res)
+ ax.loglog(
+ self.tf_01.period,
+ 0.2
+ * self.tf_01.period
+ * np.abs(self.tf_01.impedance.data[:, ii, jj]) ** 2,
+ label=label_01,
+ marker="s",
+ markersize=7,
+ color="k",
+ )
+ ax.loglog(
+ self.tf_02.period,
+ 0.2
+ * self.tf_02.period
+ * np.abs(self.tf_02.impedance.data[:, ii, jj]) ** 2,
+ label=label_02,
+ marker="o",
+ markersize=4,
+ color="r",
+ )
+ ax.set_title(self._comp_dict[plot_num_res])
+ # ax.set_xlabel("Period (s)")
+ if plot_num_res == 1:
+ ax.set_ylabel("Apparent Resistivity ($\Omega \cdot m$)")
+ ax.legend()
+ ax.grid(True, which="both", ls="--", lw=0.5, color="gray")
+
+ ax2 = fig.add_subplot(2, 4, plot_num_phase)
+ ax2.semilogx(
+ self.tf_01.period,
+ np.degrees(np.angle(self.tf_01.impedance.data[:, ii, jj])),
+ label=label_01,
+ marker="s",
+ markersize=7,
+ color="k",
+ )
+ ax2.semilogx(
+ self.tf_02.period,
+ np.degrees(np.angle(self.tf_02.impedance.data[:, ii, jj])),
+ label=label_02,
+ marker="o",
+ markersize=4,
+ color="r",
+ )
+ ax2.set_xlabel("Period (s)")
+ if plot_num_phase == 5:
+ ax2.set_ylabel("Phase (degrees)")
+ ax2.legend()
+ ax2.grid(True, which="both", ls="--", lw=0.5, color="gray")
+
+ fig.tight_layout()
+ plt.show()
+
+ if save_plot_path is not None:
+ fig.savefig(save_plot_path, dpi=300)
+ logger.info(f"Saved comparison plot to {save_plot_path}")
+ plt.close(fig)
+
+ def _interpolate_complex_array(
+ self,
+ source_periods: np.ndarray,
+ source_array: np.ndarray,
+ target_periods: np.ndarray,
+ ) -> np.ndarray:
+ """Interpolate complex array onto target periods."""
+ interp_array = np.zeros(
+ (len(target_periods),) + source_array.shape[1:], dtype=complex
+ )
+
+ for i in range(source_array.shape[1]):
+ for j in range(source_array.shape[2]):
+ real_interp = interp1d(
+ source_periods,
+ source_array[:, i, j].real,
+ kind="linear",
+ bounds_error=False,
+ fill_value="extrapolate",
+ )
+ imag_interp = interp1d(
+ source_periods,
+ source_array[:, i, j].imag,
+ kind="linear",
+ bounds_error=False,
+ fill_value="extrapolate",
+ )
+ interp_array[:, i, j] = real_interp(target_periods) + 1j * imag_interp(
+ target_periods
+ )
+
+ return interp_array
+
+ def interpolate_tf_to_common_periods(self):
+ """
+ Interpolate two transfer functions onto common period range.
+
+ Uses the overlapping period range and creates a common grid for comparison.
+
+ Parameters
+ ----------
+ tf1 : TF
+ First transfer function
+ tf2 : TF
+ Second transfer function
+
+ Returns
+ -------
+ periods_common : ndarray
+ Common period array
+ z1_interp : ndarray
+ Interpolated impedance from tf1, shape (n_periods, 2, 2)
+ z2_interp : ndarray
+ Interpolated impedance from tf2, shape (n_periods, 2, 2)
+ z1_err_interp : ndarray
+ Interpolated impedance errors from tf1
+ z2_err_interp : ndarray
+ Interpolated impedance errors from tf2
+ """
+ # Get period arrays
+ p1 = self.tf_01.period
+ p2 = self.tf_02.period
+
+ # Find overlapping range
+ p_min = max(p1.min(), p2.min())
+ p_max = min(p1.max(), p2.max())
+
+ # Create common period grid (logarithmic spacing)
+ n_periods = min(len(p1), len(p2))
+ periods_common = np.logspace(np.log10(p_min), np.log10(p_max), n_periods)
+
+ if self.tf_01.has_impedance() and self.tf_02.has_impedance():
+ # Interpolate tf1 impedance (log-log for real and imag separately)
+ z1_interp = self._interpolate_complex_array(
+ p1, self.tf_01.impedance, periods_common
+ )
+ z1_err_interp = self._interpolate_complex_array(
+ p1, self.tf_01.impedance_error, periods_common
+ )
+
+ z2_interp = self._interpolate_complex_array(
+ p2, self.tf_02.impedance, periods_common
+ )
+ z2_err_interp = self._interpolate_complex_array(
+ p2, self.tf_02.impedance_error, periods_common
+ )
+ else:
+ z1_interp = None
+ z2_interp = None
+ z1_err_interp = None
+ z2_err_interp = None
+
+ if self.tf_01.has_tipper() and self.tf_02.has_tipper():
+ t1_interp = self._interpolate_complex_array(
+ p1, self.tf_01.tipper, periods_common
+ )
+ t2_interp = self._interpolate_complex_array(
+ p2, self.tf_02.tipper, periods_common
+ )
+ t1_err_interp = self._interpolate_complex_array(
+ p1, self.tf_01.tipper_error, periods_common
+ )
+ t2_err_interp = self._interpolate_complex_array(
+ p2, self.tf_02.tipper_error, periods_common
+ )
+ else:
+ t1_interp = None
+ t2_interp = None
+ t1_err_interp = None
+ t2_err_interp = None
+
+ return (
+ periods_common,
+ z1_interp,
+ z2_interp,
+ z1_err_interp,
+ z2_err_interp,
+ t1_interp,
+ t2_interp,
+ t1_err_interp,
+ t2_err_interp,
+ )
+
+ def compare_transfer_functions(
+ self,
+ rtol: float = 1,
+ atol: float = 1,
+ ) -> dict:
+ """
+ Compare transfer functions between two transfer_functions objects.
+
+ Compares transfer_functions, sigma_e, and sigma_s arrays. If periods
+ don't match, interpolates one onto the other.
+
+ Parameters
+ ----------
+ rtol: float
+ Relative tolerance for np.allclose, defaults to 1e-2
+ atol: float
+ Absolute tolerance for np.allclose, defaults to 1e-2
+
+ Returns
+ -------
+ comparison: dict
+ Dictionary containing:
+ - "periods_match": bool, whether periods are identical
+ - "transfer_functions_close": bool
+ - "sigma_e_close": bool
+ - "sigma_s_close": bool
+ - "max_tf_diff": float, max absolute difference in transfer functions
+ - "max_sigma_e_diff": float
+ - "max_sigma_s_diff": float
+ - "periods_used": np.ndarray of periods used for comparison
+ """
+
+ (
+ periods_common,
+ z1,
+ z2,
+ z1_err,
+ z2_err,
+ t1,
+ t2,
+ t1_err,
+ t2_err,
+ ) = self.interpolate_tf_to_common_periods()
+
+ result = dict([(key, None) for key in self._compare_keys])
+
+ result["periods_used"] = periods_common
+
+ # Compare arrays
+ if z1 is not None and z2 is not None:
+ for ckey in self._impedance_keys:
+ result[ckey] = {}
+
+ for ii in range(2):
+ for jj in range(2):
+ ratio = np.median(np.abs(z1[:, ii, jj]) / np.abs(z2[:, ii, jj]))
+ key = f"Z_{ii}{jj}"
+ result["impedance_ratio"][key] = ratio
+ result["impedance_correlation"][key] = np.corrcoef(
+ np.abs(z1[:, ii, jj]), np.abs(z2[:, ii, jj])
+ ).min()
+ result["impedance_std"][key] = np.std(
+ np.abs(z1[:, ii, jj] - z2[:, ii, jj])
+ )
+ result["impedance_amplitude_close"] = np.allclose(
+ np.abs(z1[:, ii, jj]),
+ np.abs(z2[:, ii, jj]),
+ rtol=rtol,
+ atol=atol,
+ )
+
+ result["impedance_phase_close"] = np.allclose(
+ np.angle(z1[:, ii, jj]),
+ np.angle(z2[:, ii, jj]),
+ rtol=rtol,
+ atol=atol,
+ )
+
+ result["impedance_error_close"] = np.allclose(
+ np.abs(z1_err[:, ii, jj]),
+ np.abs(z2_err[:, ii, jj]),
+ rtol=rtol,
+ atol=atol,
+ )
+
+ if t1 is not None and t2 is not None:
+ for ckey in self._tipper_keys:
+ result[ckey] = {}
+
+ for ii in range(1):
+ for jj in range(2):
+ ratio = np.median(np.abs(t1[:, ii, jj]) / np.abs(t2[:, ii, jj]))
+ key = f"T_{ii}{jj}"
+ result["tipper_ratio"][key] = ratio
+ result["tipper_correlation"][key] = np.corrcoef(
+ np.abs(t1[:, ii, jj]), np.abs(t2[:, ii, jj])
+ ).min()
+ result["tipper_std"][key] = np.std(
+ np.abs(t1[:, ii, jj] - t2[:, ii, jj])
+ )
+ result["tipper_amplitude_close"] = np.allclose(
+ np.abs(t1[:, ii, jj]),
+ np.abs(t2[:, ii, jj]),
+ rtol=rtol,
+ atol=atol,
+ )
+
+ result["tipper_phase_close"] = np.allclose(
+ np.angle(t1[:, ii, jj]),
+ np.angle(t2[:, ii, jj]),
+ rtol=rtol,
+ atol=atol,
+ )
+
+ result["tipper_error_close"] = np.allclose(
+ np.abs(t1_err[:, ii, jj]),
+ np.abs(t2_err[:, ii, jj]),
+ rtol=rtol,
+ atol=atol,
+ )
+
+ return result
diff --git a/aurora/transfer_function/plot/__init__.py b/aurora/transfer_function/plot/__init__.py
deleted file mode 100644
index e69de29b..00000000
diff --git a/aurora/transfer_function/plot/comparison_plots.py b/aurora/transfer_function/plot/comparison_plots.py
deleted file mode 100644
index d5732524..00000000
--- a/aurora/transfer_function/plot/comparison_plots.py
+++ /dev/null
@@ -1,182 +0,0 @@
-"""
- This module contains a function to for comparing legacy "z-file"
- transfer function files.
-
-"""
-import pathlib
-
-from aurora.sandbox.io_helpers.zfile_murphy import read_z_file
-from aurora.transfer_function.plot.rho_phi_helpers import plot_phi
-from aurora.transfer_function.plot.rho_phi_helpers import plot_rho
-from loguru import logger
-from matplotlib import pyplot as plt
-from typing import Optional, Union
-
-
-def compare_two_z_files(
- z_path1: Union[pathlib.Path, str],
- z_path2: Union[pathlib.Path, str],
- angle1: Optional[float] = 0.0,
- angle2: Optional[float] = 0.0,
- label1: Optional[str] = "",
- label2: Optional[str] = "",
- scale_factor1: Optional[float] = 1.0,
- scale_factor2: Optional[float] = 1.0,
- out_file: Optional[Union[pathlib.Path, str]] = "",
- show_plot: Optional[bool] = True,
- use_ylims: Optional[bool] = True,
- use_xlims: Optional[bool] = True,
- rho_ax_label_size: Optional[float] = 16,
- phi_ax_label_size: Optional[float] = 16,
- markersize: Optional[float] = 3,
- rho_ylims: Optional[tuple] = (1, 1e3),
- phi_ylims: Optional[tuple] = (0, 90),
- xlims: Optional[tuple] = (1e-3, 1e3),
- title_string: Optional[str] = "",
- subtitle_string: Optional[str] = "",
-):
- """
- Takes as input two z-files and plots them both on the same axis
-
- TODO: Replace with a method from MTpy
-
- Parameters
- ----------
- z_path1: Union[pathlib.Path, str]
- The first z-file to compare
- z_path2: Union[pathlib.Path, str]
- The second z-file to compare
- angle1: Optional[float] = 0.0
- The angle to rotate the first TF
- angle2: Optional[float] = 0.0
- The angle to rotate the second TF
- label1: Optional[str] = "",
- A legend label for the first TF
- label2: Optional[str] = "",
- A legend label for the second TF
- scale_factor1: Optional[float] = 1.0
- A scale factor to shift rho of TF1
- scale_factor2: Optional[float] =1.0
- A scale factor to shift rho of TF2
- out_file: Optional[Union[pathlib.Path, str]] = ""
- A file to save the plot
- show_plot: Optional[bool] = True
- If True, show an interactive plot
- use_ylims: Optional[bool] = True
- If True, explicitly set y-axis limits to rho_ylims
- use_xlims: Optional[bool] = True
- If True, explicitly set x-axis limits to xlims
- rho_ax_label_size: Optional[float] = 16
- Set the y-axis label size for rho
- phi_ax_label_size: Optional[float] = 16,
- Set the y-axis label size for phi
- markersize: Optional[float] = 3
- Set the markersize (for both rho and phi)
- rho_ylims: Optional[tuple] = (1, 1e3)
- The Y-axis limits to apply on rho (if use_ylims is True)
- phi_ylims: Optional[tuple] = (0, 90),
- The Y-axis limits to apply on phi
- xlims: Optional[tuple] = (1e-3, 1e3)
- The Z-axis limits to apply (if use_xlims is True)
-
- """
- zfile1 = read_z_file(z_path1, angle=angle1)
- zfile2 = read_z_file(z_path2, angle=angle2)
-
- logger.info(f"Scaling TF scale_factor1: {scale_factor1}")
- fig, axs = plt.subplots(nrows=2, dpi=300, sharex=True) # figsize=(8, 6.),
-
- # Make LaTeX symbol strings
- rho_phi_strings = {}
- rho_phi_strings["rho"] = {}
- rho_phi_strings["phi"] = {}
- for xy_or_yx in ["xy", "yx"]:
- rho_phi_strings["rho"][xy_or_yx] = f"$\\rho_{{{xy_or_yx}}}$"
- rho_phi_strings["phi"][xy_or_yx] = f"$\phi_{{{xy_or_yx}}}$"
-
- markers = {}
- markers["xy"] = "^"
- markers["yx"] = "o"
- file1_colors = {}
- file2_colors = {}
- file1_colors["xy"] = "black"
- file1_colors["yx"] = "black"
- file2_colors["xy"] = "red"
- file2_colors["yx"] = "blue"
-
- rho_or_phi = "rho"
- for xy_or_yx in ["xy", "yx"]:
- plot_rho(
- axs[0],
- zfile1.periods,
- zfile1.rho(xy_or_yx) * scale_factor1,
- label=f"{label1} {rho_phi_strings[rho_or_phi][xy_or_yx]}",
- markersize=markersize,
- marker=markers[xy_or_yx],
- color=file1_colors[xy_or_yx],
- ax_label_size=rho_ax_label_size,
- )
- plot_rho(
- axs[0],
- zfile2.periods,
- zfile2.rho(xy_or_yx) * scale_factor2,
- label=f"{label2} {rho_phi_strings[rho_or_phi][xy_or_yx]}",
- markersize=markersize,
- marker=markers[xy_or_yx],
- color=file2_colors[xy_or_yx],
- ax_label_size=rho_ax_label_size,
- )
-
- axs[0].legend(prop={"size": 6})
- # axs[0].set_ylabel("$\\rho_a$")
- axs[0].set_ylabel("Apparent Resistivity $\Omega$-m", fontsize=12)
- if use_ylims:
- axs[0].set_ylim(rho_ylims[0], rho_ylims[1])
- if use_xlims:
- axs[0].set_xlim(xlims[0], xlims[1])
-
- rho_or_phi = "phi"
- for xy_or_yx in ["xy", "yx"]:
- plot_phi(
- axs[1],
- zfile1.periods,
- zfile1.phi(xy_or_yx) * scale_factor1,
- label=f"{label1} {rho_phi_strings[rho_or_phi][xy_or_yx]}",
- markersize=markersize,
- marker=markers[xy_or_yx],
- color=file1_colors[xy_or_yx],
- ax_label_size=phi_ax_label_size,
- )
- plot_phi(
- axs[1],
- zfile2.periods,
- zfile2.phi(xy_or_yx) * scale_factor2,
- label=f"{label2} {rho_phi_strings[rho_or_phi][xy_or_yx]}",
- markersize=markersize,
- marker=markers[xy_or_yx],
- color=file2_colors[xy_or_yx],
- ax_label_size=phi_ax_label_size,
- )
-
- axs[1].legend(prop={"size": 6})
- axs[1].set_xlabel("Period (s)", fontsize=12)
- axs[1].set_ylabel("Phase (degrees)", fontsize=12)
- axs[1].set_ylim(phi_ylims[0], phi_ylims[1])
-
- axs[0].grid(
- which="both",
- axis="both",
- )
- axs[1].grid(
- which="both",
- axis="both",
- )
- if title_string:
- plt.suptitle(title_string, fontsize=15)
- if subtitle_string:
- axs[0].set_title(subtitle_string, fontsize=8)
- if out_file:
- plt.savefig(f"{out_file}")
-
- if show_plot:
- plt.show()
diff --git a/aurora/transfer_function/plot/error_bar_helpers.py b/aurora/transfer_function/plot/error_bar_helpers.py
deleted file mode 100644
index 07bb96bf..00000000
--- a/aurora/transfer_function/plot/error_bar_helpers.py
+++ /dev/null
@@ -1,86 +0,0 @@
-"""
- This module contains a method for defining error bar plotting scheme.
- The function was adapted from matlab EMTF.
-"""
-import numpy as np
-from typing import Optional
-
-
-def err_log(
- x: np.ndarray,
- y: np.ndarray,
- yerr: np.ndarray,
- x_axis_limits: list,
- log_x_axis: Optional[bool] = True,
- barsize: float = 0.0075,
-):
- """
- Returns the coordinates for the line segments that make up the error bars.
-
- Development Notes:
- This function returns 6 numbers per data point.
- There is no documentation for what it does.
- A reasonable guess would be that the six numbers define 3 line segments.
- One line segment for the error bar, and one line segment at the top of the error bar, and one at the bottom.
- The vectors xb and yb each have six elements per data point assigned as follows
- xb = [x-dx, x+dx, x, x, x-dx, x+dx,]
- yb = [y-dy, y-dy, y-dy, y+dy, y+dy, y+dy,]
- and if log_x_axis is True
- [log(x)-dx, log(x)+dx, log(x), log(x), log(x)-dx, log(x)+dx,]
-
- Matlab Documentation
- err_log : used for plotting error bars with a y-axis log scale
- takes VECTORS x and y and outputs matrices (one row per data point) for
- plotting error bars ll = 'XLOG' for log X axis
-
- Parameters
- ----------
- x : np.ndarray
- The x-axis values. Usually these are periods with units of seconds
- y : np.ndarray
- The x-axis values. Usually apparent resistivity or phase
- yerr: np.ndarray
- A value associated with the error in the y measurement.
- It seems that this is the "half height" of the error bar.
- log_x_axis : bool
- If True the xaxis is logarithmic
- Not tested for False
- x_axis_limits: list
- The lower and upper limits for the xaxis in position 0, 1 respectively.
- barsize: float
- The width of the top and bottom horizontal error bar lines.
-
- Returns
- -------
- xb, yb: tuple
- Each is np.ndarray, 6 rows and one column per data point
- These are the six points needed to draw the error bars.
- """
- num_observations = len(x)
- xb = np.zeros((6, num_observations))
- yb = np.zeros((6, num_observations))
- if log_x_axis:
- dx = (
- np.log(x_axis_limits[1] / x_axis_limits[0]) * barsize
- ) # natural log in matlab & python
- xb[2, :] = np.log(x)
- else:
- dx = (x_axis_limits[1] - x_axis_limits[0]) * barsize
- xb[2, :] = x
- xb[3, :] = xb[2, :]
- xb[0, :] = xb[2, :] - dx
- xb[1, :] = xb[2, :] + dx
- xb[4, :] = xb[2, :] - dx
- xb[5, :] = xb[2, :] + dx
-
- if log_x_axis:
- xb = np.exp(xb)
-
- yb[0, :] = (y - yerr).T
- yb[1, :] = (y - yerr).T
- yb[2, :] = (y - yerr).T
- yb[3, :] = (y + yerr).T
- yb[4, :] = (y + yerr).T
- yb[5, :] = (y + yerr).T
-
- return xb, yb
diff --git a/aurora/transfer_function/plot/rho_phi_helpers.py b/aurora/transfer_function/plot/rho_phi_helpers.py
deleted file mode 100644
index ed107f96..00000000
--- a/aurora/transfer_function/plot/rho_phi_helpers.py
+++ /dev/null
@@ -1,97 +0,0 @@
-"""
-This module contains functions for plotting appararent resistivity and phase.
-
-They are based on the original matlab codes.
-They support multiple plots on a single axis.
-
-TODO: replace these with calls to MTpy
-"""
-
-
-def plot_rho(
- ax,
- periods,
- rho,
- marker="o",
- color="k",
- linestyle="None",
- label="",
- markersize=10,
- ax_label_size=16,
-):
- """
-
- Plots apparent resistivity on the given axis
-
- Parameters
- ----------
- ax
- periods
- rho
- marker
- color
- linestyle
- label
- markersize
- ax_label_size
-
- Returns
- -------
-
- """
- ax.loglog(
- periods,
- rho,
- marker=marker,
- color=color,
- linestyle=linestyle,
- label=label,
- markersize=markersize,
- )
- ax.tick_params(axis="both", which="major", labelsize=ax_label_size)
- ax.tick_params(axis="x", which="minor", bottom=True)
- return
-
-
-def plot_phi(
- ax,
- periods,
- phi,
- marker="o",
- color="k",
- linestyle="None",
- label="",
- markersize=10,
- ax_label_size=16,
-):
- """
- Plots the phase on the given axis.
-
- Parameters
- ----------
- ax
- periods
- phi
- marker
- color
- linestyle
- label
- markersize
- ax_label_size
-
- Returns
- -------
-
- """
- ax.semilogx(
- periods,
- phi,
- marker=marker,
- color=color,
- linestyle=linestyle,
- label=label,
- markersize=markersize,
- )
- ax.tick_params(axis="both", which="major", labelsize=ax_label_size)
- ax.minorticks_on() # (axis="x", which="minor", bottom=True)
- return
diff --git a/aurora/transfer_function/plot/rho_plot.py b/aurora/transfer_function/plot/rho_plot.py
deleted file mode 100644
index 522c428c..00000000
--- a/aurora/transfer_function/plot/rho_plot.py
+++ /dev/null
@@ -1,268 +0,0 @@
-"""
- This module contains functions for plotting apparent resistivity and phase.
-
-This is based on Gary's RhoPlot.m in the matlab EMTF version. iris_mt_scratch/egbert_codes-20210121T193218Z-001/egbert_codes/matlabPrototype_10-13-20/TF/classes
-
-TODO: replace with calls to mtpy
-"""
-import matplotlib.pyplot as plt
-import numpy as np
-
-from aurora.transfer_function.plot.error_bar_helpers import err_log
-
-plt.ioff()
-
-
-class RhoPlot(object):
- """
- TF plotting object class; some methods are only relevant to
- specific types of TFs (or for derived parameters such as rho/phi)
-
- Development Notes:
- This should be deprecated and replaced with MTpy
- The only place this class is used is in aurora/sandbox/plot_helpers.py in the
- plot_tf_obj method.
-
- """
-
- def __init__(self, tf_obj):
- """
- Constructor
-
- TODO: Replace tf_obj with mt_metadata tf if this method not replaced with mtpy.
-
- Parameters
- ----------
- tf_obj: aurora.transfer_function.TTFZ.TTFZ
- Object with TF information
-
-
- """
- self.tf = tf_obj
-
- def phase_sub_plot(self, ax, ttl_str="", pred=None, linewidth=2):
- """
- place a phase subplot on given figure axis
-
- Development notes:
- Originally this took an optional input argument `axRect`
- but it was never used. It looks as it it was intended to be able to set the
- position of the figure. There was also some hardcoded control of linewidth
- and markersize which has been removed for readability.
-
-
- Parameters
- ----------
- ax
- pred
-
- Returns
- -------
-
- """
-
- phi = self.tf.phi
- # rotate phases so all are positive:
- negative_phi_indices = np.where(phi < 0)[0]
- phi[negative_phi_indices] += 180.0
-
- Tmin, Tmax = self.set_period_limits()
- axis_limits = [Tmin, Tmax, 0, 90]
-
- [xb, yb] = err_log(
- np.transpose(self.tf.periods),
- self.tf.phi[:, 0],
- self.tf.phi_se[:, 0],
- axis_limits,
- log_x_axis=True,
- )
-
- ax.semilogx(xb, yb, "b-")
- ax.semilogx(self.tf.periods, phi[:, 0], "bo")
-
- xb, yb = err_log(
- np.transpose(self.tf.periods),
- self.tf.phi[:, 1],
- self.tf.phi_se[:, 1],
- axis_limits,
- log_x_axis=True,
- )
- ax.semilogx(xb, yb, "r-")
- ax.semilogx(self.tf.periods, phi[:, 1], "ro")
- # set(lines, 'LineWidth', 1, 'MarkerSize', 7);
- if pred is not None:
- plt.plot(pred.tf.periods, pred.tf.phi[:, 0], "b-", "linewidth", linewidth)
- plt.plot(pred.tf.periods, pred.tf.phi[:, 1], "r-", "linewidth", linewidth)
-
- # (lims_ph);
- ax.set_xlim(axis_limits[0], axis_limits[1])
- ax.set_ylim(axis_limits[2], axis_limits[3])
- title_pos_x = np.log(axis_limits[0]) + 0.1 * (
- np.log(axis_limits[1] / axis_limits[0])
- )
- title_pos_x = np.ceil(np.exp(title_pos_x))
- title_pos_y = axis_limits[2] + 0.8 * (axis_limits[3] - axis_limits[2])
- # ttl_str = f"$\phi$ : {self.tf.header.local_station_id}"\
- # + \"PKD"#self.tf.Header.LocalSite.SiteID
- ax.text(title_pos_x, title_pos_y, ttl_str, fontsize=14, fontweight="demi")
- # set(gca, 'FontWeight', 'bold', 'FontSize', 11, 'Xtick', xticks);
- ax.set_xlabel("Period (s)")
- ax.set_ylabel("Degrees")
-
- def rho_sub_plot(self, ax, ttl_str="", pred=None):
- """
- Makes an apparent resistivity plot on the input axis.
-
- Matlab Documentation:
- Calls plotrhom, standard plotting routine; uses some other routines in
- EMTF/matlab/Zplt; this version is for putting multiple curves on the
- same plot ... set plotting limits now that rho is known
-
-
- Parameters
- ----------
- ax: matplotlib.axes._axes.Axes
- pred
-
- Returns
- -------
-
- """
- lims = self.set_lims() # get the axes limits
- x_axis_limits = lims[0:2]
- y_axis_limits = lims[2:4]
-
- # get and plot error bars:
- [xb, yb] = err_log(
- self.tf.periods,
- self.tf.rho[:, 0],
- self.tf.rho_se[:, 0],
- x_axis_limits,
- log_x_axis=True,
- )
- ax.loglog(xb, yb, "b-")
-
- # plot rho dots
- ax.loglog(self.tf.periods, self.tf.rho[:, 0], "bo")
-
- [xb, yb] = err_log(
- self.tf.periods,
- self.tf.rho[:, 1],
- self.tf.rho_se[:, 1],
- x_axis_limits,
- log_x_axis=True,
- )
- ax.loglog(xb, yb, "r-")
- ax.loglog(self.tf.periods, self.tf.rho[:, 1], "ro")
-
- if pred is not None:
- plt.plot(pred.tf.periods, pred.tf.rho[:, 0], "b-", "linewidth", 1.5)
- plt.plot(pred.tf.periods, pred.tf.rho[:, 1], "r-", "linewidth", 1.5)
-
- # axis(lims_rho);
- ax.set_xlim(x_axis_limits[0], x_axis_limits[1])
- ax.set_ylim(y_axis_limits[0], y_axis_limits[1])
-
- #
- title_pos_x = np.log(x_axis_limits[0]) + 0.1 * (
- np.log(x_axis_limits[1] / x_axis_limits[0])
- )
- title_pos_x = np.ceil(np.exp(title_pos_x))
- title_pos_y = y_axis_limits[0] + 0.8 * (y_axis_limits[1] - y_axis_limits[0])
- ttl_str = "\u03C1_a : " + ttl_str
- # c_title = "$\rho_a$ :" + "PKD" # obj.tf.Header.LocalSite.SiteID
- ax.text(title_pos_x, title_pos_y, ttl_str, fontsize=14, fontweight="demi")
- # set(gca, 'FontWeight', 'bold', 'FontSize', 11, 'Xtick', xticks);
- ax.set_xlabel("Period (s)")
- ax.set_ylabel("$\Omega$-m")
- return
-
- def set_period_limits(self):
- """
- Returns a set of limits for the x-axis of plots based on periods to display.
-
- Original Matlab Notes:
- "set nicer period limits for logartihmic period scale plots"
-
- Returns
- -------
- Tmin, Tmax: tuple
- The minimum and maximum periods for the x-axis
- """
-
- x_min = self.tf.minimum_period
- x_max = self.tf.maximum_period
-
- Tmin = 10 ** (np.floor(np.log10(x_min) * 2) / 2)
- if (np.log10(x_min) - np.log10(Tmin)) < 0.15:
- Tmin = 10 ** (np.log10(Tmin) - 0.3)
-
- Tmax = 10 ** (np.ceil(np.log10(x_max) * 2) / 2)
- if (np.log10(Tmax) - np.log10(x_max)) < 0.15:
- Tmax = 10 ** (np.log10(Tmax) + 0.3)
- return Tmin, Tmax
-
- def set_rho_limits(self):
- """
- Returns a set of limits for the x-axis of plots based on periods to display.
-
- Original Matlab Notes:
- "set nicer period limits for logartihmic period scale plots"
-
- Returns
- -------
- Tmin, Tmax: tuple
- The minimum and maximum periods for the x-axis
- """
- y_min = max(self.tf.rho.min(), 1e-20)
- y_max = max(self.tf.rho.max(), 1e-20)
-
- yy_min = 10 ** (np.floor(np.log10(y_min)))
- if (np.log10(y_min) - np.log10(yy_min)) < 0.15:
- yy_min = 10 ** (np.log10(yy_min) - 0.3)
-
- yy_max = 10 ** (np.ceil(np.log10(y_max)))
- if (np.log10(yy_max) - np.log10(y_max)) < 0.15:
- yy_max = 10 ** (np.log10(yy_max) + 0.3)
-
- return yy_min, yy_max
-
- def set_lims(self) -> list:
- """
- Set limits for the plotting axes
-
- TODO: Add doc or start using MTpy
-
- Matlab Notes:
- set default limits for plotting; QD, derived from ZPLT use max/min limits of periods, rho to set limits
-
- function[lims, orient] = set_lims(obj)
- Returns
- lims : list
- x_max, x_min, y_max, y_min, 0, 90
- orient: 0
-
- Returns
- -------
- lims: list
- The plotting limits for period, rho and phi.
- """
- period_min, period_max = self.set_period_limits() # get limits for the x-axis
- rho_min, rho_max = self.set_rho_limits()
- phi_min = 0
- phi_max = 90
-
- if abs(rho_max - rho_min) <= 1:
- rho_min = 0.01
- rho_max = 1e4
- lims = [period_min, period_max, rho_min, rho_max, phi_min, phi_max]
-
- # orient = 0.0
- return lims # , orient
-
- # def get_xticks(self):
- # xticks = 10.0 ** np.arange(-5, 6)
- # cond1 = xticks >= self.tf.minimum_period
- # cond2 = xticks <= self.tf.maximum_period
- # xticks = xticks[cond1 & cond2]
- # return xticks
diff --git a/aurora/transfer_function/transfer_function_collection.py b/aurora/transfer_function/transfer_function_collection.py
index f0417902..0d5e4031 100644
--- a/aurora/transfer_function/transfer_function_collection.py
+++ b/aurora/transfer_function/transfer_function_collection.py
@@ -19,24 +19,113 @@
the "local_station". In a database of TFs could add a column for
local_station and one for reference station.
"""
+
import pathlib
+from typing import Any, Optional, Union
import numpy as np
import xarray as xr
+from loguru import logger
+from mt_metadata.processing.aurora.channel_nomenclature import ChannelNomenclature
from aurora.config.metadata.processing import Processing
-from aurora.sandbox.io_helpers.zfile_murphy import ZFile
-from aurora.transfer_function.plot.rho_phi_helpers import plot_phi
-from aurora.transfer_function.plot.rho_phi_helpers import plot_rho
from aurora.general_helper_functions import FIGURES_PATH
-from loguru import logger
-from typing import Optional, Union
+
EMTF_REGRESSION_ENGINE_LABELS = {}
EMTF_REGRESSION_ENGINE_LABELS["RME"] = "Robust Single Station"
EMTF_REGRESSION_ENGINE_LABELS["RME_RR"] = "Robust Remote Reference"
+def plot_rho(
+ ax,
+ periods,
+ rho,
+ marker="o",
+ color="k",
+ linestyle="None",
+ label="",
+ markersize=10,
+ ax_label_size=16,
+):
+ """
+
+ Plots apparent resistivity on the given axis
+
+ Parameters
+ ----------
+ ax
+ periods
+ rho
+ marker
+ color
+ linestyle
+ label
+ markersize
+ ax_label_size
+
+ Returns
+ -------
+
+ """
+ ax.loglog(
+ periods,
+ rho,
+ marker=marker,
+ color=color,
+ linestyle=linestyle,
+ label=label,
+ markersize=markersize,
+ )
+ ax.tick_params(axis="both", which="major", labelsize=ax_label_size)
+ ax.tick_params(axis="x", which="minor", bottom=True)
+ return
+
+
+def plot_phi(
+ ax,
+ periods,
+ phi,
+ marker="o",
+ color="k",
+ linestyle="None",
+ label="",
+ markersize=10,
+ ax_label_size=16,
+):
+ """
+ Plots the phase on the given axis.
+
+ Parameters
+ ----------
+ ax
+ periods
+ phi
+ marker
+ color
+ linestyle
+ label
+ markersize
+ ax_label_size
+
+ Returns
+ -------
+
+ """
+ ax.semilogx(
+ periods,
+ phi,
+ marker=marker,
+ color=color,
+ linestyle=linestyle,
+ label=label,
+ markersize=markersize,
+ )
+ ax.tick_params(axis="both", which="major", labelsize=ax_label_size)
+ ax.minorticks_on() # (axis="x", which="minor", bottom=True)
+ return
+
+
class TransferFunctionCollection(object):
def __init__(
self,
@@ -190,7 +279,9 @@ def _merge_decimation_levels(self) -> None:
return
- def check_all_channels_present(self, channel_nomenclature) -> None:
+ def check_all_channels_present(
+ self, channel_nomenclature: ChannelNomenclature
+ ) -> None:
"""
Checks if TF has tipper. If not, fill in the tipper data with NaN and also
update the noise covariance matrix so shape is as expected by mt_metadata.
@@ -201,7 +292,7 @@ def check_all_channels_present(self, channel_nomenclature) -> None:
Parameters
----------
- channel_nomenclature: mt_metadata.transfer_functions.processing.aurora.channel_nomenclature.ChannelNomenclature
+ channel_nomenclature: ChannelNomenclature
Scheme according to how channels are named
"""
@@ -260,7 +351,7 @@ def rho_phi_plot(
self,
xy_or_yx: str,
show: Optional[bool] = True,
- aux_data: Optional[Union[ZFile, None]] = None,
+ aux_data: Optional[Union[None, Any]] = None,
ttl_str: Optional[str] = "",
x_axis_fontsize: Optional[float] = 25,
y_axis_fontsize: Optional[float] = 25,
@@ -358,7 +449,6 @@ def rho_phi_plot(
axs[0].loglog(axs[0].get_xlim(), 100 * np.ones(2), color="k")
axs[1].semilogx(axs[1].get_xlim(), 45 * np.ones(2), color="k")
for i_dec in decimation_levels:
-
ndx = np.where(aux_data.decimation_levels == i_dec)[0]
axs[0].loglog(
aux_data.periods[ndx],
diff --git a/aurora/transfer_function/weights/edf_weights.py b/aurora/transfer_function/weights/edf_weights.py
index 035e4123..ce1fe4a3 100644
--- a/aurora/transfer_function/weights/edf_weights.py
+++ b/aurora/transfer_function/weights/edf_weights.py
@@ -154,7 +154,18 @@ def compute_weights(self, X: np.ndarray, use: np.ndarray) -> np.ndarray:
"""
S = X[:, use] @ np.conj(X[:, use]).T # covariance matrix, 2x2
S /= sum(use) # normalize by the number of datapoints
- H = np.linalg.inv(S) # inverse covariance matrix
+
+ # if H is singular then set to zeros otherwise an error is raised
+ # and kills the processing. If we catch it and set to zeros then
+ # the edf will be zero and all weights will be zero.
+ try:
+ H = np.linalg.inv(S) # inverse covariance matrix
+ except np.linalg.LinAlgError as le:
+ logger.warning(
+ f"In calculating EDF covariance matrix S is a singular matrix: {le}. "
+ "Cannot invert so setting H to something small."
+ )
+ H = np.ones_like(S) * 1e-4
# TODO: why are we not using the `use` boolean to select the data?
# This is a bit of a mystery, but it seems to be the way the
@@ -279,6 +290,8 @@ def effective_degrees_of_freedom_weights(
"""
# Initialize the weights
n_observations_initial = len(X.observation)
+ if n_observations_initial == 0:
+ raise ValueError("Zero observations in the input data.")
weights = np.ones(n_observations_initial)
# validate num channels
diff --git a/data/cas04/CAS04_NVR08.zmm b/data/cas04/CAS04_NVR08.zmm
new file mode 100644
index 00000000..2aaa5451
--- /dev/null
+++ b/data/cas04/CAS04_NVR08.zmm
@@ -0,0 +1,442 @@
+TRANSFER FUNCTIONS IN MEASUREMENT COORDINATES
+********* WITH FULL ERROR COVARIANCE*********
+Robust Remote Reference
+station :CAS04-CAS04bcd_REV06-CAS04bcd_NVR08
+coordinate 37.633 238.532 declination 13.17
+number of channels 5 number of frequencies 33
+ orientations and tilts of each channel
+ 1 0.00 0.00 CAS04 Hx
+ 2 90.00 0.00 CAS04 Hy
+ 3 0.00 0.00 CAS04 Hz
+ 4 0.00 0.00 CAS04 Ex
+ 5 90.00 0.00 CAS04 Ey
+
+period : 4.65455 decimation level 1 freq. band from 25 to 30
+number of data point 64340 sampling freq. 1.000 Hz
+ Transfer Functions
+ -0.8789E+00 -0.1668E+01 -0.1143E+01 0.1581E+01
+ 0.1598E+00 0.1481E+00 0.1286E+01 0.1517E+01
+ -0.5449E+00 0.8695E+00 0.1254E+01 -0.2018E+01
+ Inverse Coherent Signal Power Matrix
+ 0.2420E+04 -0.4039E-04
+ -0.8548E+03 -0.7702E+03 0.1154E+04 -0.1958E-04
+ Residual Covariance
+ 0.1461E-04 -0.0000E+00
+ -0.6693E-06 -0.2479E-05 0.3267E-05 -0.0000E+00
+ -0.7822E-05 -0.3557E-05 -0.6994E-06 -0.2572E-05 0.1001E-04 -0.0000E+00
+period : 5.81818 decimation level 1 freq. band from 20 to 24
+number of data point 73917 sampling freq. 1.000 Hz
+ Transfer Functions
+ -0.4098E+00 -0.7643E+00 -0.1640E+01 0.1685E+00
+ -0.2196E+01 -0.1299E+00 0.3906E+00 0.4271E+01
+ -0.2438E+01 -0.1988E+01 -0.7832E+00 0.1449E+01
+ Inverse Coherent Signal Power Matrix
+ 0.4575E+03 0.9705E-05
+ 0.9446E+02 -0.6880E+03 0.1236E+04 -0.5338E-04
+ Residual Covariance
+ 0.1550E-05 0.0000E+00
+ 0.7117E-06 -0.2722E-05 0.6757E-05 0.0000E+00
+ 0.1663E-05 -0.1164E-05 0.4098E-05 0.2719E-05 0.5696E-05 0.0000E+00
+period : 7.31429 decimation level 1 freq. band from 16 to 19
+number of data point 19470 sampling freq. 1.000 Hz
+ Transfer Functions
+ -0.3253E+00 0.6972E-02 -0.7827E-01 -0.3418E+00
+ -0.2945E+00 -0.8766E+00 0.2242E+01 0.1403E+01
+ -0.2082E+00 -0.1466E+01 0.1362E+00 -0.2784E+00
+ Inverse Coherent Signal Power Matrix
+ 0.1086E+03 -0.5984E-06
+ 0.2271E+02 0.4588E+02 0.1913E+03 0.2394E-05
+ Residual Covariance
+ 0.1793E-02 0.0000E+00
+ -0.2761E-03 0.1498E-02 0.6342E-02 0.0000E+00
+ -0.2267E-04 0.2716E-02 0.4541E-02 0.2918E-03 0.1068E-01 0.0000E+00
+period : 9.14286 decimation level 1 freq. band from 13 to 15
+number of data point 20660 sampling freq. 1.000 Hz
+ Transfer Functions
+ -0.2860E+00 -0.1348E+00 -0.1205E+00 -0.2336E+00
+ 0.2081E+01 -0.1122E+01 0.2201E+01 0.5051E+00
+ -0.3321E+01 -0.4513E+01 -0.1256E+01 -0.2750E+01
+ Inverse Coherent Signal Power Matrix
+ 0.6471E+03 0.9359E-05
+ 0.4849E+03 -0.7891E+02 0.4177E+03 -0.9359E-05
+ Residual Covariance
+ 0.2100E-02 0.0000E+00
+ -0.5673E-03 0.6265E-02 0.4288E-01 0.0000E+00
+ 0.1226E-01 0.1325E-02 -0.4359E-02 -0.7903E-01 0.1599E+00 0.0000E+00
+period : 11.63636 decimation level 1 freq. band from 10 to 12
+number of data point 33048 sampling freq. 1.000 Hz
+ Transfer Functions
+ -0.2978E+00 0.4987E-02 -0.1131E+00 -0.2268E-01
+ -0.1192E+00 -0.7270E-01 0.9743E+00 0.1094E+01
+ -0.1361E+01 -0.1059E+01 -0.3032E-01 -0.2106E+00
+ Inverse Coherent Signal Power Matrix
+ 0.6309E+01 0.3199E-07
+ 0.1871E+01 -0.6412E+00 0.5489E+01 0.0000E+00
+ Residual Covariance
+ 0.7803E-06 0.0000E+00
+ -0.2328E-06 -0.8922E-07 0.6896E-06 0.0000E+00
+ 0.4532E-06 0.8287E-06 -0.4505E-07 -0.2524E-06 0.3967E-05 0.0000E+00
+period : 15.05882 decimation level 1 freq. band from 8 to 9
+number of data point 26687 sampling freq. 1.000 Hz
+ Transfer Functions
+ -0.3080E+00 0.1464E+00 -0.4410E-01 0.2391E-01
+ -0.2115E+00 -0.2163E+00 0.7768E+00 0.1007E+01
+ -0.1603E+01 -0.1135E+01 -0.1358E+00 0.3832E-01
+ Inverse Coherent Signal Power Matrix
+ 0.2043E+00 0.1022E-07
+ -0.7727E-01 -0.5480E-01 0.6039E+00 0.3269E-08
+ Residual Covariance
+ 0.7905E-03 -0.0000E+00
+ -0.1533E-03 -0.1679E-03 0.8627E-03 -0.0000E+00
+ 0.6898E-03 0.8942E-03 0.1797E-03 0.9764E-04 0.5232E-02 -0.0000E+00
+period : 19.69231 decimation level 1 freq. band from 6 to 7
+number of data point 29760 sampling freq. 1.000 Hz
+ Transfer Functions
+ -0.3128E+00 0.1091E+00 -0.1979E-01 0.5265E-01
+ -0.1307E+00 -0.2411E+00 0.6254E+00 0.8723E+00
+ -0.1430E+01 -0.1018E+01 -0.4363E-01 0.1232E+00
+ Inverse Coherent Signal Power Matrix
+ 0.1268E-01 0.2894E-09
+ -0.5443E-02 0.3322E-02 0.5595E-01 -0.4214E-09
+ Residual Covariance
+ 0.2481E-03 -0.0000E+00
+ -0.7390E-04 -0.6730E-04 0.2373E-03 -0.0000E+00
+ 0.2230E-03 0.2577E-03 -0.3032E-04 -0.2870E-04 0.1216E-02 -0.0000E+00
+period : 25.60000 decimation level 1 freq. band from 5 to 5
+number of data point 16421 sampling freq. 1.000 Hz
+ Transfer Functions
+ -0.3335E+00 0.9525E-01 -0.4564E-01 0.5632E-01
+ -0.5542E-01 -0.2331E+00 0.5013E+00 0.7609E+00
+ -0.1274E+01 -0.9536E+00 -0.1395E+00 0.1654E+00
+ Inverse Coherent Signal Power Matrix
+ 0.5368E-02 0.2183E-10
+ -0.1837E-02 0.2547E-02 0.1915E-01 0.4002E-10
+ Residual Covariance
+ 0.1008E-01 0.0000E+00
+ -0.4270E-02 -0.3451E-02 0.9463E-02 0.0000E+00
+ 0.8361E-02 0.8769E-02 -0.3372E-02 -0.1368E-02 0.3313E-01 0.0000E+00
+period : 33.03226 decimation level 2 freq. band from 14 to 17
+number of data point 14539 sampling freq. 0.250 Hz
+ Transfer Functions
+ -0.3609E+00 0.8088E-01 -0.3711E-01 0.5306E-01
+ -0.1504E-01 -0.1976E+00 0.3978E+00 0.6086E+00
+ -0.1131E+01 -0.8541E+00 -0.1226E+00 0.1808E+00
+ Inverse Coherent Signal Power Matrix
+ 0.2324E-02 0.9131E-11
+ -0.6537E-03 0.8967E-03 0.6960E-02 -0.4452E-10
+ Residual Covariance
+ 0.1600E-01 0.0000E+00
+ -0.6235E-02 -0.4995E-02 0.1223E-01 0.0000E+00
+ 0.1226E-01 0.1357E-01 -0.4420E-02 -0.2581E-02 0.4378E-01 0.0000E+00
+period : 42.66667 decimation level 2 freq. band from 11 to 13
+number of data point 12569 sampling freq. 0.250 Hz
+ Transfer Functions
+ -0.3782E+00 0.5633E-01 -0.6495E-01 0.6796E-01
+ 0.1500E-01 -0.1734E+00 0.3416E+00 0.4927E+00
+ -0.1011E+01 -0.7518E+00 -0.1976E+00 0.1711E+00
+ Inverse Coherent Signal Power Matrix
+ 0.1354E-02 0.4463E-11
+ -0.4621E-03 0.3606E-03 0.2883E-02 -0.2901E-10
+ Residual Covariance
+ 0.2533E-01 0.0000E+00
+ -0.1029E-01 -0.7624E-02 0.1784E-01 0.0000E+00
+ 0.1593E-01 0.1797E-01 -0.5622E-02 -0.4364E-02 0.5000E-01 0.0000E+00
+period : 53.89474 decimation level 2 freq. band from 9 to 10
+number of data point 9648 sampling freq. 0.250 Hz
+ Transfer Functions
+ -0.3914E+00 0.3954E-01 -0.8999E-01 0.7863E-01
+ 0.4224E-01 -0.1461E+00 0.3062E+00 0.3984E+00
+ -0.9118E+00 -0.6659E+00 -0.2459E+00 0.1607E+00
+ Inverse Coherent Signal Power Matrix
+ 0.1005E-02 0.0000E+00
+ -0.4118E-03 0.2052E-03 0.1876E-02 0.7449E-11
+ Residual Covariance
+ 0.3455E-01 0.0000E+00
+ -0.1425E-01 -0.9575E-02 0.2311E-01 0.0000E+00
+ 0.1870E-01 0.2108E-01 -0.6257E-02 -0.5782E-02 0.5613E-01 0.0000E+00
+period : 68.26667 decimation level 2 freq. band from 7 to 8
+number of data point 10514 sampling freq. 0.250 Hz
+ Transfer Functions
+ -0.3922E+00 0.1274E-01 -0.1074E+00 0.7533E-01
+ 0.6667E-01 -0.1251E+00 0.2834E+00 0.3246E+00
+ -0.8419E+00 -0.5762E+00 -0.2749E+00 0.1543E+00
+ Inverse Coherent Signal Power Matrix
+ 0.4683E-03 0.2128E-11
+ -0.2474E-03 0.7571E-04 0.8923E-03 0.3990E-11
+ Residual Covariance
+ 0.5283E-01 0.0000E+00
+ -0.1953E-01 -0.1232E-01 0.2878E-01 0.0000E+00
+ 0.2529E-01 0.2686E-01 -0.5198E-02 -0.6812E-02 0.6907E-01 0.0000E+00
+period : 85.33334 decimation level 2 freq. band from 6 to 6
+number of data point 5647 sampling freq. 0.250 Hz
+ Transfer Functions
+ -0.3941E+00 -0.1237E-01 -0.1458E+00 0.6874E-01
+ 0.7874E-01 -0.9876E-01 0.2796E+00 0.2725E+00
+ -0.7864E+00 -0.5111E+00 -0.3195E+00 0.1344E+00
+ Inverse Coherent Signal Power Matrix
+ 0.4392E-03 0.0000E+00
+ -0.2566E-03 0.4196E-04 0.7984E-03 0.1137E-11
+ Residual Covariance
+ 0.7747E-01 0.0000E+00
+ -0.2718E-01 -0.1514E-01 0.3712E-01 0.0000E+00
+ 0.3309E-01 0.3525E-01 -0.2629E-02 -0.8531E-02 0.9052E-01 0.0000E+00
+period : 102.40000 decimation level 2 freq. band from 5 to 5
+number of data point 5653 sampling freq. 0.250 Hz
+ Transfer Functions
+ -0.3883E+00 -0.3332E-01 -0.1557E+00 0.6513E-01
+ 0.8573E-01 -0.8157E-01 0.2714E+00 0.2335E+00
+ -0.7488E+00 -0.4557E+00 -0.3434E+00 0.1135E+00
+ Inverse Coherent Signal Power Matrix
+ 0.2723E-03 -0.1819E-11
+ -0.1370E-03 0.1470E-04 0.4661E-03 -0.1819E-11
+ Residual Covariance
+ 0.1028E+00 0.0000E+00
+ -0.3517E-01 -0.1639E-01 0.4757E-01 0.0000E+00
+ 0.4182E-01 0.3753E-01 0.1035E-03 -0.9383E-02 0.1070E+00 0.0000E+00
+period : 132.12903 decimation level 3 freq. band from 14 to 17
+number of data point 5651 sampling freq. 0.062 Hz
+ Transfer Functions
+ -0.3770E+00 -0.6088E-01 -0.1690E+00 0.4259E-01
+ 0.9396E-01 -0.5915E-01 0.2566E+00 0.1952E+00
+ -0.7048E+00 -0.4028E+00 -0.3648E+00 0.8724E-01
+ Inverse Coherent Signal Power Matrix
+ 0.1384E-03 0.0000E+00
+ -0.5652E-04 0.8047E-05 0.2067E-03 -0.1141E-11
+ Residual Covariance
+ 0.2185E+00 0.0000E+00
+ -0.7670E-01 -0.3084E-01 0.9641E-01 0.0000E+00
+ 0.7241E-01 0.6672E-01 0.1116E-01 -0.1791E-01 0.1809E+00 0.0000E+00
+period : 170.66667 decimation level 3 freq. band from 11 to 13
+number of data point 3132 sampling freq. 0.062 Hz
+ Transfer Functions
+ -0.3697E+00 -0.8315E-01 -0.1893E+00 0.1695E-01
+ 0.1053E+00 -0.3779E-01 0.2531E+00 0.1697E+00
+ -0.6538E+00 -0.3611E+00 -0.3856E+00 0.4204E-01
+ Inverse Coherent Signal Power Matrix
+ 0.1779E-03 -0.8367E-12
+ -0.6362E-04 0.7972E-06 0.2599E-03 0.9762E-12
+ Residual Covariance
+ 0.3463E+00 0.0000E+00
+ -0.1251E+00 -0.4043E-01 0.1460E+00 0.0000E+00
+ 0.9169E-01 0.7139E-01 0.5362E-01 -0.2381E-01 0.2997E+00 0.0000E+00
+period : 215.57895 decimation level 3 freq. band from 9 to 10
+number of data point 2076 sampling freq. 0.062 Hz
+ Transfer Functions
+ -0.3482E+00 -0.9294E-01 -0.1990E+00 -0.2563E-01
+ 0.1058E+00 -0.2652E-01 0.2370E+00 0.1575E+00
+ -0.6329E+00 -0.3287E+00 -0.3903E+00 -0.1508E-01
+ Inverse Coherent Signal Power Matrix
+ 0.2145E-03 0.0000E+00
+ -0.1069E-03 0.7132E-06 0.3858E-03 0.5986E-12
+ Residual Covariance
+ 0.4484E+00 0.0000E+00
+ -0.1420E+00 -0.3598E-01 0.1620E+00 0.0000E+00
+ 0.1665E+00 0.9501E-01 0.5612E-01 -0.2324E-01 0.4030E+00 0.0000E+00
+period : 273.06668 decimation level 3 freq. band from 7 to 8
+number of data point 2062 sampling freq. 0.062 Hz
+ Transfer Functions
+ -0.3182E+00 -0.1325E+00 -0.2054E+00 -0.5418E-01
+ 0.9829E-01 -0.4780E-02 0.2276E+00 0.1448E+00
+ -0.5948E+00 -0.3173E+00 -0.3854E+00 -0.4103E-01
+ Inverse Coherent Signal Power Matrix
+ 0.1443E-03 -0.1330E-11
+ -0.5231E-04 -0.2984E-05 0.2321E-03 -0.3990E-12
+ Residual Covariance
+ 0.5804E+00 0.0000E+00
+ -0.1497E+00 -0.5034E-01 0.1490E+00 0.0000E+00
+ 0.2593E+00 0.6546E-01 0.3206E-01 -0.2785E-02 0.4685E+00 0.0000E+00
+period : 341.33334 decimation level 3 freq. band from 6 to 6
+number of data point 1051 sampling freq. 0.062 Hz
+ Transfer Functions
+ -0.3032E+00 -0.1495E+00 -0.1816E+00 -0.7315E-01
+ 0.9379E-01 0.4799E-02 0.2231E+00 0.1342E+00
+ -0.5683E+00 -0.3057E+00 -0.3592E+00 -0.7131E-01
+ Inverse Coherent Signal Power Matrix
+ 0.1461E-03 0.4547E-12
+ -0.3443E-04 0.1327E-04 0.2471E-03 -0.1137E-12
+ Residual Covariance
+ 0.5455E+00 0.0000E+00
+ -0.1594E+00 -0.4601E-01 0.1429E+00 0.0000E+00
+ 0.1963E+00 0.1495E-01 0.7784E-02 0.1243E-01 0.3549E+00 0.0000E+00
+period : 409.60001 decimation level 3 freq. band from 5 to 5
+number of data point 1045 sampling freq. 0.062 Hz
+ Transfer Functions
+ -0.2771E+00 -0.1595E+00 -0.1634E+00 -0.9969E-01
+ 0.9321E-01 0.1208E-01 0.2049E+00 0.1275E+00
+ -0.5319E+00 -0.3024E+00 -0.3533E+00 -0.1060E+00
+ Inverse Coherent Signal Power Matrix
+ 0.9641E-04 -0.5969E-12
+ -0.5018E-05 0.1212E-04 0.1706E-03 -0.5684E-13
+ Residual Covariance
+ 0.5234E+00 0.0000E+00
+ -0.1346E+00 -0.3677E-01 0.1216E+00 0.0000E+00
+ 0.1767E+00 0.1433E-01 0.1451E-01 0.9648E-02 0.3407E+00 0.0000E+00
+period : 528.51611 decimation level 4 freq. band from 14 to 17
+number of data point 999 sampling freq. 0.016 Hz
+ Transfer Functions
+ -0.2528E+00 -0.1700E+00 -0.1326E+00 -0.1355E+00
+ 0.8744E-01 0.2102E-01 0.1823E+00 0.1259E+00
+ -0.4856E+00 -0.2867E+00 -0.3261E+00 -0.1240E+00
+ Inverse Coherent Signal Power Matrix
+ 0.7339E-04 -0.3567E-13
+ 0.5895E-07 0.5054E-05 0.1145E-03 0.3567E-13
+ Residual Covariance
+ 0.5342E+00 0.0000E+00
+ -0.1119E+00 -0.8998E-02 0.1290E+00 0.0000E+00
+ 0.2729E+00 0.1590E-01 0.4778E-01 -0.9206E-02 0.5738E+00 0.0000E+00
+period : 682.66669 decimation level 4 freq. band from 11 to 13
+number of data point 794 sampling freq. 0.016 Hz
+ Transfer Functions
+ -0.2150E+00 -0.1787E+00 -0.9670E-01 -0.1635E+00
+ 0.7334E-01 0.2608E-01 0.1638E+00 0.1232E+00
+ -0.4376E+00 -0.2841E+00 -0.2831E+00 -0.1502E+00
+ Inverse Coherent Signal Power Matrix
+ 0.4590E-04 0.1656E-12
+ 0.5177E-05 0.1974E-05 0.7880E-04 -0.1743E-13
+ Residual Covariance
+ 0.8209E+00 0.0000E+00
+ -0.1742E+00 -0.1535E-01 0.1659E+00 0.0000E+00
+ 0.3255E+00 0.1679E-01 0.4808E-01 -0.8902E-02 0.7149E+00 0.0000E+00
+period : 862.31580 decimation level 4 freq. band from 9 to 10
+number of data point 511 sampling freq. 0.016 Hz
+ Transfer Functions
+ -0.1883E+00 -0.1831E+00 -0.5874E-01 -0.1763E+00
+ 0.6660E-01 0.3053E-01 0.1485E+00 0.1154E+00
+ -0.3927E+00 -0.2684E+00 -0.2500E+00 -0.1646E+00
+ Inverse Coherent Signal Power Matrix
+ 0.4102E-04 -0.1330E-12
+ 0.2728E-05 0.4374E-05 0.7503E-04 0.1663E-13
+ Residual Covariance
+ 0.1230E+01 0.0000E+00
+ -0.2467E+00 -0.8634E-01 0.2483E+00 0.0000E+00
+ 0.4593E+00 -0.1163E+00 0.7928E-01 0.6274E-01 0.1055E+01 0.0000E+00
+period : 1092.26672 decimation level 4 freq. band from 7 to 8
+number of data point 537 sampling freq. 0.016 Hz
+ Transfer Functions
+ -0.1496E+00 -0.1995E+00 -0.1557E-01 -0.1849E+00
+ 0.5411E-01 0.3117E-01 0.1271E+00 0.1076E+00
+ -0.3629E+00 -0.2630E+00 -0.2121E+00 -0.1609E+00
+ Inverse Coherent Signal Power Matrix
+ 0.2279E-04 -0.3325E-13
+ 0.3573E-05 0.2216E-05 0.4057E-04 -0.6651E-13
+ Residual Covariance
+ 0.1427E+01 0.0000E+00
+ -0.2134E+00 -0.1831E-01 0.2648E+00 0.0000E+00
+ 0.5554E+00 0.4157E-01 0.1125E+00 0.4018E-02 0.1459E+01 0.0000E+00
+period : 1365.33337 decimation level 4 freq. band from 6 to 6
+number of data point 263 sampling freq. 0.016 Hz
+ Transfer Functions
+ -0.1129E+00 -0.1851E+00 0.2223E-01 -0.1894E+00
+ 0.4666E-01 0.3114E-01 0.1109E+00 0.1051E+00
+ -0.3107E+00 -0.2360E+00 -0.1784E+00 -0.1615E+00
+ Inverse Coherent Signal Power Matrix
+ 0.2405E-04 -0.2842E-13
+ 0.4057E-05 0.2991E-05 0.4506E-04 0.0000E+00
+ Residual Covariance
+ 0.2094E+01 0.0000E+00
+ -0.2983E+00 0.2973E-01 0.4051E+00 0.0000E+00
+ 0.6507E+00 -0.5120E-01 0.6728E-01 -0.8409E-01 0.1907E+01 0.0000E+00
+period : 1638.40002 decimation level 4 freq. band from 5 to 5
+number of data point 272 sampling freq. 0.016 Hz
+ Transfer Functions
+ -0.9073E-01 -0.1917E+00 0.5857E-01 -0.2013E+00
+ 0.3909E-01 0.3276E-01 0.9909E-01 0.9677E-01
+ -0.2901E+00 -0.2307E+00 -0.1437E+00 -0.1649E+00
+ Inverse Coherent Signal Power Matrix
+ 0.1486E-04 0.2842E-13
+ 0.7398E-05 0.3749E-05 0.3309E-04 0.5684E-13
+ Residual Covariance
+ 0.4958E+01 0.0000E+00
+ -0.4871E+00 -0.1898E-01 0.4237E+00 0.0000E+00
+ 0.1612E+01 0.3478E-01 -0.5378E-01 0.2762E-01 0.3110E+01 0.0000E+00
+period : 2259.86206 decimation level 5 freq. band from 13 to 16
+number of data point 258 sampling freq. 0.004 Hz
+ Transfer Functions
+ -0.3747E-01 -0.1874E+00 0.9507E-01 -0.1804E+00
+ 0.3327E-01 0.3350E-01 0.8181E-01 0.7931E-01
+ -0.2450E+00 -0.2080E+00 -0.1234E+00 -0.1507E+00
+ Inverse Coherent Signal Power Matrix
+ 0.1120E-04 -0.4459E-14
+ 0.2318E-05 0.8830E-06 0.2202E-04 0.5350E-13
+ Residual Covariance
+ 0.1332E+02 0.0000E+00
+ -0.5963E+00 0.2490E+00 0.7413E+00 0.0000E+00
+ 0.1317E+01 -0.1743E+00 0.8572E-01 -0.7592E-03 0.4041E+01 0.0000E+00
+period : 3120.76196 decimation level 5 freq. band from 9 to 12
+number of data point 256 sampling freq. 0.004 Hz
+ Transfer Functions
+ -0.1131E-01 -0.1554E+00 0.1496E+00 -0.1673E+00
+ 0.2502E-01 0.3022E-01 0.6616E-01 0.7441E-01
+ -0.1959E+00 -0.1849E+00 -0.8218E-01 -0.1259E+00
+ Inverse Coherent Signal Power Matrix
+ 0.4024E-05 -0.1226E-13
+ 0.9672E-06 -0.1204E-06 0.1100E-04 -0.2229E-13
+ Residual Covariance
+ 0.5240E+02 0.0000E+00
+ -0.5174E+00 0.1443E+01 0.1575E+01 0.0000E+00
+ 0.4594E+00 -0.4508E+00 -0.3644E+00 0.1175E+00 0.7038E+01 0.0000E+00
+period : 4681.14307 decimation level 5 freq. band from 6 to 8
+number of data point 191 sampling freq. 0.004 Hz
+ Transfer Functions
+ 0.7077E-01 -0.1153E+00 0.2917E+00 -0.1251E+00
+ 0.1650E-01 0.2529E-01 0.5243E-01 0.6157E-01
+ -0.1601E+00 -0.1509E+00 -0.5652E-01 -0.1035E+00
+ Inverse Coherent Signal Power Matrix
+ 0.2793E-05 -0.7626E-14
+ 0.9626E-06 0.7849E-07 0.6145E-05 0.4358E-13
+ Residual Covariance
+ 0.3759E+03 0.0000E+00
+ 0.1182E+00 0.5210E+01 0.4072E+01 0.0000E+00
+ -0.1465E+01 -0.1136E+02 -0.3506E+00 0.1477E+00 0.1750E+02 0.0000E+00
+period : 7281.77783 decimation level 5 freq. band from 4 to 5
+number of data point 127 sampling freq. 0.004 Hz
+ Transfer Functions
+ 0.1373E+00 -0.2823E-01 0.3968E+00 -0.1037E+00
+ 0.1137E-01 0.1600E-01 0.4366E-01 0.4090E-01
+ -0.1178E+00 -0.1429E+00 -0.4587E-01 -0.8082E-01
+ Inverse Coherent Signal Power Matrix
+ 0.1457E-05 -0.3897E-15
+ 0.2064E-06 0.2007E-06 0.3217E-05 -0.1455E-13
+ Residual Covariance
+ 0.1141E+04 0.0000E+00
+ 0.6045E+01 0.7437E+01 0.1159E+02 0.0000E+00
+ -0.3441E+02 -0.4453E+02 0.9424E+00 0.3994E+01 0.5442E+02 0.0000E+00
+period : 11915.63672 decimation level 6 freq. band from 9 to 13
+number of data point 63 sampling freq. 0.001 Hz
+ Transfer Functions
+ -0.6398E-02 -0.1014E+00 0.4961E+00 -0.1189E+00
+ 0.1791E-01 0.1293E-01 0.2396E-01 0.4520E-01
+ -0.6254E-01 -0.9652E-01 -0.3989E-01 -0.6740E-01
+ Inverse Coherent Signal Power Matrix
+ 0.1250E-05 0.2260E-14
+ 0.3263E-06 0.6530E-07 0.2170E-05 0.0000E+00
+ Residual Covariance
+ 0.1112E+05 0.0000E+00
+ 0.6415E+02 0.9178E+02 0.6478E+02 0.0000E+00
+ -0.3453E+03 -0.2822E+03 -0.1483E+02 0.4806E+01 0.3508E+03 0.0000E+00
+period : 18724.57227 decimation level 6 freq. band from 6 to 8
+number of data point 39 sampling freq. 0.001 Hz
+ Transfer Functions
+ 0.3895E-01 -0.1254E+00 0.2698E+00 0.1181E+00
+ 0.1966E-01 -0.1341E-01 0.3092E-01 0.7506E-02
+ -0.4958E-01 -0.3845E-01 -0.8736E-02 -0.8229E-02
+ Inverse Coherent Signal Power Matrix
+ 0.5253E-06 -0.2179E-14
+ 0.1349E-06 -0.1977E-06 0.3798E-06 0.1089E-14
+ Residual Covariance
+ 0.2773E+05 0.0000E+00
+ -0.9592E+02 -0.5660E+03 0.4790E+03 0.0000E+00
+ 0.2509E+03 -0.1238E+04 -0.3070E+01 0.2610E+03 0.2140E+04 0.0000E+00
+period : 29127.11133 decimation level 6 freq. band from 4 to 5
+number of data point 26 sampling freq. 0.001 Hz
+ Transfer Functions
+ 0.1064E+00 -0.2775E-01 0.5470E+00 0.1739E+00
+ 0.3567E-01 -0.6241E-02 0.5393E-01 -0.5971E-02
+ -0.7044E-01 -0.3406E-01 -0.1306E-01 -0.3179E-01
+ Inverse Coherent Signal Power Matrix
+ 0.2927E-06 -0.4157E-14
+ 0.7269E-07 -0.8269E-07 0.8312E-07 0.5196E-15
+ Residual Covariance
+ 0.9519E+05 0.0000E+00
+ -0.2848E+04 -0.8566E+03 0.2735E+04 0.0000E+00
+ -0.4355E+03 -0.2619E+04 -0.4303E+03 0.2293E+04 0.9787E+04 0.0000E+00
diff --git a/docs/examples/dataset_definition.ipynb b/docs/examples/dataset_definition.ipynb
index 3d34263b..49b748af 100644
--- a/docs/examples/dataset_definition.ipynb
+++ b/docs/examples/dataset_definition.ipynb
@@ -36,7 +36,7 @@
"outputs": [],
"source": [
"import pandas as pd\n",
- "from mt_metadata.transfer_functions.processing.aurora import Processing"
+ "from mt_metadata.processing.aurora import Processing"
]
},
{
@@ -453,10 +453,11 @@
" \"channel_nomenclature.hx\": \"hx\",\n",
" \"channel_nomenclature.hy\": \"hy\",\n",
" \"channel_nomenclature.hz\": \"hz\",\n",
+ " \"channel_nomenclature.keyword\": \"default\",\n",
" \"decimations\": [],\n",
- " \"id\": null,\n",
- " \"stations.local.id\": null,\n",
- " \"stations.local.mth5_path\": null,\n",
+ " \"id\": \"\",\n",
+ " \"stations.local.id\": \"\",\n",
+ " \"stations.local.mth5_path\": \"\",\n",
" \"stations.local.remote\": false,\n",
" \"stations.local.runs\": [],\n",
" \"stations.remote\": []\n",
@@ -518,10 +519,11 @@
" \"channel_nomenclature.hx\": \"hx\",\n",
" \"channel_nomenclature.hy\": \"hy\",\n",
" \"channel_nomenclature.hz\": \"hz\",\n",
+ " \"channel_nomenclature.keyword\": \"default\",\n",
" \"decimations\": [],\n",
- " \"id\": null,\n",
+ " \"id\": \"\",\n",
" \"stations.local.id\": \"mt01\",\n",
- " \"stations.local.mth5_path\": \"/home/mth5_path.h5\",\n",
+ " \"stations.local.mth5_path\": \"\\\\home\\\\mth5_path.h5\",\n",
" \"stations.local.remote\": false,\n",
" \"stations.local.runs\": [\n",
" {\n",
@@ -691,7 +693,7 @@
" {\n",
" \"station\": {\n",
" \"id\": \"rr01\",\n",
- " \"mth5_path\": \"/home/mth5_path.h5\",\n",
+ " \"mth5_path\": \"\\\\home\\\\mth5_path.h5\",\n",
" \"remote\": true,\n",
" \"runs\": [\n",
" {\n",
@@ -862,7 +864,7 @@
" {\n",
" \"station\": {\n",
" \"id\": \"rr02\",\n",
- " \"mth5_path\": \"/home/mth5_path.h5\",\n",
+ " \"mth5_path\": \"\\\\home\\\\mth5_path.h5\",\n",
" \"remote\": true,\n",
" \"runs\": [\n",
" {\n",
@@ -1118,7 +1120,7 @@
"
000 | \n",
" 2020-01-01 00:00:00+00:00 | \n",
" 2020-01-31 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1131,7 +1133,7 @@
" 000 | \n",
" 2020-02-02 00:00:00+00:00 | \n",
" 2020-02-28 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1144,7 +1146,7 @@
" 001 | \n",
" 2020-01-01 00:00:00+00:00 | \n",
" 2020-01-31 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1157,7 +1159,7 @@
" 001 | \n",
" 2020-02-02 00:00:00+00:00 | \n",
" 2020-02-28 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1170,7 +1172,7 @@
" 002 | \n",
" 2020-01-01 00:00:00+00:00 | \n",
" 2020-01-31 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1183,7 +1185,7 @@
" 002 | \n",
" 2020-02-02 00:00:00+00:00 | \n",
" 2020-02-28 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1196,7 +1198,7 @@
" 000 | \n",
" 2020-01-01 00:00:00+00:00 | \n",
" 2020-01-31 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1209,7 +1211,7 @@
" 000 | \n",
" 2020-02-02 00:00:00+00:00 | \n",
" 2020-02-28 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1222,7 +1224,7 @@
" 001 | \n",
" 2020-01-01 00:00:00+00:00 | \n",
" 2020-01-31 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1235,7 +1237,7 @@
" 001 | \n",
" 2020-02-02 00:00:00+00:00 | \n",
" 2020-02-28 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1248,7 +1250,7 @@
" 002 | \n",
" 2020-01-01 00:00:00+00:00 | \n",
" 2020-01-31 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1261,7 +1263,7 @@
" 002 | \n",
" 2020-02-02 00:00:00+00:00 | \n",
" 2020-02-28 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1274,7 +1276,7 @@
" 000 | \n",
" 2020-01-01 00:00:00+00:00 | \n",
" 2020-01-31 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1287,7 +1289,7 @@
" 000 | \n",
" 2020-02-02 00:00:00+00:00 | \n",
" 2020-02-28 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1300,7 +1302,7 @@
" 001 | \n",
" 2020-01-01 00:00:00+00:00 | \n",
" 2020-01-31 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1313,7 +1315,7 @@
" 001 | \n",
" 2020-02-02 00:00:00+00:00 | \n",
" 2020-02-28 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1326,7 +1328,7 @@
" 002 | \n",
" 2020-01-01 00:00:00+00:00 | \n",
" 2020-01-31 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1339,7 +1341,7 @@
" 002 | \n",
" 2020-02-02 00:00:00+00:00 | \n",
" 2020-02-28 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1372,24 +1374,24 @@
"17 rr02 002 2020-02-02 00:00:00+00:00 2020-02-28 12:00:00+00:00 \n",
"\n",
" mth5_path sample_rate input_channels output_channels remote \\\n",
- "0 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
- "1 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
- "2 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
- "3 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
- "4 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
- "5 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
- "6 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
- "7 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
- "8 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
- "9 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
- "10 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
- "11 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
- "12 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
- "13 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
- "14 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
- "15 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
- "16 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
- "17 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "0 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
+ "1 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
+ "2 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
+ "3 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
+ "4 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
+ "5 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
+ "6 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "7 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "8 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "9 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "10 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "11 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "12 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "13 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "14 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "15 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "16 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "17 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
"\n",
" channel_scale_factors \n",
"0 {'hx': 1.0, 'hy': 1.0, 'hz': 1.0, 'ex': 1.0, '... \n",
@@ -1497,7 +1499,7 @@
" 000 | \n",
" 2020-01-01 00:00:00+00:00 | \n",
" 2020-01-31 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1510,7 +1512,7 @@
" 000 | \n",
" 2020-01-01 00:00:00+00:00 | \n",
" 2020-01-31 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1523,7 +1525,7 @@
" 000 | \n",
" 2020-01-01 00:00:00+00:00 | \n",
" 2020-01-31 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1536,7 +1538,7 @@
" 000 | \n",
" 2020-02-02 00:00:00+00:00 | \n",
" 2020-02-28 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1549,7 +1551,7 @@
" 000 | \n",
" 2020-02-02 00:00:00+00:00 | \n",
" 2020-02-28 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1562,7 +1564,7 @@
" 000 | \n",
" 2020-02-02 00:00:00+00:00 | \n",
" 2020-02-28 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1575,7 +1577,7 @@
" 001 | \n",
" 2020-01-01 00:00:00+00:00 | \n",
" 2020-01-31 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1588,7 +1590,7 @@
" 001 | \n",
" 2020-01-01 00:00:00+00:00 | \n",
" 2020-01-31 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1601,7 +1603,7 @@
" 001 | \n",
" 2020-01-01 00:00:00+00:00 | \n",
" 2020-01-31 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1614,7 +1616,7 @@
" 001 | \n",
" 2020-02-02 00:00:00+00:00 | \n",
" 2020-02-28 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1627,7 +1629,7 @@
" 001 | \n",
" 2020-02-02 00:00:00+00:00 | \n",
" 2020-02-28 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1640,7 +1642,7 @@
" 001 | \n",
" 2020-02-02 00:00:00+00:00 | \n",
" 2020-02-28 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1653,7 +1655,7 @@
" 002 | \n",
" 2020-01-01 00:00:00+00:00 | \n",
" 2020-01-31 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1666,7 +1668,7 @@
" 002 | \n",
" 2020-01-01 00:00:00+00:00 | \n",
" 2020-01-31 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1679,7 +1681,7 @@
" 002 | \n",
" 2020-01-01 00:00:00+00:00 | \n",
" 2020-01-31 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1692,7 +1694,7 @@
" 002 | \n",
" 2020-02-02 00:00:00+00:00 | \n",
" 2020-02-28 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1705,7 +1707,7 @@
" 002 | \n",
" 2020-02-02 00:00:00+00:00 | \n",
" 2020-02-28 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1718,7 +1720,7 @@
" 002 | \n",
" 2020-02-02 00:00:00+00:00 | \n",
" 2020-02-28 12:00:00+00:00 | \n",
- " /home/mth5_path.h5 | \n",
+ " \\home\\mth5_path.h5 | \n",
" 10.0 | \n",
" [hx, hy] | \n",
" [hz, ex, ey] | \n",
@@ -1751,24 +1753,24 @@
"17 rr02 002 2020-02-02 00:00:00+00:00 2020-02-28 12:00:00+00:00 \n",
"\n",
" mth5_path sample_rate input_channels output_channels remote \\\n",
- "0 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
- "1 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
- "2 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
- "3 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
- "4 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
- "5 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
- "6 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
- "7 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
- "8 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
- "9 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
- "10 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
- "11 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
- "12 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
- "13 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
- "14 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
- "15 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
- "16 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
- "17 /home/mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "0 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
+ "1 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "2 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "3 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
+ "4 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "5 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "6 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
+ "7 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "8 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "9 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
+ "10 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "11 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "12 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
+ "13 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "14 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "15 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] False \n",
+ "16 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
+ "17 \\home\\mth5_path.h5 10.0 [hx, hy] [hz, ex, ey] True \n",
"\n",
" channel_scale_factors \n",
"0 {'hx': 1.0, 'hy': 1.0, 'hz': 1.0, 'ex': 1.0, '... \n",
@@ -1817,7 +1819,7 @@
{
"data": {
"text/plain": [
- "True"
+ "np.False_"
]
},
"execution_count": 12,
@@ -1870,7 +1872,7 @@
{
"data": {
"text/plain": [
- "PosixPath('/home/kkappler/software/irismt/mt_metadata/mt_metadata/data/mt_xml/multi_run_experiment.xml')"
+ "WindowsPath('C:/Users/peaco/OneDrive/Documents/GitHub/mt_metadata/mt_metadata/data/mt_xml/multi_run_experiment.xml')"
]
},
"execution_count": 14,
@@ -1889,7 +1891,29 @@
"metadata": {
"tags": []
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\u001b[33m\u001b[1m2025-12-04T23:30:11.796083-0800 | WARNING | mt_metadata.timeseries.channel | from_dict | line: 735 | filtered.applied and filtered.name are deprecated, use filters as a list of AppliedFilter objects instead\u001b[0m\n",
+ "\u001b[33m\u001b[1m2025-12-04T23:30:11.796083-0800 | WARNING | mt_metadata.timeseries.channel | from_dict | line: 735 | filtered.applied and filtered.name are deprecated, use filters as a list of AppliedFilter objects instead\u001b[0m\n",
+ "\u001b[33m\u001b[1m2025-12-04T23:30:11.796083-0800 | WARNING | mt_metadata.timeseries.channel | from_dict | line: 735 | filtered.applied and filtered.name are deprecated, use filters as a list of AppliedFilter objects instead\u001b[0m\n",
+ "\u001b[33m\u001b[1m2025-12-04T23:30:11.796083-0800 | WARNING | mt_metadata.timeseries.channel | from_dict | line: 735 | filtered.applied and filtered.name are deprecated, use filters as a list of AppliedFilter objects instead\u001b[0m\n",
+ "\u001b[33m\u001b[1m2025-12-04T23:30:11.804548-0800 | WARNING | mt_metadata.timeseries.channel | from_dict | line: 735 | filtered.applied and filtered.name are deprecated, use filters as a list of AppliedFilter objects instead\u001b[0m\n",
+ "\u001b[33m\u001b[1m2025-12-04T23:30:12.045956-0800 | WARNING | mt_metadata.timeseries.channel | from_dict | line: 735 | filtered.applied and filtered.name are deprecated, use filters as a list of AppliedFilter objects instead\u001b[0m\n",
+ "\u001b[33m\u001b[1m2025-12-04T23:30:12.047967-0800 | WARNING | mt_metadata.timeseries.channel | from_dict | line: 735 | filtered.applied and filtered.name are deprecated, use filters as a list of AppliedFilter objects instead\u001b[0m\n",
+ "\u001b[33m\u001b[1m2025-12-04T23:30:12.049978-0800 | WARNING | mt_metadata.timeseries.channel | from_dict | line: 735 | filtered.applied and filtered.name are deprecated, use filters as a list of AppliedFilter objects instead\u001b[0m\n",
+ "\u001b[33m\u001b[1m2025-12-04T23:30:12.051987-0800 | WARNING | mt_metadata.timeseries.channel | from_dict | line: 735 | filtered.applied and filtered.name are deprecated, use filters as a list of AppliedFilter objects instead\u001b[0m\n",
+ "\u001b[33m\u001b[1m2025-12-04T23:30:12.053737-0800 | WARNING | mt_metadata.timeseries.channel | from_dict | line: 735 | filtered.applied and filtered.name are deprecated, use filters as a list of AppliedFilter objects instead\u001b[0m\n",
+ "\u001b[33m\u001b[1m2025-12-04T23:30:12.280390-0800 | WARNING | mt_metadata.timeseries.channel | from_dict | line: 735 | filtered.applied and filtered.name are deprecated, use filters as a list of AppliedFilter objects instead\u001b[0m\n",
+ "\u001b[33m\u001b[1m2025-12-04T23:30:12.280390-0800 | WARNING | mt_metadata.timeseries.channel | from_dict | line: 735 | filtered.applied and filtered.name are deprecated, use filters as a list of AppliedFilter objects instead\u001b[0m\n",
+ "\u001b[33m\u001b[1m2025-12-04T23:30:12.280390-0800 | WARNING | mt_metadata.timeseries.channel | from_dict | line: 735 | filtered.applied and filtered.name are deprecated, use filters as a list of AppliedFilter objects instead\u001b[0m\n",
+ "\u001b[33m\u001b[1m2025-12-04T23:30:12.280390-0800 | WARNING | mt_metadata.timeseries.channel | from_dict | line: 735 | filtered.applied and filtered.name are deprecated, use filters as a list of AppliedFilter objects instead\u001b[0m\n",
+ "\u001b[33m\u001b[1m2025-12-04T23:30:12.287197-0800 | WARNING | mt_metadata.timeseries.channel | from_dict | line: 735 | filtered.applied and filtered.name are deprecated, use filters as a list of AppliedFilter objects instead\u001b[0m\n"
+ ]
+ }
+ ],
"source": [
"experiment = Experiment()\n",
"experiment.from_xml(MT_EXPERIMENT_MULTIPLE_RUNS)"
@@ -1905,8 +1929,16 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[33m\u001b[1m2024-08-28T15:52:24.361188-0700 | WARNING | mth5.mth5 | open_mth5 | test_dataset_definition.h5 will be overwritten in 'w' mode\u001b[0m\n",
- "\u001b[1m2024-08-28T15:52:24.913025-0700 | INFO | mth5.mth5 | _initialize_file | Initialized MTH5 0.2.0 file test_dataset_definition.h5 in mode w\u001b[0m\n"
+ "\u001b[1m2025-12-04T23:30:12.788710-0800 | INFO | mth5.mth5 | _initialize_file | line: 678 | Initialized MTH5 0.2.0 file test_dataset_definition.h5 in mode w\u001b[0m\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "c:\\Users\\peaco\\miniconda3\\envs\\py311\\Lib\\site-packages\\pydantic\\main.py:426: UserWarning: Pydantic serializer warnings:\n",
+ " Expected `enum` but got `str` with value `'geographic'` - serialized value may not be as expected\n",
+ " return self.__pydantic_serializer__.to_python(\n"
]
},
{
@@ -1926,6 +1958,8 @@
" -----------------\n",
" --> Dataset: channel_summary\n",
" ..............................\n",
+ " --> Dataset: fc_summary\n",
+ " .........................\n",
" --> Dataset: tf_summary\n",
" ........................."
]
@@ -2017,7 +2051,7 @@
" electric | \n",
" 11.193362 | \n",
" 0.0 | \n",
- " counts | \n",
+ " digital counts | \n",
" False | \n",
" <HDF5 object reference> | \n",
" <HDF5 object reference> | \n",
@@ -2039,7 +2073,7 @@
" electric | \n",
" 101.193362 | \n",
" 0.0 | \n",
- " counts | \n",
+ " digital counts | \n",
" False | \n",
" <HDF5 object reference> | \n",
" <HDF5 object reference> | \n",
@@ -2061,7 +2095,7 @@
" magnetic | \n",
" 11.193362 | \n",
" 0.0 | \n",
- " counts | \n",
+ " digital counts | \n",
" False | \n",
" <HDF5 object reference> | \n",
" <HDF5 object reference> | \n",
@@ -2083,7 +2117,7 @@
" magnetic | \n",
" 101.193362 | \n",
" 0.0 | \n",
- " counts | \n",
+ " digital counts | \n",
" False | \n",
" <HDF5 object reference> | \n",
" <HDF5 object reference> | \n",
@@ -2105,7 +2139,7 @@
" magnetic | \n",
" 0.000000 | \n",
" 90.0 | \n",
- " counts | \n",
+ " digital counts | \n",
" False | \n",
" <HDF5 object reference> | \n",
" <HDF5 object reference> | \n",
@@ -2127,7 +2161,7 @@
" electric | \n",
" 11.193368 | \n",
" 0.0 | \n",
- " counts | \n",
+ " digital counts | \n",
" False | \n",
" <HDF5 object reference> | \n",
" <HDF5 object reference> | \n",
@@ -2149,7 +2183,7 @@
" electric | \n",
" 101.193368 | \n",
" 0.0 | \n",
- " counts | \n",
+ " digital counts | \n",
" False | \n",
" <HDF5 object reference> | \n",
" <HDF5 object reference> | \n",
@@ -2171,7 +2205,7 @@
" magnetic | \n",
" 11.193368 | \n",
" 0.0 | \n",
- " counts | \n",
+ " digital counts | \n",
" False | \n",
" <HDF5 object reference> | \n",
" <HDF5 object reference> | \n",
@@ -2193,7 +2227,7 @@
" magnetic | \n",
" 101.193368 | \n",
" 0.0 | \n",
- " counts | \n",
+ " digital counts | \n",
" False | \n",
" <HDF5 object reference> | \n",
" <HDF5 object reference> | \n",
@@ -2215,7 +2249,7 @@
" magnetic | \n",
" 0.000000 | \n",
" 90.0 | \n",
- " counts | \n",
+ " digital counts | \n",
" False | \n",
" <HDF5 object reference> | \n",
" <HDF5 object reference> | \n",
@@ -2237,7 +2271,7 @@
" electric | \n",
" 11.193367 | \n",
" 0.0 | \n",
- " counts | \n",
+ " digital counts | \n",
" False | \n",
" <HDF5 object reference> | \n",
" <HDF5 object reference> | \n",
@@ -2259,7 +2293,7 @@
" electric | \n",
" 101.193367 | \n",
" 0.0 | \n",
- " counts | \n",
+ " digital counts | \n",
" False | \n",
" <HDF5 object reference> | \n",
" <HDF5 object reference> | \n",
@@ -2281,7 +2315,7 @@
" magnetic | \n",
" 11.193367 | \n",
" 0.0 | \n",
- " counts | \n",
+ " digital counts | \n",
" False | \n",
" <HDF5 object reference> | \n",
" <HDF5 object reference> | \n",
@@ -2303,7 +2337,7 @@
" magnetic | \n",
" 101.193367 | \n",
" 0.0 | \n",
- " counts | \n",
+ " digital counts | \n",
" False | \n",
" <HDF5 object reference> | \n",
" <HDF5 object reference> | \n",
@@ -2325,7 +2359,7 @@
" magnetic | \n",
" 0.000000 | \n",
" 90.0 | \n",
- " counts | \n",
+ " digital counts | \n",
" False | \n",
" <HDF5 object reference> | \n",
" <HDF5 object reference> | \n",
@@ -2370,22 +2404,22 @@
"13 2020-07-20 18:54:26+00:00 2020-07-28 16:38:25+00:00 683039 \n",
"14 2020-07-20 18:54:26+00:00 2020-07-28 16:38:25+00:00 683039 \n",
"\n",
- " sample_rate measurement_type azimuth tilt units has_data \\\n",
- "0 1.0 electric 11.193362 0.0 counts False \n",
- "1 1.0 electric 101.193362 0.0 counts False \n",
- "2 1.0 magnetic 11.193362 0.0 counts False \n",
- "3 1.0 magnetic 101.193362 0.0 counts False \n",
- "4 1.0 magnetic 0.000000 90.0 counts False \n",
- "5 1.0 electric 11.193368 0.0 counts False \n",
- "6 1.0 electric 101.193368 0.0 counts False \n",
- "7 1.0 magnetic 11.193368 0.0 counts False \n",
- "8 1.0 magnetic 101.193368 0.0 counts False \n",
- "9 1.0 magnetic 0.000000 90.0 counts False \n",
- "10 1.0 electric 11.193367 0.0 counts False \n",
- "11 1.0 electric 101.193367 0.0 counts False \n",
- "12 1.0 magnetic 11.193367 0.0 counts False \n",
- "13 1.0 magnetic 101.193367 0.0 counts False \n",
- "14 1.0 magnetic 0.000000 90.0 counts False \n",
+ " sample_rate measurement_type azimuth tilt units has_data \\\n",
+ "0 1.0 electric 11.193362 0.0 digital counts False \n",
+ "1 1.0 electric 101.193362 0.0 digital counts False \n",
+ "2 1.0 magnetic 11.193362 0.0 digital counts False \n",
+ "3 1.0 magnetic 101.193362 0.0 digital counts False \n",
+ "4 1.0 magnetic 0.000000 90.0 digital counts False \n",
+ "5 1.0 electric 11.193368 0.0 digital counts False \n",
+ "6 1.0 electric 101.193368 0.0 digital counts False \n",
+ "7 1.0 magnetic 11.193368 0.0 digital counts False \n",
+ "8 1.0 magnetic 101.193368 0.0 digital counts False \n",
+ "9 1.0 magnetic 0.000000 90.0 digital counts False \n",
+ "10 1.0 electric 11.193367 0.0 digital counts False \n",
+ "11 1.0 electric 101.193367 0.0 digital counts False \n",
+ "12 1.0 magnetic 11.193367 0.0 digital counts False \n",
+ "13 1.0 magnetic 101.193367 0.0 digital counts False \n",
+ "14 1.0 magnetic 0.000000 90.0 digital counts False \n",
"\n",
" hdf5_reference run_hdf5_reference station_hdf5_reference \n",
"0 \n",
@@ -2427,7 +2461,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m2024-08-28T15:52:26.355757-0700 | INFO | mth5.mth5 | close_mth5 | Flushing and closing test_dataset_definition.h5\u001b[0m\n"
+ "\u001b[1m2025-12-04T23:30:18.485024-0800 | INFO | mth5.mth5 | close_mth5 | line: 770 | Flushing and closing test_dataset_definition.h5\u001b[0m\n"
]
}
],
@@ -2454,9 +2488,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "aurora-test",
+ "display_name": "py311",
"language": "python",
- "name": "aurora-test"
+ "name": "python3"
},
"language_info": {
"codemirror_mode": {
@@ -2468,7 +2502,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.10.10"
+ "version": "3.11.11"
}
},
"nbformat": 4,
diff --git a/docs/examples/operate_aurora.ipynb b/docs/examples/operate_aurora.ipynb
index 26c100f9..c52312e5 100644
--- a/docs/examples/operate_aurora.ipynb
+++ b/docs/examples/operate_aurora.ipynb
@@ -50,7 +50,7 @@
"from mth5.clients.fdsn import FDSN\n",
"from mth5.clients.make_mth5 import MakeMTH5\n",
"from mth5.utils.helpers import initialize_mth5\n",
- "from mt_metadata.utils.mttime import get_now_utc, MTime\n",
+ "from mt_metadata.common.mttime import get_now_utc, MTime\n",
"from aurora.config import BANDS_DEFAULT_FILE\n",
"from aurora.config.config_creator import ConfigCreator\n",
"from aurora.pipelines.process_mth5 import process_mth5\n",
@@ -83,7 +83,7 @@
{
"data": {
"text/plain": [
- "PosixPath('/home/kkappler/software/irismt/aurora/docs/examples')"
+ "WindowsPath('c:/Users/peaco/OneDrive/Documents/GitHub/aurora/docs/examples')"
]
},
"execution_count": 3,
@@ -286,7 +286,7 @@
{
"data": {
"text/plain": [
- "(Inventory created at 2025-07-12T00:38:45.505865Z\n",
+ "(Inventory created at 2026-01-21T04:12:38.015965Z\n",
"\tCreated by: ObsPy 1.4.1\n",
"\t\t https://www.obspy.org\n",
"\tSending institution: MTH5\n",
@@ -339,76 +339,35 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m2025-07-11T17:38:55.199698-0700 | INFO | mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
- "\u001b[1m2025-07-11T17:38:55.202648-0700 | INFO | mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_dipole_92.000 to a CoefficientFilter.\u001b[0m\n",
- "\u001b[1m2025-07-11T17:38:55.221132-0700 | INFO | mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
- "\u001b[1m2025-07-11T17:38:55.224140-0700 | INFO | mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_dipole_92.000 to a CoefficientFilter.\u001b[0m\n",
- "\u001b[1m2025-07-11T17:38:55.240748-0700 | INFO | mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
- "\u001b[1m2025-07-11T17:38:55.245410-0700 | INFO | mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_dipole_92.000 to a CoefficientFilter.\u001b[0m\n",
- "\u001b[1m2025-07-11T17:38:55.264651-0700 | INFO | mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
- "\u001b[1m2025-07-11T17:38:55.267511-0700 | INFO | mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_dipole_92.000 to a CoefficientFilter.\u001b[0m\n",
- "\u001b[1m2025-07-11T17:38:55.288150-0700 | INFO | mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
- "\u001b[1m2025-07-11T17:38:55.293274-0700 | INFO | mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_dipole_92.000 to a CoefficientFilter.\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:55.352578-0700 | WARNING | mth5.mth5 | open_mth5 | 8P_CAS04.h5 will be overwritten in 'w' mode\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:55.363350-0700 | WARNING | mth5.groups.base | read_metadata | No metadata found for MasterSurvey, skipping from_dict.\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:55.364174-0700 | WARNING | mth5.groups.base | read_metadata | No metadata found for Reports, skipping from_dict.\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:55.650559-0700 | WARNING | mth5.groups.base | read_metadata | No metadata found for Standards, skipping from_dict.\u001b[0m\n",
- "\u001b[1m2025-07-11T17:38:55.655107-0700 | INFO | mth5.mth5 | _initialize_file | Initialized MTH5 0.2.0 file /home/kkappler/software/irismt/aurora/docs/examples/8P_CAS04.h5 in mode w\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:55.661714-0700 | WARNING | mth5.groups.base | read_metadata | No metadata found for MasterStation, skipping from_dict.\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:55.663257-0700 | WARNING | mth5.groups.base | read_metadata | No metadata found for Reports, skipping from_dict.\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:55.665236-0700 | WARNING | mth5.groups.base | read_metadata | No metadata found for Filters, skipping from_dict.\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:55.923083-0700 | WARNING | mth5.groups.base | read_metadata | No metadata found for Standards, skipping from_dict.\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:55.934927-0700 | WARNING | mth5.groups.base | read_metadata | No metadata found for Station, skipping from_dict.\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:55.943460-0700 | WARNING | mth5.groups.base | read_metadata | No metadata found for TransferFunctions, skipping from_dict.\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:55.944362-0700 | WARNING | mth5.groups.base | read_metadata | No metadata found for MasterFC, skipping from_dict.\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:55.945333-0700 | WARNING | mth5.groups.base | read_metadata | No metadata found for MasterFeatures, skipping from_dict.\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:55.950347-0700 | WARNING | mth5.groups.base | read_metadata | No metadata found for Run, skipping from_dict.\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:55.988470-0700 | WARNING | mth5.groups.base | read_metadata | No metadata found for Run, skipping from_dict.\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:56.025298-0700 | WARNING | mth5.groups.base | read_metadata | No metadata found for Run, skipping from_dict.\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:56.063017-0700 | WARNING | mth5.groups.base | read_metadata | No metadata found for Run, skipping from_dict.\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:56.644677-0700 | WARNING | mth5.clients.fdsn | wrangle_runs_into_containers | More or less runs have been requested by the user than are defined in the metadata. Runs will be defined but only the requested run extents contain time series data based on the users request.\u001b[0m\n",
- "\u001b[1m2025-07-11T17:38:56.651064-0700 | INFO | mth5.groups.base | _add_group | RunGroup Features already exists, returning existing group.\u001b[0m\n",
- "\u001b[1m2025-07-11T17:38:56.659210-0700 | INFO | mth5.groups.base | _add_group | RunGroup a already exists, returning existing group.\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:56.784591-0700 | WARNING | mth5.timeseries.run_ts | validate_metadata | start time of dataset 2020-06-02T19:00:00+00:00 does not match metadata start 2020-06-02T18:41:43+00:00 updating metatdata value to 2020-06-02T19:00:00+00:00\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:56.905979-0700 | WARNING | mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:57.062055-0700 | WARNING | mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:57.213695-0700 | WARNING | mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:57.366738-0700 | WARNING | mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:57.518731-0700 | WARNING | mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
- "\u001b[1m2025-07-11T17:38:57.580181-0700 | INFO | mth5.groups.base | _add_group | RunGroup Features already exists, returning existing group.\u001b[0m\n",
- "\u001b[1m2025-07-11T17:38:57.585893-0700 | INFO | mth5.groups.base | _add_group | RunGroup a already exists, returning existing group.\u001b[0m\n",
- "\u001b[1m2025-07-11T17:38:57.615171-0700 | INFO | mth5.groups.base | _add_group | RunGroup b already exists, returning existing group.\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:58.281363-0700 | WARNING | mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:58.433788-0700 | WARNING | mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:58.594554-0700 | WARNING | mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:58.745508-0700 | WARNING | mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:38:58.902618-0700 | WARNING | mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
- "\u001b[1m2025-07-11T17:38:58.964310-0700 | INFO | mth5.groups.base | _add_group | RunGroup Features already exists, returning existing group.\u001b[0m\n",
- "\u001b[1m2025-07-11T17:38:58.970111-0700 | INFO | mth5.groups.base | _add_group | RunGroup a already exists, returning existing group.\u001b[0m\n",
- "\u001b[1m2025-07-11T17:38:58.998062-0700 | INFO | mth5.groups.base | _add_group | RunGroup b already exists, returning existing group.\u001b[0m\n",
- "\u001b[1m2025-07-11T17:38:59.022624-0700 | INFO | mth5.groups.base | _add_group | RunGroup c already exists, returning existing group.\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:39:00.177648-0700 | WARNING | mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:39:00.367221-0700 | WARNING | mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:39:00.561857-0700 | WARNING | mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:39:00.727201-0700 | WARNING | mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:39:00.894645-0700 | WARNING | mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:00.962280-0700 | INFO | mth5.groups.base | _add_group | RunGroup Features already exists, returning existing group.\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:00.968133-0700 | INFO | mth5.groups.base | _add_group | RunGroup a already exists, returning existing group.\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:00.995525-0700 | INFO | mth5.groups.base | _add_group | RunGroup b already exists, returning existing group.\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:01.022895-0700 | INFO | mth5.groups.base | _add_group | RunGroup c already exists, returning existing group.\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:01.052501-0700 | INFO | mth5.groups.base | _add_group | RunGroup d already exists, returning existing group.\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:39:01.688527-0700 | WARNING | mth5.timeseries.run_ts | validate_metadata | end time of dataset 2020-07-13T19:00:00+00:00 does not match metadata end 2020-07-13T21:46:12+00:00 updating metatdata value to 2020-07-13T19:00:00+00:00\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:39:01.882289-0700 | WARNING | mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id d. Setting to ch.run_metadata.id to d\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:39:02.087284-0700 | WARNING | mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id d. Setting to ch.run_metadata.id to d\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:39:02.270654-0700 | WARNING | mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id d. Setting to ch.run_metadata.id to d\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:39:02.420140-0700 | WARNING | mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id d. Setting to ch.run_metadata.id to d\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:39:02.574915-0700 | WARNING | mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id d. Setting to ch.run_metadata.id to d\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:02.750420-0700 | INFO | mth5.mth5 | close_mth5 | Flushing and closing /home/kkappler/software/irismt/aurora/docs/examples/8P_CAS04.h5\u001b[0m\n"
+ "\u001b[1m2026-01-20T20:12:45.005080-0800 | INFO | mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | line: 138 | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:12:45.005080-0800 | INFO | mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | line: 138 | Converting PoleZerosResponseStage electric_dipole_92.000 to a CoefficientFilter.\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:12:45.021679-0800 | INFO | mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | line: 138 | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:12:45.021679-0800 | INFO | mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | line: 138 | Converting PoleZerosResponseStage electric_dipole_92.000 to a CoefficientFilter.\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:12:45.038358-0800 | INFO | mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | line: 138 | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:12:45.039119-0800 | INFO | mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | line: 138 | Converting PoleZerosResponseStage electric_dipole_92.000 to a CoefficientFilter.\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:12:45.044598-0800 | INFO | mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | line: 138 | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:12:45.044598-0800 | INFO | mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | line: 138 | Converting PoleZerosResponseStage electric_dipole_92.000 to a CoefficientFilter.\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:12:45.056885-0800 | INFO | mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | line: 138 | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:12:45.056885-0800 | INFO | mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | line: 138 | Converting PoleZerosResponseStage electric_dipole_92.000 to a CoefficientFilter.\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:12:45.304047-0800 | INFO | mth5.mth5 | _initialize_file | line: 773 | Initialized MTH5 0.2.0 file c:\\Users\\peaco\\OneDrive\\Documents\\GitHub\\aurora\\docs\\examples\\8P_CAS04.h5 in mode w\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:12:53.558017-0800 | INFO | mth5.groups.base | _add_group | line: 633 | RunGroup a already exists, returning existing group.\u001b[0m\n",
+ "\u001b[33m\u001b[1m2026-01-20T20:12:55.070826-0800 | WARNING | mth5.timeseries.run_ts | _validate_array_list | line: 518 | Station ID CAS04 from ChannelTS does not match original station ID {self.station_metadata.id}. Updating ID to match.\u001b[0m\n",
+ "\u001b[33m\u001b[1m2026-01-20T20:12:55.074097-0800 | WARNING | mth5.timeseries.run_ts | validate_metadata | line: 1035 | start time of dataset 2020-06-02T19:00:00+00:00 does not match metadata start 2020-06-02T18:41:43+00:00 updating metatdata value to 2020-06-02T19:00:00+00:00\u001b[0m\n",
+ "\u001b[33m\u001b[1m2026-01-20T20:12:55.174385-0800 | WARNING | mth5.timeseries.run_ts | validate_metadata | line: 1035 | start time of dataset 2020-06-02T19:00:00+00:00 does not match metadata start 2020-06-02T18:41:43+00:00 updating metatdata value to 2020-06-02T19:00:00+00:00\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:12:57.191163-0800 | INFO | mth5.groups.base | _add_group | line: 633 | RunGroup b already exists, returning existing group.\u001b[0m\n",
+ "\u001b[33m\u001b[1m2026-01-20T20:12:59.053964-0800 | WARNING | mth5.timeseries.run_ts | _validate_array_list | line: 518 | Station ID CAS04 from ChannelTS does not match original station ID {self.station_metadata.id}. Updating ID to match.\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:01.471626-0800 | INFO | mth5.groups.base | _add_group | line: 633 | RunGroup c already exists, returning existing group.\u001b[0m\n",
+ "\u001b[33m\u001b[1m2026-01-20T20:13:03.662769-0800 | WARNING | mth5.timeseries.run_ts | _validate_array_list | line: 518 | Station ID CAS04 from ChannelTS does not match original station ID {self.station_metadata.id}. Updating ID to match.\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:05.876996-0800 | INFO | mth5.groups.base | _add_group | line: 633 | RunGroup d already exists, returning existing group.\u001b[0m\n",
+ "\u001b[33m\u001b[1m2026-01-20T20:13:07.744273-0800 | WARNING | mth5.timeseries.run_ts | _validate_array_list | line: 518 | Station ID CAS04 from ChannelTS does not match original station ID {self.station_metadata.id}. Updating ID to match.\u001b[0m\n",
+ "\u001b[33m\u001b[1m2026-01-20T20:13:07.760244-0800 | WARNING | mth5.timeseries.run_ts | validate_metadata | line: 1045 | end time of dataset 2020-07-13T19:00:00+00:00 does not match metadata end 2020-07-13T21:46:12+00:00 updating metatdata value to 2020-07-13T19:00:00+00:00\u001b[0m\n",
+ "\u001b[33m\u001b[1m2026-01-20T20:13:07.897503-0800 | WARNING | mth5.timeseries.run_ts | validate_metadata | line: 1045 | end time of dataset 2020-07-13T19:00:00+00:00 does not match metadata end 2020-07-13T21:46:12+00:00 updating metatdata value to 2020-07-13T19:00:00+00:00\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:10.099089-0800 | INFO | mth5.mth5 | close_mth5 | line: 896 | Flushing and closing c:\\Users\\peaco\\OneDrive\\Documents\\GitHub\\aurora\\docs\\examples\\8P_CAS04.h5\u001b[0m\n"
]
}
],
"source": [
- "mth5_path = MakeMTH5.from_fdsn_client(request_df)"
+ "mth5_path = MakeMTH5.from_fdsn_client(request_df, mth5_filename=None)"
]
},
{
@@ -488,7 +447,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- " Filename: /home/kkappler/software/irismt/aurora/docs/examples/8P_CAS04.h5 \n",
+ " Filename: c:\\Users\\peaco\\OneDrive\\Documents\\GitHub\\aurora\\docs\\examples\\8P_CAS04.h5 \n",
" Version: 0.2.0\n"
]
}
@@ -1203,7 +1162,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m2025-07-11T17:39:03.857897-0700 | INFO | mth5.mth5 | close_mth5 | Flushing and closing /home/kkappler/software/irismt/aurora/docs/examples/8P_CAS04.h5\u001b[0m\n"
+ "\u001b[1m2026-01-20T20:13:15.146646-0800 | INFO | mth5.mth5 | close_mth5 | line: 896 | Flushing and closing c:\\Users\\peaco\\OneDrive\\Documents\\GitHub\\aurora\\docs\\examples\\8P_CAS04.h5\u001b[0m\n"
]
},
{
@@ -1252,7 +1211,7 @@
" 2020-06-02 22:07:46+00:00 | \n",
" True | \n",
" [hx, hy] | \n",
- " /home/kkappler/software/irismt/aurora/docs/exa... | \n",
+ " c:/Users/peaco/OneDrive/Documents/GitHub/auror... | \n",
" 11267 | \n",
" [ex, ey, hz] | \n",
" a | \n",
@@ -1270,7 +1229,7 @@
" 2020-06-12 17:52:23+00:00 | \n",
" True | \n",
" [hx, hy] | \n",
- " /home/kkappler/software/irismt/aurora/docs/exa... | \n",
+ " c:/Users/peaco/OneDrive/Documents/GitHub/auror... | \n",
" 847649 | \n",
" [ex, ey, hz] | \n",
" b | \n",
@@ -1288,7 +1247,7 @@
" 2020-07-01 17:32:59+00:00 | \n",
" True | \n",
" [hx, hy] | \n",
- " /home/kkappler/software/irismt/aurora/docs/exa... | \n",
+ " c:/Users/peaco/OneDrive/Documents/GitHub/auror... | \n",
" 1638043 | \n",
" [ex, ey, hz] | \n",
" c | \n",
@@ -1306,7 +1265,7 @@
" 2020-07-13 19:00:00+00:00 | \n",
" True | \n",
" [hx, hy] | \n",
- " /home/kkappler/software/irismt/aurora/docs/exa... | \n",
+ " c:/Users/peaco/OneDrive/Documents/GitHub/auror... | \n",
" 1034586 | \n",
" [ex, ey, hz] | \n",
" d | \n",
@@ -1335,10 +1294,10 @@
"3 2020-07-13 19:00:00+00:00 True [hx, hy] \n",
"\n",
" mth5_path n_samples \\\n",
- "0 /home/kkappler/software/irismt/aurora/docs/exa... 11267 \n",
- "1 /home/kkappler/software/irismt/aurora/docs/exa... 847649 \n",
- "2 /home/kkappler/software/irismt/aurora/docs/exa... 1638043 \n",
- "3 /home/kkappler/software/irismt/aurora/docs/exa... 1034586 \n",
+ "0 c:/Users/peaco/OneDrive/Documents/GitHub/auror... 11267 \n",
+ "1 c:/Users/peaco/OneDrive/Documents/GitHub/auror... 847649 \n",
+ "2 c:/Users/peaco/OneDrive/Documents/GitHub/auror... 1638043 \n",
+ "3 c:/Users/peaco/OneDrive/Documents/GitHub/auror... 1034586 \n",
"\n",
" output_channels run sample_rate start station \\\n",
"0 [ex, ey, hz] a 1.0 2020-06-02 19:00:00+00:00 CAS04 \n",
@@ -1637,11 +1596,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m2025-07-11T17:39:03.929904-0700 | INFO | mth5.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column fc, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:03.930634-0700 | INFO | mth5.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column remote, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:03.931502-0700 | INFO | mth5.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column run_dataarray, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:03.932238-0700 | INFO | mth5.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column stft, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:03.933350-0700 | INFO | mth5.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column mth5_obj, adding and setting dtype to .\u001b[0m\n"
+ "\u001b[1m2026-01-20T20:13:16.595425-0800 | INFO | mth5.mth5 | close_mth5 | line: 896 | Flushing and closing c:\\Users\\peaco\\OneDrive\\Documents\\GitHub\\aurora\\docs\\examples\\8P_CAS04.h5\u001b[0m\n"
]
},
{
@@ -1785,11 +1740,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m2025-07-11T17:39:03.963827-0700 | INFO | mth5.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column fc, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:03.964847-0700 | INFO | mth5.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column remote, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:03.965563-0700 | INFO | mth5.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column run_dataarray, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:03.966362-0700 | INFO | mth5.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column stft, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:03.967914-0700 | INFO | mth5.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column mth5_obj, adding and setting dtype to .\u001b[0m\n"
+ "\u001b[1m2026-01-20T20:13:18.448795-0800 | INFO | mth5.mth5 | close_mth5 | line: 896 | Flushing and closing c:\\Users\\peaco\\OneDrive\\Documents\\GitHub\\aurora\\docs\\examples\\8P_CAS04.h5\u001b[0m\n"
]
},
{
@@ -1885,11 +1836,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m2025-07-11T17:39:03.982055-0700 | INFO | mth5.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column fc, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:03.984903-0700 | INFO | mth5.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column remote, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:03.987201-0700 | INFO | mth5.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column run_dataarray, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:03.989808-0700 | INFO | mth5.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column stft, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:03.991178-0700 | INFO | mth5.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column mth5_obj, adding and setting dtype to .\u001b[0m\n"
+ "\u001b[1m2026-01-20T20:13:21.320009-0800 | INFO | mth5.mth5 | close_mth5 | line: 896 | Flushing and closing c:\\Users\\peaco\\OneDrive\\Documents\\GitHub\\aurora\\docs\\examples\\8P_CAS04.h5\u001b[0m\n"
]
},
{
@@ -1978,11 +1925,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m2025-07-11T17:39:04.008557-0700 | INFO | mth5.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column fc, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:04.009698-0700 | INFO | mth5.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column remote, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:04.010545-0700 | INFO | mth5.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column run_dataarray, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:04.011360-0700 | INFO | mth5.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column stft, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:04.012052-0700 | INFO | mth5.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column mth5_obj, adding and setting dtype to .\u001b[0m\n"
+ "\u001b[1m2026-01-20T20:13:23.205829-0800 | INFO | mth5.mth5 | close_mth5 | line: 896 | Flushing and closing c:\\Users\\peaco\\OneDrive\\Documents\\GitHub\\aurora\\docs\\examples\\8P_CAS04.h5\u001b[0m\n"
]
},
{
@@ -2136,13 +2079,14 @@
"text/plain": [
"{\n",
" \"processing\": {\n",
- " \"band_setup_file\": \"/home/kkappler/software/irismt/aurora/aurora/config/emtf_band_setup/bs_test.cfg\",\n",
+ " \"band_setup_file\": \"C:\\\\Users\\\\peaco\\\\OneDrive\\\\Documents\\\\GitHub\\\\aurora\\\\aurora\\\\config\\\\emtf_band_setup\\\\bs_test.cfg\",\n",
" \"band_specification_style\": \"EMTF\",\n",
" \"channel_nomenclature.ex\": \"ex\",\n",
" \"channel_nomenclature.ey\": \"ey\",\n",
" \"channel_nomenclature.hx\": \"hx\",\n",
" \"channel_nomenclature.hy\": \"hy\",\n",
" \"channel_nomenclature.hz\": \"hz\",\n",
+ " \"channel_nomenclature.keyword\": \"default\",\n",
" \"decimations\": [\n",
" {\n",
" \"decimation_level\": {\n",
@@ -2152,10 +2096,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.23828125,\n",
- " \"frequency_min\": 0.19140625,\n",
+ " \"frequency_max\": 0.119140625,\n",
+ " \"frequency_min\": 0.095703125,\n",
" \"index_max\": 30,\n",
- " \"index_min\": 25\n",
+ " \"index_min\": 25,\n",
+ " \"name\": \"0.107422\"\n",
" }\n",
" },\n",
" {\n",
@@ -2163,10 +2108,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.19140625,\n",
- " \"frequency_min\": 0.15234375,\n",
+ " \"frequency_max\": 0.095703125,\n",
+ " \"frequency_min\": 0.076171875,\n",
" \"index_max\": 24,\n",
- " \"index_min\": 20\n",
+ " \"index_min\": 20,\n",
+ " \"name\": \"0.085938\"\n",
" }\n",
" },\n",
" {\n",
@@ -2174,10 +2120,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.15234375,\n",
- " \"frequency_min\": 0.12109375,\n",
+ " \"frequency_max\": 0.076171875,\n",
+ " \"frequency_min\": 0.060546875,\n",
" \"index_max\": 19,\n",
- " \"index_min\": 16\n",
+ " \"index_min\": 16,\n",
+ " \"name\": \"0.068359\"\n",
" }\n",
" },\n",
" {\n",
@@ -2185,10 +2132,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.12109375,\n",
- " \"frequency_min\": 0.09765625,\n",
+ " \"frequency_max\": 0.060546875,\n",
+ " \"frequency_min\": 0.048828125,\n",
" \"index_max\": 15,\n",
- " \"index_min\": 13\n",
+ " \"index_min\": 13,\n",
+ " \"name\": \"0.054688\"\n",
" }\n",
" },\n",
" {\n",
@@ -2196,10 +2144,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.09765625,\n",
- " \"frequency_min\": 0.07421875,\n",
+ " \"frequency_max\": 0.048828125,\n",
+ " \"frequency_min\": 0.037109375,\n",
" \"index_max\": 12,\n",
- " \"index_min\": 10\n",
+ " \"index_min\": 10,\n",
+ " \"name\": \"0.042969\"\n",
" }\n",
" },\n",
" {\n",
@@ -2207,10 +2156,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.07421875,\n",
- " \"frequency_min\": 0.05859375,\n",
+ " \"frequency_max\": 0.037109375,\n",
+ " \"frequency_min\": 0.029296875,\n",
" \"index_max\": 9,\n",
- " \"index_min\": 8\n",
+ " \"index_min\": 8,\n",
+ " \"name\": \"0.033203\"\n",
" }\n",
" },\n",
" {\n",
@@ -2218,10 +2168,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.05859375,\n",
- " \"frequency_min\": 0.04296875,\n",
+ " \"frequency_max\": 0.029296875,\n",
+ " \"frequency_min\": 0.021484375,\n",
" \"index_max\": 7,\n",
- " \"index_min\": 6\n",
+ " \"index_min\": 6,\n",
+ " \"name\": \"0.025391\"\n",
" }\n",
" },\n",
" {\n",
@@ -2229,10 +2180,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.04296875,\n",
- " \"frequency_min\": 0.03515625,\n",
+ " \"frequency_max\": 0.021484375,\n",
+ " \"frequency_min\": 0.017578125,\n",
" \"index_max\": 5,\n",
- " \"index_min\": 5\n",
+ " \"index_min\": 5,\n",
+ " \"name\": \"0.019531\"\n",
" }\n",
" }\n",
" ],\n",
@@ -2253,30 +2205,26 @@
" \"ey\",\n",
" \"hz\"\n",
" ],\n",
- " \"reference_channels\": [\n",
- " \"hx\",\n",
- " \"hy\"\n",
- " ],\n",
+ " \"reference_channels\": [],\n",
" \"regression.max_iterations\": 10,\n",
" \"regression.max_redescending_iterations\": 2,\n",
- " \"regression.minimum_cycles\": 10,\n",
+ " \"regression.minimum_cycles\": 1,\n",
" \"regression.r0\": 1.5,\n",
" \"regression.tolerance\": 0.005,\n",
" \"regression.u0\": 2.8,\n",
- " \"regression.verbosity\": 0,\n",
+ " \"regression.verbosity\": 1,\n",
" \"save_fcs\": false,\n",
- " \"stft.harmonic_indices\": [\n",
- " -1\n",
- " ],\n",
+ " \"stft.harmonic_indices\": null,\n",
" \"stft.method\": \"fft\",\n",
- " \"stft.min_num_stft_windows\": 2,\n",
+ " \"stft.min_num_stft_windows\": 0,\n",
" \"stft.per_window_detrend_type\": \"linear\",\n",
" \"stft.pre_fft_detrend_type\": \"linear\",\n",
" \"stft.prewhitening_type\": \"first difference\",\n",
" \"stft.recoloring\": true,\n",
+ " \"stft.window.additional_args\": {},\n",
" \"stft.window.clock_zero_type\": \"ignore\",\n",
" \"stft.window.normalized\": true,\n",
- " \"stft.window.num_samples\": 128,\n",
+ " \"stft.window.num_samples\": 256,\n",
" \"stft.window.overlap\": 32,\n",
" \"stft.window.type\": \"boxcar\"\n",
" }\n",
@@ -2289,10 +2237,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 1,\n",
- " \"frequency_max\": 0.0341796875,\n",
- " \"frequency_min\": 0.0263671875,\n",
+ " \"frequency_max\": 0.01708984375,\n",
+ " \"frequency_min\": 0.01318359375,\n",
" \"index_max\": 17,\n",
- " \"index_min\": 14\n",
+ " \"index_min\": 14,\n",
+ " \"name\": \"0.015137\"\n",
" }\n",
" },\n",
" {\n",
@@ -2300,10 +2249,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 1,\n",
- " \"frequency_max\": 0.0263671875,\n",
- " \"frequency_min\": 0.0205078125,\n",
+ " \"frequency_max\": 0.01318359375,\n",
+ " \"frequency_min\": 0.01025390625,\n",
" \"index_max\": 13,\n",
- " \"index_min\": 11\n",
+ " \"index_min\": 11,\n",
+ " \"name\": \"0.011719\"\n",
" }\n",
" },\n",
" {\n",
@@ -2311,10 +2261,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 1,\n",
- " \"frequency_max\": 0.0205078125,\n",
- " \"frequency_min\": 0.0166015625,\n",
+ " \"frequency_max\": 0.01025390625,\n",
+ " \"frequency_min\": 0.00830078125,\n",
" \"index_max\": 10,\n",
- " \"index_min\": 9\n",
+ " \"index_min\": 9,\n",
+ " \"name\": \"0.009277\"\n",
" }\n",
" },\n",
" {\n",
@@ -2322,10 +2273,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 1,\n",
- " \"frequency_max\": 0.0166015625,\n",
- " \"frequency_min\": 0.0126953125,\n",
+ " \"frequency_max\": 0.00830078125,\n",
+ " \"frequency_min\": 0.00634765625,\n",
" \"index_max\": 8,\n",
- " \"index_min\": 7\n",
+ " \"index_min\": 7,\n",
+ " \"name\": \"0.007324\"\n",
" }\n",
" },\n",
" {\n",
@@ -2333,10 +2285,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 1,\n",
- " \"frequency_max\": 0.0126953125,\n",
- " \"frequency_min\": 0.0107421875,\n",
+ " \"frequency_max\": 0.00634765625,\n",
+ " \"frequency_min\": 0.00537109375,\n",
" \"index_max\": 6,\n",
- " \"index_min\": 6\n",
+ " \"index_min\": 6,\n",
+ " \"name\": \"0.005859\"\n",
" }\n",
" },\n",
" {\n",
@@ -2344,10 +2297,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 1,\n",
- " \"frequency_max\": 0.0107421875,\n",
- " \"frequency_min\": 0.0087890625,\n",
+ " \"frequency_max\": 0.00537109375,\n",
+ " \"frequency_min\": 0.00439453125,\n",
" \"index_max\": 5,\n",
- " \"index_min\": 5\n",
+ " \"index_min\": 5,\n",
+ " \"name\": \"0.004883\"\n",
" }\n",
" }\n",
" ],\n",
@@ -2368,30 +2322,26 @@
" \"ey\",\n",
" \"hz\"\n",
" ],\n",
- " \"reference_channels\": [\n",
- " \"hx\",\n",
- " \"hy\"\n",
- " ],\n",
+ " \"reference_channels\": [],\n",
" \"regression.max_iterations\": 10,\n",
" \"regression.max_redescending_iterations\": 2,\n",
- " \"regression.minimum_cycles\": 10,\n",
+ " \"regression.minimum_cycles\": 1,\n",
" \"regression.r0\": 1.5,\n",
" \"regression.tolerance\": 0.005,\n",
" \"regression.u0\": 2.8,\n",
- " \"regression.verbosity\": 0,\n",
+ " \"regression.verbosity\": 1,\n",
" \"save_fcs\": false,\n",
- " \"stft.harmonic_indices\": [\n",
- " -1\n",
- " ],\n",
+ " \"stft.harmonic_indices\": null,\n",
" \"stft.method\": \"fft\",\n",
- " \"stft.min_num_stft_windows\": 2,\n",
+ " \"stft.min_num_stft_windows\": 0,\n",
" \"stft.per_window_detrend_type\": \"linear\",\n",
" \"stft.pre_fft_detrend_type\": \"linear\",\n",
" \"stft.prewhitening_type\": \"first difference\",\n",
" \"stft.recoloring\": true,\n",
+ " \"stft.window.additional_args\": {},\n",
" \"stft.window.clock_zero_type\": \"ignore\",\n",
" \"stft.window.normalized\": true,\n",
- " \"stft.window.num_samples\": 128,\n",
+ " \"stft.window.num_samples\": 256,\n",
" \"stft.window.overlap\": 32,\n",
" \"stft.window.type\": \"boxcar\"\n",
" }\n",
@@ -2404,10 +2354,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 2,\n",
- " \"frequency_max\": 0.008544921875,\n",
- " \"frequency_min\": 0.006591796875,\n",
+ " \"frequency_max\": 0.0042724609375,\n",
+ " \"frequency_min\": 0.0032958984375,\n",
" \"index_max\": 17,\n",
- " \"index_min\": 14\n",
+ " \"index_min\": 14,\n",
+ " \"name\": \"0.003784\"\n",
" }\n",
" },\n",
" {\n",
@@ -2415,10 +2366,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 2,\n",
- " \"frequency_max\": 0.006591796875,\n",
- " \"frequency_min\": 0.005126953125,\n",
+ " \"frequency_max\": 0.0032958984375,\n",
+ " \"frequency_min\": 0.0025634765625,\n",
" \"index_max\": 13,\n",
- " \"index_min\": 11\n",
+ " \"index_min\": 11,\n",
+ " \"name\": \"0.002930\"\n",
" }\n",
" },\n",
" {\n",
@@ -2426,10 +2378,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 2,\n",
- " \"frequency_max\": 0.005126953125,\n",
- " \"frequency_min\": 0.004150390625,\n",
+ " \"frequency_max\": 0.0025634765625,\n",
+ " \"frequency_min\": 0.0020751953125,\n",
" \"index_max\": 10,\n",
- " \"index_min\": 9\n",
+ " \"index_min\": 9,\n",
+ " \"name\": \"0.002319\"\n",
" }\n",
" },\n",
" {\n",
@@ -2437,10 +2390,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 2,\n",
- " \"frequency_max\": 0.004150390625,\n",
- " \"frequency_min\": 0.003173828125,\n",
+ " \"frequency_max\": 0.0020751953125,\n",
+ " \"frequency_min\": 0.0015869140625,\n",
" \"index_max\": 8,\n",
- " \"index_min\": 7\n",
+ " \"index_min\": 7,\n",
+ " \"name\": \"0.001831\"\n",
" }\n",
" },\n",
" {\n",
@@ -2448,10 +2402,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 2,\n",
- " \"frequency_max\": 0.003173828125,\n",
- " \"frequency_min\": 0.002685546875,\n",
+ " \"frequency_max\": 0.0015869140625,\n",
+ " \"frequency_min\": 0.0013427734375,\n",
" \"index_max\": 6,\n",
- " \"index_min\": 6\n",
+ " \"index_min\": 6,\n",
+ " \"name\": \"0.001465\"\n",
" }\n",
" },\n",
" {\n",
@@ -2459,10 +2414,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 2,\n",
- " \"frequency_max\": 0.002685546875,\n",
- " \"frequency_min\": 0.002197265625,\n",
+ " \"frequency_max\": 0.0013427734375,\n",
+ " \"frequency_min\": 0.0010986328125,\n",
" \"index_max\": 5,\n",
- " \"index_min\": 5\n",
+ " \"index_min\": 5,\n",
+ " \"name\": \"0.001221\"\n",
" }\n",
" }\n",
" ],\n",
@@ -2483,30 +2439,26 @@
" \"ey\",\n",
" \"hz\"\n",
" ],\n",
- " \"reference_channels\": [\n",
- " \"hx\",\n",
- " \"hy\"\n",
- " ],\n",
+ " \"reference_channels\": [],\n",
" \"regression.max_iterations\": 10,\n",
" \"regression.max_redescending_iterations\": 2,\n",
- " \"regression.minimum_cycles\": 10,\n",
+ " \"regression.minimum_cycles\": 1,\n",
" \"regression.r0\": 1.5,\n",
" \"regression.tolerance\": 0.005,\n",
" \"regression.u0\": 2.8,\n",
- " \"regression.verbosity\": 0,\n",
+ " \"regression.verbosity\": 1,\n",
" \"save_fcs\": false,\n",
- " \"stft.harmonic_indices\": [\n",
- " -1\n",
- " ],\n",
+ " \"stft.harmonic_indices\": null,\n",
" \"stft.method\": \"fft\",\n",
- " \"stft.min_num_stft_windows\": 2,\n",
+ " \"stft.min_num_stft_windows\": 0,\n",
" \"stft.per_window_detrend_type\": \"linear\",\n",
" \"stft.pre_fft_detrend_type\": \"linear\",\n",
" \"stft.prewhitening_type\": \"first difference\",\n",
" \"stft.recoloring\": true,\n",
+ " \"stft.window.additional_args\": {},\n",
" \"stft.window.clock_zero_type\": \"ignore\",\n",
" \"stft.window.normalized\": true,\n",
- " \"stft.window.num_samples\": 128,\n",
+ " \"stft.window.num_samples\": 256,\n",
" \"stft.window.overlap\": 32,\n",
" \"stft.window.type\": \"boxcar\"\n",
" }\n",
@@ -2519,10 +2471,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 3,\n",
- " \"frequency_max\": 0.00274658203125,\n",
- " \"frequency_min\": 0.00213623046875,\n",
+ " \"frequency_max\": 0.001373291015625,\n",
+ " \"frequency_min\": 0.001068115234375,\n",
" \"index_max\": 22,\n",
- " \"index_min\": 18\n",
+ " \"index_min\": 18,\n",
+ " \"name\": \"0.001221\"\n",
" }\n",
" },\n",
" {\n",
@@ -2530,10 +2483,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 3,\n",
- " \"frequency_max\": 0.00213623046875,\n",
- " \"frequency_min\": 0.00164794921875,\n",
+ " \"frequency_max\": 0.001068115234375,\n",
+ " \"frequency_min\": 0.000823974609375,\n",
" \"index_max\": 17,\n",
- " \"index_min\": 14\n",
+ " \"index_min\": 14,\n",
+ " \"name\": \"0.000946\"\n",
" }\n",
" },\n",
" {\n",
@@ -2541,10 +2495,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 3,\n",
- " \"frequency_max\": 0.00164794921875,\n",
- " \"frequency_min\": 0.00115966796875,\n",
+ " \"frequency_max\": 0.000823974609375,\n",
+ " \"frequency_min\": 0.000579833984375,\n",
" \"index_max\": 13,\n",
- " \"index_min\": 10\n",
+ " \"index_min\": 10,\n",
+ " \"name\": \"0.000702\"\n",
" }\n",
" },\n",
" {\n",
@@ -2552,10 +2507,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 3,\n",
- " \"frequency_max\": 0.00115966796875,\n",
- " \"frequency_min\": 0.00079345703125,\n",
+ " \"frequency_max\": 0.000579833984375,\n",
+ " \"frequency_min\": 0.000396728515625,\n",
" \"index_max\": 9,\n",
- " \"index_min\": 7\n",
+ " \"index_min\": 7,\n",
+ " \"name\": \"0.000488\"\n",
" }\n",
" },\n",
" {\n",
@@ -2563,10 +2519,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 3,\n",
- " \"frequency_max\": 0.00079345703125,\n",
- " \"frequency_min\": 0.00054931640625,\n",
+ " \"frequency_max\": 0.000396728515625,\n",
+ " \"frequency_min\": 0.000274658203125,\n",
" \"index_max\": 6,\n",
- " \"index_min\": 5\n",
+ " \"index_min\": 5,\n",
+ " \"name\": \"0.000336\"\n",
" }\n",
" }\n",
" ],\n",
@@ -2587,30 +2544,26 @@
" \"ey\",\n",
" \"hz\"\n",
" ],\n",
- " \"reference_channels\": [\n",
- " \"hx\",\n",
- " \"hy\"\n",
- " ],\n",
+ " \"reference_channels\": [],\n",
" \"regression.max_iterations\": 10,\n",
" \"regression.max_redescending_iterations\": 2,\n",
- " \"regression.minimum_cycles\": 10,\n",
+ " \"regression.minimum_cycles\": 1,\n",
" \"regression.r0\": 1.5,\n",
" \"regression.tolerance\": 0.005,\n",
" \"regression.u0\": 2.8,\n",
- " \"regression.verbosity\": 0,\n",
+ " \"regression.verbosity\": 1,\n",
" \"save_fcs\": false,\n",
- " \"stft.harmonic_indices\": [\n",
- " -1\n",
- " ],\n",
+ " \"stft.harmonic_indices\": null,\n",
" \"stft.method\": \"fft\",\n",
- " \"stft.min_num_stft_windows\": 2,\n",
+ " \"stft.min_num_stft_windows\": 0,\n",
" \"stft.per_window_detrend_type\": \"linear\",\n",
" \"stft.pre_fft_detrend_type\": \"linear\",\n",
" \"stft.prewhitening_type\": \"first difference\",\n",
" \"stft.recoloring\": true,\n",
+ " \"stft.window.additional_args\": {},\n",
" \"stft.window.clock_zero_type\": \"ignore\",\n",
" \"stft.window.normalized\": true,\n",
- " \"stft.window.num_samples\": 128,\n",
+ " \"stft.window.num_samples\": 256,\n",
" \"stft.window.overlap\": 32,\n",
" \"stft.window.type\": \"boxcar\"\n",
" }\n",
@@ -2618,7 +2571,7 @@
" ],\n",
" \"id\": \"CAS04_sr1\",\n",
" \"stations.local.id\": \"CAS04\",\n",
- " \"stations.local.mth5_path\": \"/home/kkappler/software/irismt/aurora/docs/examples/8P_CAS04.h5\",\n",
+ " \"stations.local.mth5_path\": \"c:\\\\Users\\\\peaco\\\\OneDrive\\\\Documents\\\\GitHub\\\\aurora\\\\docs\\\\examples\\\\8P_CAS04.h5\",\n",
" \"stations.local.remote\": false,\n",
" \"stations.local.runs\": [\n",
" {\n",
@@ -2784,62 +2737,62 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m2025-07-11T17:39:04.124863-0700 | INFO | aurora.pipelines.transfer_function_kernel | show_processing_summary | Processing Summary Dataframe:\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:04.130200-0700 | INFO | aurora.pipelines.transfer_function_kernel | show_processing_summary | \n",
+ "\u001b[1m2026-01-20T20:13:23.917192-0800 | INFO | aurora.pipelines.transfer_function_kernel | show_processing_summary | line: 290 | Processing Summary Dataframe:\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:23.921194-0800 | INFO | aurora.pipelines.transfer_function_kernel | show_processing_summary | line: 291 | \n",
" duration has_data n_samples run station survey run_hdf5_reference station_hdf5_reference fc remote stft mth5_obj dec_level dec_factor sample_rate window_duration num_samples_window num_samples num_stft_windows\n",
- "0 847648.0 True 847649 b CAS04 CONUS South False None None 0 1.0 1.000000 128.0 128 847648.0 8829.0\n",
- "1 847648.0 True 847649 b CAS04 CONUS South False None None 1 4.0 0.250000 512.0 128 211912.0 2207.0\n",
- "2 847648.0 True 847649 b CAS04 CONUS South False None None 2 4.0 0.062500 2048.0 128 52978.0 551.0\n",
- "3 847648.0 True 847649 b CAS04 CONUS South False None None 3 4.0 0.015625 8192.0 128 13244.0 137.0\n",
- "4 1034585.0 True 1034586 d CAS04 CONUS South False None None 0 1.0 1.000000 128.0 128 1034585.0 10776.0\n",
- "5 1034585.0 True 1034586 d CAS04 CONUS South False None None 1 4.0 0.250000 512.0 128 258646.0 2693.0\n",
- "6 1034585.0 True 1034586 d CAS04 CONUS South False None None 2 4.0 0.062500 2048.0 128 64661.0 673.0\n",
- "7 1034585.0 True 1034586 d CAS04 CONUS South False None None 3 4.0 0.015625 8192.0 128 16165.0 168.0\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:04.132196-0700 | INFO | aurora.pipelines.transfer_function_kernel | memory_check | Total memory: 62.74 GB\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:04.133745-0700 | INFO | aurora.pipelines.transfer_function_kernel | memory_check | Total Bytes of Raw Data: 0.014 GB\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:04.134216-0700 | INFO | aurora.pipelines.transfer_function_kernel | memory_check | Raw Data will use: 0.022 % of memory\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:04.145551-0700 | INFO | aurora.pipelines.transfer_function_kernel | mth5_has_fcs | Fourier coefficients not detected for survey: CONUS South, station: CAS04, run: b-- Fourier coefficients will be computed\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:04.290234-0700 | INFO | mth5.mth5 | close_mth5 | Flushing and closing /home/kkappler/software/irismt/aurora/docs/examples/8P_CAS04.h5\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:04.301417-0700 | INFO | aurora.pipelines.transfer_function_kernel | mth5_has_fcs | Fourier coefficients not detected for survey: CONUS South, station: CAS04, run: d-- Fourier coefficients will be computed\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:04.416308-0700 | INFO | mth5.mth5 | close_mth5 | Flushing and closing /home/kkappler/software/irismt/aurora/docs/examples/8P_CAS04.h5\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:04.418028-0700 | INFO | aurora.pipelines.transfer_function_kernel | check_if_fcs_already_exist | FC levels not present\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:04.420113-0700 | INFO | aurora.pipelines.process_mth5 | process_mth5_legacy | Processing config indicates 4 decimation levels\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:04.421453-0700 | INFO | aurora.pipelines.transfer_function_kernel | valid_decimations | After validation there are 4 valid decimation levels\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:06.897331-0700 | INFO | mth5.processing.kernel_dataset | initialize_dataframe_for_processing | Dataset dataframe initialized successfully\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:06.898671-0700 | INFO | aurora.pipelines.transfer_function_kernel | update_dataset_df | Dataset Dataframe Updated for decimation level 0 Successfully\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:08.287010-0700 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:09.684219-0700 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:39:09.695812-0700 | WARNING | aurora.pipelines.feature_weights | extract_features | Features could not be accessed from MTH5 -- \n",
+ "0 847648.0 True 847649 b CAS04 CONUS South False None None 0 1.0 1.000000 256.0 256 847648.0 3784.0\n",
+ "1 847648.0 True 847649 b CAS04 CONUS South False None None 1 4.0 0.250000 1024.0 256 211912.0 945.0\n",
+ "2 847648.0 True 847649 b CAS04 CONUS South False None None 2 4.0 0.062500 4096.0 256 52978.0 236.0\n",
+ "3 847648.0 True 847649 b CAS04 CONUS South False None None 3 4.0 0.015625 16384.0 256 13244.0 58.0\n",
+ "4 1034585.0 True 1034586 d CAS04 CONUS South False None None 0 1.0 1.000000 256.0 256 1034585.0 4618.0\n",
+ "5 1034585.0 True 1034586 d CAS04 CONUS South False None None 1 4.0 0.250000 1024.0 256 258646.0 1154.0\n",
+ "6 1034585.0 True 1034586 d CAS04 CONUS South False None None 2 4.0 0.062500 4096.0 256 64661.0 288.0\n",
+ "7 1034585.0 True 1034586 d CAS04 CONUS South False None None 3 4.0 0.015625 16384.0 256 16165.0 72.0\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:23.921194-0800 | INFO | aurora.pipelines.transfer_function_kernel | memory_check | line: 689 | Total memory: 31.43 GB\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:23.921194-0800 | INFO | aurora.pipelines.transfer_function_kernel | memory_check | line: 693 | Total Bytes of Raw Data: 0.014 GB\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:23.921194-0800 | INFO | aurora.pipelines.transfer_function_kernel | memory_check | line: 696 | Raw Data will use: 0.045 % of memory\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:24.085856-0800 | INFO | aurora.pipelines.transfer_function_kernel | mth5_has_fcs | line: 853 | Fourier coefficients not detected for survey: CONUS South, station: CAS04, run: b-- Fourier coefficients will be computed\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:24.270338-0800 | INFO | mth5.mth5 | close_mth5 | line: 896 | Flushing and closing c:\\Users\\peaco\\OneDrive\\Documents\\GitHub\\aurora\\docs\\examples\\8P_CAS04.h5\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:24.466090-0800 | INFO | aurora.pipelines.transfer_function_kernel | mth5_has_fcs | line: 853 | Fourier coefficients not detected for survey: CONUS South, station: CAS04, run: d-- Fourier coefficients will be computed\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:24.636256-0800 | INFO | mth5.mth5 | close_mth5 | line: 896 | Flushing and closing c:\\Users\\peaco\\OneDrive\\Documents\\GitHub\\aurora\\docs\\examples\\8P_CAS04.h5\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:24.638259-0800 | INFO | aurora.pipelines.transfer_function_kernel | check_if_fcs_already_exist | line: 261 | FC levels not present\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:24.671489-0800 | INFO | aurora.pipelines.process_mth5 | process_mth5_legacy | line: 182 | Processing config indicates 4 decimation levels\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:24.671489-0800 | INFO | aurora.pipelines.transfer_function_kernel | valid_decimations | line: 413 | After validation there are 4 valid decimation levels\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:36.391908-0800 | INFO | mth5.processing.kernel_dataset | initialize_dataframe_for_processing | line: 1310 | Dataset dataframe initialized successfully, updated metadata.\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:36.393908-0800 | INFO | aurora.pipelines.transfer_function_kernel | update_dataset_df | line: 156 | Dataset Dataframe Updated for decimation level 0 Successfully\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:38.473283-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:40.495175-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:40.532706-0800 | INFO | aurora.pipelines.feature_weights | extract_features | line: 43 | Features could not be accessed from MTH5 -- \n",
"Calculating features on the fly (development only)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:09.710035-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 25.728968s (0.038867Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:09.836324-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 19.929573s (0.050177Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:10.021655-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 15.164131s (0.065945Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:10.221885-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 11.746086s (0.085135Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:10.478535-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 9.195791s (0.108745Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:10.794427-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 7.362526s (0.135823Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:11.195097-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 5.856115s (0.170762Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:11.642160-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 4.682492s (0.213562Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:12.117321-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 25.728968s (0.038867Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:12.259111-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 19.929573s (0.050177Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:12.464593-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 15.164131s (0.065945Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:12.670809-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 11.746086s (0.085135Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:12.930364-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 9.195791s (0.108745Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:13.193437-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 7.362526s (0.135823Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:13.532798-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 5.856115s (0.170762Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:13.843935-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 4.682492s (0.213562Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:14.340768-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 25.728968s (0.038867Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:14.503653-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 19.929573s (0.050177Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:14.687783-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 15.164131s (0.065945Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:14.893185-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 11.746086s (0.085135Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:15.139200-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 9.195791s (0.108745Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:15.430306-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 7.362526s (0.135823Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:15.722274-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 5.856115s (0.170762Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:16.038793-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 4.682492s (0.213562Hz)\u001b[0m\n"
+ "\u001b[1m2026-01-20T20:13:40.554717-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 51.457936s (0.019433Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:40.705291-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 39.859146s (0.025088Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:40.859212-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 30.328263s (0.032973Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:41.006430-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 23.492171s (0.042567Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:41.172934-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 18.391583s (0.054373Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:41.344583-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 14.725051s (0.067911Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:41.530440-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 11.712231s (0.085381Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:41.742187-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 9.364983s (0.106781Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:41.949410-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 51.457936s (0.019433Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:42.083580-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 39.859146s (0.025088Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:42.221577-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 30.328263s (0.032973Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:42.379622-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 23.492171s (0.042567Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:42.547782-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 18.391583s (0.054373Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:42.712351-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 14.725051s (0.067911Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:42.896395-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 11.712231s (0.085381Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:43.109519-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 9.364983s (0.106781Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:43.309668-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 51.457936s (0.019433Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:43.459786-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 39.859146s (0.025088Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:43.615872-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 30.328263s (0.032973Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:43.771015-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 23.492171s (0.042567Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:43.923461-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 18.391583s (0.054373Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:44.091857-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 14.725051s (0.067911Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:44.270674-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 11.712231s (0.085381Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:44.473529-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 9.364983s (0.106781Hz)\u001b[0m\n"
]
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAG+CAYAAAB/H2v/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPz0lEQVR4nO3de1gU9f4H8PeyynIREFCXO6iZghmYF/JkJUUpeUxFTdNf4SU7FiqKVlonMfVEWRl6wksXpZtmKWl5N9I08yRiampeQ0EUvKCLoCLszu+Pjcl1F9hVdmd29/16nn1gZr4z89kFnQ/fq0IQBAFERERETshF6gCIiIiIpMJEiIiIiJwWEyEiIiJyWkyEiIiIyGkxESIiIiKnxUSIiIiInBYTISIiInJaTISIiIjIaTERIiIiIqfFRIioAZSUlGDmzJl4+OGHoVar4erqCk9PT7Rv3x6jRo3C+vXrUdsk7u+++y4UCoXBa82aNXXe7/Tp05gwYQLat28PT09PqFQqBAQEoEOHDhg8eDDS09Nx6dIlo/O0Wi0WLVqE7t27w9fXF+7u7mjTpg1SUlJw9uzZet9ndXU1OnXqZBDr8OHDzfqMiIhkSSCiO5KZmSm4ubkJAOp85efnmzy/ffv2RmUHDBhQ6/3y8vIEHx+feu/322+/GZx37do14fHHH6+1vJ+fn5Cbm1vne50xY4bReUlJSRZ+YkRE8tHIFsmW1Pr374+tW7fi0UcfxYoVK6QOhxzI7Nmz8corr4jbSqUSvXv3FmtNjh8/jo0bN6KkpMTk+bm5uTh48KDR/u+//x6lpaXw8/MzOvbiiy9Co9EAADw9PTF48GC0atUKVVVVOHbsGLZv347CwkKj81577TVs2rRJjHPkyJEIDAxEVlYWCgoKUFpaikGDBuHAgQPw9PQ0On///v2YOXOmeR8MEZG9kDoTs4UtW7YI3333XZ1/ZZN1bNq0SRgwYIAQGhoquLq6Ch4eHkJsbKywePFiQafT3dY1t2zZIowcOVLo2LGjEBAQILi6ugru7u5C69atheHDhwv79++36HpLliwxq+bmVgcPHhSUSqV4XosWLYQ9e/YYlbtx44bw4YcfCiUlJUbHXnzxRfH8sLAwg5ql//73v0blNRqNQaxZWVkmY9u1a5dw/vx5cfvixYuCSqUSz3v11VfFY4cPHxYUCoV4bP78+SbfQ0xMjABA6Ny5sxAcHMwaISJyCE6RCAmC/uHJRMh2qqurDR7ypl6DBw++rWRo0qRJdV7X1dVV2Lx5s9nXu91EaMyYMQbnrVy50qL3cf36dcHX19cgOenfv7+4fd999xmdc/HiRYN7Tp48Waiurq73XsuWLTM4Ly8vz+B4hw4dxGO9evUyOj8tLU0AIKhUKuHgwYNCeHg4EyEicgiy7yy9bds29OnTB0FBQVAoFFi1apVRmczMTERERMDNzQ2xsbHYtWuX7QMlA9OnT8f8+fMBAAqFAv/3f/+H1157De3atRPLLF++HB9++KHF1/b09MTDDz+MsWPHYtq0aUhPT8fkyZMRGRkJALhx4wbGjx/fMG+kDjk5OeL3vr6+6Nevn0Xnr1692qBD85AhQzBkyBBxe8+ePfj9998NzvHz80N4eLi4/e6770KtVqNv376YPn06Nm7ciMrKSqN77d+/32C7VatWtW7fWnbv3r148803AQAzZsxAVFSUuW+RiEj2ZJ8IVVRUIDo6GpmZmSaPL1++HKmpqUhLS8OePXsQHR2Nnj174ty5czaOlGpUVFRgzpw54vaMGTPw+eefY9asWfj111/RrFkz8dgnn3xi8fXfeOMN/Pjjj3jmmWfQqlUruLu7Q61WIyEhQSzzxx9/mOwn05CKiorE7++++264uFj2zykrK0v8vn379ujQoQP69OmDJk2amCxT4/3334dCoRC3L168iO+++w5vvPEGevXqBbVajRkzZkCr1YplSktLDa7h7e1tsO3l5WVwvRpVVVUYPnw4qqqqcP/992PSpEkWvUciItmTukrKEgCEb7/91mBf165dheTkZHFbq9UKQUFBQnp6ukE5No3Zzo8//mjQDHPq1CmD4yNGjBCPqVQqi6+/adMmISwsrN5RU7/88ktDvSWTPDw8xHvFxsZadO6ZM2cM+hfNnDlTPDZ06FCDfkdVVVVG52/ZskV45JFHBBcXl1rff1pamlj+X//6l8GxW5vThg0bZvJn8vrrrwsABHd3d+Hw4cPifjaNEZGjsOtRYzdu3EBeXh6mTp0q7nNxcUF8fDx27txp8fUqKysNmhV0Oh1KS0vh7+9v8Bc41e3PP/802HZ3d0dZWZm43bRpU/H7yspKnD9/HiqVyqxrnz17Fv369cPVq1frLVtaWmpw34YWGBiIEydOAACOHDkCjUZj9u/Jhx9+aFBj07t3bzHWvn37YunSpQCAc+fOYcWKFXjiiScMzr/vvvvw7bffQqPRIDc3F7t378aGDRvw22+/iWXef/99pKamAoBBLROgr826+edwcxOdv78/ysrKUFhYiPT0dADAv//9bwQGBooxCjfNiVRVVWXVz5mIyFKCIODKlSsICgqqv7Ze6kzMErilRqioqMjkX/4vvfSS0LVrV3H70UcfFZo1aya4u7sLwcHBtdYU1HQI5Ysvvvjiiy++7P9VWFhYb25h1zVC5vrhhx/MKjd16lTxL2gA0Gg0CAsLQ2FhoVGfCqrdl19+iRdffFHcfv311zF58mQAQFlZGWJiYsR+KPfffz82btxo9rXfffddg7lsTp48CV9fXwBAeno63nrrLfHYmjVr8OCDD1oc7/79+w06JNfmjz/+wAMPPCDW7KjVaqxcuRIdOnQwKFdVVYWlS5fiiSeeQPPmzbF79248+uij9V6/RuPGjXHkyBH4+/sDAMaMGYN//etf6Nixo1HZV155BQsXLgSgrx0tKiqCh4cHLl26hHbt2uH69esAgEmTJmHatGkAgMOHD+P+++8Xa3nmzJmDUaNGYf/+/WZ9fjWGDh2KBQsWmF2eiMhaysrKEBoaatD/sTZ2nQg1a9YMSqXSaLK6kpISBAQEWHw9lUoFlUqFzMxMZGZmig84b29vJkIWcHd3N9ieNWsWTp48ifDwcKxYscKgM+6YMWMs+myjo6MNtp9++mkkJCRg//79RpNlenp6mnXtW+P18vIy67zY2FjMnDkTr776KgD9712PHj3wz3/+Ex07djSaULFPnz7w9vbG119/LV5DoVBg0KBBRk1q5eXlWLt2LQB9IvXdd98hJSUFALBs2TIsW7YMrVu3Rvfu3dGqVSsoFArs27cP2dnZ4jUeeugh8d+Bt7c3kpOT8d577wEAMjIycOXKFQQGBmLx4sViEhQeHo7nn38enp6eCAkJwYABA0y+9/Xr14vNk+Hh4ejcuTP+8Y9/8N8JEcmKWd0VbqeJSiqA6c7SY8eOFbe1Wq0QHBxs1Fn6dtRMXqfRaO74Ws7k1nl5evfubbLKsnfv3hbPI3Tjxg2DOW9ufiUlJRlsb9my5bbiNXceoRpz5841mKywtld+fr5w7do1oWnTpuK++Ph4k9fU6XQGHZJjYmLEY/XdB9Avl/H7778bXPPatWvCY489Vus5vr6+9S6xUYOdpYlIzix5fst++Hx5eTn27t2LvXv3AgDy8/Oxd+9eFBQUAABSU1Px0Ucf4dNPP8Uff/yBF154ARUVFRgxYoSEUdPNsrOzMWPGDLRu3Rqurq6IiIhAWloaVq5caXEn9MaNG+PHH3/E8OHD4e/vD5VKhXvuuQcffvghpk+fbp03UI/x48cjPz8f06dPR/fu3dG8eXM0atQIHh4eiIyMxAsvvICtW7ciPDwcq1atwuXLl8VzR44cafKaCoUCSUlJ4vbevXuxb98+APr5hd555x307t0bkZGR8Pf3h1KphJeXFzp27IiXX34ZBw8exD333GNwTTc3N6xfvx4LFixAt27d4O3tDZVKhdatW2PcuHE4cOAAOnfu3PAfEBGRjCkEoZYlsWVi69atiIuLM9qflJQkzrHywQcf4J133kFxcTFiYmIwb948xMbG3vY9b24aO3r0KDQaDav8LZCVlWWQiMr8V4yIiBxMWVkZfHx8zHp+yz4RkpIlHyT9jYkQERFJyZLnt+ybxoiIiIisxa5HjVnLraPGyLqKiorMGk7ev39/cYI/IiKihsCmsTqwacw2Tp48iZYtW9Zb7uZ+YURERLWx5PnNGiGSXEREBPsRETkzrRbYvh04exYIDAQefBBQKqWOipwEEyEiIpJOdjaQkgKcPv33vpAQYO5cIDFRurjIabCztAmZmZmIiopCly5dpA6FiMhxZWcDAwcaJkEAUFSk33/TTOlE1sI+QnVgHyEiIisQBECjASIjgeJi02UUCiAoCDh5EmjExguyDIfPExGRfJWXA76+tSdBgD5ZKioCNm2yXVzklJgIERGRfNWVLBE1ACZCJrCPEBGRFTVpAqxda15ZM6bWILoT7CNUB/YRIiKyEq0WiIjQN3+ZegwpFPrRY/n5HEpPFmMfISIikjelUj9EHtAnPTer2c7IYBJEVsdEiIiIpJGYCKxYAQQHG+4PCdHv5zxCZAMck0hERNJJTAT69uXM0iQZJkJERCQtpRLo0UPqKMhJsWnMBI4aIyIicg4cNVYHjhojIrI+rrlKDY2rzxMRkV3gmqskNTaNERE5Kq0W2LoVWLZM/1WrlToiA1xzleSAiRARkSPKztZPWBgXBwwdqv8aESGb7KKqChg71vRcijX7UlKA6mrbxkXOh4kQEZGjkXlVi04HuLrq+wTVRhD04W/ebLu4yDkxESIichSCAFy+DCQn113VMmGCpM1kFRXml60rWSJqCEyETODweSKyS+XlgK9v3Su2CwJQWKgfpiURFwuePBERVguDCAATIZOSk5Nx6NAh5ObmSh0KEZF1SFjV4uEBaDT6lTVuXWashkIBhIYCDz9s29jI+TARIiJyFE2aAGvXmlc2MNC6sdRBoQC8vYF58/7evvU4wDVXyTaYCBEROQqFAujZE1f9Q6CD6aoWHRS46h+qn7VQYlxzleSAiRARkYMQBODyFSXGaecCgFEyVLM9ARnQQh5VLYmJwMmTwJYtwNKl+q/5+UyCyHY4szQRkYOo6SsNJOISVmAuUhCKv4fQn0YIJiAD315MxNDt8lnnlGuukpSYCBER1cMe18L6FolYjb54ENsRiLM4i0Bsx4PQ/VUTxGHpRHpMhIhIMvaQYNjTWlg1faV799Zv66DET+hhsqyEfaWJZIV9hIhIEjJfAQKA7CdoNvJXX2mEhNQ/LF0GfaWJZIGJEJGDkut6mzodsGRJ3QnG0qWmJ0a2FXMnaB4/Xn5rYSmV+toqgMPSiczBRMgEzixN9k6utS06nf4BPHJk7QmGIADDhgFXrtg+vhrmTtBcVARs2mS7uMzFYelE5lMIgpR/d8lbWVkZfHx8oNFo4O3tLXU4RGapac659V92TW2AlA/CK1f0E+mZY+1a4IknrBtPbSyJ85NP9ImdHNlDHywia7Dk+c3O0kQOpLoaGDeu9toWhULfnPPkk0AjCf71W7LG1KVL1oujPrd2Oq5Ly5bWj+d2cVg6Uf3YNEbkQDZtAs6cqf241M05Hh7AunXmlb21WceWLOl0/NBDto2NiBoWEyEiB1JXn5bbKdfQFArg8cftY1QTOx0TOQcmQkQOxNxmGimbc+wpwWCnYyLHx87SdWBnabI3Wq1+dFhRkel+QgqF/iGeny99omFqosLQUH0SJLcEg52OieyLJc9vJkJ1YCJE9qhm1BhgmAzJYdTYrZhgEJE1cNQYkROrac4xtSyE3GpbOKqJiKTGRIioAcitZiMxEejbV14x2TW5/YCJqME4fGfpNWvWoG3btmjTpg0+/vhjqcMhByTXWZxralueflr/lc/t2yTXHzARNQiH7iNUXV2NqKgobNmyBT4+PujUqRN++eUX+Pv7m3U++whRfVasAJ56qvZZnL/4Qp+I1DZUnGROztN0E1GtLHl+O3SN0K5du9C+fXsEBwejSZMmSEhIwCY5LgxEdqmqChg0SN5rZtFtsudVV4nIIrJOhLZt24Y+ffogKCgICoUCq1atMiqTmZmJiIgIuLm5ITY2Frt27RKPnTlzBsE3TQASHByMoqIiW4ROTmDzZvPK/fyzdeMgK7D3VVeJyGyyToQqKioQHR2NzMxMk8eXL1+O1NRUpKWlYc+ePYiOjkbPnj1x7tw5G0dKzqikxLxyUq6ZRTYg1TTdRNQgZJ0IJSQkYNasWejfv7/J43PmzMHo0aMxYsQIREVFYeHChfDw8MDixYsBAEFBQQY1QEVFRQgKCrJJ7OT4IiLMKyflmll0m2pWXTWHnFddJaJ6yToRqsuNGzeQl5eH+Ph4cZ+Liwvi4+Oxc+dOAEDXrl1x4MABFBUVoby8HOvXr0fPnj1rvWZlZSXKysoMXkS1eegh+1gzi24DV10lchp2mwhduHABWq0WarXaYL9arUbxX1XVjRo1wnvvvYe4uDjExMRg0qRJdY4YS09Ph4+Pj/gKDQ216nsg+2ZPa2bRbeAPmMgp2G0iZK4nn3wSR48exfHjx/H888/XWXbq1KnQaDTiq7Cw0EZRkr3iopwOjj9gIodntzNLN2vWDEqlEiW39FgtKSlBQEDAbV1TpVJBpVIhMzMTmZmZ0Gq1DREqOTjO4uzg+AMmcmh2mwi5urqiU6dOyMnJQb9+/QAAOp0OOTk5GDt27B1dOzk5GcnJyeKETET14ZpZDo4/YCKHJetEqLy8HMePHxe38/PzsXfvXvj5+SEsLAypqalISkpC586d0bVrV2RkZKCiogIjRoyQMGoiIiKyF7JOhHbv3o24uDhxOzU1FQCQlJSErKwsDB48GOfPn8e0adNQXFyMmJgYbNiwwagDtaXYNEZEROQcHHqtsTvFtcaIiIjsD9caIyIiIjIDEyETMjMzERUVhS5dukgdChEREVkRm8bqwKYxIiIi+2PJ81vWnaWJyMFptZyfh4gkxUSIiKSRnQ2kpACnT/+9LyREv6wFZ2wmIhthHyET2EeIyMqys4GBAw2TIAAoKtLvz86WJi4icjrsI1QH9hGSJ7am2DFBADQaIDIS+GtxZCMKBRAUBJw8CTRipTURWc7qfYSuX7+O/fv349y5c9DpdAbHnnzyydu5JJFZ2Jpi58rLAV/fussIgr5maNMm4IknbBMXETktixOhDRs24Nlnn8WFCxeMjikUCs7GTFah0wGffgqMGqV/Tt6spjXlm2+AAQOkiY+soLYaIyKiBmRxH6Fx48Zh0KBBOHv2LHQ6ncHLUZIg9hGSF51O3/Q1cqRxEgTo9wkCMGGCvtmMZKxJE2DtWvPKtmxp3ViIiHAbfYS8vb3x22+/oXXr1taKSTbYR0gerlwBzP34t2zhIuGyp9UCERH6qjxT//0oFPr2zvx8dv4iotti1SU2Bg4ciK1bt95ubEQWc7Hgt/TsWevFQQ1EqdR36gL0Sc/NarYzMpgEEZFNWFwjdPXqVQwaNAjNmzdHhw4d0LhxY4Pj48ePb9AApcQaIXkQBGDDBvP6zbJGyI6Y6vkeGqpPgtjznYjugCXPb4sToU8++QRjxoyBm5sb/P39objpLzqFQoE///zz9qKWISZC8sHWFAfFuRCIyAqsmggFBARg/PjxmDJlClwsabOwQ0yE5KVmDj7AMBmqycVXrGBFAhERWbmP0I0bNzB48GCHToI4akyeEhP1yU5wsOH+kBAmQUREdHssrhGaOHEimjdvjldffdVaMckGa4Tkia0pRERUF6vOLK3VajF79mxs3LgR9957r1Fn6Tlz5lh6SSKLKJXsEE1ERA3D4kTo999/R8eOHQEABw4cMDimuHUoLBEREZGMWZwIbdmyxRpxEBEREdncHfV43rFjByorKxsqFiIiIiKbuqNEKCEhAUVFRQ0VCxEREZFNWdw0djMLB5zZjczMTGRmZjrMIrLkpDi8joioXo47GdAdSE5OxqFDh5Cbmyt1KES3JztbPxV3XBwwdKj+a0SEfj8REYnuKBFatGgR1Go1AECn06GgoKBBgiKiO1AzBffNa3gB+vVJBg5kMkREdBOLJ1RcsmQJli9fjlOnTsHb2xsPPvggJk6ciEaNGiEoKMihmpM4oSLZnepqIDwcOHPG9HGFAggKAk6eBBrdUcs4EZFsWWWJDa1Wi759+2LMmDHw8PDAk08+iejoaHzzzTeIjIzEhg0b7jhwIrpDmzbVngQB+kXaior05YiIyPzO0u+//z5yc3Oxf/9+tG3bVtyv0+kwZ84cPP/881YJkKTF/rZ2pri4YcsRETk4sxOhrKwszJ492yAJAgAXFxdMnjwZgiDglVdeafAASTrZ2UBKimFXk5AQYO5cLnAqWy1bNmw5IiIHZ3YfIXd3d+zfvx9t2rSxdkyy4cx9hGr6297621GzigpXe5cprVY/OqyoyPiHB+h/gCEhQH4+q/aIyGFZpY+Qp6cnzp8/X+vxvXv3YuTIkeZHSbJVVQWMHWv6OVqzb8IE/TOXZEap1FfZAX9nrTVqtjMymAQREf3F7ETo4YcfxsKFC00eKy4uxpAhQ/Dpp582WGAkDZ0OcHXV9wmqjSAAhYX6vkMkQ4mJ+iq74GDD/SEhrMojIrqF2YlQWloaVq5ciaSkJBw4cADXr1/HmTNnsGjRInTp0gXNmjWzZpw2lZmZiaioKHTp0kXqUGyuosL8snUlSySxxET9EPktW4ClS/Vf8/OZBBER3cKieYS2bduGkSNHIj8/X9zXqFEjpKSkYNy4cQgPD4dOp7NKoFJwxj5CFRVAkybmld2yBejRw6rhEBERWcyS57dFM6o99NBDOHr0KHbt2oX8/Hx4e3ujW7du8PPzQ0VFBdLS0u4ocJKehweg0QBRUfrpaOrqb/vgg7aPj4iIqCFZPLO0M3HGGqEaNaPGAMNkiKPGiIhI7qwyaoycC/vbEhGRM+BiQ1SrxESgb1/OLE1ERI6LiRDVSalkh2giInJcbBojIiIip8VEiIiIiJwWEyEiIiJyWk6RCPXv3x++vr4YWDMenIiIiAhOkgilpKTgs88+kzoMIiIikhmnSIR69OgBLy8vqcMgIiIimZE8Edq2bRv69OmDoKAgKBQKrFq1yqhMZmYmIiIi4ObmhtjYWOzatcv2gRIREZHDkXweoYqKCkRHR2PkyJFINDFd8fLly5GamoqFCxciNjYWGRkZ6NmzJ44cOYIWLVoAAGJiYlBdXW107qZNmxAUFGT190AErZYzTxIR2SHJE6GEhAQkJCTUenzOnDkYPXo0RowYAQBYuHAh1q5di8WLF2PKlCkAgL1799oiVCLTsrOBlBTg9Om/94WEAHPnci0SIiKZk7xprC43btxAXl4e4uPjxX0uLi6Ij4/Hzp07G/x+lZWVKCsrM3gR1almddqbkyAAKCrS78/OliYuIiIyi6wToQsXLkCr1UKtVhvsV6vVKC4uNvs68fHxGDRoENatW4eQkJBak6j09HT4+PiIr9DQ0DuKnxycVquvCRIE42M1+1JSABPNtkREJA+yToQayg8//IDz58/j6tWrOH36NLp162ay3NSpU6HRaMRXYWGhjSMlu/LTT8Y1QTcTBP3xzZttFxMREVlE8j5CdWnWrBmUSiVKSkoM9peUlCAgIKDB76dSqaBSqZCZmYnMzExotdoGvwc5kJMnzSt39qxVwyAiotsn6xohV1dXdOrUCTk5OeI+nU6HnJycWmt1GkJycjIOHTqE3Nxcq92DHEBgoHnlIiKsGgYREd0+yWuEysvLcfz4cXE7Pz8fe/fuhZ+fH8LCwpCamoqkpCR07twZXbt2RUZGBioqKsRRZESSeewxIDgYOHPGdD8hhUI/euzhh20fGxERmUXyRGj37t2Ii4sTt1NTUwEASUlJyMrKwuDBg3H+/HlMmzYNxcXFiImJwYYNG4w6UDckNo2RWRo1AubN048OUygMkyGFQv81I4PzCRERyZhCEEz9KUsAUFZWBh8fH2g0Gnh7e0sdDsmVqXmEQkP1SRDnESIisjlLnt+S1wgR2b3ERKBvX84sTURkh5gImcCmMbKYUgn06CF1FEREZCE2jdWBTWNERET2x5Lnt6yHzxMRERFZExMhIiIiclpMhEzIzMxEVFQUunTpInUoREREZEXsI1QH9hEiIiKyP+wjRERERGQGJkJERETktJgImcA+QkRERM6BfYTqwD5CRERE9od9hIiIiIjMwESIiIiInBYTISIiInJaTISIiIjIaXH1eRO4+rzMabXA9u3A2bNAYCDw4IP61d+JiIgsxFFjdeCoMRnKzgZSUoDTp//eFxICzJ0LJCZKFxcREckGR42RY8rOBgYONEyCAKCoSL8/O1uauIiIyG4xESL7UFUFjB0LmKrArNk3YYK+2YyIiMhMTIRI/nQ6wNVV3yeoNoIAFBbq+w4RERGZiYkQyV9Fhfll60qWiIiIbsFEiOTPxYJf08BA68VBREQOh4mQCVx0VWY8PACNBggOBhQK02UUCiA0VD+UnoiIyEwcPl8HDp+XmZpRY4Bhp+ma5GjFCg6hJyIiDp+nBqTVAlu3AsuW6b9KOSorMVGf7AQHG+4PCWESREREt4UzS1Pt5Dh5YWIi0LcvZ5YmIqIGwaaxOjht05hOB3z6KTBqlPG8PTXNUN98AwwYYPvYiIiI6mHJ85s1QmRIp6u7duXmyQv79WNNDBER2TX2ESJD5s7Zc/o0Jy8kIiK7x0SIDFkyZw8nLyQiIjvHRIgMeXgA69aZV5aTFxIRkZ1jIkSGFArg8cf1o8M4eSERETk4JkImOP3M0kqlfog8YJwM1WxnZLCjNBER2T0On6+D0w6fr2FqHqHQUH0SxMkLiYhIpjh8nhoGJy8kIiIHx0SI6qZUAj16SB0FERGRVbCPEBERETktJkJERETktJgIERERkdNiIkREREROi4kQEREROS0mQkREROS0HD4RKiwsRI8ePRAVFYV7770X33zzjdQhERERkUw4/DxCjRo1QkZGBmJiYlBcXIxOnTrhiSeegKenp9ShERERkcQcPhEKDAxE4F+rpAcEBKBZs2YoLS1lIkRERETSN41t27YNffr0QVBQEBQKBVatWmVUJjMzExEREXBzc0NsbCx27dp1W/fKy8uDVqtFaGjoHUZNREREjkDyRKiiogLR0dHIzMw0eXz58uVITU1FWloa9uzZg+joaPTs2RPnzp0Ty8TExOCee+4xep05c0YsU1paimeffRYffvih1d8TERER2QdZrT6vUCjw7bffol+/fuK+2NhYdOnSBR988AEAQKfTITQ0FOPGjcOUKVPMum5lZSUee+wxjB49Gs8884zZ8Tj96vNERER2yGFWn79x4wby8vIwdepUcZ+Liwvi4+Oxc+dOs64hCAKGDx+ORx55pN4kqLKyEpWVleK2RqMBoP9AiYiIyD7UPLfNqeuRdSJ04cIFaLVaqNVqg/1qtRqHDx826xo7duzA8uXLce+994r9jz7//HN06NDBqGx6ejreeOMNo/3sU0RERGR/rly5Ah8fnzrLyDoRagjdu3eHTqczq+zUqVORmpoqbut0OpSWlsLf3x8KhcJaId62Ll26IDc3V+owDEgZky3uba17NPR17/R6ZWVlCA0NRWFhIZuFHYAc/6+Qir1/FnKMX6qY6rqvIAi4cuUKgoKC6r2OrBOhZs2aQalUoqSkxGB/SUkJAgICGvx+KpUKKpXKYF/Tpk0b/D4NRalUyu4hJWVMtri3te7R0NdtqOt5e3vL7neMLCfH/yukYu+fhRzjlyqm+u5bX01QDclHjdXF1dUVnTp1Qk5OjrhPp9MhJycH3bp1kzAyeUhOTpY6BCNSxmSLe1vrHg19XTn+bpB0+PvwN3v/LOQYv1QxNdR9JR81Vl5ejuPHjwMAOnbsiDlz5iAuLg5+fn4ICwvD8uXLkZSUhEWLFqFr167IyMjA119/jcOHDxv1HSKihsERk0TkLCRvGtu9ezfi4uLE7Zo+OklJScjKysLgwYNx/vx5TJs2DcXFxYiJicGGDRuYBBFZkUqlQlpamlFTMRGRo5G8RoiIiIhIKrLuI0RERERkTUyEiIiIyGkxESIiIiKnxUSIiIiInBYTISKyWP/+/eHr64uBAwdKHQoR0R1hIkREFktJScFnn30mdRhERHeMiRARWaxHjx7w8vKSOgwiojvGRIjIyWzbtg19+vRBUFAQFAoFVq1aZVQmMzMTERERcHNzQ2xsLHbt2mX7QImIbICJEJGTqaioQHR0NDIzM00eX758OVJTU5GWloY9e/YgOjoaPXv2xLlz52wcKRGR9TERInIyCQkJmDVrFvr372/y+Jw5czB69GiMGDECUVFRWLhwITw8PLB48WIbR0pEZH1MhIhIdOPGDeTl5SE+Pl7c5+Ligvj4eOzcuVPCyIiIrIOJEBGJLly4AK1Wa7SosVqtRnFxsbgdHx+PQYMGYd26dQgJCWGSRER2S/LV54nI/vzwww9Sh0BE1CBYI0REombNmkGpVKKkpMRgf0lJCQICAiSKiojIepgIEZHI1dUVnTp1Qk5OjrhPp9MhJycH3bp1kzAyIiLrYNMYkZMpLy/H8ePHxe38/Hzs3bsXfn5+CAsLQ2pqKpKSktC5c2d07doVGRkZqKiowIgRIySMmojIOhSCIAhSB0FEtrN161bExcUZ7U9KSkJWVhYA4IMPPsA777yD4uJixMTEYN68eYiNjbVxpERE1sdEiIiIiJwW+wgRERGR02IiRERERE6LiRARERE5LSZCRERE5LSYCBEREZHTYiJERERETouJEBERETktzixdB51OhzNnzsDLywsKhULqcIiIiMgMgiDgypUrCAoKgotL3XU+TITqcObMGYSGhkodBhEREd2GwsJChISE1FmGiVAdvLy8AOg/SG9vb4mjISIiInOUlZUhNDRUfI7XhYlQHWqaw7y9vZkIERER2RlzurWwszQRERE5LSZCRERE5LSYCBEREZHTYiJERERETouJEBERETktJkJERETktJgIERERkdNiIkREREROi4kQEREROS0mQkREROS0mAgRERGR07LbREir1eL1119Hy5Yt4e7ujtatW2PmzJkQBEEsIwgCpk2bhsDAQLi7uyM+Ph7Hjh2TMGoiIiKSE7tNhN5++20sWLAAH3zwAf744w+8/fbbmD17Nv773/+KZWbPno158+Zh4cKF+PXXX+Hp6YmePXvi+vXrEkZOREREcqEQbq5CsSP//Oc/oVar8cknn4j7BgwYAHd3d3zxxRcQBAFBQUGYNGkSJk+eDADQaDRQq9XIysrCkCFD6r1HWVkZfHx8oNFouPo8ERGRnbDk+W23NUL/+Mc/kJOTg6NHjwIA9u3bh59//hkJCQkAgPz8fBQXFyM+Pl48x8fHB7Gxsdi5c6ckMRMREZG8NJI6gNs1ZcoUlJWVoV27dlAqldBqtfjPf/6DYcOGAQCKi4sBAGq12uA8tVotHrtVZWUlKisrxe2ysjIrRU9ERERyYLc1Ql9//TW+/PJLLF26FHv27MGnn36Kd999F59++ultXzM9PR0+Pj7iKzQ0tAEjJiIiIrmx20TopZdewpQpUzBkyBB06NABzzzzDCZOnIj09HQAQEBAAACgpKTE4LySkhLx2K2mTp0KjUYjvgoLC637JpxASUkJZs6ciYcffhhqtRqurq7w9PRE+/btMWrUKKxfvx61dVN79913oVAoDF5r1qyp836nT5/GhAkT0L59e3h6ekKlUiEgIAAdOnTA4MGDkZ6ejkuXLhmdp9VqsWjRInTv3h2+vr5wd3dHmzZtkJKSgrNnz9b7Pqurq9GpUyeDWIcPH27WZ0RERBIS7JSfn58wf/58g31vvvmm0KZNG0EQBEGn0wkBAQHCu+++Kx7XaDSCSqUSli1bZtY9NBqNAEDQaDQNF7gTyczMFNzc3AQAdb7y8/NNnt++fXujsgMGDKj1fnl5eYKPj0+99/vtt98Mzrt27Zrw+OOP11rez89PyM3NrfO9zpgxw+i8pKQkCz8xIiJqCJY8v+22j1CfPn3wn//8B2FhYWjfvj1+++03zJkzByNHjgQAKBQKTJgwAbNmzUKbNm3QsmVLvP766wgKCkK/fv2kDd4JzJ49G6+88oq4rVQq0bt3b7HW5Pjx49i4caNRjV2N3NxcHDx40Gj/999/j9LSUvj5+Rkde/HFF6HRaAAAnp6eGDx4MFq1aoWqqiocO3YM27dvN1nL99prr2HTpk1inCNHjkRgYCCysrJQUFCA0tJSDBo0CAcOHICnp6fR+fv378fMmTPN+2CIiEhebJCYWUVZWZmQkpIihIWFCW5ubkKrVq2E1157TaisrBTL6HQ64fXXXxfUarWgUqmERx99VDhy5IjZ92CN0O05ePCgoFQqxZqRFi1aCHv27DEqd+PGDeHDDz8USkpKjI69+OKL4vk1P+Oa7f/+979G5Wt+VjWvrKwsk7Ht2rVLOH/+vLh98eJFQaVSiee9+uqr4rHDhw8LCoVCPHZrDWTNe4iJiREACJ07dxaCg4NZI0REJDFLnt92mwjZAhOh2zNmzBiDpGTlypUWnX/9+nXB19fXIDnp37+/uH3fffcZnXPx4kWDe06ePFmorq6u917Lli0zOC8vL8/geIcOHcRjvXr1Mjo/LS1NACCoVCrh4MGDQnh4OBMhIiKJWfL8ttvO0iRfOTk54ve+vr4WN0WuXr3aoEPzkCFDDCbA3LNnD37//XeDc/z8/BAeHi5uv/vuu1Cr1ejbty+mT5+OjRs3GkyNUGP//v0G261atap1+9aye/fuxZtvvgkAmDFjBqKiosx9i0REJBNMhKjBFRUVid/ffffdcHGx7NcsKytL/L59+/bo0KED+vTpgyZNmpgsU+P999+HQqEQty9evIjvvvsOb7zxBnr16gW1Wo0ZM2ZAq9WKZUpLSw2ucesMpF5eXgbXq1FVVYXhw4ejqqoK999/PyZNmmTReyQiInlgIkSycvbsWbHjMgCxJsjd3R1PPvmkuP+LL75AdXW1wbn9+/fHjz/+iEceecRk8qXRaJCWllZnx2bhlqH8t27XmDlzJvbt2wd3d3dkZWVBqVTW/+aIiEh2mAhRgwsODha/P3r0aK3JhCmfffaZQY3NzU1iTz/9tPj9uXPnsG7dOqPze/TogZycHJSWlmL9+vWYPn06OnfubFDm/fffF7/39/c3OHblypVat5s1awYAKCgoEOermjVrFtq2bWv2+yMiInlhIkQN7tFHHxW/v3TpElavXm32ubfODN6mTRtxgsI+ffoYHDPVPFbDx8cHvXr1QlpaGnJzc8VpFQD90ik1w/bvvfdeg/P+/PNPg+0TJ06I33fo0AGAvjmtpjZq0qRJBpMonjp1yuC9cGJFIiJ5YyJEDW7s2LEGTUUvvPAC9u3bZ1SuqqoKH3/8Mc6dOwcA+PXXX/HHH3+YfZ81a9bgwoUL4nZSUhLy8vJMlr25f5GLi4vY9+fxxx+Hm5ubeGzlypXi94cOHcKhQ4fE7b59+5odGxER2Qe7nVCR5Kt9+/aYOXMmXn31VQD6BXA7d+6Mf/7zn+jYsaPRhIrx8fEAgCVLlojXUCgUGDRokEHnZwAoLy/H2rVrAegTqS+//BIpKSkA9M1qn332GVq3bo3u3bujVatWUCgU2LdvH7Kzs8VrPPTQQ/Dw8ACgH9WWnJyM9957DwDw9ttv48KFCwgMDMTixYvFZr3w8HA888wzAICmTZtiwIABJt/7+vXrcfXqVfGczp07o0uXLnfwaRIRkTUpBEs6cDiZsrIy+Pj4QKPRGI0movrNmzcPL7/8sslh6zfLz89HQEAAAgMDcfnyZQBAfHw8Nm/ebFRWEAS0bNlSbIKKiYnBb7/9BgBGSZMpfn5++Omnn3DPPfeI+65fv44nn3zS5P0AfbK0adMmo75GpkRERIixJSUl1dl8R0RE1mHJ85tNY2Q148ePR35+PqZPn47u3bujefPmaNSoETw8PBAZGYkXXngBW7duRXh4OFatWiUmQQAM+vTcTKFQICkpSdzeu3ev2Oy2Z88evPPOO+jduzciIyPh7+8PpVIJLy8vdOzYES+//DIOHjxokAQBgJubG9avX48FCxagW7du8Pb2hkqlQuvWrTFu3DgcOHDArCSIiIjsD2uE6sAaISIiIvvDGiEiIiIiMzARIiIiIqfFRIiIiIicFhMhIiIiclpMhIiIiMhpMREiIiIip8VEiIiIiJwWEyEiIiJyWkyEiIiIyGkxESIiIiKnxUSIiIiInBYTISIiInJaTISIiIjIaTERIiIiIqfFRIiIiIicFhMhIiIiclpMhIiIiMhp2XUiVFRUhP/7v/+Dv78/3N3d0aFDB+zevVs8LggCpk2bhsDAQLi7uyM+Ph7Hjh2TMGIiIiKSE7tNhC5duoQHHngAjRs3xvr163Ho0CG899578PX1FcvMnj0b8+bNw8KFC/Hrr7/C09MTPXv2xPXr1yWMnIiIiORCIQiCIHUQt2PKlCnYsWMHtm/fbvK4IAgICgrCpEmTMHnyZACARqOBWq1GVlYWhgwZUu89ysrK4OPjA41GA29v7waNn4iIiKzDkue33dYIfffdd+jcuTMGDRqEFi1aoGPHjvjoo4/E4/n5+SguLkZ8fLy4z8fHB7Gxsdi5c6fJa1ZWVqKsrMzgRURERI7LbhOhP//8EwsWLECbNm2wceNGvPDCCxg/fjw+/fRTAEBxcTEAQK1WG5ynVqvFY7dKT0+Hj4+P+AoNDbXumyAiIiJJ2W0ipNPpcN999+HNN99Ex44d8fzzz2P06NFYuHDhbV9z6tSp0Gg04quwsLABIyYiIiK5kU0idPnyZYvKBwYGIioqymBfZGQkCgoKAAABAQEAgJKSEoMyJSUl4rFbqVQqeHt7G7yIiIjIcUmSCL399ttYvny5uP3UU0/B398fwcHB2Ldvn1nXeOCBB3DkyBGDfUePHkV4eDgAoGXLlggICEBOTo54vKysDL/++iu6devWAO/COWi1wNatwLJl+q9ardQRMSYiImpAggQiIiKEHTt2CIIgCJs2bRKaNm0qbNy4URg1apTw2GOPmXWNXbt2CY0aNRL+85//CMeOHRO+/PJLwcPDQ/jiiy/EMm+99ZbQtGlTYfXq1cL+/fuFvn37Ci1bthSuXbtm1j00Go0AQNBoNJa/SQewcqUghIQIAvD3KyREv58xyTsmIiJnZsnzW5JEyM3NTSgoKBAEQRDGjx8vPP/884IgCMKRI0eEpk2bmn2d77//XrjnnnsElUoltGvXTvjwww8Njut0OuH1118X1Gq1oFKphEcffVQ4cuSI2dd31kRIqxWExYsFQaEwfLgD+n0KhSCsWGH7uFaurDsmKRIPOcZEROTsLHl+SzKPUFBQEFasWIF//OMfaNu2LWbNmoVBgwbhyJEj6NKli2yGrTvjPEI6HaBU1l8uJAQ4edK8sg2hqgoIDwfOnjV9XKHQx5Sfb7uYqqv1MZ05U3tMQUH6z6lRI9vEREREdjCPUGJiIoYOHYrHHnsMFy9eREJCAgDgt99+w1133SVFSPSXigrzyp0+DdQyl2WD0+kAV9fakyBAXw9TWGi7mABg06bak6CamIqK9OWIiEieJPk79f3330dERAQKCwsxe/ZsNGnSBABw9uxZvPjii1KERH9xsSA1risxaUjmJmeA7WICgFqmo7rtcg1Nq9UnhmfPAoGBwIMP2q62jIjIXkiSCDVu3Fhc9uJmEydOlCAaupmHB7BuHfDEE/WXDQy0fjyAZcmZrWICgJYtG7ZcQ8rOBlJS9DV3NUJCgLlzgcRE28dDRCRXks0j9Pnnn6N79+4ICgrCqVOnAAAZGRlYvXq1VCER9P1aHn9c/9BUKAAXaPEwtmIIluFhbIULtFAogNBQfQ2DLXh4ABoNEBysj6m2uG0ZEwA89NDfn1NdMT30kO1iAvRJ0MCBhkkQoG+mGzhQf5yIiPQkSYQWLFiA1NRUJCQk4PLly9D+NelK06ZNkZGRIUVIdBOlQoeFM84hSViCAoRiK+KwDEOxFXE4hXAMEZYi433BZs0sCgXg7Q3Mm/dXfLckZ0rof38yMmzb9KNU6mtYamK8NWYpYqquBsaN0/dPulXNvvHj9eWIiAjSzCMUGRkpfPvtt4IgCEKTJk2EEydOCIIgCL///rvg7+8vRUgmOeXwea3WeCy4qdeXX0oS3s6XVgpFSsNJe4qUIcLOl6Qbp25qHqHQUGmGzq9da96Pb+1a28dGRGQrljy/JakRys/PR8eOHY32q1QqVFjSM5ak88ortp0+WacDlizB/e8ORKDWsM0nUFeE+98dCKxcabt4bpKYqB8iv2ULsHSp/mt+vjR9ceTegZuISG4kSYRatmyJvXv3Gu3fsGEDIiMjbR8Q/U2hANaurb+crcfPK5XAyJGAIODWLjnifIYTJki2toVSCfToATz9tP6rVKOz5NyBm4hIjiQZNZaamork5GRcv34dgiBg165dWLZsGdLT0/Hxxx9LERLVuHoV6N3bvLK2HKtujprkrEcPqSORTE0H7qIi0/2EaiaetHUHbiIiuZIkEXruuefg7u6Of//737h69SqGDh2KoKAgzJ07F0OGDJEiJLodthqrrlAAn3wCjBpVf1m5JWc2VtOBe+BA/cd2czIkVQduIiI5k2SJjZtdvXoV5eXlaNGihZRhmOSMS2xAEIArV4CoKP20yXVVK9hqPYuKCuCvSTfrtWWLU9cI1TA1j1BoqD4JktM8Qpz0kYisQfZLbABAdXU1fvjhB3z++edwd3cHAJw5cwbl5eVShUSA8Vh1uYwLN4etJxKSMTl14K5NdjYQEQHExQFDh+q/RkRwniMisi1JaoROnTqFXr16oaCgAJWVlTh69ChatWqFlJQUVFZWYuHChbYOySSnrBG6mVyqFQRB33dp9Wrg//7v7301apKzFSvk9aSnWtVM+njr/z78URJRQ5B9jVBKSgo6d+6MS5cuibVBANC/f3/k5ORIERKZIpdqBYUC8PTUVxusWKGfYvpmISF8ctoJQQAuXwaSkznpIxHJgySdpbdv345ffvkFrq6uBvsjIiJQVFQkRUhUm5px4XKRmAj07cuOJXaqvBzw9a27jCDoR71t2mTemndERHdCkkRIp9OJy2rc7PTp0/Dy8pIgIrIrckvOAPb6tQJO+khEtiBJ09jjjz9usKaYQqFAeXk50tLS8AT/BCR7w16/ZmvSxLz5OgFO+khEtiFJZ+nCwkL06tULgiDg2LFj6Ny5M44dO4ZmzZph27ZtshlK7/Sdpal+K1YATz1Ve6/fL77QTzdd2xL1Tkir1eeJ9U36aKvZGYjI8Vjy/JZsHqHq6mosX74c+/btQ3l5Oe677z4MGzbMoPO01JgIUZ2qqoBb+rmZpNHopyQgUc2oMYADAImo4ck6EaqqqkK7du2wZs0a2a8rxkSI6vTjj8Cjj9Zfbt06ICHB+vHYGbnMzkBEjseS57fNO0s3btwY169ft/VtiRreqVPmlSsttW4cdooDAIlIDiQZNZacnIy3334bH3/8MRo1kiQEojsXEGBeOVutyWaH5DgAkIiciyRZSG5uLnJycrBp0yZ06NABnp6eBsezOdqG7MFjj+knd6xvTbaHH7Z9bEREZBZJEqGmTZtiwIABUtyaqOE0aqRfk41LvRMR2S3JV5+XM3aWJrOw1y8RkazIurM0kcNhr1+Hx4nDiRyXJIlQx44doTAxwZxCoYCbmxvuuusuDB8+HHFxcWZf86233sLUqVORkpIizlp9/fp1TJo0CV999RUqKyvRs2dPzJ8/H2q1uqHeCpEee/06LFMVfiEhwNy5rPAjcgSSLLHRq1cv/Pnnn/D09ERcXBzi4uLQpEkTnDhxAl26dMHZs2cRHx+P1atXm3W93NxcLFq0CPfee6/B/okTJ+L777/HN998g59++glnzpxBIv/nIiIz6HTAkiX6LmA3J0GAflbsgQOBpUtN95MnIvshSR+h0aNHIywsDK+//rrB/lmzZuHUqVP46KOPkJaWhrVr12L37t11XqtmVur58+dj1qxZiImJQUZGBjQaDZo3b46lS5di4F9T2B4+fBiRkZHYuXMn7r///nrjZB8hIuek05nf9MWJw4nkx5LntyQ1Ql9//TWefvppo/1DhgzB119/DQB4+umnceTIkXqvlZycjN69eyM+Pt5gf15eHqqqqgz2t2vXDmFhYdi5c6fJa1VWVqKsrMzgRWS3tFpg61Zg2TL9V61W6ojsRkWF+WV//tl6cRCR9UmSCLm5ueGXX34x2v/LL7/Azc0NAKDT6cTva/PVV19hz549SE9PNzpWXFwMV1dXNG3a1GC/Wq1GcXGxyeulp6fDx8dHfIWGhpr5johkJjtbv7JpXBwwdKj+a0SEfj/Vy8WC/xkvXbJeHERkfZJ0lh43bhzGjBmDvLw8dOnSBYC+n8/HH3+MV199FQCwceNGxMTE1HqNwsJCpKSkYPPmzfUmTOaaOnUqUlNTxe2ysjImQ2R/VqwAnnrKuPNKTceWL74Ann7677mOyIiHh36JuCeeqL9scLD14yEi65FsHqEvv/wSH3zwgdj81bZtW4wbNw5Dhw4FAFy7dk0cRWbKqlWr0L9/fyhvasjXarVQKBRwcXHBxo0bER8fj0uXLhnUCoWHh2PChAmYOHFivTGyjxDZnaoqwNW1/nLs2FIvrVZfiVZUVPfE4fn5HEpPJDd2MY/QsGHDMGzYsFqPu7u713n+o48+it9//91g34gRI9CuXTu88sorCA0NRePGjZGTkyPOYn3kyBEUFBSgW7dud/4GiORo+3bzyu3YASQkWDcWO6dU6ofIc+JwIscmWSJ0+fJlrFixAn/++ScmT54MPz8/7NmzB2q1GsFm1DV7eXnhnnvuMdjn6ekJf39/cf+oUaOQmpoKPz8/eHt7Y9y4cejWrZtZI8aI7NKpU+aVKy21bhwOIjFR39Joah4hThxO5BgkSYT279+P+Ph4+Pj44OTJk3juuefg5+eH7OxsFBQU4LPPPmuQ+7z//vtwcXHBgAEDDCZUJHJYAQHmlQsMtG4cDoQThxM5Nkn6CMXHx+O+++7D7Nmz4eXlhX379qFVq1b45ZdfMHToUJw8edLWIZnEPkJkd6qr9R1bzpxhxxYiclqyn0coNzcX//rXv4z2BwcH1zq0nYjM0KgRMG+e/vtbR4WxYwsRkRFJEiGVSmVyssKjR4+iefPmEkRE5EBqOrbc2tcuJES/nx1biIhEkiRCTz75JGbMmIGqqioA+sVWCwoK8Morr4gjvIjoDiQmAidPAlu26BfE2rJF3xzGJIiIyIAkfYQ0Gg0GDhyI3NxclJeXIygoCMXFxejWrRvWrVsHT09PW4dkEvsIERER2R/ZzyPk4+ODzZs3Y8eOHdi3b5+4cOqt64URERERWZPNEyGdToesrCxkZ2fj5MmTUCgUaNmyJQICAiAIAhSc9p+IiIhsxKZ9hARBwJNPPonnnnsORUVF6NChA9q3b49Tp05h+PDh6N+/vy3DISJyaFotsHUrsGyZ/qtWK3VERPJj0xqhrKwsbNu2DTk5OYiLizM49uOPP6Jfv3747LPP8Oyzz9oyLCIih5OdbXpG7Llz2Wee6GY2rRFatmwZXn31VaMkCAAeeeQRTJkyBV9++aUtQyIicjjZ2fo10m5OggD9ArIDB+qPE5GeTROh/fv3o1evXrUeT0hIwL59+2wYERFJim03Da6qChg71vTE4jX7JkzgR01Uw6aJUGlpKdRqda3H1Wo1Ll26ZMOIiEgy2dn65UDi4oChQ/VfIyJYXXEHdDrA1VW/JlptBAEoLNSvnUZENk6EtFotGjWqvVuSUqlEdXW1DSMiIpvT6YAlS+puu1m61HSVBtWposL8snUlS0TOxKadpQVBwPDhw6FSqUwer6ystGU4RGRrOl3d65zVJD/DhgH//CfAiUwt4mLBn7aBgdaLg8ie2DQRSkpKqrcMR4wREQBgxw4gIUHqKOyKhweg0QBRUcCZM6Yr1RQK/eixBx+0fXxEcmTTRGjJkiW2vB0Ryc21a+aXLS21XhwOSqHQV6LNm6dvYVQoDJOhmvlqMzLqrpgjciaSLLpKRFQvtt3ctsREYMUKIDjYcH9IiH4/5xEi+pski67aCy66StTABAG4csW8tpv8fFZb3CGtVj867OxZfV754IP8SMk5yH7RVSJyUmy7sSmlEujRQ+ooiOSNTWNEZHtsuyEimWCNEBFJIzER6NvXPtpu2MZkVdobWvw+fzuunjgLj9aB6PDig1C68vMl22AiRETSsYe2G65ealX/ezkbYXNSEKP9+/M9MzkEBalzcf9sfr5kfWwaIyIyxRFmwJbxWm46HfDj2Gx0fWcgArSGn2+Atghd3xmIbROzZf3xkmPgqLE6cNQYkZOqbwbsm2k08pwBW8Y1WTod4KqswimEIxBnTf5FroMCRQiGz8V8ePux8YIsY8nzmzVCRER3YscOqSMwlp1dd02WxAvbVlzRoRquCK4lCQIAFwgIxWkc/mCzTWMj58NEiIjoVvY8A3ZVFTB2rOkmu5p9EyZI2kzmcs381WG1hVwdlqyLiRAR0Z2Q0wzYOh3g6lr30vKCABQW6kfBScSjifmPHvfICOsFQgQ7ToTS09PRpUsXeHl5oUWLFujXrx+OHDliUOb69etITk6Gv78/mjRpggEDBqCkpESiiInIbtSsXhoc/Pckj7dSKIDQUODhh20bW10qzK9pqTNZsjKFpwe0pRqcdQmGDqY/Xx0UOKMMRYexMvp8ySHZbSL0008/ITk5Gf/73/+wefNmVFVV4fHHH0fFTf8RTJw4Ed9//z2++eYb/PTTTzhz5gwSOdyViOpz8wzYNdu3HgfkNwO2iwX/pUtZk6VQQOnrjVOT9J/vrclQzXZBagbnEyKrc5hRY+fPn0eLFi3w008/4aGHHoJGo0Hz5s2xdOlSDBw4EABw+PBhREZGYufOnbj//vvrvSZHjRGRydFXoaH6JEhuf1jZ4VpuNfMIBd00hL5IGYrC1AzOI0S3zSnXGtNoNAAAPz8/AEBeXh6qqqoQHx8vlmnXrh3CwsLMToSIiOxqBmw7XMvt/tmJ0M7qi723zCwdzJogshGHSIR0Oh0mTJiABx54APfccw8AoLi4GK6urmjatKlBWbVajeLiYpPXqaysRGVlpbhdVlZmtZiJyI7YwwzYN6tZy83UPEIyrMlSuioRM6GH1GGQk3KIRCg5ORkHDhzAzz//fEfXSU9PxxtvvNFAURERSciearKIJGT3idDYsWOxZs0abNu2DSEhIeL+gIAA3LhxA5cvXzaoFSopKUFAQIDJa02dOhWpqanidllZGUJDQ60WOxGRVdlbTRaRBOx21JggCBg7diy+/fZb/Pjjj2jZsqXB8U6dOqFx48bIyckR9x05cgQFBQXo1q2byWuqVCp4e3sbvIiIiMhx2W2NUHJyMpYuXYrVq1fDy8tL7Pfj4+MDd3d3+Pj4YNSoUUhNTYWfnx+8vb0xbtw4dOvWjR2liYiICIAdD59X1DLJ2ZIlSzB8+HAA+gkVJ02ahGXLlqGyshI9e/bE/Pnza20auxWHzxMREdkfS57fdpsI2QITISIiIvvD1eeJiIiIzMBEiIiIiJwWEyEiIiJyWkyEiIiIyGkxESIiIiKnxUSIiIiInBYTISIiInJaTISIiIjIaTERIiIiIqfFRIiIiIicFhMhIiIiclpMhIiIiMhpMREiIiIip8VEiIiIiJwWEyEiIiJyWkyEiIiIyGkxESIiIiKnxUSIiIiInBYTISIiInJaTISIiIjIaTERIiIiIqfFRIiIiIicFhMhIiIiclpMhIiIiMhpMREiIiIip8VEiIiIiJwWEyEiIiJyWk6RCGVmZiIiIgJubm6IjY3Frl27pA6JiIiIZMDhE6Hly5cjNTUVaWlp2LNnD6Kjo9GzZ0+cO3dO6tCIiIhIYg6fCM2ZMwejR4/GiBEjEBUVhYULF8LDwwOLFy+WOjQiIiKSWCOpA7CmGzduIC8vD1OnThX3ubi4ID4+Hjt37jQqX1lZicrKSnFbo9EAAMrKyqwfLBERETWImue2IAj1lnXoROjChQvQarVQq9UG+9VqNQ4fPmxUPj09HW+88YbR/tDQUKvFSERERNZx5coV+Pj41FnGoRMhS02dOhWpqanitk6nQ2lpKfz9/aFQKCSMzLQuXbogNzdX6jAMSBmTLe5trXs09HXv9HplZWUIDQ1FYWEhvL29GywukoYc/6+Qir1/FnKMX6qY6rqvIAi4cuUKgoKC6r2OQydCzZo1g1KpRElJicH+kpISBAQEGJVXqVRQqVQG+5o2bWrNEO+IUqmU3UNKyphscW9r3aOhr9tQ1/P29pbd7xhZTo7/V0jF3j8LOcYvVUz13be+mqAaDt1Z2tXVFZ06dUJOTo64T6fTIScnB926dZMwsoaRnJwsdQhGpIzJFve21j0a+rpy/N0g6fD34W/2/lnIMX6pYmqo+yoEc3oS2bHly5cjKSkJixYtQteuXZGRkYGvv/4ahw8fNuo7RER6ZWVl8PHxgUajkd1fn0REDcmhm8YAYPDgwTh//jymTZuG4uJixMTEYMOGDUyCiOqgUqmQlpZm1FRMRORoHL5GiIiIiKg2Dt1HiIiIiKguTISIiIjIaTERIiIiIqfFRIiIiIicFhMhIiIiclpMhIjIYv3794evry8GDhwodShERHeEiRARWSwlJQWfffaZ1GEQEd0xJkJEZLEePXrAy8tL6jCIiO4YEyEiJ7Nt2zb06dMHQUFBUCgUWLVqlVGZzMxMREREwM3NDbGxsdi1a5ftAyUisgEmQkROpqKiAtHR0cjMzDR5fPny5UhNTUVaWhr27NmD6Oho9OzZE+fOnbNxpERE1sdEiMjJJCQkYNasWejfv7/J43PmzMHo0aMxYsQIREVFYeHChfDw8MDixYttHCkRkfUxESIi0Y0bN5CXl4f4+Hhxn4uLC+Lj47Fz504JIyMisg4mQkQkunDhArRaLdRqtcF+tVqN4uJicTs+Ph6DBg3CunXrEBISwiSJiOxWI6kDICL788MPP0gdAhFRg2CNEBGJmjVrBqVSiZKSEoP9JSUlCAgIkCgqIiLrYSJERCJXV1d06tQJOTk54j6dToecnBx069ZNwsiIiKyDTWNETqa8vBzHjx8Xt/Pz87F37174+fkhLCwMqampSEpKQufOndG1a1dkZGSgoqICI0aMkDBqIiLrUAiCIEgdBBHZztatWxEXF2e0PykpCVlZWQCADz74AO+88w6Ki4sRExODefPmITY21saREhFZHxMhIiIiclrsI0REREROi4kQEREROS0mQkREROS0mAgRERGR02IiRERERE6LiRARERE5LSZCRERE5LSYCBEREZHTYiJERERETouJEBE5pOHDh6Nfv353dI2tW7dCoVDg8uXLdZbLyclBZGQktFptvdfcsGEDYmJioNPp7ig2ImoYTISISFLDhw+HQqGAQqGAq6sr7rrrLsyYMQPV1dV3dN25c+eKa6dZ28svv4x///vfUCqV9Zbt1asXGjdujC+//NIGkRFRfZgIEZHkevXqhbNnz+LYsWOYNGkSpk+fjnfeeee2rqXVaqHT6eDj44OmTZs2bKAm/Pzzzzhx4gQGDBhg9jnDhw/HvHnzrBgVEZmLiRARSU6lUiEgIADh4eF44YUXEB8fj++++w4AUFlZicmTJyM4OBienp6IjY3F1q1bxXOzsrLQtGlTfPfdd4iKioJKpUJBQYFR01hlZSXGjx+PFi1awM3NDd27d0dubq5BHOvWrcPdd98Nd3d3xMXF4eTJk/XG/tVXX+Gxxx6Dm5ubuG/fvn2Ii4uDl5cXvL290alTJ+zevVs83qdPH+zevRsnTpy4vQ+MiBoMEyEikh13d3fcuHEDADB27Fjs3LkTX331Ffbv349BgwahV69eOHbsmFj+6tWrePvtt/Hxxx/j4MGDaNGihdE1X375ZaxcuRKffvop9uzZg7vuugs9e/ZEaWkpAKCwsBCJiYno06cP9u7di+eeew5TpkypN9bt27ejc+fOBvuGDRuGkJAQ5ObmIi8vD1OmTEHjxo3F42FhYVCr1di+ffttfT5E1HAaSR0AEVENQRCQk5ODjRs3Yty4cSgoKMCSJUtQUFCAoKAgAMDkyZOxYcMGLFmyBG+++SYAoKqqCvPnz0d0dLTJ61ZUVGDBggXIyspCQkICAOCjjz7C5s2b8cknn+Cll17CggUL0Lp1a7z33nsAgLZt2+L333/H22+/XWfMp06dEmOrUVBQgJdeegnt2rUDALRp08bovKCgIJw6dcqCT4eIrIGJEBFJbs2aNWjSpAmqqqqg0+kwdOhQTJ8+HVu3boVWq8Xdd99tUL6yshL+/v7itqurK+69995ar3/ixAlUVVXhgQceEPc1btwYXbt2xR9//AEA+OOPPxAbG2twXrdu3eqN/dq1awbNYgCQmpqK5557Dp9//jni4+MxaNAgtG7d2qCMu7s7rl69Wu/1ici6mAgRkeTi4uKwYMECuLq6IigoCI0a6f9rKi8vh1KpRF5entGIrCZNmojfu7u7Q6FQ2DTmGs2aNcOlS5cM9k2fPh1Dhw7F2rVrsX79eqSlpeGrr75C//79xTKlpaVo3ry5rcMloluwjxARSc7T0xN33XUXwsLCxCQIADp27AitVotz587hrrvuMngFBASYff3WrVvD1dUVO3bsEPdVVVUhNzcXUVFRAIDIyEjs2rXL4Lz//e9/9V67Y8eOOHTokNH+u+++GxMnTsSmTZuQmJiIJUuWiMeuX7+OEydOoGPHjma/ByKyDiZCRCRbd999N4YNG4Znn30W2dnZyM/Px65du5Ceno61a9eafR1PT0+88MILeOmll7BhwwYcOnQIo0ePxtWrVzFq1CgAwJgxY3Ds2DG89NJLOHLkCJYuXWrWPEQ9e/bEzz//LG5fu3YNY8eOxdatW3Hq1Cns2LEDubm5iIyMFMv873//g0qlMqvpjYisi4kQEcnakiVL8Oyzz2LSpElo27Yt+vXrh9zcXISFhVl0nbfeegsDBgzAM888g/vuuw/Hjx/Hxo0b4evrC0A/kmvlypVYtWoVoqOjsXDhQrEzdl2GDRuGgwcP4siRIwAApVKJixcv4tlnn8Xdd9+Np556CgkJCXjjjTfEc5YtW4Zhw4bBw8PDovdARA1PIQiCIHUQRET27KWXXkJZWRkWLVpUb9kLFy6gbdu22L17N1q2bGmD6IioLqwRIiK6Q6+99hrCw8PNWj/s5MmTmD9/PpMgIplgjRARERE5LdYIERERkdNiIkREREROi4kQEREROS0mQkREROS0mAgRERGR02IiRERERE6LiRARERE5LSZCRERE5LSYCBEREZHT+n8DTpJHMMjRhwAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADDGUlEQVR4nOydd3xUVfr/P1MyJb2RShqEQAoEQoCEjiKIa8G2lhXLqruKjeWrrruuihXF3yq7C7iWtayuLmvBdVUEREhIaAFC6CUhjfTeJjOTzNzfH2GumWTSz517b+Z5v155ae7c+ZzPmXPm4ck9TcFxHAeCIAiCIAhC9ijFNkAQBEEQBEGwgRI7giAIgiCIUQIldgRBEARBEKMESuwIgiAIgiBGCZTYEQRBEARBjBIosSMIgiAIghglUGJHEARBEAQxSqDEjiAIgiAIYpRAiR1BEARBEMQogRI7giCYEB0dDYVCwf8QBEEQzkcttgGCcGWMRiPeffddfPXVVzhx4gQaGxvh7u4Of39/BAcHIzk5GSkpKbjuuusQEhJi997169ejsbGR/33NmjXM/RUVFeHDDz/kf586dSqWL1/OvBy5cezYMXz88cfIyMhAcXExGhoaoNVqERUVhZkzZ2L58uX4xS9+AZVK5fD9NTU1CAsLQ2dnp931HTt2YPHixQOW//XXX+Ojjz7CoUOHUFNTA5VKBT8/PwQGBiIhIQHTp0/HkiVLMHnyZIfvv3DhAt544w1s374dFy9ehEajwfjx43H99dfjscceg5eX16A+h7NnzyI5ORkmk4m/FhUVhaKiokG9nyAIAeAIghCFsrIyLj4+ngMw4M/HH3/c6/1RUVF29wjBrl277Mq46667+rw3NTWVCw4O5n9GI01NTdwtt9zCKRSKAdvst7/9bZ86f/vb3xy+5+677+63/I6ODu7GG28cVJ+59957HWr85z//4XQ6XZ/vi4iI4M6cOTOoz2PhwoW93h8VFTWo9xIEIQw0FEsQInHnnXfi9OnTdtc0Gg38/f2hVsvvYXpOTg4qKyv5n9FGfX09Zs2ahc2bN4PjOLvXPDw8ej3lMhqNfWp9+umnDq9/9dVX/b7v1VdfxZdffml3TaVSwd/fH1qtdqAq4ODBg7j99tvtyvDw8IBGo+F/Ly0txZIlS9Da2tqv1ocffojdu3cPWCZBEM6FEjuCEIH8/Hzs3LmT/z0uLg45OTkwmUyoq6tDe3s7jh07hv/3//4fUlJSRHRK2Ljllltw5swZu2sPPvggCgoK0NraiubmZlRXV+ODDz7AlClT+tQpLCzEvn37HL7W3NyMb7/9ts/3vv322/z/e3h44IsvvoDRaERdXR2MRiMKCwvxwQcf9DkM/Mgjj9gN/7766qtobm5GXV0dbrzxRv56SUkJ1q5d26ePuro6PPHEEwAwqISSIAgnIvYjQ4JwRb788ku74av169f3e7/RaOT/f8GCBYMaiissLOQ4juMuXrzIvfrqq9yNN97IJSQkcMHBwZybmxvn4eHBTZgwgbvjjju4zMxMu/IKCwsHVcaCBQv49wxmaLi1tZV78803uYULF3KBgYGcWq3m/Pz8uFmzZnHPP/88V1NT4/B9jrR/+OEHbvHixZyPjw+n1+u5mTNncl999ZXD93/wwQd273/uuef6/bx78v333/eq+0svvdTn/RaLhTty5IjD11566SU7nSVLltj9fv311zt8X11dnd19y5cv79dz9z7DcRx3/Phxu/fHx8fbvV5eXs4plUr+9ZCQEK6zs9Oh9l133cXft2bNGhqKJQgJQYkdQYjAZ5991usf96ampkG9d6iJ3eeffz6o+9esWcOXIURil5eXx0VHR/erFxAQwO3cubPXe3tqP/PMM31qfPLJJ73eP9LErue8tkmTJnEWi2VIGjYSExPttE6ePMkFBATwv2u1Wq6hoaHX+yoqKuzeFx4ezuXn5w+63DfffNPu/StXrux1T885n3l5eb3u6T7vctGiRb36CiV2BCEuNBRLECIQFxdn9/v27dsRGhqKK6+8EmvWrMEPP/yAlpYWh++1rZhVKu2/vsHBwXY/jobilEolfHx84Ofn12se35o1a3DgwAEAXfO2goOD4efnZ3ePTqezK8Pf339Q9a2pqcGyZct6rZZ0d3e3+72urg7Lly/HuXPn+tV78cUXAQB6vb7Xa08++SQsFsugfA2WXbt22f1+66239vr8B8PRo0dx8uRJ/vekpCQkJCTgmmuu4a+ZTKZe8+gAICgoCL6+vvzvZWVlmDhxItLS0rB69Wps3rwZ5eXlfZZ97Ngxu9+jo6N73RMVFdXve0wmEx544AEAXUOwf//73/ssjyAIcaDEjiBEICUlBTNmzLC7ZjAYsG3bNjz//PNYtmwZAgICcN111+Hw4cN293311VeorKxERESE3fXuCxe6vz516lT873//Q2VlJTo7O9HY2Ij6+nq0tbXhP//5j52GbWuTiIgIVFZW4quvvrJ7/ZZbbrEro+frffH666/bJR2xsbHIy8tDW1sbioqKMGvWLP61lpYWPPPMM/3q+fn54ccff0RbWxtyc3MREBDAv1ZeXo68vLxB+RoMLS0tqK+vt7vW3xy6/ui5aMI2r+2GG27o9z6gKym/77777K5ZLBYcOHAAb775Jm699VaEh4dj5syZvdoVAGpra+1+754k9nWtpqbG7ve1a9fi7NmzAICnn3661x8oBEFIALEfGRKEq1JYWDio7U7UajX36aef9nr/ULY7qaio4F555RVu2bJl3MSJE7nw8HB+W5LuGrNmzbJ731C2O+nPT88h2G+//dbu9Z7zv/R6vd0csZ7aPeck/vrXv7Z7/fPPP+/38xgKFy9e7NUmO3bsGLKO1WrlIiIiHA51tre3c56envx1pVLJlZWV9dJob2/nli9fPqhh8p5DrZdffrnd6++//34v/RUrVtjd8+KLL/KvnT17ltNqtfxQtMlk4jiu97A9DcUShLjQEzuCEIno6GgcPXoU77zzDhYsWAA3NzeH93V2duKBBx5AU1PTsMr56aefEBcXhz/+8Y/YunUrzp49i7KyMlRVVaGqqsru3rq6umGV0R+tra29hmAvv/xyu9+TkpIQHBzM/97e3o78/Pw+Na+99lq734OCgux+b2trG6bb3nh7e/e61tcweX9kZmaitLSU/z02NpZ/8qfT6bBs2TL+NavVin//+9+9NHQ6HbZs2YKtW7fihhtugI+PT5/lbdq0yW4Iueewd0dHR6/39Lzm4eHB//8DDzwAk8kEhUKBt99+226LFIIgpAMldgQhIhqNBvfffz92796NpqYm7NmzB8899xzGjRtnd19zczMyMjKGrG8ymXDHHXcMOhFx9I/9SOmZkHp5eUGn0/W6b8yYMf2+rztjx461+71nksH12GduJHh5efWaa3j8+PEh6/QcXu05/Hr99df3e393rrzySnz55Zeor69HXl4e/vrXv2LOnDm97vvf//7H/39gYKDda91PLbHR0NBg97utTXbu3Mknib/+9a8xf/78Pr0RBCEulNgRhETQ6/WYO3cu1qxZg1OnTmHixIl2rw9n0999+/ahoqKC/z0sLAw7d+5Ea2srOI7rdzNcVvR8qtTS0uKw3J7zufp7GtXz6abQZ9MuWrTI7vd///vfQ0oeOzo68MUXX9hdW7dund3Zurfffrvd64cPH+bns/WFUqnElClT8MgjjyArKwt333233evd+0zPeYGFhYW99Ho+WbW9p/sfBv/4xz/sfMfExNi9p7i4mH+NjhYjCOdDiR1BiMCFCxewffv2Pl/XarW9ErueQ4I9V2U6Wgnac5Xkrbfeissuu4wfYsvOzu7X52DKGAhPT89eKzC7b84MACdOnLAbFtbr9YiNjR1yWUJx77332v1++vRpvPbaa33eb7VakZuby/++devWXgswBkPPp3b/+Mc/YDab+7y/Z/LWvc/0HP7ueWpEWVmZ3WrkkJAQJCYmDtUyQRAiQ4kdQYhAeXk5li5diqlTp+LNN9/EiRMnYLVaAXQ93fnXv/6Fbdu22b2n5wkUPZ9oORqq7XnP9u3b+ac4hw8fxm9+85t+ffZ8/5EjRwY8asoRN910k93vv/vd7/itNIqLi3ut9rz66quZnmjw4Ycf2j1lWrNmzZDef9VVV+Gyyy6zu/aHP/wBDz/8sN2Tr5qaGnz44YdISUnBX/7yF/56zwTN19e31/Y0wcHBvYaje77vt7/9LWJiYvDUU08hOzsbJpOJf23//v3461//and/9z4zefJku5XYZ86cwauvvgqr1YrW1lY8/PDDdk8h7777bn7LnJ7b3HT/6TnEq1Qq+91yhyAIgRF37QZBuCZ79uzptYpRpVJx/v7+nEql6vXaokWLemnceeedve7z8/PjgoODuauuuorjOI5rbGzkPDw87O5RKpWcl5cXv/oU/axoNBgM/EpI249areaCgoK44OBg7qOPPuLv7W9VbHV1NRcaGtrLb09vADhPT89eh9APtAL4ueees3v9gw8+sHt9pBsUcxzH1dTUcHFxcQ5XoHp5efGfqe3HtoK4paWFc3d3t3vt3LlzDsvo7OzkAgMD7e49ePAg/3rPvqFQKDg/P79ebQSA8/f377XR8b59+3ppeHh4cBqNxu7a2LFjuebm5kF9LrQqliCkBT2xIwgRcLQC1mKxoL6+vtdw58SJE/Hxxx/3uv+BBx7oNVTa0NCAqqoqfnWrj49PrzM/rVYrWlpaoFQq8Y9//KNfn3q9Hr/+9a/trnV2dqK6uhpVVVUwGAz9vt/GmDFjsHXr1l4b4PZcvRoQEID//ve/vYahpUBgYCAOHDjQ6+kj0DUHrecCFdsCkS1btth9TlOnTsWECRMclqFSqbB8+XK7a//617/4/+/ZbziOQ0NDg92TO6Cr3T///PNe+9KlpaXhk08+sXsa2tbWZje8Gx4eju3bt8PLy8uhR4IgpA0ldgQhArNmzUJRURE2bdqEO+64A9OmTYO/vz/c3Nyg0WgQGhqKJUuWYNOmTTh69CjCw8N7aaSnp2Pr1q1YtGgRfHx8+lxA8Mgjj+Dzzz/HjBkzoNPp4OvriyuuuAI7d+7EbbfdNqDXv/zlL3j++ecxadKkEQ2PJicn48SJE3jzzTexYMECBAQEQK1Ww8fHBzNnzsSaNWtw5syZXkOeUsLX1xeff/45cnNzsXr1akyfPh2BgYFQq9Xw8PDApEmTsGLFCnz11VfYuHEjgN7DqTfffHO/ZfR8ffPmzXyyX1FRgc8++wwrV67E7NmzERoaCq1WC7VaDX9/f6SlpeHZZ5/F6dOn+/wcb731Vpw4cQIPPvggYmNjodPp4OXlhWnTpuH555/H6dOnER8fP9yPiCAIkVFwHMN9AQiCIAiCIAjRoCd2BEEQBEEQowRK7AiCIAiCIEYJlNgRBEEQBEGMEiixIwiCIAiCGCVQYkcQBEEQBDFKoMSOIAiCIAhilECJHUEQBEEQxCiBEjuCIAiCIIhRAiV2BEEQBEEQowRK7AiCIAiCIEYJlNgRBEEQBEGMEiixIwiCIAiCGCVQYkcQBEEQBDFKoMSOIAiCIAhilECJHUEQBEEQxCiBEjuCIAiCIIhRAiV2BEEQBEEQowRK7AiCIAiCIEYJlNgRBEEQBEGMEiixIwiCIAiCGCVQYkcQBEEQBDFKoMSOIAiCIAhilECJHUEQBEEQxCiBEjuCIAiCIIhRAiV2BEEQBEEQowRK7AiCIAiCIEYJoz6xKy0txcKFC5GQkIApU6bg888/F9sSQRAEQRCEICg4juPENiEkFRUVqKqqwtSpU1FdXY2UlBScPXsWHh4eYlsjCIIgCIJgilpsA0ITGhqK0NBQAEBQUBD8/f1RX19PiR1BEARBEKMOyQ/FZmZm4pprrkFYWBgUCgW+/vrrXvds2rQJMTEx0Ol0mD59Ovbs2eNQ69ChQ7BarYiIiBDYNUEQBEEQhPORfGLX1taG5ORkbNiwweHrmzdvxqpVq/D0008jNzcX8+bNw7Jly1BSUmJ3X11dHe6880688847zrBNEARBEAThdGQ1x06hUGDLli1Yvnw5f23WrFlISUnBW2+9xV+Lj4/H8uXLsXbtWgCAyWTCFVdcgfvvvx8rVqzoU99kMsFkMvG/W61W1NfXIyAgAAqFgn2FCIIgCIJwKTiOQ0tLC8LCwqBUsn++Jus5dmazGYcPH8ZTTz1ld33JkiXYu3cvgK4P8O6778Zll13Wb1IHAGvXrsXzzz8vmF+CIAiCIAiga9eOsWPHMteVdWJXW1sLi8WC4OBgu+vBwcGorKwEAGRnZ2Pz5s2YMmUKPz/v448/xuTJk3vp/eEPf8Dq1av535uamhAZGYnS0lJ4e3sLV5EhcuDAAcyaNUtsG6L4ELpM1vqs9FjoSKXfEAPjym0lx7pLxbOzfcgtHrPUHIlOc3MzIiIi4OXlNWIfjpB1Ymej5zApx3H8tblz58JqtQ5KR6vVQqvVYuPGjdi4cSMsFgsA4NixY/Dw8MDs2bORl5eHtrY2+Pr6Ii4uDgcPHgQAxMbGwmq14sKFCwCAtLQ0nDp1Cs3NzfDy8kJiYiL2798PAIiJiYFKpUJ+fj4AYMaMGcjPz0dDQwPc3d0xbdo0ZGdnAwAiIyOh1+tx9uxZAEBKSgpCQ0ORm5sLnU6HmTNnIjMzEwAwduxYeHt749SpUwCAqVOnory8HNXV1XBzc8Ps2bOxZ88eWK1WhIaGIiAgACdOnAAATJ48GTU1NaisrIRKpcLcuXORnZ2Nzs5OBAUFITQ0FHl5eQCAhIQENDU1QaPRIDc3FwsWLMD+/fthMpkQGBiIyMhIHDlyBAAwadIkGAwGfs7j3LlzceTIERgMBvj5+WH8+PE4dOgQAGDChAno6OhAUVERACA9PR3Hjx9Ha2srfHx8MGnSJL7M8ePHAwAKCgoAdA3JnzlzBk1NTfD09MTkyZOxb98+AEB0dDTc3Nxw/vx5AEBqaioKCgr4zzslJQVZWVl8O7a3t+PMmTP8511SUoLa2lpotVqkpaUhIyMDABAeHg4fHx/+805OTkZFRQWqq6uhVqsxZ84c6PV65ObmIiQkBGPGjMHx48cBAElJSairq0NFRQWUSiXmzZuHvXv3oqOjA0FBQQgLC8PRo0f5z3vcuHHIzc0FAMyfPx8HDx6E0WhEQEAAoqKi+M974sSJaG9v5z/vOXPmIDc3FwaDAcHBwVCr1cjJyeHrarFYUFhYyPfZkydPoqWlBd7e3khISOD77Lhx46BUKvk+O3PmTJw7dw6NjY3w8PBAcnIy/5Q8OjoaGo0G586d4z/vwsJC1NXVQa/XIzU1lV/gFBERAU9PT5w+fRoAMG3aNFy8eBE1NTXQaDRIT09HZmYmOI5DWFgY/Pz8cPLkSQDAlClTUFVVhaqqKr7PZmVl8X/sBQcH49ixYwCAxMRENDQ0oLy8HAqFAvPnz8e+fftgNpsxZswYjB07lv984+Pj0draitLSUgDAvHnzcOjQIbS3tyMgIAAxMTF8n42Li4PZbOb7LKsYMXHiRLS0tAw7RhQXF6Ourk70GFFWVgYAQ4oRl1122YhixIEDBwBAsBgRGRkJd3d3uxgRFhaG3NzcYcUIW58daYxobm7m4+NwY4Sfnx9iY2MHHSPmz58vaIzQaDSora1lGiNsMXmkMWL8+PH870ONEba2EGyKFycjAHBbtmzhfzeZTJxKpeK++uoru/seffRRbv78+SMur6mpiQPANTU1jViLJZmZmWJb4DhOHB9Cl8lan5UeCx2p9BtiYFy5reRYd6l4drYPucVjlpoj0RE6t5D8qtj+0Gg0mD59Onbs2GF3fceOHZg9e7ZIroRnsE8ghUYMH0KXyVqflR4LHan0G2JgXLmt5Fh3qXh2tg+5xWOWmlJpc0dIfii2tbWVf7QLAIWFhTh69Cj8/f0RGRmJ1atXY8WKFUhNTUV6ejreeecdlJSU4IEHHhh2mT2HYrOysiQ1FGs2m5GRkSH6MEtdXR0yMjKcOhRrK1OoYRaFQoGqqipmQ7ENDQ3IyMgY8TALAL7c4Q6zGI1GGAwGGoqVwVCsWq1GWVmZSw7FBgUFIScnR1ZDsR0dHcjIyBB9KNYWH501FBsYGMjXVYgYUVdXhwsXLjCNEbaYPNIYoVAo+LoPdyhWKCS/3cnu3buxaNGiXtfvuusufPjhhwC6Nihet24dKioqkJSUhDfffBPz588fcdnNzc3w8fFBU1OTpBZP1NXVISAgQGwbovgQukzW+qz0WOhIpd8QA+PKbSXHukvFs7N91NXVwdfXFx0dHYLoNzQ0wM/PT5KaA+m4ublBpVI5fE3o3ELyT+wWLlyIgXLPlStXYuXKlU5yJD4nTpzAggULxLYhig+hy2Stz0qPhY5U+g0xMK7cVnKsu1Q8O9MHx3E4e/Ys88SrO0ajEY2NjZLUHIyOr68vQkJCnL4PruQTOzGQ+lBsdXW1JIZibY+WnTkUa3tNqGGWhoYGpkOxxcXFTIZi6+vrRzwUW1lZSUOxMhmKbWxsdNmhWKvVKruhWFtMFnso1va5OGMo1svLC+7u7vD29oZWq4VGowEA/umdXq+HyWSC1WqFQqGATqdDe3s7gK6nWd3v1el06OjogMVigUKhgF6vh8FggNlshoeHBxQKBcxmc697AcDDwwNtbW0AuqYwKJVK/l6tVovOzk67exsaGqDRaKBSqaBWq/lDCTQaDaxWKzo7O3vpqlQquLm5wWg08vcaDAao1V0plLu7O9rb28FxHK/b1NSEqqoqtLS0QKvV0lCsVJDqUGx9fT38/f3FtiGKD6HLZK3PSo+FjlT6DTEwrtxWcqy7VDw7y4fFYsG5c+cQEBCAoKAgwcrp7OzkkyepaQ5Gp66uDtXV1YiLi7MblhU6t5D1qlhXpaamRmwLAMTxIXSZrPVZ6bHQkUq/IQbGldtKjnWXimdn+bA9abM9pRMK29MzKWoORsfd3R0ABJuD2Bc0FOsAqQ/FHjt2DJWVlaIPs+zfvx+VlZVOHYq1lSnkUKyvry+zodgDBw6gsrJyxMMsp06d4k9TGclQbEREBA3FymQo1tPT02WHYpubm2U1FGuLyWIPxdrio9BDsbbPu7OzEy0tLQC6hj0B8EObHh4eMBqNsFgsUCqV0Ov1/NCmRqOBQqHg73V3d4fZbEZnZyeUSiXc3d3R2toKk8kEhUIBpVLJD4N2v1ehUMDT05P3YFuwYLtXr9ejo6ODT8K8vLzQ1taGjo4OqNVquLm58cPDOp0OFouFT8K8vLzQ2toKjuOgVqv54Vfbve3t7fy9np6eMBgMsFqtdveazWZYLBaUlZXh4sWLAGgoVnSkOhSblZWFuXPnim1DFB9Cl8lan5UeCx2p9BtiYFy5reRYd6l4dpYPo9GIwsJCBAUFCboK1zaXT4qag9GxfU4xMTHQ6XT8daFzC0rs+kGqiR1BEARBiEVfCQthj1iJHc2xkyG2IRixEcOH0GWy1melx0JHKv2GGBhXbis51l0qnp3twza0OhIsVg55RXXYdaIMeUV1sFh/ftbU2to6Yv2etLa24vvvv4dCoejz55e//OWgdKQKzbGTIUJMKB0OYvgQukzW+s6cqOsMDcI5uHJbybHuUvEsFR+DJet0Bd7adgq1LUb+WqCXDg8uTcDc+NAB97AdDhzHYdGiRaioqLC7brFYcM899yA3NxfPPPPMoHSkCiV2DpD64gmj0SiJfexqamqcfqSYrUyhJkZzHMd0HzvbET8jnRhttVpHvI9de3s77WMnk8UTCoXCZfexCwgIkN0+diaTSRL72Nnio7MWTyiVymEvnth3rhprv+76fnantsWIF784gsevTsD0KB+YTCamiyds/+/j48MvnrBYLPjtb3+L3Nxc/O9//0N0dDQA9Lt4AgBfLi2ekBFSnWPX2NgIX19fsW2I4kPoMlnrs9JjoSOVfkMMjCu3lRzrLhXPzvJhmztm+8PM7jVz308NlUoFNGoVLFYOd/71J7sndT0J9NLh/ZXzodW49amr0wz92VTP/ecsFgvuuOMO7NixAz/99BOmTJkyLB1H0Bw7YtDY/ioWGzF8CF0ma31Weix0pNJviIFx5baSY92l4tnZPmxP57pz3Wvb+vx58fPDAIATJfX9JnVA15O7I/mV/O93/m1XL73hYNveBOhK6lasWIEdO3Zg586dg07qeupIDUrsCIIgCIJwGvWt/Sd1NhrbzIJ5sCV127dvx86dO5GcnCxYWc6G5tjJkISEBLEtABDHh9BlstZnpcdCRyr9hhgYV24rOdZdKp6d7cPRyRP//f3SPu9XKhUAAH/PwW2REuT38zDvPx9ZNER3jrFtRLxixQps27atz6Ru1qxZ2LhxI1JTU3HXXXchLS0Ns2bNwh//+Ef88MMP0Ol0+PLLL/HTTz9h48aNTLyxghI7B0h98UReXh7c3NxEnxh9/Phx+Pv7O3XxRFZWFvz9/QWbGK1SqWC1Wpktnti7dy98fX1HPDH6zJkzfDnDnRhtNpsxZ84cWjwhg8UTbm5uMJvNLrl4IiQkBEVFRbJaPHHs2DGo1WrRF08cO3YM/v7+Tls8YbFYei2e6Bhg8YQJwIRgDwR4aVHX0nso10aApxbRfm784okOU+/FE53moS+eaG5uxoMPPoidO3fihx9+wPjx49HS0tLr5IlnnnkGL7zwAtLS0qDT6fCb3/wGzc3NOHnyJDo6OtDS0oIXX3wRX375JTiOo8UTckGqiydsK1HFRgwfQpfJWp+VHgsdqfQbYmBcua3kWHepeHaWDxYnT2SdrsCLX/Sd4DxzUwqSx3oyPXnCarXi1ltvxXfffYcvvvgC06ZN63XPmDFjoFKpAHT94RMUFITvv/+eXygxe/ZsbN68GZ999hmMRiOeffbZPssTa/EEPbEjCIIgCMKpzI0PxTM3pfTax26Mtw4PLOnax872JI4VOTk5+PzzzwEAV111lcN7bOeFHzx4EI2NjYiLi7Nb/Tpz5kz89NNP+Oijj/in8VKDntj1g1Sf2BEEQRCEWLA8Usxi5XCipB71rUb4e+qQFOkP1aW5eGJRVlaGZcuW4b///S9uuOEGfPrpp4iPjwcAfPrpp3jkkUfwyiuv4Le//W2/OrTdCTFobPNwxEYMH0KXyVqflR4LHan0G2JgXLmt5Fh3qXh2tg8WR4qplAokRwdgUVI4kqMD7JI6oY4U64/29nbcdNNN2LBhA2JiYvDkk0/ipZde4l+Pi4tDUFAQbr31VubeWEFDsTLE0d5BYiCGD6HLZK3PSo+FjlT6DTEwrtxWcqy7VDxLxQcrhDpSrD/0ej2/qAYAbrvtNtx222387xs3bsTrr78OpVK6z8UosXOA1FfFtre3S+JIserqaqcfKWYrU6gVb1arlemRYrW1tUyOFLNYLCM+UqytrY2OFJPJqlgALnukmL+/v+yOFLMd8yj2qlhbfJTDkWIKhYK/t/tKV6VSCXd3d7S2tqKjo0OQI8VaWlqgVqv5I8UA9FoV6+XlZXekWGlpKX7xi1/g8ssvx9KlS9He3k5HiskRqc6xa2lpYbpSSE4+hC6TtT4rPRY6Uuk3xMC4clvJse5S8ewsH7a5Y5GRkfDw8BCsHIvFwq9QlZrmYHRojh0xaITO9geLGD6ELpO1Pis9FjpS6TfEwLhyW8mx7lLx7GwftidjQmEwGCSrKYQ3VlBiRxAEQRAEMUqgxE6GTJo0SWwLAMTxIXSZrPVZ6bHQkUq/IQbGldtKjnWXimdn+3B0pBhLRrqVipCaQnhjBSV2MkQqj4DF8CF0maz1pfTYXyr9hhgYV24rOdZdKp6d7UPoKfpWq1WymkJ4YwUldjLEtppJbMTwIXSZrPVZ6bHQkUq/IQbGldtKjnWXimdn+7CtIBUKs9ksWU0hvLGCEjuCIAiCIIhRAm130g9S3e5EiCXgcvEhdJms9Z25tN5ZXgjhceW2kmPdpeLZWT5s23hER0dDr9cLVg7HcVAo2B4vxkpzMDpibXdCGxQ7QOobFP/000/w9fUVffPRgwcPIjw83KkbFH/11VcIDw8XbPNRg8GAlJQUZhsUf/755wgNDR3x5qM5OTn8flHD3Xy0oaEBS5YsoQ2KZbBBsdFoRFJSkktuUKzT6aBUKmW1QfGuXbvg4+Mj+gbFBw4cQHh4uNM2KDYYDPzmv0JsUGw2m+Hp6cl0g+KGhga4ubkNeYNi26bDtnsNBgN/+gRtUCwjpPrEznbag9iI4UPoMlnrs9JjoSOVfkMMjCu3lRzrLhXPzvJhexIVFBSEgIAAwcoRYsNlZ24aTxsUE4PGz89PbAsAxPEhdJms9VnpsdCRSr8hBsaV20qOdZeKZ2f7EPq8VCGGlVlpSmHovS8osZMhtiEGsRHDh9BlstZnpcdCRyr9hhgYV24rOdZdKp6d7UPofexsw7usNb///nsoFIo+f375y1+K4o0VlNjJENt8E7ERw4fQZbLWZ6XHQkcq/YYYGFduKznWXSqene2DxZFinMWC2v37UfbNN6jdvx/cpbntgHBHii1atAgVFRV2PxcvXsQVV1yBwMBAPPPMM4PSkSq0eIIgCIIgRhmcxYK6nByYqquhDQpCwIwZUEhs+LBi2zaceOEFGCsr+Wu6kBAkPfssQpcuFaxcvV5vt5rXYrHgjjvuQG5uLn766SdMnjxZsLKdASV2MmTChAliWwAgjg+hy2Stz0qPhY5U+g0xMK7cVnKsu1Q823w4K2Fyc3Mb9nsrtm3DoYceAnqs3zRWVeHQQw8hdeNGBCxaNFKLveg5hGpL6nbs2DGkpI6GYgmmCL3b92ARw4fQZbLWZ6XHQkcq/YYYGFduKznWXSqezSYTSj7/HIdWrrRL6oCfE6aL33wj6FFgnQZDnz+WS9ubcBYLTrzwQq+kruvFrmsnXngB1kvblPSlOxy6191isWDFihXYsWMHdu7ciSlTpgxLR2rQEzsZUlRUhKioKLFtiOJD6DJZ67PSY6EjlX5DDIwrt5Uc6y4Fz5zViuOLF/dzQ1cikvu73yF40SK4Mdjyw1FCu7WfJ15BCxdi1j/+gbqcnF6JZ0+vxspKVO/fj8jLLgMA7FywAOb6ervbrrm0R+FQMJvN0Gq1fFK3fft27Ny5E8nJycPSkSL0xI4gCIIghkj3Sf+dZ87YTfoXgo6WFrTk56MmOxulX36J85s24fhzz6Hp0obdliE8waoXebGHqbp6UPeZa2sFKd+W1G3btg0//vhjr6TuyJEjuPLKK/nfv/zySzz00EMAuja6ti1Sueuuu/DWW28J4nEkuMQTu+uvvx67d+/G5Zdfji+++EJsOyMmPT1dbAsAxPEhdJms9VnpsdCRSr8hBsaV20oOdXc0h+3Hf/5zWHPYrJ2dMNXWwlhVBWNlJYyVlRgzbx48x43jy8p94glYLp3a0BOfpCT4JCYCQ9hTrqO5eUge+8LRcWLLLp2c4Qjb4g1tUNCg9H0iIvj/v/zSaR4jRafT4c477+STuqlTp/a6Z8qUKfxpIR0dHXj55ZexdetWAMAzzzyDV155BbNnz4anpycefPBBJr5Y4hJP7B599FH885//FNsGM47388VxJmL4ELpM1vqs9FjoSKXfEAPjym0l9brbJv33NYetYts2/lpnaytaCgpQk52N9m731+7fjz3XX48ds2fju/h4/DhnDrJuuAGHVq7EiRdesHuipvb05JM6N29veE2YgDHz5iHippsw4aGH4D1pEgBApdfD7/e/H1QddMHBw65/dxxtd6J2d+/zR3Vp6DJgxgzoQkKAvs5aVSigCw2FPjGxX92hYrVacccdd+Drr7/GJ598gtDQUFRWVtr9WCwWqNVqjB07FqWlpXjrrbewfPlyBF/6zK6++mpcuHABW7duxV/+8pche3AGLvHEbtGiRdi9e7fYNpjR2toqtgUA4vgQukzW+qz0WOhIpd8QA+PKbSXVunMch87mZhx/7rl+J/0fWbUK+rFjYaquRme3ukx55RVE3XJL160WCxovnWMMdD3J0o4ZA11ICHTBwXaJl9+0aVj044/QBQf3m8woFAp0TpgAXUgIjFVVjj0qFNCFhCBgxoyhVt8hw11AoFCpkPTss12rYhUKe6+Xkr2kZ54B11fiN0xycnLwn//8BwBw1VVXObynoaEBvr6+mDlzJn766Se8++67/BnOAHDw4EE0NjZi3LhxUKulmUJJ/oldZmYmrrnmGoSFhUGhUODrr7/udc+mTZv4s9imT5/OHzA+WvHx8RHbAgBxfAhdJmt9VnosdKTSb4iBceW2kmLdO1paULNnD35ISYGppqbfe61mM9ouXOCTOrWnJzzHj4ey29YgPomJmPH3v2Peli24Yt8+/OL0aVyRnY15X36JGZs2Iajbea9qd3d4xsQM6gmVr58fkp59tuuXnklRt4SJ1X52IzlSLHTpUqRu3Njr6aEuJASpGzcidOlS5sd2zZo1C21tbeA4rs8fX19fAMDMmTOxevVqPPzww/Dw8AAAlJWV4b777sOuXbtQUFCA06dPM/XHCmmmm91oa2tDcnIy7rnnHtx44429Xt+8eTNWrVqFTZs2Yc6cOXj77bexbNkynDp1CpGRkSI4Fp5Jlx69i40YPoQuk7U+Kz0WOlLpN8TAuHJbiVl3juPAdXbySVjj8eM4/OijMJSUDEln3H33IfKXv4Q+OBhqT89er2t8fRFyxRVMPHdn0qRJ0E2ditSNGx3vY/fMM0z3sRvpqtDQpUsRsnhxnxsp63Q6FjbtGKxmXFwcgoKCcN999wEA2tvbcdNNN2HDhg2IiYnBk08+iZdeegn/+te/mHscKZJ/Yrds2TK89NJLuOGGGxy+/sYbb+Dee+/Ffffdh/j4eKxfvx4RERHDWqliMpnQ3Nxs9yNFDhw4ILYFAOL4ELpM1vqs9FjoSKXfEAPjym3lrLpbOzvRcv48Ln7zDU69+ir23Xknts+cifObNvH3aAMD+aROFxIC30FuiRG0cCG8xo93mNQJie2zC126FIszM5H+r38h5c03kf6vf2FxRgbz0xza29tHrKFQqRCYlobwa69FYFqa3dPEtj4WjIyEwWpu3LgRr7/+Ov/UUK/XY9++fZg/fz4A4Nprr5VkUgfI4Ildf5jNZhw+fBhPPfWU3fUlS5Zg7969Q9Zbu3Ytnn/++V7Xs7Ky4OHhgdmzZyMvLw9tbW3w9fVFXFwcDh48CACIjY2F1WrFhQsXAABpaWk4deoUmpub4eXlhcTERH6cPiYmBiqVCvn5+QCAGTNmID8/Hw0NDXB3d8e0adOQnZ0NAIiMjIRer8fZs2cBACkpKaiurkZGRgZ0Oh1mzpyJzMxMAMDYsWPh7e3Nr+aZOnUqysvLUV1dDTc3N8yePRt79uyB1WpFaGgoAgICcOLECQDA5MmTUVNTg8rKSqhUKsydOxfZ2dno7OxEUFAQQkNDkZeXBwBISEhAU1MTioqKAAALFizA/v37YTKZEBgYiMjISBw5cgRA11+QBoMBJZeC49y5c3HkyBEYDAb4+flh/Pjx/NLxCRMmoKOjg9dNT0/H8ePH0draCh8fH0yaNIl/zXbYdcGlfYxmzZqFM2fOoKmpCZ6enpg8eTL27dsHAIiOjoabmxvOnz8PAEhNTUVBQQH/eaekpCArKwtA1/yKqqoqnDlzhv+8S0pKUFtbC61Wi7S0NGRcWp0VHh4OHx8f/vNOTk5GRUUFqquroVarMWfOHBQXFyMjIwMhISEYM2YMPzE8KSkJdXV1qKiogFKpxLx587B37150dHQgKCgIYWFhOHr0KP9519fX8+XOnz8fBw8ehNFoREBAAKKiovjPe+LEiWhvb+c/7zlz5iA3NxcGgwGVlZUwGAzIycnh+6zFYkFhYSHfZ0+ePImWlhZ4e3sjISGB77Pjxo2DUqnk++zMmTNx7tw5NDY2wsPDA8nJyfx3Ljo6GhqNBufOneM/78LCQtTV1UGv1yM1NZWfLhEREQFPT09+SGPatGm4ePEiampqoNFokJ6ejszMTHAch7CwMPj5+eHkpe0dpkyZgqqqKlRVVfF9NisrCxaLBcHBwQgODsaxS/OYEhMT0dDQgPLycigUCsyfPx/79u2D2WzGmDFjMHbsWOTm5gIA4uPj0draitLSUgDAvHnzcOjQIbS3tyMgIAAxMTF8n42Li4PZbOb7JasY0djYiLKysmHHiOLiYtTV1YkeI8rKygAMLUZYrVbk5OQMO0bYkpvuMYKzWpGWno4zZ86gobQUpr/9DZaLF2G9tGFudy7s2YOx992HgoIC1NfXw+9Pf8L0q6/GwVOnYLFaoX7qKXT2sw2HLjQUJ41GKDIyBhUjbH12pDGiubmZ/1zmz5+Pg4cOwWgyIWDcOERFRSHzUozrL0b4+fkhNjZ2wBhh+7w5jkNLSwuAn5/emS59ph4eHjAajbBYLFAqldDr9XxSpdFooFAo+Hvd3d1hNpvR2dkJpVIJd3d3tLa2wmQyQaPRQKlU8gs1ut+rUCjg6enJe3Bzc4NKpeLv1ev16OjoQOeljY69vLxgNpvR0tICtVoNNzc3PjnV6XSwWCw4e/YsbrrpJixbtgwLFy7k79VoNPz5sDqdDp2dnXy5np6eMBgMsFqtdveazWZYLBaUlZXh4sWLALpihK3vC4WCk/L2yT1QKBTYsmULli9fDgAoLy9HeHg4srOzMXv2bP6+V155BR999BEf6JYuXYojR46gra0N/v7+2LJlC2Y4mDxqMpn4jgYAzc3NiIiIQFNTE7y9vYWt3BC4ePEixo4dK7YNUXwIXSZrfVZ6LHSk0m+IgXHltiotLoa+omLYZ5waa2rQfOoUmk6f5v/rN2UKpv35zwC6Fi5sTU6Gpb0dKnd3eE+aBJ/ERHjHx8MnPh5ecXFQ9TNcxx+FBTic9G+bHyYGzuo3RqMRhYWFCA8PF/TfRrPZDI1GI0nNwejYPifbGgAbzc3N8PHxESy3kPUTOxuKHpNEOY6zu7at2/Lz/tBqtdBqtdi4cSM2btwIy6UNJ6X2xO7ChQsoKCgQ/a/x06dPo6CgwKlP7HJzc1FQUCDYEzu9Xg83NzdmT+zy8vJQUFAw4r/Gy8rK+LoO94kdx3Hw9/enJ3YyeGLn4eEBhULhck/sOg4fRud//oOObgsUtMHBUN50E9ymT+8zRrS0tKBj0yZYi4pgrqtDT9pNJsQbjXyM8P2//0P8nDnIKyuDRamE96UYkXf+PHDgQL8xIjIuDrEvv4yC118H19DAl6Hw84PXnXcidOnSIcUIlk/sTp06hYKCgmHHiKE+sQMg6BM7i8UCjuOYPrEzGAwwmUx9PrGznabh5eWF1tZWcBzn8Imd2Wzm/dMTuxHQ84md2WyGu7s7Pv/8c1x//fX8fY899hiOHj3Kf7mGi9BZ9XDJyMjAgm6rplzJh9BlstZnpcdCRyr9hhgYV2yrvg6Ftz0Jm/T443Dz9kbz6dNoPn0aSq0Ws7vNcdp95ZVoOX8eUCjgOW5c1xO4hAR4JyTAJz4e2sBApn45i4Wf9H+mogKX3Xcfs9Wmw8VZ/cb2JCooKAgBAQGCldPS0gIvBkefCaE5GB16YjcMNBoNpk+fjh07dtgldjt27MB1110nojOCIAhiMAx2f7gzr79ud1mp04GzWPhkKvGZZ6D28IBXXNywNq8dKrZJ/wCQn5EhelJHEDYkn9i1trbywxEAUFhYiKNHj8Lf3x+RkZFYvXo1VqxYgdTUVKSnp+Odd95BSUkJHnjggWGXKfWhWG9vb0ksnujs7OT/QnTWUKytTKGGYkNCQpgunuA4jsniiaCgoBEvnrANF9BQrPSHYsPDw11m8cSEiAgcHuTWH/q4OHimpKDV1xfKiAiYOztx4uhRuxiR7WDxBMAuRkRGRsLd3d0uRvj4+CAjI2NYMYLlUKwtPjprKFar1Qo6FMtxHEwmE9OhWAD9Lp4Y7FCsWq2mxRPDZffu3Vi0aFGv63fddRc+/PBDAF0bFK9btw4VFRVISkrCm2++yS9JHglSHYo9evSow/PtXMGH0GWy1melx0JHKv2GGBhXaKu24mJU7tyJym3bBn0offKrryLy5psFdjZ0pNJezvJhG2IMCQmBn5+fYOUYDAa4M376ykpzMDo0FNsHCxcuHPDYkpUrV2LlypVOciQ+TU1NYlsAII4Poctkrc9Kj4WOVPoNMTCjua0qtm/H2Tfe6JoPN0T0El0pLJX2crYP25MwobCNmklRczA6VquVSVlDRfKJnRhIfSi2ublZEkOx5eXlTh+KtZUp1DCL0WhkOhRbWVnJZCi2vb19xEOxjY2NNBQrk6FYs9k8KoZiLxYWovPUKaRdey1OVFXBZDJBX17eldQplVBNnIjwJUugTUlB/qpVdqtMe6Lw94d57FgUFxcPeR87QNihWFtMFnso1hYfhR6KtS0cqK2thcVi4YcfAfBDmXq9HiaTCVarFQqFAjqdjh/2dLt0softXp1Oh46ODlgsFigUCuj1en4o07bLhdls7nUv0DXkaxviVavVUCqV/L1arRadnZ297jWbzVCpVFCr1fxwsEajgdVq5ZPV7roqlQpubm78EK9Go4HRaOTLcXd3R3t7OziO43VbW1tRX18Pq9WKyspKFBcXA6ChWNGR6lCsEHv7yMWH0GWy1nfmnknO8kIIj5zbylRXh+pdu1D544+oycqCpb0dsQ8+iPjHHwcAWIxGVGzbhqCFC6Hpdi6slPeHGwiptJczfZjNZly8eNFu71fW9Ny6TEqag9Fxd3dHaGhorzZx+aFYojf79u2TxFYIYvgQukzW+qz0WOhIpd8QAyO3trIYjSj6+GNU/vgj6o8cAboNQelCQ+HWbVsIlU6HsQ52LbAdCn/46aftntwJccYpa6TSXs70odFoUFpaitmzZwsyZAoABw8exMyZMyWpOZCO7ckd68R0MFBiRxAEQQwJzmJBe3k53CMiAABKNzfkv/MOzPX1AADvxESELF6MkMsvh3dCwqD/cQtduhSeGg2S9PphnzxBOBc3Nzd+aJU1HMfZLTqQkqYQ3lhBiZ0DpD7HzraFhtjzZ5qampw+x85WplDzZ7RaLdM5dra5NyOdP6PRaEY8x85isdAcO5nMsdPr9ZKbY5cwYQJKtm9Hza5d6MzLg9bDA/rXXoPFYkFQUBDC77oLFdXVUE+bhoS5c9HU1ISjZWVAZuaQYkRkVBQK6+pg8PGBn7s79EbjiM+KZRkjHM2xAyCJOXa2+OiMOXbe3t4ICwvj6ypEjGhqasKFCxeYxoiWlhZkZGSMOEZ0j8lDjRGSnGNnNBpx7NgxVFdX91r1ce211zIzJzZSnWNXXl6OsLAwsW2I4kPoMlnrs9JjoSOVfkMMjJBt1f3EhIGeiJlqa1G5cyeqdu5ETVYWrN3mU6m9vLDg22/hznilqhz7qVQ8O9uH3OIxS82R6Ehujt0PP/yAO++8E7W1tb1eUygUgo21Ez9z/vx5SQQRMXwIXSZrfVZ6LHSk0m+IgRGqrSq2bcOJF16AsbKSv6YLCUHSs88idOlSfmsp29Bp/ttv48L77/P36sPDu4ZYFy+G/4wZUAowBCfHfioVz919WKwcTpTUo77VCH9PHZIi/aFSsp3vJbd4zFJTKm3uiCEndg8//DBuvvlmPPvsswgODhbCE0EQBMGYvs5iNVZV4dDKlQi+/HK0nD+PKS+9hDFz5gAAghcvRl1ODp/MeU2cKMpkcCnSPXEqbeyExcoxT5yGS9bpCry17RRqW4z8tUAvHR5cmoC58aEiOiOcwZCHYr29vZGbm8vPXxiNdJ9jd+7cOXz33XeSmmN37tw5tLa2ij7HrqioCG5ubk6dY5eVlQU3NzfB5s8EBQXB39+f2Ry7n376CSqVasTzZ6qrq/mn5MOdP+Pu7o7ExESaYyeDOXYhISHw9PRkMsduxowZyPjhB7T96U/gBrGBrWbxYuhuv91pR4r1jBHTpk3D2bNnhx0jnDHH7mSVCR9mXECL+ed/Pr00Clw1yQO/vm6BaHPsCgsLUdCkwFenfk7oevLI4nFIDNExmWMXFRXF+xUiRnR0dGDcuHFMY4QtJo80RtTW1qKmpgbA0GNEdnY2Fi1aJNhQ7JATu1//+teYM2cO7r33XuZmpIZU59gdO3YMU6ZMEduGKD6ELpO1Pis9FjpS6TfEwLBsq87WVmxNTh7UvbEPPogJDz4ItYcHk7KHg9T7adbpCrz4Rd+T35+5KcVpT8WsHAdzpxXmDgtMnRYcOXYCHxxsREObuc/3jPHW4aNHLmPydFFu8Zil5kh0JDfHbsOGDbj55puxZ88eTJ48udcy50cffZSZOcIxDf3szu5MxPAhdJms9VnpsdCRSr8hBoZlW1ku7fY/GDyiokRN6gCgrr4eeUV1gs4NGy4dFis2/HCy33v+vv0U0ieGoKXdjFZjB0wdVpg7uxIvc4f10n8tuGxyOD+snXGyHOcqmmDqsHTdy7+nK2l76bYZ0Gm6/rl+e/spbM+7CFOHBR2WoR9ZVdNsxImSeiRHBwz9A+iB3OIxS00px9MhJ3affvoptm3bBr1ej927d9vNt1AoFJTYOQHWhyIPFzF8CF0ma31Weix0pNJviIFh0VYt58+j+LPPcHHLFqg8PGC5dDxSf4h9FmvW6QpsOtiO5j37+WvOmBtm5Ti0mzvRZuxEm7EDraau/5o7rZifEMrfc/UrWwfUsiVO/z1YiOyzVX3eNzc+FFq3rtXIB85XY+fxsj7vNXZY+MSuw2JFq7Gj1z1qpQKd1sENwNW39j1UOxTkFo9Zako5ng55KDYkJASPPvoonnrqKSiVSqF8SQKpDsVaLBaoJLBhpxg+hC6TtT4rPRY6Uuk3xMAMt60sJhMqtm1D8aefov7SPCkA0IWHgzOZYKqr67V4AgCgUEAXEoLFGRmibQY8kiHOngsXzpQ1ora5HW2XErRWYyfaTB18QvTEdVN/1v3sIHLya+DoH0I3lRLf/nEZgK7EbtlL3w+qLk9dPxWHC2qRfbYSWrUKGjcltGoVtG4qaNRKaN1UePbm6dBfStZ2nSjD+YqmS/eqoFUrL/236/60uGA+CaxtNsJg7oT2ko5NU6VU4nBBNf74aU5/1gAA61akMXliJ7d4zFJzJDqSG4o1m8245ZZbRnVSJ/UNin/44QcEBQWJvngiOzsb0dHRTl08sXnzZkRHRws2MbqhoQHp6enMFk/861//QlRU1IgnRmdlZcHf3x/A8BdPVFZW4pprrqHFEzJYPNHY2IjU1NQhxYgTmzfD+P774FpbAQBQKqFJScHUlStx2mpFZ24usHEjHMJxUN98MxQqFdMYMdjFE80trXjjv2cde7vEui1HsP2IL9pMnWhsMcDYCXBKN7S0m+GmBJ69MoxfPPFxngGlTY6HKVUK4LKxFj5GNDS080mdUgHo1Ar4eOighgVqWLD/wEHMSJ2OrKwszI9yQ2Zx76dlPSktOIMZvmosv2F8jxiRxMeIIzkH+MUTSosFCyK7xQgLkDTh5xhxsL6gV4zwCQvD0UM5/Ofd3NyMY3uy4KUZY7eooyf+Hm7wtDQhI6OrXUeyeKK+vh5qdVcaIUSMKCoqwrx585jGiE8//RSRkZEjjhHZ2dl8TJb9BsW/+93vMGbMGPzxj38UypNkkOoTO9tpD2Ijhg+hy2Stz0qPhY5U+g0xMINpK6vZjI7mZmgDAwEArRcuYNcVV0AXEoKoW29FxM03Qx8SYvceh/vYhYaKdhZrXlEdzlc04t0fz4xIp/uTNQDY+MMJFFQ2w0OrhofOjf+v56X/X5YSCeWlaUR1l7YE8dS5QaNW9rudi8XK4c6//mS3jUhPWC5OGCoZGRlQBcU5bXGH3OIxS82R6EjuiZ3FYsG6deuwbds2TJkypdfiiTfeeIOZOcIxkZGRYlsAII4Poctkrc9Kj4WOVPoNMTD9tZWhtBTFmzej5D//QeCsWZj+t78BADzHjcPszZvhN3UqlGrHoT106VKEXNqbzhlnsVo5DlWN7SiuaUFJbSsa2kz47RUJ/OsfZ5zD8ZL6QetdnhSG5JhAeGjVXUlat6SN4zg+KXvoyqRBawZ4Df68T5VSgQeXJvSbOD2wJEG0xR6RkZGIiQnFMzel9NrHboy3Dg8sYTtXUW7xmKWmlOPpkBO748ePY9q0aQDAP6K3QRtXOgepTNqkxRPO06PFE65Fz7aydnai6qefUPzZZ6jZs4efJ9dw9CgsJhNUWi0AICA1dUBtq0KJspAJqPeMgL+nDn4KJVimdT8eu4gjF2pRXNOC0tpWmDp/HhJVALhrQRy/ECBlXCB8PbTQqhX48Xj5gNpLp0UymRs2EubGOy9xGiq2fjM3PhTpE0MEP3lCbvGYpaaU4+mQE7tdu3YJ4YMYAmfOnJHEqR9i+BC6TNb6rPRY6Eil3xAD072tij79FOc3brQbPg2cOxdRt92GkMsvH9KxXiM9kcBitaK83oCS2lYU17SguKYVF+ta8eY9s6FRd6WHeUV1dis83VRKjA3wQNQYL0QGesLSbeXm7fMmXNLlcLSofsAhzqRI/0HXVUh6Jk6lBWfwq2vEGX7tTvd+o1IqBE+C5RaPWWpKOZ4OObHrTnZ2NlJTU6G99NciQRAEMTI4iwVctzO3Le3tMFZWQuPvj4ibbkLULbfAIzp6yLp9rTqtbTHixS+O2M296rRYoVQq+Hlo/80pwveHS1BW3+Zw77TyegOig7wAAPPiQxHq547oMV6IHOOJUD93qAZYbCf1IU5HdE+cMuryJeWNcG2GvHiiO97e3jh69CjGjRvH0pPoSP1IsbNnz6KtrU30VbGFhYXQaDROXRW7Z88eaDQawVbFBgYGIjAwkNmq2J07d0KtVo94VWxVVRXq6uoADH9VrE6nw+TJk2lVrERXxcYGBWH/+vUwZ2Yi6K67EL58OfLz82FtbUWU0YiW6Gg0trYO+UixmTNnYtfu3dhwoB1tHX2He60KmDEhGGdKalDfbsXTy6IQHx2KEydOILvEjIyirtMM3JRAoIcKiTEh4Nrq4K8DpseGICYyfMRHip2p7cTuEivqW38+OSHAS4sFEQpMClRL5kgxd3d3uxhhO+ZxODGC5ZFiFy5cgEajGXaMGOqq2IiICP77KESMMJvNGD9+PNMYYYvJI40R1dXVfEyW/ZFi3fHy8kJeXt6oS+xsSHVV7MmTJ5GYmCi2DVF8CF0ma31Weix0pNJvXAXOYhlwkQJntaJ23z4Uf/opKn/8EVxnJwBAP20aFn/xBRMfnVYrfvHywBvr9uS5X07H7Ildq2rL6tpQVt+GyDGeCPLR80/yhOD4iROweoZK8uSJvpDKd8vZPuQWj1lqjkRHcqtiCfGxHQYvNmL4ELpM1vqs9FjoSKXfuAIOtxUJCUHSs88idOlScByHC++9h6JPP4Xh0pMTAPBLSUHU7bejwNNzWOVWNhiQW1SLsro2lDcYUF7fhvL6gU+csHFZUhgunzIWkYGeGOP982rR8AAPhAc456ix+ro6LEga/KpWKSCV75azfcgtHrPUlEqbO2JEid3bb7/NTx60Wq24ePGipJcAjxakMqdRDB9Cl8lan5UeCx2p9JvRTsW2bTj00EO9TngwVlXh0EMPIXXjRoQuXYrqzEwYSkqg9vTE2OuvR9Rtt8F74kQAQNn+/b10OY5DY5sZZfVt/E95fRtuSBuHhLF+AIBTFxuw/tvjvd6rVACDOW3qSgmsOpVjP5WKZ2f7kFs8ZqkplTZ3xJCHYj/44ANs3rwZxcXF8Pb2xrx58/C73/0OarUaYWFh/GkNowGpDsUSBCE9OI5DZ3Mzdi1dClNNTZ/36YKDcXlmJuoPHoTh4kWEXX011Je2TuA4Ds3tHVArFfDQda12PV5ch79vP4XyegMM5s5eeiuvTMR1M6IBABeqmvGPnWcQ7u+BcH93hPl7IMzfA2O8dbhnw27JbqxLEK6E0LnFoM8Fs1gsuO666/DAAw9Ar9fj2muvRXJyMr744gvEx8fjhx9+YG6OcIxtYq7YiOFD6DJZ67PSY6EjlX4zWrG0teGHlJR+kzqg68ld2a4M1EYlID9+Dj7LuYhXt+TikX9k4ab/tx2//PMOvL3l57ZSqZTIr2yGwdwJBYBgXz1SxgXimtQo/HZJApKjfn7CNi7YGy/fPrMr2ZsZgxmxQQj394BGrcKDSxMcuPkZqaw6lWM/lYpnZ/uQWzxmqSmVNnfEoIdi33zzTRw4cABHjx5FfHw8f91qteKNN97Ab37zG0EMEgQhbSxWTvCNUOXsxxEl+SV4YX/fT8/azD9vKRIT5IU1v0xFuL87Qvzc+f3ihoqUN9YlCIIdg07sPvzwQ7z++ut2SR0AKJVKPP744+A4Dr///e+ZGyR6Ex4eLrYFAOL4ELpM1vqs9FjoCPHZjXTDWzn44TgObaZONLWZ0WgwXfqvGY1tJsSP9cO0mK6zWksNVmxdcDeWZXw4oKbJPwgBJi3CLw2Vhnf7CfVzR2lxIX+vXqNG+kQ2G6E660SCkSCV+DYUpOLZ2T7kFo9ZakqlzR0x6MSuoKAAaWlpfb7+xBNP4IknnmBiiugfHx8fsS0AEMeH0GWy1mel50hnqE+mWNdtKBveOoPB+uE4DgZzJxrbzGi6lKB1/bfr96nRAUiLu3TqQ3ULHnp3Dzr7WHlwY1oMYjvq4RUXB3eNGheipsKs1sCt0wxHLcEBaHX3hcekyfj0lr4XmgnZz51xIsFIkEp8GwpS8exsH3KLxyw1pdLmjhh0Yufh4YGamhpMmDDB4etHjx7FX//6V7z//vvMzIlF9w2KASArK0tSGxTv3r0bQUFBom9QnJ2djejoaKduUPz9998jOjpasM1HGxoakJ6ezmyD4q1btyIqKmrEm49mZWXB37/rOKX58+fjw//twXenW9Fi/jnh8NIocPf8GCSG6BxuPlpZWYlrrrmGyQbF06anYv3/jvbzLQL+8r9cdFSdxcwZM/jNR3U6HVKmT0fmnixYOSA0LBx6vTvOnDsHKwfMmJaM+ppK1NTUACo3jI1NwqHDh2GxcvAPCISHpycKLhSC44BZU+OhNDWjqqoKRgvw9qG+hzYB4G/fH0NH1VnUGDj847Chz/uM7QYEqdtQWlqKZpOVT+o0KsBLp0aAtzs4YytCK84j5C/vYffpY/B45hkooqOxclkitpb8Cst2fwAOsEvubC21Z9aNSC86D9Ok4D5jRGNjI1JTU4cdI3puUCxWjBjqBsVA1/QeT0/PYccIMTYotsVksTcozsrKQnR0tNM2KK6vr4da3ZVGCLFBcVFREebNm8d0g+IffvgBkZGRI96gODs7m4/JQ92g2NYWQjHoVbE33ngjPDw88M9//rPXa5WVlVi4cCHOnz9Pq2KdQEZGBhYsWCC2DVF8CF0ma31Wet11+noyZaOvJ2UDeeE4DopLG882G8worm2FwdSBdpMFBnMnDKZLP+YObDlQNCjfOjclfrskEVeldD2dOlZchyf+2XsrDxv3Xj4Jv5zd9Q/yufJGPPKP7D7vvX1eLO5aOBFWjsOyl74flJ91K9IwNsADt6/fCZ2bCj4eGvi6ay/9VwMfdw2SowMwIzYIQNdT0boWI3w9NNCoVeA4DtW7d+P8xo1ouBTkFW5uSHrmGUT/6lewWDnc+def4H3iAOYd+BJehka+7BZ3X+yZdSNaJs8acPWpVL7jYiDHukvFs7N9yC0es9QciY5kNih+7rnnkJ6eDoVCgSeeeAKxsbGor6/H//73P7z00kuIjo7m/9ohhCU5OVlsCwDE8SF0maz1WenZdDosVmz44WS/9/7l++MwdVpg6rBiWkwgQv26ttLQjonBS18cQbu5E+22RO3Sf9tNnXjiuqlYmBQGoCsB6y95HCzGDitMHT//sddfMqNWKuy2ftOoVfD31EKpVEBl+1EooFIqoVQq4Ocx9H2k6luNmBzlj/8+dSV0bgMvQlApFQjy0YOzWlG+dSvOb9qE5ktPX5RaLaJuuQXj778f+rAw/v4HlybgxRYjCiMmI6yqAO7tzTDovVEePB6cUolnBrH6VCrfcTGQY92l4tnZPuQWj1lqSqXNHTHoxG7KlCn4/vvv8etf/xqffPLJzwJqNR577DE88sgjiIqKEsQkYU9FRQV8fX3FtiGKD6HLZK3PSq+iogLePj64+pWBj4ZqNnRg3dddQ2J/vGEan9gVllVhz+nqPt/XfY80Hw8txvp7wF2rhl6rhl6jhodWDb1GBb1GjTHeOmzadmpAL09el4xZcT9P/J8Y5ovPH7/iUqKm5BM2R0dURQd54bPfLR6wDKVCgdfumIXff3JgwHv9PXVQKhSDSuq6Y+3owMmXXoKxshIqDw9E/+pXGH/vvdAGBva6t/vq0zLlz1NXhrL6VCrfcTGQY92l4tnZPuQWj1lqSqXNHTGkkycWLFiA8+fP4+DBgygsLIS3tzfS09Ph7++PtrY2PPfcc0L5JLpRXV3da3Wyq/gQukzW+qz0qqurMXHSpEHfHxnoiTB/D/h2e6qlt7Ri5dIE6LVquGu6EjaPS0mbu1YNH3cNf+/kSH/846GFfepbrBz+s/fCgBveLkwKt3s6pVYp4a3X9Pme4TI5KgCBXroB/SRF+g9Kz2Iyofy77xB+7bVQqtVQabWY+NhjaC8vR8xdd0Hj59fv+0e6+lQq33ExkGPdpeLZ2T7kFo9ZakqlzR0x5CPFlEol0tLSeq2Q9fDwoMTOSdgmq4qNGD6ELpO1Pis9tVo9pCdTDy9L6rXycYyXBnNmxjDxww859jNc68wNb1n56WxvR8m//42C996DsbISCrUaY6+9FgAQ+ctfDtnTcFefSuU7LgZyrLtUPDvbh9ziMUtNqbS5I4Z8pJgrIdXFE4TrYpucL5WjoRztGyfmhrfD9dPR0oLiTz9FwXvvwVxfD6Dr6K+Ep55C+KXEjiAIggWSOVKMkA62ZfdiI4YPoctkrc9Kz6ZjezLVH309mRLis5sbH4p/PnoZ1q1Iw1PXT8W6FWn46JHLRDvFYKh+rJ2dOPuXv2Dn/Pk4vW4dzPX1cI+IwJSXXsJlu3aJltRJ5TsuBnKsu1Q8O9uH3OIxS02ptLkjpPsskegTqWwpI4YPoctkrc9Kr7vOcI+GEuqzk9qGt0Pxo1CpULt3Lzqam+E5fjxiH3wQ4ddcA6XIwyxS+Y6LgRzrLhXPzvYht3jMUlMqbe4ISuxkSEhIiNgWAIjjQ+gyWeuz0uupM5zJ+VLpN0LDWSyoy8mBqboa2qAgBMyYAYWqaxVse3k5LnzwASasXAmNnx8UCgXin3gCxupqhC5dyt8nNq7SVo6QY92l4tnZPuQWj1lqSqXNHTHqE7tvv/0W//d//wer1Yrf//73uO+++8S2NGLGjBkjtgUA4vgQukzW+qz0HOkM9UmZVPqNkFRs24YTL7wAY2Ulf00XEoLYBx5A8+nTKP3qK3AdHVB7eGDiqlUAAP/UVJHc9o0rtFVfyLHuUvHsbB9yi8csNaXS5o4Y1XPsOjs7sXr1avz00084cuQIXnvtNdRfmhgtZ2xHzoiNGD6ELpO1Pis9FjpS6TdCUbFtGw499JBdUgcAxspKnFizBiWbN4Pr6EDArFkI6Ofcaykw2tuqP+RYd6l4drYPucVjlppSaXNHjOondgcPHkRiYiLCw8MBAFdddRW2bduG2267TWRnBEGwguM4dDY34/hzzwH9LPJXajSY9dFHCJw504nuCIIgnIukn9hlZmbimmuuQVhYGBQKBb7++ute92zatAkxMTHQ6XSYPn069uzZw79WXl7OJ3VA1wHYtkOp5UxSUpLYFgCI40PoMlnrs9JjoSOVfsMaS1sbfkhJgammpt/7rGYzLG1tTnI1MkZrWw0GOdZdKp6d7UNu8ZilplTa3BGSTuza2tqQnJyMDRs2OHx98+bNWLVqFZ5++mnk5uZi3rx5WLZsGUpKSgB0/SXfE4WDo4vkRl1dndgWAIjjQ+gyWeuz0mOhI5V+wxpjdd/HpPXEVFsroBN2jNa2GgxyrLtUPDvbh9ziMUtNqbS5IySd2C1btgwvvfQSbrjhBoevv/HGG7j33ntx3333IT4+HuvXr0dERATeeustAEB4eLjdE7qLFy8iNLTv/bVMJhOam5vtfqRIRUWF2BYAiOND6DJZ67PSY6EjlX7DAo7jUHvgAA498gh2L1s26Pfpx44V0BU7RlNbDRU51l0qnp3tQ27xmKWmVNrcEbKdY2c2m3H48GE89dRTdteXLFmCvXv3AgBmzpyJEydOoKysDN7e3vj+++/x7LPP9qm5du1aPP/8872uZ2VlwcPDA7Nnz0ZeXh7a2trg6+uLuLg4HDx4EAAQGxsLq9WKCxcuAADS0tJw6tQpNDc3w8vLC4mJidi/fz8AICYmBiqVCvn5+QCAGTNmID8/Hw0NDXB3d8e0adOQnZ0NAIiMjIRer8fZs2cBACkpKaipqUFGRgZ0Oh1mzpyJzMxMAF1Dzd7e3jh1qutw9qlTp6K8vBzV1dVwc3PD7NmzsWfPHlitVoSGhiIgIAAnTpwAAEyePBk1NTWorKyESqXC3LlzkZ2djc7OTgQFBSE0NBR5eV0HyyckJKCpqQnFxcXIyMjAggULsH//fphMJgQGBiIyMhJHjnQd7TRp0iQYDAb+KercuXNx5MgRGAwG+Pn5Yfz48Th06BAAYMKECejo6EBRUREAID09HcePH0drayt8fHwwadIkvszx48cDAAoKCgAAs2bNwpkzZ9DU1ARPT09MnjwZ+/btAwBER0fDzc0N58+fBwCkpqaioKCA/7xTUlL4zSYbGxtRVVWFM2fO8J93SUkJamtrodVqkZaWhoyMDABdfzj4+Pjwn3dycjIqKipQXV0NtVqNOXPmoKSkBBkZGQgJCcGYMWP4CbdJSUmoq6tDRUUFlEol5s2bh71796KjowNBQUEICwvD0aNH+c+7sbGRL3f+/Pk4ePAgjEYjAgICEBUVxX/eEydORHt7O/95z5kzB7m5uTAYDKiurobBYEBOTg7fZy0WCwoLC/k+e/LkSbS0tMDb2xsJCQl8nx03bhyUSiXfZ2fOnIlz586hsbERHh4eSE5O5r930dHR0Gg0OHfuHP95FxYWoq6uDnq9HqmpqfyUiYiICHh6euL06dMAgGnTpuHixYuoqamBRqNBeno6MjMzwXEcwsLC4OPpiby334b5p59g7fZHm2rCBChratDR2Ii+UI8Zg5NGI5SZmZg/fz727dsHs9mMMWPGYOzYscjNzQUAxMfHo7W1FaWlpQCAefPm4dChQ2hvb0dAQABiYmL4PhsXFwez2cz3WVYxorm5GWVlZcOOEcXFxairqxM9Rtj+sB5KjACAnJycYceIAwe6jtwTKkZERkbC3d3dLkbU1tYiIyNjWDEiKysLFotlxDGiubmZj4/DjRF+fn6IjY0ddIywWq18XYWIEcXFxbhw4cKQYoSfnx9OnjwJAJgyZQqqqqpQVVXF99nS0lJkZGQgODgYwcHBOHbsGAAgMTERDQ0NKC8vh0KhGDBGdI/JQ40RtrYQCtkcKaZQKLBlyxYsX74cwM/z57KzszF79mz+vldeeQUfffQRH+S++eYbPP7447BarXjyySfxm9/8ps8yTCYTTCYT/3tzczMiIiLoSDGCkAjWzk7sXLAAxspKqPR6hF93HWJWrID3pEn8qlgA9osoLk2/SN24EaFLl4rgmiAI4mfoSLEB6DlnjuM4u2vXXnstzp07h/z8/H6TOgDQarXw9va2+5Eitr96xEYMH0KXyVqflR4LHan0m8Fi7exExfbtOPzYY7B2dAAAlGo1Jj72GBL/9CdcsXcvkl9+Gd6TJgEAQpcuRerGjdAFB9vp6EJCZJfUya2tWCLHukvFs7N9yC0es9SUSps7QrZDsYGBgVCpVKjssWdVdXU1gnsE9qGyceNGbNy4kT8yRGpDsWVlZZIYij1//jw6OjqcOhRrK1OoYZaGhgamQ7H5+fno6OgY8TBLVVXViIdiKysrZTEUW3TiBCq3bEFHRgaslyYoN0RGIuraa+Hn54fCS99vP4sFVWfO2A2zFHh4wO2llxBQUwNPiwWlzc1QxcXBbfJknD9/ftDDLGIPxTY2NrrsUKzVapXdUKwtJos9FGuLj84aim1vbxd0KLaoqAghISFMh2ILCgrQ0dEx4qHY7jGZhmKHSc+hWKDrizp9+nRs2rSJv5aQkIDrrrsOa9euHXGZQj8uHS6nT59GfHy82DZE8SF0maz1Wemx0JFKv3EEx3FoPHoUhZ98gorvv4fVbAYAuPn5IeqXv0TUHXfAPSxMZJfOQ8ptJTRyrLtUPDvbh9ziMUvNkegInVtI+olda2srn/0DQGFhIY4ePQp/f39ERkZi9erVWLFiBVJTU5Geno533nkHJSUleOCBB0ZUrtSf2LW0tEjiiV1paSmqq6ud+sTOVqZQf40HBAQwfWJXVlaG6urqEf813tHRMeIndlqtVrJP7E78+CPannmG/w4qY2LgvmQJ5j/2GLIPHED1+fMIa2sb8K9x29OPkf41LvYTuzFjxrjsE7vJkyfL7olda2urJJ7Y2eKjs57YhYeHC/rEzmQyQavVMn1iZ4vJI40RnZ2dkn1iB07C7Nq1iwPQ6+euu+7i79m4cSMXFRXFaTQaLiUlhcvIyGBWflNTEweAa2pqYqbJgt27d4ttgeM4cXwIXSZrfVZ6LHSk0m84juNai4u5sm+/tbuWffvtXO4TT3ANeXkiuZIOUmorZyPHukvFs7N9yC0es9QciY7QuYWkn9gtXLjQ4SbD3Vm5ciVWrlzpJEcEQQwXzmpFdWYmij7+GNUZGVBqNAicMwcaX18AQPrHH0OhlP16LoIgCFGRdGInFlIfinVzc5PEUKzBYHD6Pna2MoUaZvH29mY6FGs0GpnsY+fl5TXioViVSiXIUKy7Xo8IsxknsrOh8PXF+CuugFav54dZkidMwMn330fDd9+B63ZKhGLCBBQcP46AiROZDbOMlqFYPz8/lx2KnThxouyGYjUajSSGYm3x0VlDsbGxsYIOxRoMBub72Nli8khjRPeYLLWhWNksnhADqS6eKCgo4IOWq/kQukzW+qz0WOgI8dlVbNuGEy+8AGO31em6kBAkPfssQpcuReWPP3ZtV2I0AgDUXl6IvPlmRN1+OzxjYph6GU1I5TsuBnKsu1Q8O9uH3OIxS82R6NA+dkQvLl68KLYFAOL4ELpM1vqs9FjosKwbZ7Wi5PPPcWjlSrukDgCMlZU49NBDuPjNN/CZPBlcZye8J03ClJdfxhV79yLx6acpqRsAqXzHxUCOdZeKZ2f7kFs8ZqkplTZ3BA3FEgQxJDirFd9OmDDATRxyf/c7XHn0KBZu3QqPmJhem4kTBEEQ7KGhWAd0n2N37tw5fPfdd5KaYyfn+TMjnWMn9PyZiIgIeHh4MJtjZ/u8Rzp/pvvnPdz5M76+vpgwYcKI59hx7e1osR3dNQD6xx5D+r33Mjsr1lXm2EVHR0OtVrtkjOg550tqMcLRHLuRxAiWc+xsT5GcNccuPj6e/7ylcp60s2JES0sL/3kPNUZkZ2dj0aJFgg3FUmLXD1KdY3fgwAHMmjVLbBui+BC6TNb6rPRY6LDy0mkwYOvkyYO6d9obb2DsddeNuExXQyrfcTGQY92l4tnZPuQWj1lqjkSH5tgRvTBemoguNmL4ELpM1vqs9FjosPKi0usRc889g7q357mtxOCQyndcDORYd6l4drYPucVjlppSaXNHUGInQwICAsS2AEAcH0KXyVqflR4LneFqdLa3o+iTT1D2v/8B6Dreb9Lq1VB5ePT9JoUCutBQBMyYMawyXR2pfMfFQI51l4pnZ/uQWzxmqSmVNncELZ5wgNT3sbPtwyP2/JmKigrU1dU5dY6drUyh5s8EBgYy3ceuqqoKdXV1I54/A2DE+9jpdLoh7WMXGxqKfevWwbxzJ7jWVmjCwnDe0xMKpRIzZ86E30MPoXbdOsdfIo6D4oYbkJmVJcv5M2LPsQsODnbZfeySk5Nlt4+dyWSSxD52tvjorDl2ERERgu5jZzab4e7uzjRG2GLySGMEAMnuYyfpI8XEho4U6x86Usx5es48Uqy1uJg79txz3LcJCdw348Zx34wbx+2YP5+78NFHnMVksru3/IcfuO2zZ/P3fTNuHLd9zhyu/IcfRuzXlZHKd1wM5Fh3qXimI8Wcp0lHihEEIQsK3nsPp157DbBaAQA+SUkYf//9CL3ySijVvcNF6NKlCFm8GHU5OTBVV0MbFISAGTOgUKmcbZ0gCIIADcXKkokTJ4ptAYA4PoQuk7U+Kz0WOo40OI6D1WSCSqcDAPhOnQpYrRgzfz5i778fAenpA+4/p1CpEJiWNmJ/xM9I5TsuBnKsu1Q8O9uH3OIxS02ptLkjKLGTIe3t7WJbACCOD6HLZK3PSo+FTncNq9mMsm+/RcG77yJwzhwk/elPAAD/6dOxaMcOeI4bN+LyiOEjle+4GMix7lLx7GwfcovHLDWl0uaOoMTOAVJfPHHo0CGUlJSIPjE6OzsbJSUlTl08kZmZiZKSEsEmRtuusdyguKSkZMQTo48ePcp/hsOdGF1ZWYkADw/sf/NNmHfsANfQAABorapCbXo60ufO/XlidFNTnxsUA6N/81GxF080NjZCo9G45OIJq9WK2tpaWS2esMVksRdPZGVloaSkxGmLJ+rr63kdIWJEUVEROI5jHiNKSkpGHCO6x2RaPCEjaPFE/9DiCefpjVSnvbKS++Ghh7jvp0zhFzlsmzWLO/fWW5xZYv2bkM53XAzkWHepeKbFE87TlPLiCTp5oh+kevJEZ2cn1A4msruCD6HLZK3PSm+kOqdefRUF774LAPAcPx7j778f4ddeC5VWO2JvBHuk8h0XAznWXSqene1DbvGYpeZIdOjkCaIXtsfBYiOGD6HLZK3PSs+RDmexoHb/fpR98w1q9+8Hd2nqAMdxqDt4EE2Xhn8AIOauu6BJSMCMd97Bwh9+QOTNN1NSJ2Gk8h0XAznWXSqene1DbvGYpaZU2twR4v+JQQwZg8EgtgUA4vgQukzW+qz0eupUbNuGEy+8AGNlJX9NFxKCsGuuQf3Bg2jMy0PQwoWY9Y9/AAD0oaHQPf44QhYsYOKHEBapfMfFQI51l4pnZ/uQWzxmqSmVNncEJXYyxM/PT2wLAMTxIXSZrPVZ6dl0OKsVpV9+ibynnup1j7GyEhcuDbcqNRroQ0PBWSz8nnJS6TfEwLhyW8mx7lLx7GwfcovHLDWl0uaOoDl2Dui+KvbcuXP47rvvJLUq9vz582hpaRF9xVtRURHc3Nycuio2KysLbm5ugq14CwoKgr+/P7NVsbt27YJSqRzxireamhpUV1Wh5b77BtWH3deuhTo42G7Fm7u7OxITEwe94o1WxYq3KjY0NBQeHh4uuSo2JSUFZ86ckdWq2Pz8fDQ3N4u+KrawsBBubm5OWxUbHR3Nf8eEiBEdHR0YN24c0xhhi8kjjRG1tbWoqakZVozIzs7GokWLBJtjR4ldP0h18URGRgYWSGBITQwfQpfJWp+VXkZGBuZMn46tycmDun/me+8heNEiQbwQwuPKbSXHukvFs7N9yC0es9QciQ4tniAIogvl4L+uHc3NAhohCIIgpAoldjIkNjZWbAsAxPEhdJms9VnpxcbGQqXXY+b77w/qfl1wsGBeCOFx5baSY92l4tnZPuQWj1lqSqXNHUGJnQyxnYghNmL4ELpM1vqs9CwWCxQKBYLmzoUuJATo6/xWhQK60FAEzJghmBdCeFy5reRYd6l4drYPucVjlppSaXNHUGInQ2wTWcVGDB9Cl8lan5WeTUehUiHp2We7LvZM7i79nvTMM/xKWCG8EMLjym0lx7pLxbOzfcgtHrPUlEqbO4ISO4KQGaFLlyJ148Zew626kBCkbtyI0KVLRXJGEARBiA2tiu0Hqa6KNZlM0Erg1AAxfAhdJmt9VnqOdDiLBXU5OTBVV0MbFISAGTMcPqlj7YUQHlduKznWXSqene1DbvGYpeZIdGhVLNEL2x49YiOGD6HLZK3PSs+RjkKlQmBaGsKvvRaBaWn9JnUsvRDC48ptJce6S8Wzs33ILR6z1JRKmzuCEjsZ0tLSIrYFAOL4ELpM1vqs9FjoSKXfEAPjym0lx7pLxbOzfcgtHrPUlEqbO4KOFHNA95MnACArK0tSJ0+0tLQgIyND9F3lKyoq+E0anXXyhK1MoXaVN5lMqKqqYnbyRFVVFTIyMka8q7zRaOTLHe6u8k1NTTAYDHTyhAxOnujo6EBZWZlLnjzh6emJnJwcWZ080draioyMDNFPnrDFR2edPKHX6/m6ChEjKioqcOHCBaYxwhaTRxojTCYTX/ehxghbWwgFzbHrB5pjJz0fcpvTIYX5HKy9EMLjym0lx7pLxTPNsXOeJs2xI5hi+6tebMTwIXSZrPVZ6bHQkUq/IQbGldtKjnWXimdn+5BbPGapKZU2dwQldgRBEARBEKMESuxkyLhx48S2AEAcH0KXyVqflR4LHan0G2JgXLmt5Fh3qXh2tg+5xWOWmlJpc0dQYidDlEM4DF5IxPAhdJms9VnpsdCRSr8hBsaV20qOdZeKZ2f7kFs8ZqkplTZ3hHSdEX1iW3UkNmL4ELpM1vqs9FjoSKXfEAPjym0lx7pLxbOzfcgtHrPUlEqbO4ISO4IgCIIgiFECbXfSD1Ld7qS9vR16vV5sG6L4ELpM1vqs9FjoSKXfEAPjym0lx7pLxbOzfcgtHrPUHIkObXfCgOuvvx5+fn646aabxLbCBNumjmIjhg+hy2Stz0qPhY5U+g0xMK7cVnKsu1Q8O9uH3OIxS02ptLkjXCKxe/TRR/HPf/5TbBvMaGxsFNsCAHF8CF0ma31Weix0pNJviIFx5baSY92l4tnZPuQWj1lqSqXNHeESid2iRYvg5eUltg1meHh4iG0BgDg+hC6TtT4rPRY6Uuk3xMC4clvJse5S8exsH3KLxyw1pdLmjhA9scvMzMQ111yDsLAwKBQKfP31173u2bRpE2JiYqDT6TB9+nT+nElXJTk5WWwLAMTxIXSZrPVZ6bHQkUq/IQbGldtKjnWXimdn+5BbPGapKZU2d4ToiV1bWxuSk5OxYcMGh69v3rwZq1atwtNPP43c3FzMmzcPy5Yt4w8wBoDp06cjKSmp1095ebmzquFUbAcpi40YPoQuk7U+Kz0WOlLpN8TAuHJbybHuUvHsbB9yi8csNaXS5o5Qi21g2bJlWLZsWZ+vv/HGG7j33ntx3333AQDWr1+Pbdu24a233sLatWsBAIcPH2bixWQywWQy8b83NTUB6FrBIiXa2tok4UkMH0KXyVqflR4LHan0G2JgXLmt5Fh3qXh2tg+5xWOWmiPRsb1PqE1JRE/s+sNsNuPw4cN46qmn7K4vWbJEkGx57dq1eP7553tdj4iIYF4WQRAEQRCuS11dHXx8fJjrSjqxq62thcViQXBwsN314OBgVFZWDlpn6dKlOHLkCNra2jB27Fhs2bIFM2bM6HXfH/7wB6xevZr/3Wq1or6+HgEBAVAoFMOvCGNmzJiBnJwcsW2I4kPoMlnrs9IbqU5zczMiIiJQWloqqT0ZCcdI5TsuBnKsu1Q8O9uH3OIxS82R6DQ1NSEyMhL+/v4j9uEISSd2NnomVRzHDSnR2rZt26Du02q10Gq1dtd8fX0HXY6zUKlUkvjHWQwfQpfJWp+VHisdb29vSfQdon+k8h0XAznWXSqene1DbvGYpSYLHaHOmxV98UR/BAYGQqVS9Xo6V11d3espnivx0EMPiW0BgDg+hC6TtT4rPam0OeEcXLm95Vh3qXh2tg+5xWOWmlJpc0dI6kgxhUKBLVu2YPny5fy1WbNmYfr06di0aRN/LSEhAddddx2/eIIgiP6R6vF4BEEQrobQ8Vj0odjW1lbk5+fzvxcWFuLo0aPw9/dHZGQkVq9ejRUrViA1NRXp6el45513UFJSggceeEBE1wQhL7RaLZ577rleUw0IgiAI5yJ0PBb9id3u3buxaNGiXtfvuusufPjhhwC6Nihet24dKioqkJSUhDfffBPz5893slOCIAiCIAhpI3piRxAEQRAEQbBB0osnCIIgCIIgiMFDiR1BEARBEMQogRI7giAIgiCIUQIldgRBEARBEKMESuwIwsW5/vrr4efnh5tuuklsKwRBEC5NaWkpFi5ciISEBEyZMgWff/75kDVoVSxBuDi7du1Ca2srPvroI3zxxRdi2yEIgnBZKioqUFVVhalTp6K6uhopKSk4e/YsPDw8Bq1BT+wIwsVZtGgRvLy8xLZBEATh8oSGhmLq1KkAgKCgIPj7+6O+vn5IGpTYEYSMyczMxDXXXIOwsDAoFAp8/fXXve7ZtGkTYmJioNPpMH36dOzZs8f5RgmCIFwAljH50KFDsFqtiIiIGJIHSuwIQsa0tbUhOTkZGzZscPj65s2bsWrVKjz99NPIzc3FvHnzsGzZMpSUlDjZKUEQxOiHVUyuq6vDnXfeiXfeeWfIHmiOHUGMEhQKBbZs2YLly5fz12bNmoWUlBS89dZb/LX4+HgsX74ca9eu5a/t3r0bGzZsoDl2BEEQjBhuTDaZTLjiiitw//33Y8WKFUMul57YEcQoxWw24/Dhw1iyZInd9SVLlmDv3r0iuSIIgnBNBhOTOY7D3Xffjcsuu2xYSR1AiR1BjFpqa2thsVgQHBxsdz04OBiVlZX870uXLsXNN9+M77//HmPHjkVOTo6zrRIEQYx6BhOTs7OzsXnzZnz99deYOnUqpk6diuPHjw+pHDUzxwRBSBKFQmH3O8dxdte2bdvmbEsEQRAuS38xee7cubBarSPSpyd2BDFKCQwMhEqlsns6BwDV1dW9/mIkCIIghMVZMZkSO4IYpWg0GkyfPh07duywu75jxw7Mnj1bJFcEQRCuibNiMg3FEoSMaW1tRX5+Pv97YWEhjh49Cn9/f0RGRmL16tVYsWIFUlNTkZ6ejnfeeQclJSV44IEHRHRNEAQxOpFCTKbtTghCxuzevRuLFi3qdf2uu+7Chx9+CKBrM8x169ahoqICSUlJePPNNzF//nwnOyUIghj9SCEmU2JHEARBEAQxSqA5dgRBEARBEKMESuwIgiAIgiBGCZTYEQRBEARBjBIosSMIgiAIghglUGJHEARBEAQxSqDEjiAIgiAIYpRAiR1BEARBEMQogRI7giAIgiCIUQIldgRBEARBEKMESuwIgiAIgiBGCZTYEQRBEARBjBIosSMIgiAIghglUGJHEARBEAQxSqDEjiAIgiAIYpRAiR1BEARBEMQogRI7giAIgiCIUQIldgRBEARBEKMEtdgGpIzVakV5eTm8vLygUCjEtkMQBEEQhMzhOA4tLS0ICwuDUsn++Roldv1QXl6OiIgIsW0QBEEQBDHKKC0txdixY5nrUmLXD15eXgC6Pnxvb2+R3fzMgQMHMGvWLLFtiOJD6DJZ67PSY6EjlX5DDIwrt5Uc6y4Vz872Ibd4zFJzJDrNzc2IiIjgcwzWKDiO4wRRHgU0NzfDx8cHTU1NkkrsCIIgCIKQJ0LnFrR4Qobs2bNHbAsAxPEhdJms9VnpsdCRSr8hBsaV20qOdZeKZ2f7kFs8ZqkplTZ3BCV2MsRqtYptAYA4PoQuk7U+Kz0WOlLpN8TAuHJbybHuUvHsbB9yi8csNaXS5o6gxE6GhIaGim0BgDg+hC6TtT4rPRY6Uuk3xMC4clvJse5S8exsH3KLxyw1pdLmjqDEToYEBASIbQGAOD6ELpO1Pis9FjpS6TfEwLhyW8mx7lLx7GwfcovHLDWl0uaOoMROhpw4cUJsCwDE8SF0maz1Wemx0JFKvyEGxpXbSo51l4pnZ/uQWzxmqSmVNncEJXYEQRAEQRCjBNrupB+kut1JfX09/P39xbYhig+hy2Stz0qPhY5U+g0xMK7cVnKsu1Q8O9uH3OIxS82R6NB2J0QvampqxLYAQBwfQpfJWp+VHgsdqfQbYmBcua3kWHepeHa2D7nFY5aaUmlzR1BiJ0MqKyvFtgBAHB9Cl8lan5UeCx2p9BtiYFy5reRYd6l4drYPucVjlppSaXNHUGInQ1QqldgWAIjjQ+gyWeuz0mOhI5V+QwyMK7eVHOsuFc/O9iG3eMxSUypt7gjZzrHr7OzEmjVr8K9//QuVlZUIDQ3F3XffjT/96U9QKrvyVY7j8Pzzz+Odd95BQ0MDZs2ahY0bNyIxMXFQZUh1jh1BEARBEPKE5tj1wWuvvYa///3v2LBhA06fPo1169bh9ddfx9/+9jf+nnXr1uGNN97Ahg0bkJOTg5CQEFxxxRVoaWkR0fnIyc7OFtsCAHF8CF0ma31Weix0pNJviIFx5baSY92l4tnZPuQWj1lqSqXNHSHbxG7fvn247rrr8Itf/ALR0dG46aabsGTJEhw6dAhA19O69evX4+mnn8YNN9yApKQkfPTRRzAYDPj0009Fdj8yOjs7xbYAQBwfQpfJWp+VHgsdqfQbYmBcua3kWHepeHa2D7nFY5aaUmlzR8g2sZs7dy527tyJc+fOAQDy8vKQlZWFq666CgBQWFiIyspKLFmyhH+PVqvFggULsHfvXoeaJpMJzc3Ndj9SJCgoSGwLAMTxIXSZrPVZ6bHQkUq/IQbGldtKjnWXimdn+5BbPGapKZU2d4RabAPD5fe//z2ampowadIkqFQqWCwWvPzyy7jtttsA/LxiJTg42O59wcHBKC4udqi5du1aPP/8872uZ2VlwcPDA7Nnz0ZeXh7a2trg6+uLuLg4HDx4EAAQGxsLq9WKCxcuAADS0tJw6tQpNDc3w8vLC4mJidi/fz8AICYmBiqVCvn5+QCAGTNmID8/Hw0NDXB3d8e0adP4x7yRkZHQ6/U4e/YsACAlJQUtLS3IyMiATqfDzJkzkZmZCQAYO3YsvL29cerUKQDA1KlTUV5ejurqari5uWH27NnYs2cPrFYrQkNDERAQwO+ePXnyZNTU1KCyshIqlQpz585FdnY2Ojs7ERQUhNDQUOTl5QEAEhIS0NTUhJKSElRXV2PBggXYv38/TCYTAgMDERkZiSNHjgAAJk2aBIPBgJKSEgBdCfmRI0dgMBjg5+eH8ePH809ZJ0yYgI6ODhQVFQEA0tPTcfz4cbS2tsLHxweTJk3iyxw/fjwAoKCgAAAwa9YsnDlzBk1NTfD09MTkyZOxb98+AEB0dDTc3Nxw/vx5AEBqaioKCgr4zzslJQVZWVkAAH9/f1RVVeHMmTP8511SUoLa2lpotVqkpaUhIyMDABAeHg4fHx/+805OTkZFRQWqq6uhVqsxZ84cXLx4EdXV1QgJCcGYMWNw/PhxAEBSUhLq6upQUVEBpVKJefPmYe/evejo6EBQUBDCwsJw9OhR/vM2m818ufPnz8fBgwdhNBoREBCAqKgo/vOeOHEi2tvb+c97zpw5yM3NhcFggFarhcFgQE5ODt9nLRYLCgsL+T578uRJtLS0wNvbGwkJCXyfHTduHJRKJd9nZ86ciXPnzqGxsREeHh5ITk7m/2CKjo6GRqPh/+hKTU1FYWEh6urqoNfrkZqaij179gAAIiIi4OnpidOnTwMApk2bhosXL6KmpgYajQbp6enIzMwEx3EICwuDn58fTp48CQCYMmUKqqqqUFVVxffZrKwsWCwWBAcHIzg4GMeOHQMAJCYmoqGhAeXl5VAoFJg/fz727dsHs9mMMWPGYOzYscjNzQUAxMfHo7W1FaWlpQCAefPm4dChQ2hvb0dAQABiYmL4PhsXFwez2cz3WVYxIjAwEGVlZcOOEcXFxairqxM9RpSVlQHAkGJEUlIScnJyhh0jDhw4AACCxYjIyEi4u7vbxYjW1lZkZGQMK0bY+uxIY0RzczMfH4cbI/z8/BAbGzvoGBEWFsbXVYgYYTQaodVqmcaIsrIyVFdXjzhGdHR08HUfaoywtYVgcDLls88+48aOHct99tln3LFjx7h//vOfnL+/P/fhhx9yHMdx2dnZHACuvLzc7n333Xcft3TpUoeaRqORa2pq4n9KS0s5AFxTU5Pg9RkKu3fvFtsCx3Hi+BC6TNb6rPRY6Eil3xAD48ptJce6S8Wzs33ILR6z1ByJTlNTk6C5hWyf2D3xxBN46qmncOuttwLo+muyuLgYa9euxV133YWQkBAA4FfM2rBl6o7QarXQarXCmycIgiAIghAA2c6xMxgM/LYmNlQqFaxWK4Cu4c6QkBDs2LGDf902nDV79mynemVNQkKC2BYAiOND6DJZ67PSY6EjlX5DDIwrt5Uc6y4Vz872Ibd4zFJTKm3uCNkmdtdccw1efvllfPfddygqKsKWLVvwxhtv4PrrrwcAKBQKrFq1Cq+88gq2bNmCEydO4O6774a7uztuv/12kd2PjKamJrEtABDHh9BlstZnpcdCRyr9hhgYV24rOdZdKp6d7UNu8ZilplTa3BGyTez+9re/4aabbsLKlSsRHx+Pxx9/HL/97W/x4osv8vc8+eSTWLVqFVauXInU1FSUlZVh+/bt8PLyEtH5yLFNSBYbMXwIXSZrfVZ6LHSk0m+IgXHltpJj3aXi2dk+5BaPWWpKpc0dIds5dl5eXli/fj3Wr1/f5z0KhQJr1qzBmjVrnOaLIAiCIAhCLGR7pJgzoCPFCIIgCIJgCR0pRvTCtteV2IjhQ+gyWeuz0mOhI5V+QwyMK7eVHOsuFc/O9iG3eMxSUypt7ghK7GSIyWQS2wIAcXwIXSZrfVZ6LHSk0m+IgXHltpJj3aXi2dk+5BaPWWpKpc0dQYmdDAkMDBTbAgBxfAhdJmt9VnosdKTSb4iBceW2kmPdpeLZ2T7kFo9ZakqlzR1BiZ0MiYyMFNsCAHF8CF0ma31Weix0pNJviIFx5baSY92l4tnZPuQWj1lqSqXNHUGJnQwR/Jy5QSKGD6HLZK3PSo+FjlT6DTEwrtxWcqy7VDw724fc4jFLTam0uSMosSMIgiAIghglUGInQyZNmiS2BQDi+BC6TNb6rPRY6Eil3xAD48ptJce6S8Wzs33ILR6z1JRKmzuCEjsZYjAYxLYAQBwfQpfJWp+VHgsdqfQbYmBcua3kWHepeHa2D7nFY5aaUmlzR1BiJ0NKSkrEtgBAHB9Cl8lan5UeCx2p9BtiYFy5reRYd6l4drYPucVjlppSaXNHUGJHEARBEAQxSqAjxfpBqkeKWSwWqFQqsW2I4kPoMlnrs9JjoSOVfkMMjCu3lRzrLhXPzvYht3jMUnMkOnSkGNELqSyzpu1OnKdH2524Fq7cVnKsu1Q803YnztOUSps7ghI7GSKVSZu0eMJ5erR4wrVw5baSY92l4pkWTzhPUypt7ghK7GSIn5+f2BYAiOND6DJZ67PSY6EjlX5DDIwrt5Uc6y4Vz872Ibd4zFJTKm3uCJpj1w9SnWPX1tYGDw8PsW2I4kPoMlnrs9JjoSOVfkMMjCu3lRzrLhXPzvYht3jMUnMkOjTHjujFoUOHxLYAQBwfQpfJWp+VHgsdqfQbYmBcua3kWHepeHa2D7nFY5aaUmlzR1BiRxAEQRAEMUqgxE6GTJgwQWwLAMTxIXSZrPVZ6bHQkUq/IQbGldtKjnWXimdn+5BbPGapKZU2dwQldjKko6NDbAsAxPEhdJms9VnpsdCRSr8hBsaV20qOdZeKZ2f7kFs8ZqkplTZ3BCV2MqSoqEhsCwDE8SF0maz1Wemx0JFKvyEGxpXbSo51l4pnZ/uQWzxmqSmVNncEJXYEQRAEQRCjBNrupB+kut2J2WyGRqMR24YoPoQuk7U+Kz0WOlLpN8TAuHJbybHuUvHsbB9yi8csNUeiQ9udEL04fvy42BYAiOND6DJZ67PSY6EjlX5DDIwrt5Uc6y4Vz872Ibd4zFJTKm3uCFkndmVlZbjjjjsQEBAAd3d3TJ06FYcPH+Zf5zgOa9asQVhYGPR6PRYuXIiTJ0+K6JgNra2tYlsAII4Poctkrc9Kj4WOVPoNMTCu3FZyrLtUPDvbh9ziMUtNqbS5I2Sb2DU0NGDOnDlwc3PD1q1bcerUKfz5z3+Gr68vf8+6devwxhtvYMOGDcjJyUFISAiuuOIKtLS0iGecAT4+PmJbACCOD6HLZK3PSo+FjlT6DTEwrtxWcqy7VDw724fc4jFLTam0uSNkO8fuqaeeQnZ2Nvbs2ePwdY7jEBYWhlWrVuH3v/89AMBkMiE4OBivvfYafvvb3w5YhlTn2BmNRuh0OrFtiOJD6DJZ67PSY6EjlX5DDIwrt5Uc6y4Vz872Ibd4zFJzJDo0x64PvvnmG6SmpuLmm29GUFAQpk2bhnfffZd/vbCwEJWVlViyZAl/TavVYsGCBdi7d69DTZPJhObmZrsfKXLgwAGxLQAQx4fQZbLWZ6XHQkcq/YYYGFduKznWXSqene1DbvGYpaZU2twRarEN2GhsbLQbRh2ICxcu4K233sLq1avxxz/+EQcPHsSjjz4KrVaLO++8E5WVlQCA4OBgu/cFBwejuLjYoebatWvx/PPP97qelZUFDw8PzJ49G3l5eWhra4Ovry/i4uJw8OBBAEBsbCysVisuXLgAAEhLS8OpU6fQ3NwMLy8vJCYmYv/+/QCAmJgYqFQq5OfnAwBmzJiB/Px8NDQ0wN3dHdOmTUN2djYAIDIyEnq9HmfPngUApKSkoLq6GhkZGdDpdJg5cyYyMzMBAGPHjoW3tzdOnToFAJg6dSrKy8tRXV0NNzc3zJ49G3v27IHVakVoaCgCAgJw4sQJAMDkyZNRU1ODyspKqFQqzJ07F9nZ2ejs7ERQUBBCQ0ORl5cHAEhISEBTUxO/j8+CBQuwf/9+mEwmBAYGIjIyEkeOHAEATJo0CQaDASUlJQCAuXPn4siRIzAYDPDz88P48eP5M/cmTJiAjo4OXjc9PR3Hjx9Ha2srfHx8MGnSJP618ePHAwAKCgoAALNmzcKZM2fQ1NQET09PTJ48Gfv27QMAREdHw83NDefPnwcApKamoqCggP+8U1JSkJWVBaBriL+qqgpnzpzhP++SkhLU1tZCq9UiLS0NGRkZAIDw8HD4+Pjwn3dycjIqKipQXV0NtVqNOXPmoLi4GBkZGQgJCcGYMWP4CbdJSUmoq6tDRUUFlEol5s2bh71796KjowNBQUEICwvD0aNH+c+7vr6eL3f+/Pk4ePAgjEYjAgICEBUVxX/eEydORHt7O/95z5kzB7m5uTAYDKisrITBYEBOTg7fZy0WCwoLC/k+e/LkSbS0tMDb2xsJCQl8nx03bhyUSiXfZ2fOnIlz586hsbERHh4eSE5O5v9gio6Ohkajwblz5/jPu7CwEHV1ddDr9UhNTeWftEdERMDT0xOnT58GAEybNg0XL15ETU0NNBoN0tPTkZmZyT+B9/Pz4+fJTpkyBVVVVaiqquL7bFZWFiwWC4KDgxEcHIxjx44BABITE9HQ0IDy8nIoFArMnz8f+/btg9lsxpgxYzB27Fjk5uYCAOLj49Ha2orS0lIAwLx583Do0CG0t7cjICAAMTExfJ+Ni4uD2Wzm+yWrGNHY2IiysrJhx4ji4mLU1dWJHiPKysoADC1GWK1W5OTkDDtG2P7BFSpGREZGwt3d3S5G2GLycGKErc+ONEY0Nzfzn8twY4Sfnx9iY2MHHSM6Ozv5ugoRI4qKipjHiJKSEmRkZIw4RnSPyUONEba2EAxOBF599VXu3//+N//7zTffzCmVSi4sLIw7evTooDTc3Ny49PR0u2uPPPIIl5aWxnEcx2VnZ3MAuPLycrt77rvvPm7p0qUONY1GI9fU1MT/lJaWcgC4pqamoVRPcEpLS8W2wHGcOD6ELpO1Pis9FjpS6TfEwLhyW8mx7lLx7GwfcovHLDVHotPU1CRobiHKUOzbb7+NiIgIAMCOHTuwY8cObN26FcuWLcMTTzwxKI3Q0FAkJCTYXYuPj+f/CgkJCQEA/smdjerq6l5P8WxotVp4e3vb/RAEQRAEQcgFURK7iooKPrH79ttv8ctf/hJLlizBk08+yT8CHog5c+bwQw82zp07h6ioKABdw50hISHYsWMH/7rZbEZGRgZmz57NqCbiYBtaEBsxfAhdJmt9VnosdKTSb4iBceW2kmPdpeLZ2T7kFo9ZakqlzR0hSmLn5+fHz1/54YcfsHjxYgBdK1ktFsugNH73u99h//79eOWVV5Cfn49PP/0U77zzDh566CEAgEKhwKpVq/DKK69gy5YtOHHiBO6++264u7vj9ttvF6ZiBEEQBEEQIiLKdicPP/wwvv32W0yYMAG5ubkoKiqCp6cnNm/ejNdee23QEwu//fZb/OEPf8D58+cRExOD1atX4/777+df5zgOzz//PN5++200NDRg1qxZ2LhxI5KSkgalT9udSM+H3JbXS2FpPWsvhPC4clvJse5S8UzbnThPk7Y76cGbb76Jhx9+GAkJCdixYwc8PT0BdA3Rrly5ctA6V199NY4fPw6j0YjTp0/bJXVA11O7NWvWoKKiAkajERkZGYNO6qSMbTWW2IjhQ+gyWeuz0mOhI5V+QwyMK7eVHOsuFc/O9iG3eMxSUypt7ghRtjtxc3PD448/3uv6qlWrnG9GhjQ1NYltAYA4PoQuk7U+Kz1HOhYrhxMl9ahvNcLfU4ekSH+olArBvRDC48ptJce6S8Wzs33ILR6z1JRKmztCtH3sPv74Y7z99tu4cOEC9u3bh6ioKKxfvx4xMTG47rrrxLIlC2xPOMVGDB9Cl8lan5VeT52s0xV4a9sp1LYY+WuBXjo8uDQBc+NDBfVCCI8rt5Uc6y4Vz872Ibd4zFJTKm3uCFHm2L311lt49tlnsWrVKrz88ss4ceIExo0bhw8//BAfffQRdu3a5WxLDpHqHDuz2QyNRiO2DVF8CF0ma31WejYdK8dhR95FvPG/Y33e+9TyqViYFAaFwv7pnVT6DTEwrtxWcqy7VDw724fc4jFLzZHojMo5dn/729/w7rvv4umnn4ZKpeKvp6am8rtuE31j2y1dbMTwIXSZrPVZ6e3btw9WjsOyl77vN6kDgFe/PgqDqVMwL4TwuHJbybHuUvHsbB9yi8csNaXS5o4QJbErLCzEtGnTel3XarVoa2sTwRFBSB+jeXBbAQHAtqOl6LBYBXRDEARBSBFREruYmBj+jLvubN26tddpEkRvoqOjxbYAQBwfQpfJWp+VXnR0NPpZF9GLt3ecxvWvbcPhCzX8tfCISIgw84IYBlL5jouBHOsuFc/O9iG3eMxSUypt7ghRFk888cQTeOihh2A0GsFxHA4ePIjPPvsMa9euxXvvvSeGJVnh5uYmtgUA4vgQukzW+qz03NzcoHVT4aXbZuBPnw18Ooteo0K72YJwfw/+2q6zDfjDV+cxMdwXE8N8MenSf73dxZ8bRNgjle+4GMix7lLx7GwfcovHLDWl0uaOECWxu+eee9DZ2Yknn3wSBoMBt99+O8LDw/GXv/wFt956qxiWZMX58+cRFhYmtg1RfAhdJmt9Vno2nZRxYxDopbNbDduTMd46fPjwIlQ1tSPYR89fP15UjeZ2C3Lya5CT//OTvFA/d0wK98WDSxPhM4wkb6jbrhADI5XvuBjIse5S8exsH3KLxyw1pdLmjhBtu5P7778f999/P2pra2G1WhEUFCSWFYKQDSqlAg8uTcCLX/R9OssDSxKgVintntYBwHWTdBg7cSrOlDXi7KWfi/VtqGgwoLbZiP+7Npm/d3N2PmqajfxTvfAADygVvZO14Wy7QhAEQQiHKNudAEBnZyd2796NgoIC3H777fDy8kJ5eTm8vb0lsz+MVLc7aWtrg4eHx8A3jkIfQpfJWp+VXk8dRwnVGG8dHljSd0LlyEtLewfOlTeiprkdV06L5K8/8HYmCqtb+N89dWpMDLs0hDvWF7MmBCPrdEW/CeYzN6VQcjdMpPIdFwM51l0qnp3tQ27xmKXmSHRG5XYnxcXFmDx5Mq677jo89NBDqKnpGhZat26dwxMpCHsKCgrEtgBAHB9Cl8lan5VeT5258aH456OXYd2KNDx1/VSsW5GGjx65rN9EypEXL70bpo8fY5fUAcCv5k3ADWkxSIzwg0atRKuxE4cv1OLTrHy8vf0UWto7sOGHk/16fmvbKXTSytxhIZXvuBjIse5S8exsH3KLxyw1pdLmjhBlKPaxxx5Damoq8vLyEBAQwF+//vrrcd9994lhSVY0NDSIbQGAOD6ELpO1Pis9RzoqpQLJ0QEO7h65l3kJoZiX0JUkdlqsKKxuwdnyRpwpa4S3XoOb/t/2ATVqW4w4cqEWMyfQNIuhIpXvuBjIse5S8exsH3KLxyw1pdLmjhAlscvKykJ2dnavXZujoqJQVlYmhiVZ4e7uLrYFAOL4ELpM1vqs9FjoDFdDrVJiQqgPJoT64OrpUTCYOvHl/guDeu+J0npK7IaBVL7jYiDHukvFs7N9yC0es9SUSps7QpQ5dv7+/sjKykJCQgK8vLyQl5eHcePGISsrCzfeeCOqqqqcbckhUp1jZ7FY7E7scCUfQpfJWp+VHgsdVl44jkNOfg2e+ffA264snhKOJ66bCgCwchwUQK+jzojeSOU7LgZyrLtUPDvbh9ziMUvNkeiMyjl2V1xxBdavX8//rlAo0Nraiueeew5XXXWVGJZkRVZWltgWAIjjQ+gyWeuz0mOhw8qLQqHA9PFd2670h85NhVtnx/K/7z1TiXs27sZHu8+ipLaViZfRilS+42Igx7pLxbOzfcgtHrPUlEqbO0KUodg33ngDl112GRISEmA0GnH77bfj/PnzCAwMxGeffSaGJYIghsBgtl154rpkRIz5eYV75qkKVDQY8OmefHy6Jx+xId5YlBSOBYmhGOOt71OHIAiCGDyiJHbh4eE4evQo/v3vf+Pw4cOwWq2499578atf/Qp6PQX4gYiMjBz4Jicghg+hy2Stz0qPhQ7rus2ND8UzN6UMetuV310zBWlxwdh1shyHC2qQX9mM/MpmvPfjaUyO8seLt82Ezk384SwpIJXvuBjIse5S8exsH3KLxyw1pdLmjnB6YtfR0YGJEyfi22+/xT333IN77rnH2RZkj1QmbdLiCefpibl4oj/mxocifWLIoE6e0GvUuGxyOC6bHI4mgxl7Tldg14lynCiph9FssUvqTpTUIzbUx2UTPal8x8VAjnWXimdaPOE8Tam0uSOcPsfOzc0NJpOJJlCPgDNnzohtAYA4PoQuk7U+Kz0WOkJ9drZtVxYlhSM5OmBQx4n5uGtw9fQo/PmudHz86GV4+Kok/rU2Ywee+uQAbvnzDqz7+ihy8qtdbj88qXzHxUCOdZeKZ2f7kFs8ZqkplTZ3hChDsY888ghee+01vPfee1CrRTvVjCAICRDko0dQtzNtyxsMCPDSorKxHTuPl2Hn8TL4uGswPyEUi5LCED/Wz+HxZjbo7FqCIFwZUbY7uf7667Fz5054enpi8uTJvY7l+Oqrr5xtySFS3e6kpaUFXl5eYtsQxYfQZbLWZ6XHQkcq/WYwcByH02WN2HWiDBknK9BkMPOvPbwsEdekRjt832g5u1ZObcUaOdZdKp6d7UNu8Zil5kh0RuV2J76+vrjxxhuxdOlShIWFwcfHx+6H6J+SkhKxLQAQx4fQZbLWZ6XHQkcq/WYwKBQKJIz1w0NXJuGz312Ol2+ficVTwuGhVSM9LoS/b/+5KmzOzkdVo4E/u7Z7Ugd0nYDx4hdHkHW6wtnVGDZyaivWyLHuUvHsbB9yi8csNaXS5o4QZRz0gw8+EKPYUUNtba3YFgCI40PoMlnrs9JjoSOVfjNUVEolUsePQer4MeiwWOGm+vnv0W9yinD4Qi3e/+ks1AMMt7617RTS4oKhVony9+yQkGtbsUCOdZeKZ2f7kFs8ZqkplTZ3hPQj3CBZu3YtFAoFVq1axV/jOA5r1qxBWFgY9Ho9Fi5ciJMn+z+4XA5otVqxLQAQx4fQZbLWZ6XHQkcq/WYkuPVIyhYkhiE5quu83E5r/7NKaluMyC2UbjDuzmhoq+Eix7pLxbOzfcgtHrPUlEqbO0KUOXbTpk1zuCpWoVBAp9MhNjYWd999NxYtWjQovZycHPzyl7+Et7c3Fi1axJ9q8dprr+Hll1/Ghx9+iLi4OLz00kvIzMzE2bNnBzU2LtU5dgRB/IzB1Inr120b1L2rr56CpdMiBHZEEATRN6Nyjt2VV16JCxcuwMPDA4sWLcLChQvh6emJgoICzJgxAxUVFVi8eDH++9//DqjV2tqKX/3qV3j33Xfh5+fHX+c4DuvXr8fTTz+NG264AUlJSfjoo49gMBjw6aefClk9wcnIyBDbAgBxfAhdJmt9VnosdKTSb1gzlAWvBnMHRPhbdsiM1rYaDHKsu1Q8O9uH3OIxS02ptLkjREnsamtr8X//93/Ys2cP/vznP+ONN95AZmYmHn/8cbS1tWH79u3405/+hBdffHFArYceegi/+MUvsHjxYrvrhYWFqKysxJIlS/hrWq0WCxYswN69e5nXiSAIcdC6qfDVE0sQ4DXw0Mjft5/Gynez8P2REhjNnU5wRxAE4VxESez+85//4Lbbbut1/dZbb8V//vMfAMBtt92Gs2fP9qvz73//G0eOHMHatWt7vVZZWQkACA4OtrseHBzMv9YTk8mE5uZmux8pEh4eLrYFAOL4ELpM1vqs9BzpcBYLavfvR9k336B2/35wFotTvEgNhUIBD50bVi5N7Pe+qdEB0KqVuFDVjL98dxy3r9+Jt7efQlldm5OcDp7R2laDQY51l4pnZ/uQWzxmqSmVNneEKKtidTod9u7di9jYWLvre/fuhU6nAwBYrdZ+JyeWlpbisccew/bt2/n3OKLnXD6O4/o89WLt2rV4/vnne13PysqCh4cHZs+ejby8PLS1tcHX1xdxcXE4ePAgACA2NhZWqxUXLlwAAKSlpeHUqVNobm6Gl5cXEhMTsX//fgBATEwMVCoV8vPzAQAzZsxAfn4+Ghoa4O7ujmnTpiE7OxtA13l0er2eT3JTUlJQXV2NsrIy6HQ6zJw5E5mZmQCAsWPHwtvbG6dOnQIATJ06FeXl5aiuroabmxtmz56NPXv2wGq1IjQ0FAEBAThx4gQAYPLkyaipqUFlZSVUKhXmzp2L7OxsdHZ2IigoCKGhocjLywMAJCQkoKmpCefPn0dZWRkWLFiA/fv3w2QyITAwEJGRkThypOtw+EmTJsFgMPBLw+fOnYsjR47AYDDAz88P48ePx6FDhwAAEyZMQEdHB4qKigAA6enpOH78OFpbW+Hj44NJkybxZY4fPx4AUFBQAACYNWsWzpw5g6amJn5/xH379gEAoqOj4ebmhvPnzwMAUlNTUVBQwH/eKSkpyMrKAgB4e3ujqqqK31U8JSUFJSUlqK2thVarRVpaGv8IPjw8HD4+PvznnZycjIqKClRXV0OtVmPOnDkoKChAWVkZQkJCMGbMGBw/fhwAkJSUhLq6OlRUVECpVGLevHnYu3cvOjo6EBQUhLCwMBw9epT/vJubm/ly58+fj8wNG9Dy0UfgGhr4fqrw88O4xx+HftYs/vOeM2cOcnNzYTAYoFKpEBYWhpycHL7PWiwWFBYW8n325MmTaGlpgbe3NxISEvg+O27cOCiVSr7Pzpw5E+fOnUNjYyM8PDyQnJzMPwmPjo6GRqPBuXPn+M+7sLAQdXV10Ov1SE1NxZ49ewAAERER8PT0xOnTpwF0zb+9ePEiampqoNFokJ6ejszMTHAch7CwMPj5+fELoKZMmYKqqipUVVXxffamJHdsO9eOFvPPw63eWgV+vTAWsX4KFBQbcayqE6caVKhoMOCrA4X4JqcI7/0mDedOdbVNfHw8WltbUVpaCgCYN28eDh06hPb2dgQEBCAmJobvs3FxcTCbzXyfZRUj/Pz8UFZWNuwYUVxcjLq6OtFjRFlZGQAMKUZMnDgROTk5w44RBw4cAADBYkRkZCTc3d3tYkRNTQ3KysqGFSOysrJgsViYxAhbfJw/fz4OHjwIo9GIgIAAREVF8Z/3xIkT0d7e7jBG+Pn5ITY2dtAxIigoiK+rEDHCYDBAqVQyjRG2mBwcHIzg4GAcO3YMAJCYmIiGhgaUl5dDoVBg/vz52LdvH8xmM8aMGYOxY8ciNzeXjxHdY/JQY4StLQSDE4EXX3yR0+v13KOPPsp9/PHH3CeffMI9+uijnLu7O/fSSy9xHMdxb7zxBrd48eI+NbZs2cIB4FQqFf8DgFMoFJxKpeLy8/M5ANyRI0fs3nfttddyd955p0NNo9HINTU18T+lpaUcAK6pqYld5Rmwe/dusS1wHCeOD6HLZK3PSs+mY7VYuOL//If7Zty43j/jx3PfjB/Plf73v5zVahXMi9TptFi5o4W13E/HL3JHC2u5Tkvvz8JitXIHz1dxf/r0APfally713Yeu8g1tZmc5NYxrtJWjpBj3aXi2dk+5BaPWWqORKepqUnQ3EKUJ3Z/+tOfEBMTgw0bNuDjjz8G0PVXxLvvvovbb78dAPDAAw/gwQcf7FPj8ssv5/+ysXHPPfdg0qRJ+P3vf49x48YhJCQEO3bswLRp0wAAZrMZGRkZeO211xxqarVaSS9hJlwbzmrFtxMm9HND11Oq3N/9DsGLFsFNAjvhi4Ht7Nr+UCoUmBEbhBmxQbB02yalqLoFr319FBq1EgsSw3BtahTiwnwFdkwQBMEOUbY7EYqFCxdi6tSpdtudrF27Fh988AEmTJiAV155Bbt375b9dieNjY3w9fUV24YoPoQuk7U+K73Gxkb4eHv3n9h1Y+b77yN4wQJBvIxmTpbWY9MPJ5Ff+fP82knhvrgmNQrzE0KhUauc4sOV20qOdZeKZ2f7kFs8Zqk5Ep1Rud0J0PWhvPfee/jjH/+I+vp6AMCRI0f4ORksePLJJ7Fq1SqsXLkSqampKCsrw/bt2yVxpt9IqKiQxtFIYvgQukzW+qz0KioqYDEaB77xEh2NjYJ5Gc0kRvhjw31zsf6e2bgsKQxqpQJnyhrx+n/zcMdffkJBpXMWVLlyW8mx7lLx7GwfcovHLDWl0uaOECWxO3bsGOLi4vDaa6/h9ddfR+Olf4S2bNmCP/zhD8PW3b17N/+0DuhaOLFmzRpUVFTAaDQiIyMDSUlJI3QvPtXV1WJbACCOD6HLZK3PSm+oOvWHD6Ojx6puqfQbqaNQKBA/1g+/v34aPnnscty1MA6B3l0LtCICPfj7aprbBdsTz5XbSo51l4pnZ/uQWzxmqSmVNneEKInd6tWrcffdd+P8+fN2K1qXLVvGr94i+katFmVqZC/E8CF0maz1Wemp1Wqo9HpcefQodMHBQB8ru20U/+tf2Llokd1TPqn0Gznh56nF7fMm4J+PLML/uzONH4q1chye+Od+3PdWBr4+WIg2Y0ev91qsHPKK6rDrRBnyiurs5vINhCu3lRzrLhXPzvYht3jMUlMqbe4IUebY+fj44MiRIxg/fjy8vLyQl5eHcePGobi4GBMnToRxCENOQiLVOXaEa1OxbRsOPfRQ1y/dv76Xkr3IW25Bw+HD8ElMxLQ//5l/uSY7GwEzZ0Lp5uZMu6OSkpoWPPb+XhgubXKsc1Ph8inhuDY1GtFBXsg6XYG3tp1CbcvPsSzQS4cHlyZgbnyoWLYJgpAAo3KOnU6nc7j579mzZzFmzBgRHMkL235KYiOGD6HLZK3PSq+7TujSpUjduLHryV03dCEhSN24Eckvv4wFW7di8gsv8K81nz2L/XfeiZ0LFuDc3/4Go4SHEeRA5Bgv/GvV5Xh4WSIiAz1h7LDgu8Ml+O3bmbj/rQy8+MURu6QOAGpbjHjxiyPIOj3w3BypfMfFQI51l4pnZ/uQWzxmqSmVNneEKM8Sr7vuOrzwwgv8KRMKhQIlJSV46qmncOONN4phSVZYBjhhwFmI4UPoMlnrs9LrqRO6dClCFi9GXU4OTNXV0AYFIWDGDChUXUOFCoUCao+f54O1l5VB4e0NY1UVzq5fj3MbNiD0yisRvWIF/KdP73PTbqJv3LVqXJMajaunRyGvuA7/yylG9plKlNS29vu+t7adQlpcMNSqvv+ulsp3XAzkWHepeHa2D7nFY5aaUmlzR4jyxO7//b//h5qaGgQFBaG9vR0LFixAbGwsvLy88PLLL4thSVaEhISIbQGAOD6ELpO1Pis9RzoKlQqBaWkIv/ZaBKal8UmdI4IvuwyxH3+MlPXr4Td9OrjOTpR/+y323nILMq++Gm3FxUx8uiIKhQJTowPxf9cmYzDzWmpbjDhyobbfe6TyHRcDOdZdKp6d7UNu8ZilplTa3BGiPLHz9vZGVlYWdu3ahcOHD8NqtSIlJQWLFy8Ww47skMpwtRg+hC6TtT4rPRY6QWFh8E9KQvg116Dp5EkUffIJLn7zDUy1tdCH/jzvq9NggNrdfcTlEX3z47GLiA7yQpCP3uHrUvmOi4Ec6y4Vz872Ibd4zFJTKm3uCKc/sbNarXj//fdx9dVX45FHHsFHH32ErKwslJeXC7Z1wGij54kbYiGGD6HLZK3PSo+FTncNn8REJK9diyuys5G6cSOUGg0AgLNYkPGLX+DAr3+Nql27wFmtIy7XVdBrVHjx1hmDujfjVAVW/PUnrP0q1+HrUvmOi4Ec6y4Vz872Ibd4zFJTKm3uCKcmdhzH4dprr8V9992HsrIyTJ48GYmJiSguLsbdd9+N66+/3pl2CMLl0fj6wj81lf+98dgxGEpKUJ2RgYP3/f/2zjwsiitd429103RDAwKNNCC7ooIoiyyKitEoaO44ScbkmblJTMzETEyc7M5MJiaT9caJTxbnTtRoMjHmRh2TjFEncTQmKoJocN+IGhcElX1fm17q/gG0tDQ0yOmuqu7v9zz9YNfynrfqHD8+Tp06ZwF23347Ln70EdqtTHhMWMJxHMYPH4oAb1Wfx6mVbhgT5gcOQLDfjZ7RdoMR/8y7YHOMHkEQRF84dLqTtWvX4umnn8bWrVsxbdo0i327d+/GXXfdhQ8++AAPPvigoyz1iVinO6muroZG0/damM7qw95lstZnpcdCp78azUVFKNqwASVffmme5FimVGLYL3+JEY89Bq+oKIvjeaOx15c4XJG8n0rxxldHe93/8j3JmBwbjJqmNnDg4OfVsT71gXPlePWLwwCAUH8PTB0TiimxQYgM9Hapl1vEEt8Gglg8O9qH1OIxS83B6DjVdCcbN27Eiy++2COpA4Dp06fjhRdewPr16x1pSZJUV1cLbQGAMD7sXSZrfVZ6LHT6q6GOjMSYF1/EjPx8jHvrLfjExsKk06Hkyy/R3rn8XxelO3fi+8xMHLj/fhx99lkcuP9+fJ+ZidKdOwftV6pMjg3Gy/ck9+i5G+qjMid1AODvpTIndQCgVrkhdcRQuMk4XK1pxfrcn7FwTS4eWZmDT3afRWVDq0OvQyjEEt8Gglg8O9qH1OIxS02x1Lk1HJrYnTx5ErNmzep1/+zZs3HixAkHOpImYlmjjtaKdZweC52Barh5eCDi179G5r//jUmbNmHEY4/BLzkZAMCbTCj43e9w+Ikn0FZWZnFeW3k5Di9ahKvbtrnsuNnJscH47KnpWDZvAl64OxHL5k3Auien9zk58bgIDd787zRsen4m5oxSYsJILRRyGa7VNGPT/otoa78xvUJjqx4mJ723YolvA0Esnrv74I1GVB08iGvbtqHq4EHwdpieQ2rxmKWmWOrcGg59K7ampgbamyZV7Y5Wq0Vtba0DHUkTmUyQWWp6IIQPe5fJWp+VHgudW9XgOA7+KSnmsXi8yYRvYmJ6P6Ez4Tj27LPQTpsGhbf3LZUrdeQyDgmRA39U46VSICFYiSlTUtCiM6Dg5wqcvV6HsAAv8zHLvzmJs9fqMGl0EKbEBiEuzB9ymXM8rhVLfBsIYvHc5aN0506cfv11iz+6VEFBiP/LXxCcnc28PHthD30xxWR74dAxdnK5HGVlZb2+JlxeXo6QkBDRTPwn1jF2BCEkhqYm/CchoV/Hpn38MbRWhl4Qt47RZMIDf9uNmiadeZufWomM0VpMHh2MhEh/yPv4pWM08ThdXIOapjb4e6kQH+48SaGrw5tMKPnXv3DihRd67uwcp5n03nsYNmeOS43bFBv2zi0c2mPH8zzmz58PpVJpdb9Op7O6nbAkPz8fGRkZQtsQxIe9y2Stz0qPhQ6zaxvAX6r6hga0VVbiyoYN0KSlwS8pCXJV32+NEn3XlVwmw7onp+HopSrk/VSGA+fLUNusw7dHivHtkWIkRQXgrw+kWz1XCmvYiiW+DQQxeBaiJ11q8ZilphjqvDccmtg99NBDNo8RyxuxYkav1wttAYAwPuxdJmt9VnosdFh5kXt4IO2TT1Dw29/aPFal1aL6wAGc/9//BQDI3N3hm5AATVoaNOnp8EtKosmQrWCrrtzd5JgwUosJI7XQG8fiRFE18n4qRf65ciRHB5iPa27TY9XOQkwaHQSdwYClm4/30Opaw7b7ix1CIpb4Zovub4O3lpaCT093yNvgPM9DX1eHtooKtJWVwajTITgrC8aWln5r1Bw+zKQnXWrxmKWmmNupQxO7tWvXOrI4pyUwMFBoCwCE8WHvMlnrs9JjocPKC8dxCJw8GaqgILSVl5t7Am46CKqgIGhSU1Fz9CiGzZmD6oICtJWXo+bQIdQcOoSfV6wA5+aGtI8+QmBmJhNvzsJA6kohlyFl+FCkDB+KJ+8wQW+8UR8Hz5dj18mr2HXyqk2d/qxh6wiGajSoOnhQ1NPnWBvD9v1nnw16DJtRp0NbeTkMjY0YMmaMefuZt95C3YkTHclceTlM3Z5uKQMCEJyVNeCedBZILR6z1BTL72FrCLKkGDE4QkJChLYAQBgf9i6TtT4rPRY6LK+Nk8sR/5e/4PCiRR1jd7ond51jd+JffhmcXA5Naio0qangeR7NRUWoLijo+Pz4I9pKS+EzapT51Isff4zr27dDk54OTVoa/FNSXPLli1utK7lMhu552fCgIbgzLRJbC4psntuxhm0l0mJ6f8HN3pTu3ImSV1/FxYoK8zZ7DPofDKU7d3a0+5v+oOl6GzxlxYoeXnmTCfqGBrj7+pq3Xf7sM9QXFqKtvNz80XdOBO6u0SC7oMB8bP2ZM6g5fNhC093fH6rAQKiCg8HzPOQeHoj/+99x+sknbV6Dqo+XGAeC1OIxS02x/B62hkNfnpAaYn15IicnB1OnThXahiA+7F0ma31Weix07HHvrL59FxyM+JdftvmLmOd5tJaWwrNbgDz48MOo3LfvxkEyGYbExXUkeunpCMzMhEyh6FvXCSZMZllXLToD7l7Wv3kF3eQcIgK8MUyjRqi/uuOnxguhGjW8VH3f98HSW8LU9YeCtYTJkfA8D0NDA/ZkZ0NXWdnrcW5eXhh2991or6y8kbRVVkLh42ORrB144AFUHTjQ43yZUgmPoCBM27XL3G4rcnJgaGqCUquFh1YLZWAg5FbGqu/dswdNL/wZpqpKWHs1ggcgCwjEf+XnMfk/IbV4zFJzMDpO9fIEQRDORXB2NoJmzLilRIrjOIukDgDG/c//oPrgQXOPXktxMepPn0b96dMoWr8es4/dWFu14exZqIKCLHpBHDXNg5S4+YVXzmRCSPlFeLY2oMXDB9e1w8F3PsYzGHlcLG/AxfKej+rWP307Anw6Xnw5eaUaja16DPNXI8TfE+5ug0sSTHo9Tr36qvXH+jwPcBxOvfYa/FNTAZMJpvZ2AIBHt/ZTd/Ik9I2NMLW33/jo9TC1t0Pm7o6wX/3KfGzR55+jpaTE4hjzsSoVkt9913zsiRdfRO2xYzDpdGi+csXmtRiamnDl//6vx3Z9XR1Mer35D5PQu+6CZsIEqIKCOnretFqogoKg8PHp8cZqYD8TCBOAnNRfYcp/VoMHLJK7rjubm/orzAJHv/ydGOqx6wOx9thVVlb2OmWMs/uwd5ms9VnpsdARS7sZCK2lpeYkDzyPhKVLzfv2ZGej6cIFeI8aBU1aGniTCVesrVwj0DQPg+k5ZFlXPM+jRWfAox/mYMjpAkz58V/wbqkz72/09EVu+lw0xKdj6f1puF7bgqvVzbhW04yr1U24VtOM5jYDtvwp23zv3vjyCPLOdiTPHIBAXw+E+nf07g3TqDE7KazXZK/u9GnoqqrQXlvb8ampwYVVqwZ8XeqoKEz//nvz97133IHGc+esHqvSajEzP9/8Pe+ee1Db7Y+E7rh5e2P28ePm7wcefBBV+/cPyJsufjy4xHRkZMR3JGyBgfihpBXXG3TgecDE891+8pDLZHhi1o0xdZsPXsKFsgbwPA8TD4ufPM/jpXvHQ9ZZF//Mu4CTxTUwmXgcu1wFAIi+cqLXer4UkYA3/zsVqSMGP0ZMavGYpeZgdKjHjuhBQ0ODKH5BC+HD3mWy1melx0JHLO1mIHgEByP0zjsReuedFtuNbW3mhK3x3Llef6EDsJjmwSc2Fp7DhkHu4WHXBG+wPYcs64rjOKhVCizwrkLTnn/02O/VUofZe/4Br4nRCB/qjfChPcc0tumN5vvF8zxCfRQYGTIEV6ub0aIzwPvYfuhbG1DW1ozG9maERHpBX1eH9tpaVKr88NN/P2d+tGtc+CiMlRU9yhgIMnd3yNwsf311rWEsUyg69nf9dHcH5z0EpbUtaGrTo7lNj7a0qZCFjYSek0Pu7o7YqEBwCgXk7u7YWViBx9fkorlNj6Y2PdR+E+GelQijTI6h1cXIPLTFpr/twyaiwXsM5mZnmbft++EgThRZX4ZKIbdM7I4XVePHn3u/R3y37rhL5Q04ctHy0fCliARcDhvba89sTSObqcWkFo9Zaoo5nlJiJ0GuXr2K4cOHC21DEB/2LpO1Pis9FjpiaTcskKtUmLZjB3RVVajIzcXxxYv7dV5O55KGnEIBhY8PFEOGIDg7G7Gd5/M8j3Pvv2/eZ/7Z+XH39e1zepa+JojtGlzfn55D1nVl0uth+PhvVsdddW0zrHkfpofuMSdM51esQFt5ublXrauHTV9Xh5j4eDz85ZfgeR51ze04MONNi2St7OwNfYN/EPafvZHgznHXwMPfHQYPL8h9fZE6LgrFGzf26zpS/vEJgqZmguM4/HDyKr7Mv9iRrOkMaJ6xAE06A5rb9PBTK/HyvePN5/12xV5c+2BPN6VowD8aAKD19cBnj0037zn9jzxcul5v/t4cEA6gI/kqC4xG0pm98Gqp63UMW5OnLwInpCMjxM9i39S4YIwMHgIZx4Hj0PmTg4wDZDc9L89ODMO4CA1kHMzHcJ3Hc5z5b5qO+5kSgbSYQBiMJrz/zakbXmQyXAu2Pq+d1tfD6vaBIrV4zFJTzPGUEjuCICSLMiAAwdnZ/U7sIJMBJhN4vR7t1dXmTxeGpib8vGJFr6cHz5qFlM79PM9j/733ws3bG+5DhsDNx8f6o+AuuvUccm5ukCsUMBkM4A0GKAMDEZB+Y1Lh9u+/x8WffwZvNMKk11v8VEdEIOI3vzEfe/Kll2BoaQGv18NkNII3Gs3/9h4xAmOWLMG3o0fbvDW6qipU7t8Pbed4risbN6Ktl/Uw2zuXfuQ4Dn5eSoTOuB36xka4+/lZfvz9cblNjoVe2s5Hu8348Z7nUFHfCgAI06jx8MJMLEEi7t/6FtQt9X0mTCXBIxHcmdV8nvszrtdYn7vt5sRFrXKDSiGHl0oBtcoNaqUCXio3qFUKaLwtJ8xecHss9EZTx36lwnyOQi7D4YuV+KRkLmbv+UfvY9jS52Jh5qgey8n91/gIq16tMWl0UL+PHRuhwVh0tEeu5iLWnTKiuo8euaE+KoyNGPhSd4R0oMROgmSKZM4vIXzYu0zW+qz0WOiIpd2wZiATJk/47DP4jRsHfX099A0NaK+vh9LPsmclct68jv3djun6t6LbeBhDU1Ov47RscfSmKSm0M2ZYJHa6L75AocFg9dyASZMsErtr33wDQ2Oj1WONzc0DmrhW122akcj774dJpzMnaYpuyVr3F1YAYNybb/aqae1hVZveiNKaZrS0G6DTm6BXemBf+j02EyZNy417MmGkFvXN7ebEy0ulgFrZkaz5erpblLf84Un9Xjatr/V9k6OHYnl8Ov4D9BjD1tQ5hq1xbDriw/37VRZLOI5D1vTboA4pwxtfHe31uIVZccyWkJNaPGapKeZ4KtnEbunSpdi8eTPOnj0LDw8PZGRk4O2338aobnNi8TyP1157DWvWrEFtbS3S09OxYsUKjOk28aMUKSgoQHq69SWDnN2Hvctkrc9Kj4WOWNoNawYyYXJAWho4uRxuarXFG5VdKLy9MfbVV62Ww/M8+G7rWMvc3ZH64YfQ19ejvaEBuqoqXFy9ul+ePcLCoAoIAOfmBk4uh8/IkRb7lRMmQBMQAJlc3nGMmxtknT+7xpJ1MeqZZ8AbjeDkcsgUio6fnce6azQDmrjWIzTU/O+Yxx/v93kDRaWQI0rbkSS3tXcka5ciEvCfaY/0mjBdikiw6Il7bGZcv8tjlcjIZRwez47DG41tvY5he5lh4jRQCgoKMDk9HS/fk9xj6bihPioszGK7dJzU4jFLTTHHU8kmdjk5OVi0aBFSU1NhMBiwZMkSZGVlobCwEGq1GgCwbNkyvPfee/j0008xcuRIvPnmm5g5cybOnTsHbwlPetrW1mb7IAcghA97l8lan5UeCx2xtBt7MJAJk2+5DI4D123AvlypRNDMmebvPM9Dk57er57DxL/+FQETJvS63/23v0VyP6e4iJ4/v8/9PM9j1vHj2JudjbaKCuuJLzrmHwxIS+tXmSxRKuTY/IcsPPphTp+D/sXyCHFybLA5cbomuzGGzR6J00Dp+j8+OTYYE0cF4XRxDWqa2uDvpUJ8uD/zhFNq8ZilppjjqWQTux07dlh8X7t2LQIDA3HkyBFkZmaC53ksX74cS5Yswa865y9at24dtFotNmzYgMcee0wI20zQaIQPboAwPuxdJmt9VnosdMTSbuxFcHY2UlassP42aj8mTB4sA11qrS9Y1hXHcVB4eyP+lVfsmvgOxp9apcAT2WPwxldHex30z/IR4mC5OXGqryzFnKnjBffXvd3IZVyfj5VZlycVfTHFZHvhNPPYXbhwATExMTh16hTi4+Nx6dIlDB8+HEePHkVSUpL5uDvvvBO+vr5Yt25dDw2dTgddtzX4GhoaEBYWJrp57BobG0XR4yiED3uXyVqflR4LHbG0G3sj9MoT5hUUAKsJVH9WULBXXQ1mpRBHkPdTKVbuOI3qpnbzNjH0hNlCLP+3HO1DavGYpeZgdGgeu37A8zyee+45TJ48GfHx8QCAss7Apb1pTTytVosrvcwevnTpUrz22ms9tufl5UGtViMjIwMnTpxAc3MzfH19MXLkSBR0LhEzYsQImEwmXLp0CQAwYcIEFBYWoqGhAd7e3hgzZgwOHjwIAIiKioJcLseFCxcAAKmpqbhw4QJqa2vh6emJpKQk7O+cEDM8PBweHh441zlPV3JyMnbs2IHAwECoVCqkpaVhX+cSTKGhofDx8UFhYSEAIDExEdevX0dFRQUUCgUyMjKQm5sLk8mE4OBgaDQanD59GgAwduxYVFZWoqysDHK5HJMnT8b+/fthMBgQGBiI4OBgnDhxAgAQFxeH+vp67N+/H5GRkZg6dSoOHjwInU6HgIAAhIeH4+jRjsG7o0ePRktLC4qLiwEAkydPxtGjR9HS0gI/Pz8MHz4chzvXQIyJiYFer0dRUREAYOLEiTh16hSampowZMgQjB49Gps3b0ZkZKT5NfOLFy8CANLT03H27FnU19fDy8sLY8eOxYHO5XoiIyOhUCjw888/AwBSUlJw8eJF8/1OTk5GXl4eAKC2thYTJ07E2bNnzfe7uLgYVVVVUCqVmDBhAnJycgAAw4YNw5AhQ8z3OyEhAaWlpaioqICbmxsmTZqEr7/+GhEREQgKCsLQoUNx6lTHdATx8fGorq5GaWkpZDIZpkyZgvz8fOj1egQGBiIkJATHOydJjYuLQ15eHvz9OwZkZ2ZmoqCgAG1tbdBoNIiIiDDf71GjRqG1tdV8vydNmoRjx46hpaUFZWVlmDNnDg4dOmRus0ajEZcvXza32TNnzqCxsRE+Pj6Ii4szt9no6GjIZDJzm01LS8P58+dRV1cHtVqNhIQE5HdOABsZGQl3d3ecP3/efL8vX76M6upqeHh4ICUlBbm5uQCAsLAweHl54aeffgIAJCUl4erVq6isrIS7uzsmTpyIffv2ged5hISEwM/PD2fOnAEAjBs3DuXl5SgvLze32by8PBiNRmi1WmhHjcLJkyeBvDyMGTMGtbW1uH79OjiOQ2ZmJg4cOID29nYMHToUoaGhONb5IkRsbCyamppQUlICAJgyZQoOHz6M1tZWaDQaREVFmdvsyJEj0d7ebm6zGRkZuKbRwOOJJ9D+z3/C2O2NW8XQoRj2+9/jvEqF8zk5fcaIuro6pKSk3HKMuHLlCqqrq3vGiBEjkPCvf+HU1q3g6+oQk5KCZq0W56urcTk/n3mMuHbtGgAMKEY8kiBHVbsvqhtbEazxwe2pcTh29AhyKs73K0b8+OOPAGC3GBEeHg5PT0+LGNEVk28lRnS12cHGiIaGBuTl5SEyMvKWY4Sfnx9GjBjR7xhRU1MDt87hCfaIEUVFRZgyZQrTGLFlyxaEh4d3xAittiNGAAOOEfv37zfH5IHGiK66sBu8E/DEE0/wERERfElJiXnb/v37eQD89evXLY5dsGABn52dbVWnra2Nr6+vN39KSkp4AHx9fb1d/Q+UvXv3Cm2B53lhfNi7TNb6rPRY6Iil3bgKJoOBrzxwgL+6dStfeeAAbzIY+n2uK9eVFK9dLJ4d7UNq8Zil5mB06uvr7ZpbSL7H7sknn8S2bduwb98+hHZ7oysoqGMeoLKyMgQH3+jCr6io6NGL14VSqYTSysLKYqP7m79CIoQPe5fJWp+VHgsdsbQbV4GTy/t8QaIvXLmupHjtYvHsaB9Si8csNcVS59bo/3vwIoPnefz+97/H5s2bsXv3bkTdNAVAVFQUgoKCsGvXLvO29vZ25OTkICMjw9F2mdLa2iq0BQDC+LB3maz1Wemx0BFLuyFs48p1JcVrF4tnR/uQWjxmqSmWOreGZBO7RYsW4fPPP8eGDRvg7e2NsrIylJWVmW82x3F45pln8NZbb+Hrr7/G6dOnMX/+fHh6euK+++4T2P3g6BobITRC+LB3maz1Wemx0BFLuyFs48p1JcVrF4tnR/uQWjxmqSmWOreGZB/Frlq1CgBw2223WWxfu3Yt5nfO6/THP/4Rra2teOKJJ8wTFH/33XeieHuJIAiCIAiCNU4z3Yk9sPcrybeKwWAwv4nkaj7sXSZrfVZ6LHTE0m4I27hyXUnx2sXi2dE+pBaPWWoORsfeuYVkH8W6MsducX1K1gjhw95lstZnpcdCRyzthrCNK9eVFK9dLJ4d7UNq8Zilpljq3BqU2EmQlgEs6m1PhPBh7zJZ67PSY6EjlnZD2MaV60qK1y4Wz472IbV4zFJTLHVuDUrsJIifn5/QFgAI48PeZbLWZ6XHQkcs7YawjSvXlRSvXSyeHe1DavGYpaZY6twaNMauD8Q6xq6lpQWenp5C2xDEh73LZK3PSo+FjljaDWEbV64rKV67WDw72ofU4jFLzcHo0Bg7ogddy70IjRA+7F0ma31Weix0xNJuCNu4cl1J8drF4tnRPqQWj1lqiqXOrUGJHUEQBEEQhJNAiZ0EGTFihNAWAAjjw95lstZnpcdCRyzthrCNK9eVFK9dLJ4d7UNq8Zilpljq3BqU2EkQo9EotAUAwviwd5ms9VnpsdARS7shbOPKdSXFaxeLZ0f7kFo8Zqkpljq3BiV2EuTy5ctCWwAgjA97l8lan5UeCx2xtBvCNq5cV1K8drF4drQPqcVjlppiqXNrUGJHEARBEAThJNB0J30g1ulOdDodlEql0DYE8WHvMlnrs9JjoSOWdkPYxpXrSorXLhbPjvYhtXjMUnMwOjTdCdGDM2fOCG0BgDA+7F0ma31Weix0xNJuCNu4cl1J8drF4tnRPqQWj1lqiqXOrUGJnQRpbGwU2gIAYXzYu0zW+qz0WOiIpd0QtnHlupLitYvFs6N9SC0es9QUS51bgxI7CSKWx8JC+LB3maz1Wemx0BFLuyFs48p1JcVrF4tnR/uQWjxmqSmWOrcGjbHrAxpjJz4fUhvTIYbxHKy9EPbHletKitcuFs80xs5xmjTGjmDKwYMHhbYAQBgf9i6TtT4rPRY6Ymk3hG1cua6keO1i8exoH1KLxyw1xVLn1qDEjiAIgiAIwkmgxE6CREdHC20BgDA+7F0ma31Weix0xNJuCNu4cl1J8drF4tnRPqQWj1lqiqXOrUGJnQSRycRRbUL4sHeZrPVZ6bHQEUu7IWzjynUlxWsXi2dH+5BaPGapKZY6t4Z4nRG9cuHCBaEtABDGh73LZK3PSo+FjljaDWEbV64rKV67WDw72ofU4jFLTbHUuTUosSMIgiAIgnASaLqTPhDrdCetra3w8PAQ2oYgPuxdJmt9VnosdMTSbgjbuHJdSfHaxeLZ0T6kFo9Zag5Gh6Y7IXpw/vx5oS0AEMaHvctkrc9Kj4WOWNoNYRtXrispXrtYPDvah9TiMUtNsdS5NSixkyB1dXVCWwAgjA97l8lan5UeCx2xtBvCNq5cV1K8drF4drQPqcVjlppiqXNruERit3LlSkRFRUGlUmH8+PHIzc0V2tKgUKvVQlsAIIwPe5fJWp+VHgsdsbQbwjauXFdSvHaxeHa0D6nFY5aaYqlzazj9GLtNmzZh3rx5WLlyJSZNmoTVq1fj448/RmFhIcLDw/s8V6xj7PR6PRQKhdA2BPFh7zJZ67PSY6EjlnZD2MaV60qK1y4Wz472IbV4zFJzMDo0xm6QvPfee3jkkUewYMECxMbGYvny5QgLC8OqVauEtnbL5OfnC20BgDA+7F0ma31Weix0xNJuCNu4cl1J8drF4tnRPqQWj1lqiqXOreEmtAF70t7ejiNHjuCFF16w2J6VlWW1UnQ6HXQ6nfl7fX09gI7sWkw0NzeLwpMQPuxdJmt9VnosdMTSbgjbuHJdSfHaxeLZ0T6kFo9Zag5Gp+s8ez0wderErqqqCkajEVqt1mK7VqtFWVlZj+OXLl2K1157rcf2sLAwu3kkCIIgCML1qK6uxpAhQ5jrOnVi1wXHcRbfeZ7vsQ0A/vznP+O5554zfzeZTKipqYFGo7F6vFCkpqbi0KFDQtsQxIe9y2Stz0pvsDoNDQ0ICwtDSUmJqMaLEtYRy/9xIZDitYvFs6N9SC0es9QcjE59fT3Cw8Ph7+8/aB/WcOrELiAgAHK5vEfvXEVFRY9ePABQKpVQKpUW23x9fe1p8ZaQy+Wi+OUshA97l8lan5UeKx0fHx9RtB2ib8Tyf1wIpHjtYvHsaB9Si8csNVno2Gu9Wad+ecLd3R3jx4/Hrl27LLbv2rULGRkZArkaPIsWLRLaAgBhfNi7TNb6rPTEUueEY3Dl+pbitYvFs6N9SC0es9QUS51bw2WmO/nwww8xceJErFmzBh999BHOnDmDiIgIoe0RhEMQ69Q9BEEQroa947FTP4oFgF//+teorq7G66+/jtLSUsTHx2P79u2U1BEuhVKpxCuvvNJjqAFBEAThWOwdj52+x44gCIIgCMJVcOoxdgRBEARBEK4EJXYEQRAEQRBOAiV2BEEQBEEQTgIldgRBEARBEE4CJXYEQRAEQRBOAiV2BOHi3H333fDz88M999wjtBWCIAiXpqSkBLfddhvi4uIwbtw4fPnllwPWoOlOCMLF2bNnD5qamrBu3Tp89dVXQtshCIJwWUpLS1FeXo7ExERUVFQgOTkZ586dg1qt7rcG9dgRhIszbdo0eHt7C22DIAjC5QkODkZiYiIAIDAwEP7+/qipqRmQBiV2BCFh9u3bhzlz5iAkJAQcx2HLli09jlm5ciWioqKgUqkwfvx45ObmOt4oQRCEC8AyJh8+fBgmkwlhYWED8kCJHUFImObmZiQkJOCDDz6wun/Tpk145plnsGTJEhw7dgxTpkzB7NmzUVxc7GCnBEEQzg+rmFxdXY0HH3wQa9asGbAHGmNHEE4Cx3H4+uuvcdddd5m3paenIzk5GatWrTJvi42NxV133YWlS5eat+3duxcffPABjbEjCIJgxK3GZJ1Oh5kzZ+LRRx/FvHnzBlwu9dgRhJPS3t6OI0eOICsry2J7VlYW8vPzBXJFEAThmvQnJvM8j/nz52P69Om3lNQBlNgRhNNSVVUFo9EIrVZrsV2r1aKsrMz8PTs7G/feey+2b9+O0NBQHDp0yNFWCYIgnJ7+xOT9+/dj06ZN2LJlCxITE5GYmIhTp04NqBw3Zo4JghAlHMdZfOd53mLbzp07HW2JIAjCZekrJk+ePBkmk2lQ+tRjRxBOSkBAAORyuUXvHABUVFT0+IuRIAiCsC+OismU2BGEk+Lu7o7x48dj165dFtt37dqFjIwMgVwRBEG4Jo6KyfQoliAkTFNTEy5cuGD+fvnyZRw/fhz+/v4IDw/Hc889h3nz5iElJQUTJ07EmjVrUFxcjIULFwromiAIwjkRQ0ym6U4IQsLs3bsX06ZN67H9oYcewqeffgqgYzLMZcuWobS0FPHx8Xj//feRmZnpYKcEQRDOjxhiMiV2BEEQBEEQTgKNsSMIgiAIgnASKLEjCIIgCIJwEiixIwiCIAiCcBIosSMIgiAIgnASKLEjCIIgCIJwEiixIwiCIAiCcBIosSMIgiAIgnASKLEjCIIgCIJwEiixIwiCIAiCcBIosSMIgrDBq6++isTExEFpFBUVgeM4HD9+vM/jzp07h6CgIDQ2NtrUPHXqFEJDQ9Hc3DwobwRBOA+U2BEE4TTMnz8fHMeB4zgoFApER0dj8eLFg058Fi9ejB9++IGRy75ZsmQJFi1aBG9vb5vHjh07FmlpaXj//fcd4IwgCClAiR1BEE7FrFmzUFpaikuXLuHNN9/EypUrsXjx4lvS4nkeBoMBXl5e0Gg0jJ325OrVq9i2bRsefvjhfp/z8MMPY9WqVTAajXZ0RhCEVKDEjiAIp0KpVCIoKAhhYWG47777cP/992PLli0AOhK1ZcuWITo6Gh4eHkhISMBXX31lPnfv3r3gOA47d+5ESkoKlEolcnNzezyKNZlMeP311xEaGgqlUonExETs2LHDwkdBQQGSkpKgUqmQkpKCY8eO2fT+xRdfICEhAaGhoeZtV65cwZw5c+Dn5we1Wo0xY8Zg+/bt5v3Z2dmorq5GTk7OLd4xgiCcCTehDRAEQdgTDw8P6PV6AMBLL72EzZs3Y9WqVYiJicG+ffvwwAMPYOjQoZg6dar5nD/+8Y945513EB0dDV9f3x5J09/+9je8++67WL16NZKSkvDJJ5/gl7/8Jc6cOYOYmBg0NzfjF7/4BaZPn47PP/8cly9fxtNPP23T6759+5CSkmKxbdGiRWhvb8e+ffugVqtRWFgILy8v8353d3ckJCQgNzcX06dPH8ytIgjCCaDEjiAIp6WgoAAbNmzA7bffjubmZrz33nvYvXs3Jk6cCACIjo5GXl4eVq9ebZHYvf7665g5c2avuu+88w7+9Kc/4Te/+Q0A4O2338aePXuwfPlyrFixAuvXr4fRaMQnn3wCT09PjBkzBlevXsXjjz/ep9+ioiKMHz/eYltxcTHmzp2LsWPHmj3fzLBhw1BUVNSve0IQhHNDiR1BEE7FN998Ay8vLxgMBuj1etx55534+9//jsLCQrS1tfVI2Nrb25GUlGSx7eZes+40NDTg+vXrmDRpksX2SZMm4cSJEwCAn376CQkJCfD09DTv70om+6K1tRUqlcpi21NPPYXHH38c3333HWbMmIG5c+di3LhxFsd4eHigpaXFpj5BEM4PJXYEQTgV06ZNw6pVq6BQKBASEgKFQgEAuHz5MgDg22+/xbBhwyzOUSqVFt/VarXNcjiOs/jO87x5G8/zt+Q9ICAAtbW1FtsWLFiA7OxsfPvtt/juu++wdOlSvPvuu3jyySfNx9TU1GD48OG3VCZBEM4FvTxBEIRToVarMWLECERERJiTOgCIi4uDUqlEcXExRowYYfEJCwvrt76Pjw9CQkKQl5dnsT0/Px+xsbHmsk6cOIHW1lbz/oMHD9rUTkpKQmFhYY/tYWFhWLhwITZv3oznn38eH330kcX+06dP9+h1JAjCNaEeO4IgXAJvb28sXrwYzz77LEwmEyZPnoyGhgbk5+fDy8sLDz30UL+1/vCHP+CVV17B8OHDkZiYiLVr1+L48eNYv349AOC+++7DkiVL8Mgjj+Cll15CUVER3nnnHZu62dnZWLBgAYxGI+RyOQDgmWeewezZszFy5EjU1tZi9+7d5gQS6BiXd+3aNcyYMWOAd4QgCGeEEjuCIFyGN954A4GBgVi6dCkuXboEX19fJCcn48UXXxyQzlNPPYWGhgY8//zzqKioQFxcHLZt24aYmBgAgJeXF/79739j4cKFSEpKQlxcHN5++23MnTu3T9077rgDCoUC33//PbKzswEARqMRixYtwtWrV+Hj44NZs2ZZTEi8ceNGZGVlISIiYoB3gyAIZ4Tjb3UwCEEQBMGclStXYuvWrdi5c6fNY3U6HWJiYrBx48YeL3MQBOGaUI8dQRCEiPjd736H2tpaNDY22lxW7MqVK1iyZAkldQRBmKEeO4IgCIIgCCeB3oolCIIgCIJwEiixIwiCIAiCcBIosSMIgiAIgnASKLEjCIIgCIJwEiixIwiCIAiCcBIosSMIgiAIgnASKLEjCIIgCIJwEiixIwiCIAiCcBIosSMIgiAIgnAS/h8RNn56FCDxywAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -2851,35 +2804,35 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m2025-07-11T17:39:17.081456-0700 | INFO | aurora.pipelines.transfer_function_kernel | update_dataset_df | DECIMATION LEVEL 1\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:17.279036-0700 | INFO | aurora.pipelines.transfer_function_kernel | update_dataset_df | Dataset Dataframe Updated for decimation level 1 Successfully\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:17.883669-0700 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:18.406106-0700 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:39:18.412128-0700 | WARNING | aurora.pipelines.feature_weights | extract_features | Features could not be accessed from MTH5 -- \n",
+ "\u001b[1m2026-01-20T20:13:45.284425-0800 | INFO | aurora.pipelines.transfer_function_kernel | update_dataset_df | line: 137 | DECIMATION LEVEL 1\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:45.504477-0800 | INFO | aurora.pipelines.transfer_function_kernel | update_dataset_df | line: 156 | Dataset Dataframe Updated for decimation level 1 Successfully\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:47.382484-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:49.029179-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:49.038840-0800 | INFO | aurora.pipelines.feature_weights | extract_features | line: 43 | Features could not be accessed from MTH5 -- \n",
"Calculating features on the fly (development only)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:18.419603-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 102.915872s (0.009717Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:18.472637-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 85.631182s (0.011678Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:18.554829-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 68.881694s (0.014518Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:18.652110-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 54.195827s (0.018452Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:18.750223-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 43.003958s (0.023254Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:18.858432-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 33.310722s (0.030020Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:18.987259-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 102.915872s (0.009717Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:19.075505-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 85.631182s (0.011678Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:19.157763-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 68.881694s (0.014518Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:19.256440-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 54.195827s (0.018452Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:19.354031-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 43.003958s (0.023254Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:19.460390-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 33.310722s (0.030020Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:19.621506-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 102.915872s (0.009717Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:19.726024-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 85.631182s (0.011678Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:19.813092-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 68.881694s (0.014518Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:19.912741-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 54.195827s (0.018452Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:20.021794-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 43.003958s (0.023254Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:20.142141-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 33.310722s (0.030020Hz)\u001b[0m\n"
+ "\u001b[1m2026-01-20T20:13:49.059227-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 205.831745s (0.004858Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:49.164647-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 171.262364s (0.005839Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:49.263208-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 137.763388s (0.007259Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:49.366360-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 108.391654s (0.009226Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:49.472857-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 86.007916s (0.011627Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:49.589331-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 66.621445s (0.015010Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:49.704723-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 205.831745s (0.004858Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:49.806202-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 171.262364s (0.005839Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:49.903009-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 137.763388s (0.007259Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:50.006272-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 108.391654s (0.009226Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:50.105493-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 86.007916s (0.011627Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:50.207728-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 66.621445s (0.015010Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:50.330472-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 205.831745s (0.004858Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:50.428432-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 171.262364s (0.005839Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:50.534605-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 137.763388s (0.007259Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:50.636933-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 108.391654s (0.009226Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:50.741747-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 86.007916s (0.011627Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:50.854083-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 66.621445s (0.015010Hz)\u001b[0m\n"
]
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG9CAYAAAAcFdw9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIdElEQVR4nO3df3zP9f7/8fvbm/0wNubHfjAmSSZMNsvJKWqFj8iPnIpPhvL5pvnV9IM6p3XSOQ79OJJFnU5WnUgx6hDxWZQcsQghQsPCJsZmfsy836/vH/t4520/vJe9937vtdv1cnlf7PX78X63vO+ez+fr+bIYhmEIAADAhGp5ugAAAAB3IegAAADTIugAAADTIugAAADTIugAAADTIugAAADTIugAAADTIugAAADTIugAAADTIugAAADTIugAAADTqvZBJysrSz169FBUVJQ6duyojz/+2NMlwcNycnI0depU3X777QoJCZGPj48CAgLUvn17Pfzww1qxYoXKesTbyy+/LIvF4vRatmxZudf7+eefNXHiRLVv314BAQHy9fVVaGioOnTooPvvv1/Tpk3TyZMnSxxns9n05ptvqnv37mrYsKH8/f3Vpk0bTZgwQUePHr3q+7x48aK6dOniVOuIESNc+owAoMYwqrkjR44Y3333nWEYhnH06FEjPDzcKCgo8GxR8JiUlBTDz8/PkFTuKzMzs9Tj27dvX2LfwYMHl3m9zZs3G0FBQVe93qXf0UvOnTtn3H333WXuHxwcbGRkZJT7Xl944YUSxyUkJFTwEwMAc6tdFWHKncLCwhQWFiZJCg0NVePGjZWbm6uAgAAPV4aqNmPGDD399NOOZavVqr59+zpaPfbt26fPP/9cOTk5pR6fkZGhnTt3llj/73//W7m5uQoODi6x7bHHHlNeXp4kKSAgQPfff7+uu+46FRUVae/evVq3bp2ysrJKHPfss89q1apVjjpHjRqlsLAwpaam6tChQ8rNzdWQIUO0Y8eOUn+Xt2/frqlTp7r2wQBATebppPXll18a99xzjxEWFmZIMpYsWVJin9mzZxstW7Y0fH19ja5duxobN24s9Vzffvut0b59ezdXXH2tWrXKGDx4sBEREWH4+PgYdevWNeLi4ox33nnHsNvtv+mca9asMUaNGmV07tzZCA0NNXx8fAx/f3+jdevWxogRI4zt27dX6Hzz5s1zqeXlSjt37jSsVqvjuKZNmxpbtmwpsd+FCxeMt956y8jJySmx7bHHHnMc36JFC6eWoddff73E/nl5eU61pqamllrbpk2bjF9++cWxfOLECcPX19dx3DPPPOPYtnv3bsNisTi2vfHGG6W+h+joaEOSERMTYzRr1owWHQAog8eDzmeffWY8++yzRlpaWqlB58MPPzR8fHyMd955x9i5c6cxevRoo0GDBiW+qE6cOGFERUUZ69evr8Lqq4eLFy86fYmX9rr//vt/U9iZNGlSuef18fExVq9e7fL5fmvQefTRR52OW7x4cYXex/nz542GDRs6hY+BAwc6lm+++eYSx5w4ccLpmk888YRx8eLFq15rwYIFTsdt3rzZaXuHDh0c23r37l3i+OTkZEOS4evra+zcudNo2bIlQQcAyuDxrqs+ffqoT58+ZW5/9dVXNXr0aI0cOVKSNHfuXC1fvlzvvPOOJk+eLEkqLCzUgAEDNHnyZP3ud78r93qFhYUqLCx0LNvtduXm5qpRo0ayWCyV8I68z4svvqg33nhDkmSxWPSHP/xBERER+vTTT/Xjjz9KkhYuXKhbbrlFo0aNqtC5a9eure7duysqKkoNGzaUn5+fcnNztWrVKu3Zs0cXLlzQ2LFjtWnTJpfOd+7cOafl06dPKz8//6rHrV692vFzgwYNdMcdd7h03CVpaWlOA4bvuecetWnTRkuWLJEkbdmyRRs2bFD79u0d+9SuXVstWrTQoUOHJBUPZH7nnXd0yy23qGPHjoqNjdXvf/97+fr6Ol0rIyPDablx48ZOtbZo0ULff/+9JGnbtm1O27Zv366//vWvkqRnnnlGzZs3dxpYXVRUVKH3DQDVlWEYOn36tMLDw1WrVjn3Vnk6aV1OV7ToFBYWGlartUQrz/Dhw43+/fsbhmEYdrvdeOCBB4zk5GSXrnHpX8O8ePHixYsXr+r/ysrKKvd73+MtOuU5fvy4bDabQkJCnNaHhIRo9+7dkqT169dr4cKF6tixo5YuXSpJev/999WhQ4dSzzllyhQlJSU5lvPy8tSiRQtlZWUpMDDQPW/Eg7766iv169fPsbxjxw5FREQ4lhMTE/Wvf/1LkuTr66tjx45V6PxffPGFxo8fX+qA28utXr1aXbt2rdC5KyIsLExnz56VJMXExCg9Pd3lY7OzsxUVFSWbzSZJ+uMf/6gnn3xSkvTII484pixo0qSJdu/erdq1nf+3WbdunWbMmKGvv/5adru91GtMnjxZU6ZMkSRNnDhR8+bNc2zLzc2V1Wp1LI8ePVofffSRJOf/Jn/5y180Y8YM+fv7a926dWrTpo0kqUOHDo5WpaFDh2rOnDkuv3cAqK7y8/MVERGh+vXrl7ufVwcdV3Tv3r3ML5fS+Pr6luhKkKTAwEBTBp0ruzGuv/56p/ffvHlzx8+FhYVlfj6lOXLkiIYNG+YIGOWpXbu2Wz/fZs2aae/evZKk/fv3q379+i53Rc6ZM8cRciQpISHBUevw4cMdQeeXX37R119/rf79+zsd37dvX/Xt21d5eXnasGGDNm7cqGXLlunbb7917PPGG29o2rRpkuS4S/ASi8Xi9NmcP3/e8XPjxo0VGBioQ4cO6dVXX5VU3BXZpUsXp+MvqVOnjil/jwGgLFf7u96rJwxs3LixrFZriduBc3JyFBoaek3nTklJUVRUlGJjY6/pPN7uwoULTstXtthc/tn6+fm5HHKk4tuuLw85r7zyik6dOiXDMEq9Tdud7rzzTsfPJ0+e1CeffOLyse+++67Tcps2bRwT8F3eGiZJqampZZ4nKChIvXv3VnJysjIyMpzGO+Xn5zs+644dOzod99NPPzkt79+/3/HzpZbJ3NxcXbx4UZI0adIkp0kCDx486PRemDgQAH7l1UHHx8dHXbp0ceqGsNvtSk9PV7du3a7p3ImJidq1a1eJgaFm9/777zt+zs/P17///W/H8uWtBK44ceKE0/LIkSMVFBQkSY6ul4pKTU11+hI/cOCAS8eNHTvWqftnzJgx2rZtW4n9ioqK9PbbbzsC38aNG/XDDz+4XN+yZct0/Phxx3JCQoI2b95c6r716tVz/FyrVi1H8+rdd98tPz8/x7bFixc7ft61a5d27drlWL733ntdrg0AUJLHu64KCgq0b98+x3JmZqa2bt2q4OBgtWjRQklJSUpISFBMTIy6du2qmTNn6syZM467sFAxf/zjH7V79261bNlSixYtcvrSHj16dIXO1bZtW6flvn37qk+fPtq+fbsWLVpUKfW6qn379po6daqeeeYZScXjbmJiYnTPPfeoc+fOJSYMjI+PlySnsTIWi0VDhgwp0QxaUFCg5cuXSyoOSh988IEmTJggSXrvvff03nvvqXXr1urevbuuu+46WSwWbdu2TWlpaY5z3Hbbbapbt64kqWHDhkpMTNQrr7wiSZo+fbqOHz+usLAwvfPOO467qFq2bKmHHnpIUvGdZIMHDy71va9YscLRstayZUvFxMSYvqUSAFzm+j1R7rFmzZpSR1FfPh/I66+/brRo0cLw8fExunbtanzzzTeVdv1Lk77l5eVV2jm9yZXz0vTt27fUz7tv374VnkfnwoULTnO+XPnf7/LlNWvW/KZ6XZ1H55LXXnvNaTK+sl6ZmZnGuXPnjAYNGjjWxcfHl3pOu93uNFdNdHS0Y9vVriMVP87h+++/dzrnuXPnjLvuuqvMYxo2bHjVR0Bcwjw6AGoiV7+/Pd511aNHDxnFExc6vS4fCzF27FgdPHhQhYWF2rhxo+Li4jxXcDWXlpamF154Qa1bt5aPj48iIyOVnJysxYsXV3geoTp16uiLL77QiBEj1KhRI/n6+uqmm27SW2+9peeff949b+Aqxo8fr8zMTD3//PPq3r27mjRpotq1a6tu3bpq166dxowZo7Vr16ply5ZaunSpTp065Ti2rDmELBaLEhISHMtbt251dItt2bJFL730kvr27at27dqpUaNGslqtql+/vjp37qynnnpKO3fu1E033eR0Tj8/P61YsUJz5sxRt27dFBgYKF9fX7Vu3Vrjxo3Tjh07FBMTU/kfEADUMBbDKOMxziaXkpKilJQU2Ww2/fjjj8rLyzPl3SqpqalO3Xw19D83AMBk8vPzFRQUdNXvb4+36HhKTR2MDABATVJjgw4AADA/j991Be9y+PBhpzlpyjJw4EDHBHgAAHgrgo7JjRgxokKTxxUVFWnPnj1X3e/o0aPXUBUAAFWjxgadywcj41eRkZEMWAYAmEaNvevqEldHbQMAAO/BXVcAAKDGI+gAAADTIugAAADTqrFBJyUlRVFRUTz8EAAAE2MwMoORAQCodhiMDAAAajyCDgAAMC2CDgAAMC2CDgAAMC2CDgAAMK0aG3S4vRwAAPPj9nJuLwcAoNrh9nIAAFDjEXQAAIBpEXQAAIBpEXQAAIBpEXQAAIBpEXQAAIBp1digwzw6AACYH/PoMI8OAADVDvPoAACAGo+gAwAATIugAwAATIugAwAATIugAwAATIugAwAATIugAwAATIugAwAATKvGBh1mRgYAwPyYGZmZkQEAqHaYGRkAANR4BB0AAGBaBB0AAGBaBB0AAGBaBB0AAGBaBB0AAGBaBB0AAGBaBB0AAGBaBB0AAGBaBB0AAGBaBB0AAGBaBB0AAGBaBB0AAGBatT1dgKekpKQoJSVFNpvN06UAQOWx2aR166SjR6WwMOn3v5esVk9XBXiMxTAMw9NFeJKrj3kHAK+XliZNmCD9/POv65o3l157TRo0yHN1AW7g6vc3XVcAYAZpadJ99zmHHEk6fLh4fVqaZ+oCPIygAwCVzWaT1q6VFiwo/tOdXeSGIZ06JSUmFv9c2nZJmjjRvXUAXoqgAwCVKS1NioyUevaUhg4t/jMy0n0tKgUFUsOGUnZ22fsYhpSVVTx2B6hhCDoAUFm8vfvo6FHPXh/wAIIOAFSGoiJp7Njyu48mTJAuXqzc69arJy1f7tq+YWGVe22gGiDoAKj+qnJMTGnsdsnHp/wWE8MobulZvbpyr22xSL16Fd9dZbGUvU9ERPGt5kANQ9ABUL1V9ZiY0pw54/q+7ug+slqLbyGXSoadS8szZzKfDmokgg6A6slul+bNK39MzPz5pXclVbZaFfirNDLSPTUMGiQtWiQ1a+a8vnnz4vXMo4MaigkDmTAQuDpvm23Xbnf9+nl5krv/3zYM6fRpKSpKOnKk9HBlsRSHjsxM93523vbfCnATV7+/a+wjIAC4yBtn261IV9HXX0v/9V/uq0UqDjGBgdKsWcUtSRaLc9ipyu4jq1Xq0cO91wCqEbquAJRt0SLv6Bq6UkW6ik6edF8dV6L7CPA6v6nr6vz589q+fbuOHTsmu93utK1///6VVlxVoOsKKENRUfGdRFdTFV1DVzIMaeVK11pq1qyp+hYOuo8At3Nb19XKlSs1fPhwHT9+vMQ2i8XC08CBa+FNX5Cu3gZdFV1DV7JYpLvvLm4pOXy4/DExnrilmu4jwGtUuOtq3LhxGjJkiI4ePSq73e70IuQA18AbbpO+XE6Oa/tVZdfQ5bilGoALKhx0cnJylJSUpJCQEHfUA9RM3vjoAFdvg75yPEpVYkwMgKuo8BidUaNG6dZbb9XDDz/srpqqFGN04FGGUTzGpV27sh/KaLFI4eHSgQNS7Sq8UdJmKw47V+sacvft0q7wpi4/AFXC1e/vCgeds2fPasiQIWrSpIk6dOigOnXqOG0fP378b6vYQwg68KjTp10fyLt8edWPhbnU0iSVfrs0rSYAPMRtg5EXLFigVatWyc/PT2vXrpXlsr5xi8VS7YIOUG2U1eLjTpe6hkqbR2fmTEIOAK9X4Rad0NBQjR8/XpMnT1atisxl4UYDBw7U2rVrdeedd2rRokUVOpYWHXiUYUgrVkh9+1593y++KB6g7Al0DQHwMm7rugoODlZGRoZat259zUVWlrVr1+r06dN69913CTqofqrTWBgA8BKufn9XuEkmISFBCxcuvKbiKluPHj1Uv359T5cB/DbcJg0AblPhoGOz2TRjxgzdfvvtGjdunJKSkpxeFfXVV1+pX79+Cg8Pl8Vi0dKlS0vsk5KSosjISPn5+SkuLk6bNm2q8HVQw9ls0tq10oIFxX9625xP3CYNAG5R4cHI33//vTp37ixJ2rFjh9M2y5X/GnXBmTNn1KlTJ40aNUqDSvnLfOHChUpKStLcuXMVFxenmTNnqlevXtqzZ4+aNm1a4euhBvLGh1KWZtAg6d57GQsDAJXoNz3ryl0sFouWLFmiAQMGONbFxcUpNjZWs2fPliTZ7XZFRERo3Lhxmjx5smO/tWvXavbs2Vcdo1NYWKjCwkLHcn5+viIiIhijY1aXbo++8tec26MBoFpz2xidy61fv94pNFS2CxcuaPPmzYqPj3esq1WrluLj47Vhw4bfdM5p06YpKCjI8YqIiKiscuFtioqksWNLH+B7ad3Eid7XjQUAqDTXFHT69Omjw4cPV1YtJRw/flw2m63E4yZCQkKUfdmcIvHx8RoyZIg+++wzNW/evNwQNGXKFOXl5TleWVlZbqsfHmS3Fz95++jRsvcxDCkrq7irCABgStc0n7y39Hr97//+r8v7+vr6ytfX143VwCucOeP6vuWFIQBAteYdM/6VoXHjxrJarcq54inKOTk5Cg0NvaZzp6SkKCoqSrGxsdd0HnipikxmGRbmvjoAAB51TUHnzTffdHQr2e12HTp0qFKKusTHx0ddunRRenq6Y53dbld6erq6det2TedOTEzUrl27lJGRca1lwhvVrVv8sMxmzUrOTXOJxSJFRBTf2QQAMKUKd13NmzdPCxcu1MGDBxUYGKgtW7bo8ccfV+3atdWqVSvZKjiws6CgQPv27XMsZ2ZmauvWrQoODlaLFi2UlJSkhIQExcTEqGvXrpo5c6bOnDmjkSNHVrR01CQWS/HDMmfNKr7rymIp/aGUTMQHAKbmcouOzWbTvffeq0cffVR169ZV//791alTJ3388cdq166dVq5c+ZsK+Pbbb9W5c2fH3DxJSUnq3LmznnvuOUnS/fffr5dfflnPPfecoqOjtXXrVq1cubLEAGWgVEzEBwA1msvz6Lz88st69dVXtWbNGrVt29ax3m6369VXX9Wzzz6rixcvVrhFx9N41lUNwUMpAcBUXP3+drnrKjU1VTNmzHAKOVLxvDZPPPGEDMPQ008//dsrrmIpKSlKSUmpdsEMv5HVKvXo4ekqAABVzOUWHX9/f23fvl1t2rRxd01VihYdAACqn0qfGTkgIEC//PJLmdu3bt2qUaNGVaxKAAAAN3I56Nx+++2aO3duqduys7P1wAMP6N133620wgAAAK6Vy0EnOTlZixcvVkJCgnbs2KHz58/ryJEjevPNNxUbG6vGjRu7s04AAIAKcznodOzYUStWrND69evVqVMnBQQEKCIiQuPHj9eDDz6oBQsWeM0jIVzBzMgAAJify4ORL7Hb7dq0aZMyMzMVGBiobt26KTg4WGfOnNHLL7+s5ORkd9XqFgxGBgCg+nH1+7vCQcdsCDoAAFQ/lX7XFQAAQHVD0AEAAKZVY4MOg5EBADA/xugwRgcAgGqHMToAAKDGI+gAAADTIugAAADTIugAAADTIugAAADTqu3pAjwlJSVFKSkpstlsni4F8Ho2m7RunXT0qBQWJv3+95LV6umqAODquL2c28vhRbwxUKSlSRMmSD///Ou65s2l116TBg3yXF0AajZuLweqmbQ0KTJS6tlTGjq0+M/IyOL1nqzpvvucQ44kHT5cvN6TtV3OZpPWrpUWLCj+k4ZaAJcQdAAv4I2BwmYrbskprc330roJE6SLF6u2rit5Y0AE4D0IOoAHGYZ06pSUmFh+oBg/vuoDxZdflgxelzOM4u2rV1ddTVfyxoAIwLvU2MHIqFm8ceyLJBUUSA0blr+PYRR/ca9aJf3Xf1VNXZJ04IBr+x096tYyylRUJI0dW3ZAtFiKW5z695dqV/HfdJ78ffPW33XAU2jRgemZpWsjO7tqrxcW5tp+kZFuLaNUdrvk41N+yPJUi5Mnf9/M8rsOVCaCDkzLbpfmzSu/a2PxYs/Udkm9etLy5a7t26qVe2u50l13Sc2aFbeMlMZikSIipNtvr9q6JOnMGdf3rcoWJ092pdGNB5SuxgadlJQURUVFKTY21tOlwA3s9uLm+lGjyu7aMAxp4kTP3qFjsUi9ehXfrn21QHHbbVVbW+3a0qxZv9ZwZU2SNHOmZ7pFalXgb66qanG6Wlea5L7B265c29O/64Cn1Nigk5iYqF27dikjI8PTpcANXP0X/88/F49n8CSrtXhOGsn7AsWgQdKiRcUtO5dr3rx4vafm0albV8rL854WJ092pbl67awsz/+uA55QY4MOzK0i/+L31GDay3lroJCKr33ggLRmjTR/fvGfmZmerclikQIDvafFyZNdad7ajQd4C+66ginVrSt99plrdym5OujW3QYNku691zvvmLFapR49PF1FSZcCYmkzN8+cWXVhzJNdaRW5trf8rgNViUdA8AgI07LZir9UDh8ufeyCxVL8hZiZ6R1hAr+dp2+pNgzp9GkpKko6cqRqf988eW3Ak3gEBGo8bx77gsp1qcXpwQeL/6zq/6ae7Erztm48wNsQdGBq3jz2Bebjyd83fteB0tF1RddVjeDprg3ULMyMDLifq9/fBB2CDgAA1Q5jdAAAQI1XY4MOMyMDAGB+dF3RdQUAQLVD1xUAAKjxCDoAAMC0CDoAAMC0CDoAAMC0CDoAAMC0CDoAAMC0CDoAAMC0CDoAAMC0CDoAAMC0CDoAAMC0CDoAAMC0CDoAAMC0CDoAAMC0amzQSUlJUVRUlGJjYz1dCgAAcBOLYRiGp4vwJFcf8w4AALyHq9/fNbZFBwAAmB9BBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmJYpgs6yZcvUtm1btWnTRm+//banywEAAF6itqcLuFYXL15UUlKS1qxZo6CgIHXp0kUDBw5Uo0aNPF0aAADwsGrforNp0ya1b99ezZo1U7169dSnTx+tWrXK02UBAAAv4PGg89VXX6lfv34KDw+XxWLR0qVLS+yTkpKiyMhI+fn5KS4uTps2bXJsO3LkiJo1a+ZYbtasmQ4fPlwVpQMAAC/n8aBz5swZderUSSkpKaVuX7hwoZKSkpScnKwtW7aoU6dO6tWrl44dO1bFlQIAgOrG42N0+vTpoz59+pS5/dVXX9Xo0aM1cuRISdLcuXO1fPlyvfPOO5o8ebLCw8OdWnAOHz6srl27lnm+wsJCFRYWOpbz8vIkSfn5+df6VgAAQBW59L1tGEb5OxpeRJKxZMkSx3JhYaFhtVqd1hmGYQwfPtzo37+/YRiGUVRUZFx//fXGzz//bJw+fdq44YYbjOPHj5d5jeTkZEMSL168ePHixcsEr6ysrHKzhcdbdMpz/Phx2Ww2hYSEOK0PCQnR7t27JUm1a9fWK6+8op49e8put+upp54q946rKVOmKCkpybFst9uVm5urRo0ayWKxuOeN/EaxsbHKyMjwdBleobp/Ft5Yv6dqqqrruus6lXneyjhXfn6+IiIilJWVpcDAwEqpC57jjX9XeMrVPgvDMHT69GmFh4eXex6vDjqu6t+/v/r37+/Svr6+vvL19XVa16BBAzdUde2sVit/cf2f6v5ZeGP9nqqpqq7rrutU5nkr81yBgYFe9zuGivPGvys8xZXPIigo6Krn8fhg5PI0btxYVqtVOTk5TutzcnIUGhrqoaqqTmJioqdL8BrV/bPwxvo9VVNVXddd16nM83rj7wU8i9+JX1XWZ2H5v7ExXsFisWjJkiUaMGCAY11cXJy6du2q119/XVJxV1OLFi00duxYTZ482UOVAoB3yM/PV1BQkPLy8mgJAErh8a6rgoIC7du3z7GcmZmprVu3Kjg4WC1atFBSUpISEhIUExOjrl27aubMmTpz5ozjLiwAqMl8fX2VnJxcokseQDGPt+isXbtWPXv2LLE+ISFBqampkqTZs2frpZdeUnZ2tqKjozVr1izFxcVVcaUAAKC68XjQAQAAcBevHowMAABwLQg6AADAtAg6AADAtAg6AGBCWVlZ6tGjh6KiotSxY0d9/PHHni4J8AgGIwOACR09elQ5OTmKjo5Wdna2unTpoh9//FEBAQGeLg2oUh6fRwcAUPnCwsIUFhYmSQoNDVXjxo2Vm5tL0EGNQ9cVAHihr776Sv369VN4eLgsFouWLl1aYp+UlBRFRkbKz89PcXFx2rRpU6nn2rx5s2w2myIiItxcNeB9CDoA4IXOnDmjTp06KSUlpdTtCxcuVFJSkpKTk7VlyxZ16tRJvXr10rFjx5z2y83N1fDhw/XWW29VRdmA12GMDgB4ubKeAxgbG6vZs2dLKn4OYEREhMaNG+d4DmBhYaHuuusujR49Wg899JAnSgc8jhYdAKhmLly4oM2bNys+Pt6xrlatWoqPj9eGDRskSYZhaMSIEbrjjjsIOajRCDoAUM0cP35cNptNISEhTutDQkKUnZ0tSVq/fr0WLlyopUuXKjo6WtHR0fr+++89US7gUdx1BQAm1L17d9ntdk+XAXgcLToAUM00btxYVqtVOTk5TutzcnIUGhrqoaoA70TQAYBqxsfHR126dFF6erpjnd1uV3p6urp16+bBygDvQ9cVAHihgoIC7du3z7GcmZmprVu3Kjg4WC1atFBSUpISEhIUExOjrl27aubMmTpz5oxGjhzpwaoB78Pt5QDghdauXauePXuWWJ+QkKDU1FRJ0uzZs/XSSy8pOztb0dHRmjVrluLi4qq4UsC7EXQAAIBpMUYHAACYFkEHAACYFkEHAACYFkEHAACYFkEHAACYFkEHAACYFkEHAACYVo2fGdlut+vIkSOqX7++LBaLp8sBAAAuMAxDp0+fVnh4uGrVKrvdpsYHnSNHjigiIsLTZQAAgN8gKytLzZs3L3N7jQ869evXl1T8QQUGBnq4GgAA4Ir8/HxFREQ4vsfLUuODzqXuqsDAQIIOAADVzNWGnTAYGQAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmJbXBh2bzaY//elPatWqlfz9/dW6dWtNnTpVhmE49jEMQ88995zCwsLk7++v+Ph47d2714NVAwAAb+K1QWf69OmaM2eOZs+erR9++EHTp0/XjBkz9Prrrzv2mTFjhmbNmqW5c+dq48aNCggIUK9evXT+/HkPVg4AALyFxbi8icSL3HPPPQoJCdE///lPx7rBgwfL399f//rXv2QYhsLDwzVp0iQ98cQTkqS8vDyFhIQoNTVVDzzwgEvXyc/PV1BQkPLy8hQYGOiW9wIAACqXq9/fXtui87vf/U7p6en68ccfJUnbtm3T119/rT59+kiSMjMzlZ2drfj4eMcxQUFBiouL04YNG8o8b2FhofLz851eAADAnGp7uoCyTJ48Wfn5+brxxhtltVpls9n0l7/8RcOGDZMkZWdnS5JCQkKcjgsJCXFsK820adP05z//2X2FAwAAr+G1LTofffSRPvjgA82fP19btmzRu+++q5dfflnvvvvuNZ13ypQpysvLc7yysrIqqWLvl5OTo6lTp+r2229XSEiIfHx8FBAQoPbt2+vhhx/WihUrVFZP5ssvvyyLxeL0WrZsWbnX+/nnnzVx4kS1b99eAQEB8vX1VWhoqDp06KD7779f06ZN08mTJ0scZ7PZ9Oabb6p79+5q2LCh/P391aZNG02YMEFHjx696vu8ePGiunTp4lTriBEjXPqMAAAmY3ip5s2bG7Nnz3ZaN3XqVKNt27aGYRjG/v37DUnGd99957TPbbfdZowfP97l6+Tl5RmSjLy8vGuu2ZulpKQYfn5+hqRyX5mZmaUe3759+xL7Dh48uMzrbd682QgKCrrq9a7873fu3Dnj7rvvLnP/4OBgIyMjo9z3+sILL5Q4LiEhoYKfGADAm7n6/e21XVdnz55VrVrODU5Wq1V2u12S1KpVK4WGhio9PV3R0dGSigcmbdy4UWPGjKnqcr3ajBkz9PTTTzuWrVar+vbt62j12Ldvnz7//HPl5OSUenxGRoZ27txZYv2///1v5ebmKjg4uMS2xx57THl5eZKkgIAA3X///bruuutUVFSkvXv3at26daW2pj377LNatWqVo85Ro0YpLCxMqampOnTokHJzczVkyBDt2LFDAQEBJY7fvn27pk6d6toHAwAwvyoKXhWWkJBgNGvWzFi2bJmRmZlppKWlGY0bNzaeeuopxz5/+9vfjAYNGhiffPKJsX37duPee+81WrVqZZw7d87l65i9RWfnzp2G1Wp1tGw0bdrU2LJlS4n9Lly4YLz11ltGTk5OiW2PPfaY4/gWLVo4tQy9/vrrJfa/9JleeqWmppZa26ZNm4xffvnFsXzixAnD19fXcdwzzzzj2LZ7927DYrE4tr3xxhulvofo6GhDkhETE2M0a9aMFh0AMClXv7+9Nujk5+cbEyZMcHyxXnfddcazzz5rFBYWOvax2+3Gn/70JyMkJMTw9fU17rzzTmPPnj0Vuo7Zg86jjz7qFDoWL15coePPnz9vNGzY0Cl8DBw40LF88803lzjmxIkTTtd84oknjIsXL171WgsWLHA6bvPmzU7bO3To4NjWu3fvEscnJycbkgxfX19j586dRsuWLQk6AGBS1T7oVBWzB502bdo4vuwbNmxo2Gy2Ch2/cOFCp/Cxffv2Utdd6fKQIclo1KiR0b9/fyM5OdlYuXKlcf78+RLHTJkyxemYkydPOm2/9957HdvCw8Odtn333XdGnTp1DEnG9OnTS9RA0AEAc3H1+9tr77pC5Th8+LDj5xtuuKHEuKerSU1Ndfzcvn17dejQQf369VO9evVK3eeSv//977JYLI7lEydO6NNPP9Wf//xn9e7dWyEhIXrhhRdks9kc++Tm5jqd48oJoOrXr+90vkuKioo0YsQIFRUV6ZZbbtGkSZMq9B4BAOZF0EGZjh496hgYLMkx27S/v7/69+/vWP+vf/1LFy9edDp24MCB+uKLL3THHXeUGq7y8vKUnJxc7sBh44pb3a9cvmTq1Knatm2b/P39lZqaKqvVevU3BwCoEQg6JtesWTPHzz/++GOZYaE07733nlOLy+WP1XjwwQcdPx87dkyfffZZieN79Oih9PR05ebmasWKFXr++ecVExPjtM/f//53x8+NGjVy2nb69Okylxs3bixJOnTokKZNmyZJevHFF9W2bVuX3x8AwPwIOiZ35513On4+efKkPvnkE5ePvXJyxjZt2jgm4OvXr5/TttK6ry4JCgpS7969lZycrIyMDI0aNcqxLT8/33Fbe8eOHZ2O++mnn5yW9+/f7/i5Q4cOkoq7uy61Jk2aNMlpksCDBw86vRcmDgSAmoegY3Jjx4516soZM2aMtm3bVmK/oqIivf322zp27JgkaePGjfrhhx9cvs6yZct0/Phxx3JCQoI2b95c6r6Xj++pVauWY+zN3XffLT8/P8e2xYsXO37etWuXdu3a5Vi+9957Xa4NAFBzee2Egagc7du319SpU/XMM89IKn5GWExMjO655x517ty5xISBlx6SOm/ePMc5LBaLhgwZ4jS4WJIKCgq0fPlyScVB6YMPPtCECRMkFXd7vffee2rdurW6d++u6667ThaLRdu2bVNaWprjHLfddpvq1q0rSWrYsKESExP1yiuvSJKmT5+u48ePKywsTO+8846j261ly5Z66KGHJEkNGjTQ4MGDS33vK1as0NmzZx3HxMTEKDY29ho+TQBAdWMxKjJow4Rcfcx7dTdr1iw99dRTKiwsLHe/zMxMhYaGKiwsTKdOnZIkxcfHa/Xq1SX2NQxDrVq1cnQRRUdH67vvvpOkEqGoNMHBwfryyy910003OdadP39e/fv3L/V6UnEYWrVqVYmxPqWJjIx01JaQkFBu9xoAoHpx9fubrqsaYvz48crMzNTzzz+v7t27q0mTJqpdu7bq1q2rdu3aacyYMVq7dq1atmyppUuXOkKOJKcxNZezWCxKSEhwLG/dutXRLbZlyxa99NJL6tu3r9q1a6dGjRrJarWqfv366ty5s5566int3LnTKeRIkp+fn1asWKE5c+aoW7duCgwMlK+vr1q3bq1x48Zpx44dLoUcAAAkWnRqTIsOAABmQosOAACo8Qg6AADAtAg6AADAtAg6AADAtAg6AADAtAg6AADAtAg6AADAtAg6AADAtAg6AADAtAg6AADAtAg6AADAtAg6AADAtAg6AADAtAg6AADAtAg6AADAtAg6AADAtAg6AADAtLw66Bw+fFj//d//rUaNGsnf318dOnTQt99+69huGIaee+45hYWFyd/fX/Hx8dq7d68HKwYAAN7Ea4POyZMndeutt6pOnTpasWKFdu3apVdeeUUNGzZ07DNjxgzNmjVLc+fO1caNGxUQEKBevXrp/PnzHqwcAAB4C4thGIaniyjN5MmTtX79eq1bt67U7YZhKDw8XJMmTdITTzwhScrLy1NISIhSU1P1wAMPuHSd/Px8BQUFKS8vT4GBgZVWPwAAcB9Xv7+9tkXn008/VUxMjIYMGaKmTZuqc+fO+sc//uHYnpmZqezsbMXHxzvWBQUFKS4uThs2bCjzvIWFhcrPz3d6AQAAc/LaoPPTTz9pzpw5atOmjT7//HONGTNG48eP17vvvitJys7OliSFhIQ4HRcSEuLYVppp06YpKCjI8YqIiHDfmwAAAB7ltUHHbrfr5ptv1l//+ld17txZ//M//6PRo0dr7ty513TeKVOmKC8vz/HKysqqpIoBAIC3qbKgc+rUqQrtHxYWpqioKKd17dq106FDhyRJoaGhkqScnBynfXJychzbSuPr66vAwECnFwAAMCe3BJ3p06dr4cKFjuU//OEPatSokZo1a6Zt27a5dI5bb71Ve/bscVr3448/qmXLlpKkVq1aKTQ0VOnp6Y7t+fn52rhxo7p161YJ7wIAAFR3bgk6c+fOdYx9Wb16tVavXq0VK1aoT58+evLJJ106x+OPP65vvvlGf/3rX7Vv3z7Nnz9fb731lhITEyVJFotFEydO1IsvvqhPP/1U33//vYYPH67w8HANGDDAHW8LAABUM7XdcdLs7GxH0Fm2bJn+8Ic/6O6771ZkZKTi4uJcOkdsbKyWLFmiKVOm6IUXXlCrVq00c+ZMDRs2zLHPU089pTNnzuh//ud/dOrUKXXv3l0rV66Un5+fO94WAACoZtwyj054eLgWLVqk3/3ud2rbtq1efPFFDRkyRHv27FFsbKxX3dLNPDoAAFQ/rn5/u6VFZ9CgQRo6dKjatGmjEydOqE+fPpKk7777Ttdff707LgkAAFCCW4LO3//+d0VGRiorK0szZsxQvXr1JElHjx7VY4895o5LAgAAlOC1j4CoKnRdAQBQ/Xj8ERDvv/++unfvrvDwcB08eFCSNHPmTH3yySfuuiQAAIATtwSdOXPmKCkpSX369NGpU6dks9kkSQ0aNNDMmTPdcUkAAIAS3BJ0Xn/9df3jH//Qs88+K6vV6lgfExOj77//3h2XBAAAKMEtQSczM1OdO3cusd7X11dnzpxxxyUBAABKcEvQadWqlbZu3Vpi/cqVK9WuXTt3XBIAAKAEt9xenpSUpMTERJ0/f16GYWjTpk1asGCBpk2bprffftsdlwQAACjBLUHnkUcekb+/v/74xz/q7NmzGjp0qMLDw/Xaa6/pgQcecMclAQAASnD7PDpnz55VQUGBmjZt6s7L/GbMowMAQPXj8Xl0Ll68qP/93//V+++/L39/f0nSkSNHVFBQ4K5LAgAAOHFL19XBgwfVu3dvHTp0SIWFhbrrrrtUv359TZ8+XYWFhZo7d647LgsAAODELS06EyZMUExMjE6ePOlozZGkgQMHKj093R2XBAAAKMEtLTrr1q3Tf/7zH/n4+Ditj4yM1OHDh91xSQAAgBLc0qJjt9sdj3243M8//6z69eu745IAAAAluCXo3H333U7PtLJYLCooKFBycrL+67/+yx2XBAAAKMEtt5dnZWWpd+/eMgxDe/fuVUxMjPbu3avGjRvrq6++8qpbzbm9HACA6sfV72+3zaNz8eJFLVy4UNu2bVNBQYFuvvlmDRs2zGlwsjcg6AAAUP14LOgUFRXpxhtv1LJly6rFc60IOgAAVD8emzCwTp06On/+fGWfFgAAoMLcMhg5MTFR06dP18WLF91xegAAAJe4ZR6djIwMpaena9WqVerQoYMCAgKctqelpbnjsgAAAE7cEnQaNGigwYMHu+PUAAAALnNL0Jk3b547TgsAAFAhbnt6OQAAgKe5Jeh07txZN998c4lXly5ddOuttyohIUFr1qyp0Dn/9re/yWKxaOLEiY5158+fV2Jioho1aqR69epp8ODBysnJqeR3AwAAqiu3BJ3evXvrp59+UkBAgHr27KmePXuqXr162r9/v2JjY3X06FHFx8frk08+cel8GRkZevPNN9WxY0en9Y8//rj+/e9/6+OPP9aXX36pI0eOaNCgQe54SwAAoBpyyxid48ePa9KkSfrTn/7ktP7FF1/UwYMHtWrVKiUnJ2vq1Km69957yz1XQUGBhg0bpn/84x968cUXHevz8vL0z3/+U/Pnz9cdd9whqXhsULt27fTNN9/olltuqfw3BgAAqhW3tOh89NFHevDBB0usf+CBB/TRRx9Jkh588EHt2bPnqudKTExU3759FR8f77R+8+bNKioqclp/4403qkWLFtqwYUOZ5yssLFR+fr7TCwAAmJNbgo6fn5/+85//lFj/n//8R35+fpIku93u+LksH374obZs2aJp06aV2JadnS0fHx81aNDAaX1ISIiys7PLPOe0adMUFBTkeEVERLjwjgAAQHXklq6rcePG6dFHH9XmzZsVGxsrqXiczdtvv61nnnlGkvT5558rOjq6zHNkZWVpwoQJWr169VUDUUVMmTJFSUlJjuX8/HzCDgAAJuW2p5d/8MEHmj17tqN7qm3btho3bpyGDh0qSTp37pwsFkuZIWbp0qUaOHCgrFarY53NZpPFYlGtWrX0+eefKz4+XidPnnRq1WnZsqUmTpyoxx9/3KU6eagnAADVj8eeXl5ZTp8+rYMHDzqtGzlypG688UY9/fTTioiIUJMmTbRgwQLHLMx79uzRjTfeqA0bNrg8GJmgAwBA9ePq97dbuq4k6dSpU1q0aJF++uknPfHEEwoODtaWLVsUEhKiZs2aXfX4+vXr66abbnJaFxAQoEaNGjnWP/zww0pKSlJwcLACAwM1btw4devWjTuuAACAJDcFne3btys+Pl5BQUE6cOCAHnnkEQUHBystLU2HDh3Se++9VynX+fvf/65atWpp8ODBKiwsVK9evfTGG29UyrkBAED155auq/j4eN18882aMWOG6tevr23btum6667Tf/7zHw0dOlQHDhyo7Ev+ZnRdAQBQ/bj6/e2W28szMjL0//7f/yuxvlmzZuXe+g0AAFCZ3BJ0fH19S52I78cff1STJk3ccUkAAIAS3BJ0+vfvrxdeeEFFRUWSJIvFokOHDunpp5923CEFAADgbm4JOq+88ooKCgrUpEkTnTt3Trfffruuv/561a9fX3/5y1/ccUkAAIAS3HLXVVBQkFavXq3169dr27ZtKigo0M0331zieVUAAADuVOlBx263KzU1VWlpaTpw4IAsFotatWql0NBQGYYhi8VS2ZcEAAAoVaV2XRmGof79++uRRx7R4cOH1aFDB7Vv314HDx7UiBEjNHDgwMq8HAAAQLkqtUUnNTVVX331ldLT09WzZ0+nbV988YUGDBig9957T8OHD6/MywIAAJSqUlt0FixYoGeeeaZEyJGkO+64Q5MnT9YHH3xQmZcEAAAoU6UGne3bt6t3795lbu/Tp4+2bdtWmZcEAFzGZpPWrpUWLCj+02bzdEWAZ1Vq11Vubq5CQkLK3B4SEqKTJ09W5iUBVAWbTVq3Tjp6VAoLk37/e8lq9XRVv/Ky+jxVTlqaNGGC9PPPv65r3lx67TVp0CD3Xx/wRpXaomOz2VS7dtnZyWq16uLFi5V5SQDulpYmRUZKPXtKQ4cW/xkZWbzeG3hZfWlp0nUtbXq+51p9OnSBnu+5Vte1tLm1HLtdmjdPuu8+55AjSYcPF69fvNh91we8WaU+1LNWrVrq06ePfH19S91eWFiolStXyuZFbak81BMoR1pa8bfklX9NXJomYtEizzYVeFl9aWnSB4PTNFMTFKFfE0eWmmuiXtOwxYMqvRy73bXWoubNpQMHvKshDrgWrn5/V2rQGTlypEv7zZs3r7Iuec0IOkAZbLbilpErmwgusVikZs2kzEypnJZctykqklq2LO4fKk0V11dUaNeTTd/Vq/kPSzKcmsvtKg5e4xv+SzNzHlTtOpU3n9iVQaeWbPq91ilMR3VUYVqn38uu4h3WrJF69Ki0SwMe5ZGgUx0RdOBVvGmsyRdfSHfeefX9PvtM6tPH/fVcztVmDKlK6rNftKtWHdfqWfVxnu6+r/L+rjlzRqpXr/jngUrTa6W0Jk3Qa1qiQZo/X3rwwUq7NOBRrn5/u+VZVwB+Ay8ba6IDB1zbr6wWFXc6c8b1faugvoqUY6xfX+nXt8iuEZqnRbpPzeTcAtdMh7VI92mgFissrNIvDXg9D7Q3Ax7gTS0lpSlrrMmlkaSeGAvj6rdiZKRbyyhVrQr8G60K6qtVeM7lfZv751bqtev62R1dU6WppeLfqdnWiQr53QCpnH0BM6JFB+bnbS0lVyoqksaOLRlypF/XTZggVfUdi3fdpXPBzRzjS65kl0VnG0VIt99etXVJUt26Kjqep6O1yq/vsDVCF291f31167q+7413VG6ziuWsa81J4bafZf3Pukq9NlAdEHRgXpfdc2tcMaDW8JZ7bu12ycen/O4VwygeELx6ddXVJclmqa3xllmSVCJMXFqeoJm6aFR9C4HdsMincaAS7eXXN842U6u/cH99loC6Ul6eS8HQ2rOSg1dFWrc80c0IeBhBB+Z0abDqqFGSYZT46rEYRnGAmDjRs1PHetlYk8t9+aX09olBuk+LdFjNnLb9rOa6T4v09olBVZ2/JP36sS1R+fUt0aCq+dgsFikwUP7/mCWLSg9eFkl135pZ+V2mdesWD7h2BYN0UAMRdGBOrgaIn38uHrvjKRX417gtItJ9dZTi0ljkJRqkSB1QD63Rg5qvHlqjVsrUEhWPGfJEI8HlH9vV6qvSIUSDBsmyeJEszZ2Dl6V5c1kWu2mclcUi3X138UQ5ljJuW7dYpIiI4rFpQA3DYGSYUwUChP3wUY8lfrtfXQUpTz8oSuE64hg46rSPLPpZzbWz8HZV5U3cl//j3y6rvlSPUvfzxFjkusU9RYqKko4ckexGyfosluLv/iofQjRokCz33us0+N3i7sHvVmvxcx7uu6/4jV8+3utS+Jk507sG4ANVhBYdmJLdr656y7Xm/O2/eK45/8xZiwoUqPEqf6zJRM3U0WNV+yV1113F8+1drZHAE2OR/6+nSLNm/bp85XbJg9/tVmvxzHwPPlj8Z1UUMWhQ8d15zZxbk9S8uednsAY8iKADUzpz1qLVultZal7u4NBDitDuJp5rzr/U8OTKWJOqbjmpXduLg8T/4bv9CoMGFfc5rlkjzZ9f/GdmZg38IIBfMTMyMyOb0qXZYgcqTYt0nyQ5dQtdCj/3aZHGrxnksWnxDUM6ffrXLhiLUXL6fsNiVfPmxd9XnggVpT0ROyKiOOR4y/ent0+TBKDy8QgIFxF0zOnyABF3uORDFg8pQo9rpjIiBnksQFzu0nyBUunDKzzdOkGQAOBtCDouIuiY26UAUcuwqftlLSVf6/eyW6weDxCXqw4tJwDgLar9s66mTZum2NhY1a9fX02bNtWAAQO0Z88ep33Onz+vxMRENWrUSPXq1dPgwYOVk5PjoYrhjS6N4QhrXnxXzod6UF+qh8IjvCvkSAyvAAB38NoWnd69e+uBBx5QbGysLl68qGeeeUY7duzQrl27FBAQIEkaM2aMli9frtTUVAUFBWns2LGqVauW1lfgoXm06NQMdL0AgLmYruvql19+UdOmTfXll1/qtttuU15enpo0aaL58+frvv8b3LB79261a9dOGzZs0C233OLSeQk6AABUP9W+6+pKeXl5kqTg4GBJ0ubNm1VUVKT4+HjHPjfeeKNatGihDRs2lHmewsJC5efnO70AAIA5VYugY7fbNXHiRN1666266aabJEnZ2dny8fFRgwYNnPYNCQlRdnZ2meeaNm2agoKCHK+IiAh3lg4AADyoWgSdxMRE7dixQx9++OE1n2vKlCnKy8tzvLKysiqhQgAA4I28/llXY8eO1bJly/TVV1+pefPmjvWhoaG6cOGCTp065dSqk5OTo9DQ0DLP5+vrK19fX3eWDAAAvITXtugYhqGxY8dqyZIl+uKLL9SqVSun7V26dFGdOnWUnp7uWLdnzx4dOnRI3bp1q+pyAQCAF/LaFp3ExETNnz9fn3zyierXr+8YdxMUFCR/f38FBQXp4YcfVlJSkoKDgxUYGKhx48apW7duLt9xBQAAzM1rby+3lPHI5Hnz5mnEiBGSiicMnDRpkhYsWKDCwkL16tVLb7zxRrldV1fi9nIAAKof082j4y4EHQAAqh/TzaMDAABQUQQdAABgWgQdAABgWgQdAABgWgQdAABgWgQdAABgWgQdAABgWgQdAABgWgQdAABgWgQdAABgWgQdAABgWgQdAABgWgQdAABgWgQdAABgWgQdAABgWgQdAABgWgQdAABgWgQdAABgWgQdAABgWgQdAABgWgQdAABgWgQdAABgWgQdAABgWgQdAABgWgQdAABgWgQdAABgWqYIOikpKYqMjJSfn5/i4uK0adMmT5cEAAC8QLUPOgsXLlRSUpKSk5O1ZcsWderUSb169dKxY8c8XRoAAPCwah90Xn31VY0ePVojR45UVFSU5s6dq7p16+qdd97xdGkAAMDDanu6gGtx4cIFbd68WVOmTHGsq1WrluLj47Vhw4ZSjyksLFRhYaFjOS8vT5KUn5/v3mIBAEClufS9bRhGuftV66Bz/Phx2Ww2hYSEOK0PCQnR7t27Sz1m2rRp+vOf/1xifUREhFtqBAAA7nP69GkFBQWVub1aB53fYsqUKUpKSnIs2+125ebmqlGjRrJYLB6srKTY2FhlZGR4ugyvUN0/C2+s31M1VdV13XWdyjxvZZwrPz9fERERysrKUmBgYKXUBc/xxr8rPOVqn4VhGDp9+rTCw8PLPU+1DjqNGzeW1WpVTk6O0/qcnByFhoaWeoyvr698fX2d1jVo0MBdJV4Tq9XKX1z/p7p/Ft5Yv6dqqqrruus6lXneyjxXYGCg1/2OoeK88e8KT3HlsyivJeeSaj0Y2cfHR126dFF6erpjnd1uV3p6urp16+bByipHYmKip0vwGtX9s/DG+j1VU1Vd113XqczzeuPvBTyL34lfVdZnYTGuNorHyy1cuFAJCQl688031bVrV82cOVMfffSRdu/eXWLsDgCYTX5+voKCgpSXl0dLAFCKat11JUn333+/fvnlFz333HPKzs5WdHS0Vq5cScgBUCP4+voqOTm5RJc8gGLVvkUHAACgLNV6jA4AAEB5CDoAAMC0CDoAAMC0CDoAAMC0CDoAAMC0CDoAYEJZWVnq0aOHoqKi1LFjR3388ceeLgnwCG4vBwATOnr0qHJychQdHa3s7Gx16dJFP/74owICAjxdGlClqv2EgQCAksLCwhQWFiZJCg0NVePGjZWbm0vQQY1D1xUAeKGvvvpK/fr1U3h4uCwWi5YuXVpin5SUFEVGRsrPz09xcXHatGlTqefavHmzbDabIiIi3Fw14H0IOgDghc6cOaNOnTopJSWl1O0LFy5UUlKSkpOTtWXLFnXq1Em9evXSsWPHnPbLzc3V8OHD9dZbb1VF2YDXYYwOAHg5i8WiJUuWaMCAAY51cXFxio2N1ezZsyVJdrtdERERGjdunCZPnixJKiws1F133aXRo0froYce8kTpgMfRogMA1cyFCxe0efNmxcfHO9bVqlVL8fHx2rBhgyTJMAyNGDFCd9xxByEHNRpBBwCqmePHj8tmsykkJMRpfUhIiLKzsyVJ69ev18KFC7V06VJFR0crOjpa33//vSfKBTyKu64AwIS6d+8uu93u6TIAj6NFBwCqmcaNG8tqtSonJ8dpfU5OjkJDQz1UFeCdCDoAUM34+PioS5cuSk9Pd6yz2+1KT09Xt27dPFgZ4H3ougIAL1RQUKB9+/Y5ljMzM7V161YFBwerRYsWSkpKUkJCgmJiYtS1a1fNnDlTZ86c0ciRIz1YNeB9uL0cALzQ2rVr1bNnzxLrExISlJqaKkmaPXu2XnrpJWVnZys6OlqzZs1SXFxcFVcKeDeCDgAAMC3G6AAAANMi6AAAANMi6AAAANMi6AAAANMi6AAAANMi6AAAANMi6AAAANMi6AAAANMi6AAAANMi6AColkaMGKEBAwZc0znWrl0ri8WiU6dOlbtfenq62rVrJ5vNdtVzrly5UtHR0bLb7ddUG4DKQdAB4FYjRoyQxWKRxWKRj4+Prr/+er3wwgu6ePHiNZ33tddeczzzyd2eeuop/fGPf5TVar3qvr1791adOnX0wQcfVEFlAK6GoAPA7Xr37q2jR49q7969mjRpkp5//nm99NJLv+lcNptNdrtdQUFBatCgQeUWWoqvv/5a+/fv1+DBg10+ZsSIEZo1a5YbqwLgKoIOALfz9fVVaGioWrZsqTFjxig+Pl6ffvqpJKmwsFBPPPGEmjVrpoCAAMXFxWnt2rWOY1NTU9WgQQN9+umnioqKkq+vrw4dOlSi66qwsFDjx49X06ZN5efnp+7duysjI8Opjs8++0w33HCD/P391bNnTx04cOCqtX/44Ye666675Ofn51i3bds29ezZU/Xr11dgYKC6dOmib7/91rG9X79++vbbb7V///7f9oEBqDQEHQBVzt/fXxcuXJAkjR07Vhs2bNCHH36o7du3a8iQIerdu7f27t3r2P/s2bOaPn263n77be3cuVNNmzYtcc6nnnpKixcv1rvvvqstW7bo+uuvV69evZSbmytJysrK0qBBg9SvXz9t3bpVjzzyiCZPnnzVWtetW6eYmBindcOGDVPz5s2VkZGhzZs3a/LkyapTp45je4sWLRQSEqJ169b9ps8HQOWp7ekCANQchmEoPT1dn3/+ucaNG6dDhw5p3rx5OnTokMLDwyVJTzzxhFauXKl58+bpr3/9qySpqKhIb7zxhjp16lTqec+cOaM5c+YoNTVVffr0kST94x//0OrVq/XPf/5TTz75pObMmaPWrVvrlVdekSS1bdtW33//vaZPn15uzQcPHnTUdsmhQ4f05JNP6sYbb5QktWnTpsRx4eHhOnjwYAU+HQDuQNAB4HbLli1TvXr1VFRUJLvdrqFDh+r555/X2rVrZbPZdMMNNzjtX1hYqEaNGjmWfXx81LFjxzLPv3//fhUVFenWW291rKtTp466du2qH374QZL0ww8/KC4uzum4bt26XbX2c+fOOXVbSVJSUpIeeeQRvf/++4qPj9eQIUPUunVrp338/f119uzZq54fgHsRdAC4Xc+ePTVnzhz5+PgoPDxctWsX/9VTUFAgq9WqzZs3l7ijqV69eo6f/f39ZbFYqrTmSxo3bqyTJ086rXv++ec1dOhQLV++XCtWrFBycrI+/PBDDRw40LFPbm6umjRpUtXlArgCY3QAuF1AQICuv/56tWjRwhFyJKlz586y2Ww6duyYrr/+eqdXaGioy+dv3bq1fHx8tH79ese6oqIiZWRkKCoqSpLUrl07bdq0yem4b7755qrn7ty5s3bt2lVi/Q033KDHH39cq1at0qBBgzRv3jzHtvPnz2v//v3q3Lmzy+8BgHsQdAB4zA033KBhw4Zp+PDhSktLU2ZmpjZt2qRp06Zp+fLlLp8nICBAY8aM0ZNPPqmVK1dq165dGj16tM6ePauHH35YkvToo49q7969evLJJ7Vnzx7Nnz/fpXl4evXqpa+//tqxfO7cOY0dO1Zr167VwYMHtX79emVkZKhdu3aOfb755hv5+vq61DUGwL0IOgA8at68eRo+fLgmTZqktm3basCAAcrIyFCLFi0qdJ6//e1vGjx4sB566CHdfPPN2rdvnz7//HM1bNhQUvGdUIsXL9bSpUvVqVMnzZ071zHYuTzDhg3Tzp07tWfPHkmS1WrViRMnNHz4cN1www36wx/+oD59+ujPf/6z45gFCxZo2LBhqlu3boXeA4DKZzEMw/B0EQDgzZ588knl5+frzTffvOq+x48fV9u2bfXtt9+qVatWVVAdgPLQogMAV/Hss8+qZcuWLj2/6sCBA3rjjTcIOYCXoEUHAACYFi06AADAtAg6AADAtAg6AADAtAg6AADAtAg6AADAtAg6AADAtAg6AADAtAg6AADAtAg6AADAtP4/vbmx5Gr/IgQAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACgRElEQVR4nOzdeXxU1fn48c/MJJns+w4JCYQtLAEM+yZWobji0tb6dW21danW+mutrbXiUqm2RduKVm2rVqu1LmjrBhRlCTuy71sgOwkh+56Z+/sjyZUhGUggd86dyfN+vfIimblzn+ece3I5ufeccy2apmkIIYQQQgivZ1WdgBBCCCGE6B3SsRNCCCGE8BHSsRNCCCGE8BHSsRNCCCGE8BHSsRNCCCGE8BHSsRNCCCGE8BHSsRNCCCGE8BHSsRNCCCGE8BHSsRNCCCGE8BHSsRNC9Iq0tDQsFov+JYQQwvP8VCcgRF/W2NjIK6+8wgcffMCuXbuorKwkODiY6OhoEhISyMrKYty4cVx11VUkJia6fPa5556jsrJS/3n+/Pm9nt/Ro0d57bXX9J/HjBnDvHnzej2Ot9mxYwdvvPEGK1eu5NixY1RUVGC32xkwYAATJkxg3rx5XHbZZdhsti4/X1ZWRnJyMq2trS6vL1u2jIsvvvis8T/88ENef/11Nm/eTFlZGTabjaioKGJjY8nMzOSCCy5g9uzZjBo1qsvPHzlyhIULF7J06VIKCgoICAhg0KBBXH311fz4xz8mLCysW/Wwf/9+srKyaGpq0l8bMGAAR48e7dbnhRAG0IQQShQWFmrDhw/XgLN+vfHGG50+P2DAAJdtjPDll1+6xLjlllvcbpudna0lJCToX76oqqpK+853vqNZLJazHrMf/vCHbvfz5z//ucvP3HrrrWeM39LSol177bXdajPf//73u9zHv//9by0wMNDt51JSUrR9+/Z1qz4uvPDCTp8fMGBAtz4rhDCG3IoVQpGbb76ZvXv3urwWEBBAdHQ0fn7edzF906ZNlJSU6F++5uTJk0ycOJF33nkHTdNc3gsJCel0lauxsdHtvt56660uX//ggw/O+Lnf/va3vP/++y6v2Ww2oqOjsdvtZysCGzdu5IYbbnCJERISQkBAgP5zfn4+s2fPpra29oz7eu2111ixYsVZYwohPEs6dkIocOjQIZYvX67/PGTIEDZt2kRTUxPl5eU0NDSwY8cOfv/73zNu3DiFmYoO3/nOd9i3b5/La3fddReHDx+mtraW6upqSktLefXVVxk9erTb/eTm5rJu3bou36uurubjjz92+9mXXnpJ/z4kJIT33nuPxsZGysvLaWxsJDc3l1dffdXtbeB7773X5fbvb3/7W6qrqykvL+faa6/VX8/Ly2PBggVu8ygvL+dnP/sZQLc6lEIID1J9yVCIvuj99993uX313HPPnXH7xsZG/fuZM2d261Zcbm6upmmaVlBQoP32t7/Vrr32Wi0zM1NLSEjQ/P39tZCQEG3w4MHajTfeqK1atcolXm5ubrdizJw5U/9Md24N19bWas8++6x24YUXarGxsZqfn58WFRWlTZw4UXvssce0srKyLj/X1b4///xz7eKLL9YiIiK0oKAgbcKECdoHH3zQ5edfffVVl88/+uijZ6zv03366aedyv7kk0+63d7hcGhbtmzp8r0nn3zSZT+zZ892+fnqq6/u8nPl5eUu282bN++MOZ/aZjRN03bu3Ony+eHDh7u8X1RUpFmtVv39xMRErbW1tct933LLLfp28+fPl1uxQpiIdOyEUODtt9/u9J97VVVVtz7b047du+++263t58+fr8cwomO3fft2LS0t7Yz7i4mJ0ZYvX97ps6fv+5FHHnG7jzfffLPT58+3Y3f6uLZhw4ZpDoejR/voMGLECJd97d69W4uJidF/ttvtWkVFRafPFRcXu3yuX79+2qFDh7od99lnn3X5/N13391pm9PHfG7fvr3TNqeOu5w1a1antiIdOyHUkluxQigwZMgQl5+XLl1KUlIS3/zmN5k/fz6ff/45NTU1XX62Y8as1er665uQkODy1dWtOKvVSkREBFFRUZ3G8c2fP58NGzYAbeO2EhISiIqKctkmMDDQJUZ0dHS3yltWVsbcuXM7zZYMDg52+bm8vJx58+Zx4MCBM+7viSeeACAoKKjTew8++CAOh6NbeXXXl19+6fLz9ddf36n+u2Pbtm3s3r1b/3nkyJFkZmZyxRVX6K81NTV1GkcHEB8fT2RkpP5zYWEhQ4cOZdKkSTzwwAO88847FBUVuY29Y8cOl5/T0tI6bTNgwIAzfqapqYk777wTaLsF+5e//MVtPCGEGtKxE0KBcePGMX78eJfX6uvrWbJkCY899hhz584lJiaGq666iq+++spluw8++ICSkhJSUlJcXj914sKp748ZM4b//ve/lJSU0NraSmVlJSdPnqSuro5///vfLvvoWNokJSWFkpISPvjgA5f3v/Od77jEOP19d373u9+5dDoyMjLYvn07dXV1HD16lIkTJ+rv1dTU8Mgjj5xxf1FRUfzvf/+jrq6OrVu3EhMTo79XVFTE9u3bu5VXd9TU1HDy5EmX1840hu5MTp800TGu7ZprrjnjdtDWKb/99ttdXnM4HGzYsIFnn32W66+/nn79+jFhwoROxxXgxIkTLj+f2kl091pZWZnLzwsWLGD//v0APPzww53+QBFCmIDqS4ZC9FW5ubndWu7Ez89Pe+uttzp9vifLnRQXF2tPPfWUNnfuXG3o0KFav3799GVJTt3HxIkTXT7Xk+VOzpTP6bdgP/74Y5f3Tx//FRQU5DJG7PR9nz4m8Xvf+57L++++++4Z66MnCgoKOh2TZcuW9Xg/TqdTS0lJ6fJWZ0NDgxYaGqq/brVatcLCwk77aGho0ObNm9et2+Sn32r9xje+4fL+3//+9077v+mmm1y2eeKJJ/T39u/fr9ntdv1WdFNTk6ZpnW/by61YIdSSK3ZCKJKWlsa2bdt4+eWXmTlzJv7+/l1u19rayp133klVVdU5xfniiy8YMmQIv/zlL/nss8/Yv38/hYWFHD9+nOPHj7tsW15efk4xzqS2trbTLdhvfOMbLj+PHDmShIQE/eeGhgYOHTrkdp9XXnmly8/x8fEuP9fV1Z1jtp2Fh4d3es3dbfIzWbVqFfn5+frPGRkZ+pW/wMBA5s6dq7/ndDr517/+1WkfgYGBLF68mM8++4xrrrmGiIgIt/FeeOEFl1vIp9/2bmlp6fSZ018LCQnRv7/zzjtpamrCYrHw0ksvuSyRIoQwD+nYCaFQQEAAd9xxBytWrKCqqorVq1fz6KOPMnDgQJftqqurWblyZY/339TUxI033tjtjkhX/9mfr9M7pGFhYQQGBnbaLi4u7oyfO1X//v1dfj69k6Gdts7c+QgLC+s01nDnzp093s/pt1dPv/169dVXn3H7U33zm9/k/fff5+TJk2zfvp0//elPTJ06tdN2//3vf/XvY2NjXd479aklHSoqKlx+7jgmy5cv1zuJ3/ve95gxY4bb3IQQaknHTgiTCAoKYtq0acyfP589e/YwdOhQl/fPZdHfdevWUVxcrP+cnJzM8uXLqa2tRdO0My6G21tOv6pUU1PTZdzTx3Od6WrU6Vc3jX427axZs1x+/te//tWjzmNLSwvvvfeey2vPPPOMy7N1b7jhBpf3v/rqK308mztWq5XRo0dz7733kpOTw6233ury/qlt5vRxgbm5uZ32d/qV1Y7PnPqHwd/+9jeXvNPT010+c+zYMf09ebSYEJ4nHTshFDhy5AhLly51+77dbu/UsTv9luDpszK7mgl6+izJ66+/nosuuki/xbZmzZoz5tmdGGcTGhraaQbmqYszA+zatcvltnBQUBAZGRk9jmWU73//+y4/7927l6efftrt9k6nk61bt+o/f/bZZ50mYHTH6Vft/va3v9Hc3Ox2+9M7b6e2mdNvf5/+1IjCwkKX2ciJiYmMGDGipykLIRSTjp0QChQVFTFnzhzGjBnDs88+y65du3A6nUDb1Z1//vOfLFmyxOUzpz+B4vQrWl3dqj19m6VLl+pXcb766it+8IMfnDHP0z+/ZcuWsz5qqivXXXedy88/+clP9KU0jh071mm25+WXX96rTzR47bXXXK4yzZ8/v0efv/TSS7noootcXvvFL37Bj370I5crX2VlZbz22muMGzeOP/7xj/rrp3fQIiMjOy1Pk5CQ0Ol29Omf++EPf0h6ejoPPfQQa9asoampSX9v/fr1/OlPf3LZ/tQ2M2rUKJeZ2Pv27eO3v/0tTqeT2tpafvSjH7lchbz11lv1JXNOX+bm1K/Tb/FardYzLrkjhDCY2rkbQvRNq1ev7jSL0WazadHR0ZrNZuv03qxZszrt4+abb+60XVRUlJaQkKBdeumlmqZpWmVlpRYSEuKyjdVq1cLCwvTZp5xhRmN9fb0+E7Ljy8/PT4uPj9cSEhK0119/Xd/2TLNiS0tLtaSkpE75np4boIWGhnZ6CP3ZZgA/+uijLu+/+uqrLu+f7wLFmqZpZWVl2pAhQ7qcgRoWFqbXacdXxwzimpoaLTg42OW9AwcOdBmjtbVVi42Nddl248aN+vuntw2LxaJFRUV1OkaAFh0d3Wmh43Xr1nXaR0hIiBYQEODyWv/+/bXq6upu1YvMihXCXOSKnRAKdDUD1uFwcPLkyU63O4cOHcobb7zRafs777yz063SiooKjh8/rs9ujYiI6PTMT6fTSU1NDVarlb/97W9nzDMoKIjvfe97Lq+1trZSWlrK8ePHqa+vP+PnO8TFxfHZZ591WgD39NmrMTExfPTRR51uQ5tBbGwsGzZs6HT1EdrGoJ0+QaVjgsjixYtd6mnMmDEMHjy4yxg2m4158+a5vPbPf/5T//70dqNpGhUVFS5X7qDtuL/77rud1qWbNGkSb775psvV0Lq6Opfbu/369WPp0qWEhYV1maMQwtykYyeEAhMnTuTo0aO88MIL3HjjjYwdO5bo6Gj8/f0JCAggKSmJ2bNn88ILL7Bt2zb69evXaR+TJ0/ms88+Y9asWURERLidQHDvvffy7rvvMn78eAIDA4mMjOSSSy5h+fLlfPe73z1rrn/84x957LHHGDZs2HndHs3KymLXrl08++yzzJw5k5iYGPz8/IiIiGDChAnMnz+fffv2dbrlaSaRkZG8++67bN26lQceeIALLriA2NhY/Pz8CAkJYdiwYdx000188MEHLFq0COh8O/Vb3/rWGWOc/v4777yjd/aLi4t5++23ufvuu5kyZQpJSUnY7Xb8/PyIjo5m0qRJ/PrXv2bv3r1u6/H6669n165d3HXXXWRkZBAYGEhYWBhjx47lscceY+/evQwfPvxcq0gIoZhF03pxXQAhhBBCCKGMXLETQgghhPAR0rETQgghhPAR0rETQgghhPAR0rETQgghhPAR0rETQgghhPAR0rETQgghhPAR0rETQgghhPAR0rETQgghhPAR0rETQgghhPAR0rETQgghhPAR0rETQgghhPAR0rETQgghhPAR0rETQgghhPAR0rETQgghhPAR0rETQgghhPAR0rETQgghhPAR0rETQgghhPAR0rETQgghhPAR0rETQgghhPAR0rETQgghhPAR0rETQgghhPAR0rETQgghhPAR0rETQgghhPAR0rETQgghhPAR0rETQgghhPAR0rETQgghhPARXt+xy8/P58ILLyQzM5PRo0fz7rvvqk5JCCGEEEIJi6ZpmuokzkdxcTHHjx9nzJgxlJaWMm7cOPbv309ISIjq1IQQQgghPMpPdQLnKykpiaSkJADi4+OJjo7m5MmT0rETQgghRJ+j/FbsqlWruOKKK0hOTsZisfDhhx922uaFF14gPT2dwMBALrjgAlavXt3lvjZv3ozT6SQlJcXgrIUQQgghzEd5x66uro6srCyef/75Lt9/5513uP/++3n44YfZunUr06dPZ+7cueTl5blsV15ezs0338zLL7/sibSFEEIIIUzHVGPsLBYLixcvZt68efprEydOZNy4cbz44ov6a8OHD2fevHksWLAAgKamJi655BLuuOMObrrppjPGaGpqoqmpSf/Z6XRy8uRJYmJisFgsvVsgIYQQQojzpGkaNTU1JCcnY7We+ZqcqcfYNTc389VXX/HQQw+5vD579mzWrl0LtBX21ltv5aKLLjprpw5gwYIFPPbYY4bkK4QQQghhlPz8fPr373/GbUzdsTtx4gQOh4OEhASX1xMSEigpKQFgzZo1vPPOO4wePVofn/fGG28watSoLvf5i1/8ggceeED/uaqqitTUVPLz8wkPDzemIIpt2LCBiRMnqk6j13lbucyYr+qcVMT3REzV9SqEO9I2zaGnx6G6upqUlBTCwsLOuq2pb8UWFRXRr18/1q5dy+TJk/XtfvOb3/DGG2+wb9++845ZXV1NREQEVVVVPtuxE0IIIYT36klfxdRX7GJjY7HZbPrVuQ6lpaWdruL11KJFi1i0aBEOhwOAnJwcQkJCmDJlCtu3b6euro7IyEiGDBnCxo0bAcjIyMDpdHLkyBEAJk2axJ49e6iuriYsLIwRI0awfv16ANLT07HZbBw6dAiA8ePHc+jQISoqKggODmbs2LGsWbMGgNTUVIKCgti/fz8A48aN49ixY5SXlxMYGMiECRNYtWoVAP379yc8PJw9e/YAMGbMGIqKiigtLcXf358pU6awevVqnE4nSUlJxMTE8MknnzBgwABGjRpFWVkZJSUl2Gw2pk2bxpo1a2htbSU+Pp6kpCS2b98OQGZmJlVVVRQWFgIwc+ZM1q9fT1NTE7GxsaSmprJlyxYAhg0bRn19vT6hZdq0aWzZsoX6+nqioqIYNGgQmzdvBmDw4MG0tLRw9OhRACZPnszOnTupra0lIiKCYcOGsWHDBgAGDRoEwOHDh4G28Zb79u2jqqqK0NBQampq9HGRaWlp+Pv7c/DgQQCys7M5fPiwXt/jxo0jJydHr+/g4GD9D4Nx48aRl5fHiRMnsNvtTJo0iZUrVwLQr18/IiIi9PrOysqiuLiY0tJS/Pz8mDp1Kjk5OTgcDhITE4mLi2Pnzp0AjBw5kvLycoqLi/UxETabjZaWFuLj40lOTmbbtm16fVdXV1NQUADAjBkz2LhxI42NjcTExDBgwAC9vocOHUpDQ4Ne31OnTmXr1q16fWdkZLBp0ya9zTocDnJzc/U2u3v3bmpqaggPD6eyslLPbeDAgVitVr3NTpgwgQMHDlBZWUlISAhZWVn6EIi0tDQCAgI4cOCAXt+5ubmUl5cTFBREdna2Pns9JSWF0NBQ9u7dC8DYsWMpKCigrKyMgoIC/u///o9Vq1ahaRrJyclERUWxe/duAEaPHs3x48c5fvy43mY76jshIYGEhAR27NgBwIgRI6ioqKCoqAiLxcKMGTNYt24dzc3NxMXF0b9/f7Zu3cqxY8f45je/SW1tLfn5+QBMnz6dzZs309DQQExMDOnp6XqbHTJkCM3NzXqb7c454ssvv2TAgAFec47YtWsXgM+dI0aNGsW6dev0Nmv2c8T06dNZu3atoeeI0tJSLrvssm6fIzIzM/U2q+IcERAQwOTJkz16joC2sfxmOkfU1dXRbZqJANrixYtdXpswYYJ21113ubw2fPhw7aGHHuqVmFVVVRqgVVVV9cr+zGjFihWqUzCEt5XLjPmqzklFfE/EVF2vQrgjbdMcenocetJXUX7Frra2Vu/9A+Tm5rJt2zaio6NJTU3lgQce4KabbiI7O5vJkyfz8ssvk5eXx5133qkwa+/SsYCzr/G2cpkxX9U5qYjviZiq61UId6RtmoORx0F5x27z5s3MmjVL/7ljYsMtt9zCa6+9xne+8x3Ky8t5/PHHKS4uZuTIkXz66acMGDBAVcpeJyYmRnUKhvC2cpkxX9U5qYjviZiq61UId1S3TafTSXNzs9IczCAsLIzGxkb9Z39/f2w2W6/s21STJzzp1DF2Bw4c4JNPPvHZMXYff/wxaWlpPjd+pqqqSv9F8IbxM06nE39/f1ONsTt58iR+fm1/36kYP5Ofn8+NN97o0fEzR48eZe7cuYaOn/niiy9IS0vzmnOEjLEzxznCE2PsSkpKuOKKK5SMsTty5AhNTU34+fkREBCgrynr5+eHxWKhpaUFgICAABwOBw6HA4vFgt1u1ztBNpsNq9Xa5bYAgYGBLtvabDa9I+nv74/T6XTZtqmpCU3TutxW0zRaW1sBsNvtNDc3o2kaVqsVPz+/bm/r7+/vUlaAxsZG/Pz8sNvttLS04HA40DSNESNG6O379DF2l112WbcmT/TZjl2HvjArduXKlcycOVN1Gr3O28plxnxV56Qividiqq5XIdxR1TY1TSMvL4+WlpZuLbLr6+rq6vRn2muapk9siYyM7PI2rc/MihW9w92aft7O28plxnxV56Qividiqq5XIdxR1TZbW1upr68nOTmZ4OBgJTmYiZ+fn371DiAoKAhoW/UjPj7+vG7L9u0ucx9RVlamOgVDeFu5zJiv6pxUxPdETNX1KoQ7qtpmx+3PgIAAJfHNpuO27ak6Orwdt5nPlXTs+oDT1wH0Fd5WLjPmqzonFfE9EVN1vQrhjuq2Kc9kb9NV56236qbP3ortSwsU5+XlsXLlSp8bGA3oA5i9YWC0zWYzfGB0TydPaJqml1XF5ImO9uXJyRN5eXmUlpYaOnmi43fOW84RMnnCHOcITy1QXF9f7/HJE6NGjaK5uZm6ujocDgfBwcHU1tYCbVfxrFarPukhODiY5uZmWltbsVgs+oL08PXs0Y5tg4KCaGlp0a+AhYWF6dv6+fnh7+9PQ0MD0DZZwuFw6J2qsLAwamtr0TRNn9BRX1+vb3vqDN7Q0FDq6+txOp2dtrXb7Wiapm8bEhJCQ0MDTqcTm81GYGCgvsCw3W4HoLm5mZqaGkJCQmhsbNTz0jSNjRs3omnaOS9QLJMn+sDkCSGEEEKlxsZGcnNzSU9PJzAwUHU6pnSmOupJX0VuxfYBHX/1+xpvK5cZ81Wdk4r4noipul6FcMfb26bDqbH9aDlf7ipk+9FyHE7jr019+umnWCwWt1/f/va3e7zPjquVRuizt2L7kq4GafoCbyuXGfNVnZOK+J6IqbpehXDHm9tmzt5iXlyyhxM1Xy/sGxsWyF1zMpk23LgnOcyaNYvi4mKX1xwOB7fddhtbt27lkUce6fE+jbxZKh27PiA+Pl51CobwtnKZMV/VOamI74mYqutVCHe8tW3m7C3mife2dHr9RE0jT7y3hUeuG2dY5y4oKEhfjgTaOnU33ngjW7du5YsvvjinJWROXeqkt/XZjl1fmzxRWlrqcwOjU1NTvWryxKhRo0w3eSI5OVnp5AmHw8Hw4cM9Onmio06NnjxRWlrqNecImTxhjnOEJyZP2O12U02eaGxxEOAfgNVqobH96QzBQUE0N7fgdDqw+9sICg7hhc/b2qg7iz7fxcjkECIjwqmpqaGxxYGfzQ9/fz8a2idaBNrt+Nss5zV5oqWlhR/84Ad88cUX/Pe//yUtLU1/ykRPJ0+0trbK5Akj9IXJE766Cr63lcuM+arOSZ48IYRnqWqb7iYGzHniE7efmZARxxPfncD2o+U8+Mb6s8Z45qZJZKW1PQv3239YRlV952fSLnnksnPIvo3D4eCmm25i6dKlLF++nKysrHPeV01NDWFhYS6vyeQJIYQQQvi8k7WNZ9+oB9udi97s1Bmtz96K7UsyMzNVp2AIbyuXGfNVnZOK+J6IqbpehXDHbG3zo5/Pcfue1dq2YG90aPeWRzl1u3/cO+v8EjtFR6duyZIlbjt1EydOZNGiRWRnZ3PLLbcwadIkJk6cyC9/+Us+//xzAN5//32++OILFi1aZOiSL9Kx6wOqqqqIi4tTnUav87ZymTFf1TmpiO+JmKrrVQh3zNY2AwPO3g0ZmRpNbFigy2zY08WFBzIyNbpH++0Oh8PBzTffzJIlS/jf//7HmDFjutzukUce4amnnmLq1KmEhoZy11130draqo+9bGlp4Te/+Q2fffaZvl9/f/9eyfF0ciu2D+gY3OxrvK1cZsxXdU4q4nsipup6FcIdb2ybNquFu+ac+UrjnbMzsVl793FlTqeTm2++mQ8//JA333yTpKQkSkpKXL46JmBefvnlHDlyhCVLlvDHP/4RaJv52r9/f/Lz83nxxReZN28eCQkJwPk/D/ZM+uwVu740K7ZjdpmvzXhzOBxeNSsWMN2s2NbWVqWzYjtmpXpyVuzRo0cZPny4obNiO7b1lnOEzIo1xznCE7NiS0pKTDUrFrr3SLGs/qH89PJMXl1xmPLattmz0LaO3fdnZZDVP1SfkNBbjxRbv349b731FgCXXnopXcnLyyMhIYGNGzdSUVGh11FdXR1Op5OxY8fyv//9j5deeonly5frM2eb2mcAy6xYA/SFWbFCCCGESr31SDGHU2NX3klO1jYSHdp2+7W3r9T1VGFhIXPnzuWjjz7immuu4a233mL48OEAvPXWW9x777089dRT/PCHPzzjfmRWrOi2jr+2fI23lcuM+arOSUV8T8RUXa9CuOPtbdNmtZCVFsOskf3ISotR3qlraGjguuuu4/nnnyc9PZ0HH3yQJ598Un9/yJAhxMfHc/vtt7t8Th4pJs5LxyVfX+Nt5TJjvqpzUhHfEzFV16sQ7kjb7F1BQUH67X6A7373u3z3u9/Vf160aBG/+93vsNlsLp8z8mapXLHrA2JjY1WnYAhvK5cZ81Wdk4r4noipul6FcEfapmccPnyYoUOHEhYWxuWXX97pfXmkmDgvqampqlMwhLeVy4z5qs5JRXxPxFRdr0K4I23TMwYNGqRPdupKQECAYbHlil0f0DFTytd4W7nMmK/qnFTE90RM1fUqhDvSNs2hY/atEaRjJ4QQQgjhI/rsrdi+tI5dXV0dK1eu9Lk1qgYNGuRV69gNGzbMdOvYDRw4UOk6dh0DuT25jl1dXR2lpaWGrmPX8TvnLecIWcfOHOcIT6xjZ7VavXIdu4616fz9/bHZbPq2QUFBtLS00NraCtCr69g5nU593bnQ0FDq6+txOp2dtrXb7Wiapm8bEhJCQ0MDTqcTm81GYGCgvg6d3W4H2hY/rqmpkXXsjNAX1rHrWBfH13hbucyYr+qcVMT3REzV9SqEO6raZm+tY+crmpqa9E5eB1nHTnRbx19tvsbbymXGfFXnpCK+J2Kqrlch3JG2aQ4dV/eMIB07IYQQQggfIbdi+8CtWIfD0WlxRF/gbeUyY76qc1IR3xMxVderEO6oaptyK9aVpmlYLK5PzZBbsaLbfHV6u7eVy4z5qs5JljsRwrOkbZqDLHcizouRDUglbyuXGfNVnZOK+J6IqbpehXBH2qY5OJ1Ow/YtHbs+ICoqSnUKhvC2cpkxX9U5qYjviZiq61UId6RtmoORt8OlY9cHdKz15Gu8rVxmzFd1TirieyKm6noVwh1pmz336aefYrFY3H59+9vf7vE+T1/qpDdJx64P6Fj409d4W7nMmK/qnFTE90RM1fUqhDve3jY1h4MT69dT+J//cGL9erT2hwwYadasWRQXF7t8FRQUcMkllxAbG8sjjzzS430aeUtcnjzRB5480bGCu6+tKu9wOLzqyROA6Z480draqvTJEx1PfvDkkyeOHj3K8OHDDX3yRMe23nKOkCdPmOMc4YknT5SUlHR68kRrczOHli5Fq6xkxJQpFAUGUltfb7onT5QtX86hZ56h6fhxOgQmJjLk5z8netYswLgnTyQkJOhPnrBYLNx+++1s2bKFjz/+mKFDh9LU1NSjJ090PHVHnjxhgL6w3ElRURHJycmq0+h13lYuM+arOicV8T0RU3W9CuHO6W2zeMkSdj3+OI0lJfprgYmJjPz1r0maM6fX4p7vcifFS5aw+Z574PQuS/uSIdmLFvVqvu44HA5uvPFGli1bxhdffMHo0aPPaT/Nzc0EBAS4vCbLnYhu6/jrxNd4W7nMmK/qnFTE90RM1fUqhDsdbVNzOsl791023323S6cOoPH4cTbfcw8F//kPrfX1GHn9p7W+3u2Xo/2qluZwsOvxxzt36kB/bdfjj7vclnW3z/PhcDi46aabWLZsGcuXLz/nTl1b2sbVaZ+9FduXHD16lAEDBqhOo9d5W7nMmK/qnFTE90RM1fUqhDtHjx4lNSWFjwcPdr9Re6dj609+AsDcnTvxCw42JJ/PRo1y+178hRcy8W9/o3zTpk6dTxeaRmNJCeWbNhE7aRIAy2fOpPnkyU6bXtF+276nOjp1S5cuZfny5WRlZZ3Tfjo0NzcbNoFCrtgJIYQQPsjR1ITzlKvHpatX0/Dyy6z51rd6tiMD11zrjqbS0l7drqc6OnVLlizhf//7X6dO3ZYtW/jmN7+p//z+++9zzz33AG3jPjvGj95yyy28+OKLhuR4Krli1wdMnjxZdQqG8LZymTFf1TmpiO+JmKrrVailORyUb9pEU2kp9vh4YsaPx2LQumWNZWVU7dpFQ1ER9QUFNBQWUl9YSENhIU1lZUz517+IGT8egPr8fFrWr6eihzFsBl2tg7arge501Jk9Pr5b+zp1u2+0T245Xw6Hg5tvvlnv1I0ZM6bTNqNHj9Ynz7S0tPCb3/yGzz77DIBHHnmEp556iqlTpxIaGspdd90FtE2aMIp07PqAnTt3csEFF6hOo9d5W7nMmK/qnFTE90RM1fUq1OnNyQgtNTVfd9YKCmgoKqKhsJDBd99NxIgRAJQsW8bOMyy30VBYCO0du5jsbMJvvJGM8eNpLCtjz5NPnjWHSW++icVq3M297tzijRk/nsDERBqPH+96nJ3FQmBiot6B7e5+z8bpdHLzzTfz4Ycf8t5775GUlETJabeE4+Li8PPzo3///uTn57N48WLmzZtHQkICAJdffjm/+tWvqK2t5dNPP9U/19DQYFjnTjp2fUDHlHJf423lMmO+qnNSEd8TMVXXq/A8zekk//332f7QQ53e65iMMHbhQvpdcQUWiwVN02iprNQ7bJGjRxOUlARA4ccfs+NXv6K1fdmO0yVeconesQtNSyN8+HCC+vUjuF+/tn/79ycoOZmgfv0IOOVJE2FDhsBFF9Fv5kw0h4Mjf/3rWTtLsRMm9ELtnB+LzcbIX/+6bVasxeKab/us2JGPPNLrV0U3bdrEW2+9BcCll17a5TYVFRVERkYyYcIEvvjiC1555RV9eRiAjRs3UllZyZAhQ/Dz+7rLZeQjxaRj1wdERESoTsEQ3lYuM+arOicV8T0RU3W9Cs/SnM5uT0bIf/99mo4fp76wEMcpszTHLlxI/6uuAsAvNFTv1PlHRXXqsEWeMhszdsoUZn78cbdz7WibqjpL5yppzhyyFy3q+mroI48YstTJxIkTuz17dcKECdx777089dRT+pW4wsJCbr/9dr788kuuueYa9u7dy/DhwwFjHykm69j1gXXsGhsbz2ndILPztnKZMV/VOamI74mYquvV23hyTNq50DQNR0MDzRUV+IeH4x8WBkDN4cMUfvghTSdPkvevf53Tvu2xsQT170/GD36gd05aa2tpKCoiqF8//Hr5dt3pbbPLW8dJSb3eWTrfdew6mLWtbN68mZtuuoldu3Zhs9loaGjgoosu4umnn2bGjBm8/fbbfPzxx/zzn/8E2q7YWU+7xd1b69hJx64PdOxWrlzJzJkzVafR67ytXGbMV3VOKuJ7IqbqevUmnlog91SOpiZaKitprqig+eRJQgYOJCgxEYDKHTs4/Le/tb3X/n5zRQXO9jXVsp5+mtTrrgOgdNUqNtx2W49ip3zrWyRfdlnbVbjkZGwe/gOgq7bpic5Sb3XszOq2227j2muv5fLLL+/W9jU1NYS1/4HQobc6dnIrVgghhBLunibQMSatO08T0BwOmjs6aad0xGImTiQ0PR2AE+vXs/fpp/VtWk8bA5n129+S2r4ESHNVFUVubm1aAwJwtj/2CiAkLY20m27CLyyMQy+80K0y97vqKuJMNmvaYrPp67+Jnjl8+DCXXnopc+bM6XanzmjSsesDOp6n6Gu8rVxmzFd1TirieyJmb8Uw622n86FpGo66OppOnGDno4+e8WkC23/5S5qrqmitqqK5ooLkyy7TJw0c/+ILtj74IC2VlV3uI2vBAr1j52xpobL9mcI6q5WAqCgCoqOxnvJop7DBg8l8+GHs0dFt77dvExAVhS04GEv7+DOAkNRURs2fj6ZpZPzgB6yYM4fG0tKuy0TbLU7VkxFU/877mkGDBunPcO4JoxYnhj7csVu0aBGLFi3C0f4IkpycHEJCQrr1gO8jR44A3vOA761bt3L48GGfe8B3dHS0/iBub3jAd3p6uuEP+I6KiiIjI8PlAd8Oh4Pc3Fy9ze7evZuamhrCw8OJiIjQy3o+D/jOzs4mNzeX8vJygoKCyM7OZvXq1QCkpKQQGhrK3r17ARg7diwFBQWUlZXR0NBA//79WbVqFZqmkZycTFRUFLt37wba1oc6fvw4x48f19tsR30nJCSQkJDAjvb/sEeMGEFFRQVFRUVYLBZmzJjBunXraG5uJi4ujv79+7N161aqq6sJCAigtraW/Px8AKZPn87mzZtpaGggJiaG9PR0vc0OGTKE5uZmvc125xyxbds2Dh8+fF7niKSyMrb9+tdoFV+vOmaJiiLwhhuYeMcdvXqO2LVrF8B5nSOmTZrEhpUraaqqIjYtjbRhw9iyZQvO48eJKS+nsbKSiuJitNpaWrq5xlhLZSU7fvEL/edyq5XsQYPYsGEDrfv20XJK3RASQnBsLK2BgTiDgsivqiKxuZl169bhrKkh7cknscfEUFBZiTU0lOzp0zmSm0tFRQXFwcEkORxfnyNmzcI/OJi9+/ZBRQXj0tPZf/ToWc8Rluuug0WL3JYn6nvfo6Kqyu05Yvr06YafIzRNIzo6utvniMzMTL3Nns85YtSoUTQ3N1NXV4fD4SA4OFifPR4QEIDVaqWx/WpocHAwzc3NtLa2YrFYCA0NpaZjMom/PzabTd82KCiIlpYWWltbAQgLC9O39fPzw9/fn4aGBgACAwNxOBz6Y9XCwsKora1F0zT8/PwICAigvn1CS2BgIE6nk+bmZgBCQ0Opr6/H6XR22tZut6Npmr5tSEgIDQ0NOJ1ObDYbgYGB1NXV6dsC1NfX09TUREhICI2NjXpemqaxceNGNE1zOUd0fL47ZIydjLHzWt5WLjPmqzonGWPXNRUPPG+uqGhbwLamhtbaWv2rpf3flGuvJSwjA2i7Wrbv2WddtnO2/6cGcMHzz5M8dy4ARZ98wlf33XfOeYUNGUJ4ZiYBUVEkz51LdPv6gK21tTQUFxMQFYV/ZCRWP3Ncp/DUZIRzpep33tfH2PWUjLETQog+wtnSws75893forRY2PXYY0RPmICzocGl89VaW0vMhAnYY2OBtrFlhR991Gmbjq8Lnn+euKlTgbYOyY6HH3abV2RWlt6xczQ0UN1+RfB0tpAQtFMeYxWckkLinDn4h4bi1/5lDQigvqCA/HffPWt9jPj1r7sck+YXGkrYmZYYUSRpzhwSL77Y526hC+8hHbs+YOLEiapTMIS3lcuM+arO6Xzjn8sYNE+U+UwxOsaYWQMD9atMNYcOUbVrF81VVex+/PEz71zTaDx+nKXZ2V2+Pekf/yCuvWNXl5tL3r//7XZXp04iCIiKIig5We98+YWGft0ZCwsjJCVF3zZ6wgQmvvpqp238goM71X/k6NGM72JigeZwULZ6tVcskNtTZp6MoPp3XrSRR4qJ87Jv374un2/n7bytXGbMV3VO5xP/XJfJON8yaw5H29Wv6mpaampoqa6mpbqa1upqEi65hICICPbt20d8cTGFH33U9n7H9u2fwelk+ocfEjlqFADHly9n7zPP9DgXi78//mFhLp2xU5fPiMzKYugDD7hcLfMLDdU/E9i+xAe0XWnq7q3CwLg4AuPiepyvS+5etkCur1D9Oy/aNDY2EmzQM3ilY9cHVFVVqU7BEN5WLjPmqzqnc4nf00c3na6yvBzN6dSff1lz+DA1Bw9+3fGqrqa1o8NWU8Ooxx/X1zjb/9xzHPjzn93mNn3oUAJGjWqb4JOXR8myZW63bamu1r8PSUsjdto0/IKDKVm6tFv1MOHvfyfhLGOlIjIzicjM7Nb+VFDxNIG+TvXvfB8f1q/rmLh5qt56zJh07PqA0NBQ1SkYwtvKZWS+57oshuo67Gl8Z2srnwwd6n6DUx7dVLxkCc6GhrarajU1+hU2R3099V9+SUhqKgAFH3zAob/8xe0uh9x3n96xswUF6a9bAwPbnkLQ/iQCv7AwbO0z3kJDQ4mbPh2/sDD8w8L07fxO+d56ynIHHVfLNE2jtba2W8tmxE+b1r1KMzkZk+ZZqn7n/f39sVgslJWVERcX1+UfXX1JS0uLPrO3Y0ZtWVkZVquVgFOW3zkXMiu2D8yKbW5uPu+GYkbeVi6j8j2flfs9VYeapuFobKS1thZ7TIx+tazsq69ozM1tu1XZPhuz5ZR/L/jjH/Fv/73c9eST5L72mtvOTk9M/+gjIkeOBCDvvffIf/fdto5XeyetozPmFx5O4je+oU9GaKmpwdncjH9YmMvaZ6c733rVZ8VCl7cojZgVK/oGlefN2tpaCgoK5KodbefE0zu3wcHBJCUldXl8ZFascLFu3TrTLbPRG7ytXEbke74r93c3p5aaGn3FfpflMGpqaKmtZdDtt+sTAQ6/8golX3zRqaOmta8zNWfzZgKiogD46oUXaFmxwm3c5spKvWNnCwjoUaeu31VXETtlytedtPZ/N+3c6XJ7MvW66/RHRJ2N/2nLE7hzvsdablEKo6g8b4aGhuprmfZ1GzduZMIpE4NsNht+fn69ciVTOnZCeKnuLIuxc/58wocPx9HQgKO+nqixY/VNij7/nMbPPmPXihVfL4XR3lFrra3lws8/1ztrOx5+mKJPPnGby4DrrycgMhKAumPHONm+YG8nFgutdXV6x86WkkLUzJn6rEr/jtmV7bMtO7YDGPTDH5J+221UbNvG5jvvPGv9pH77213OTLTk5upXDM1MblEKX2Sz2bBJG0bTNMPW85OOXR+QlpamOgVDeFu5ejNfzenkk2HDzrKRRlNpKV/MmqW/dPmBA3rHoPjTT2n+5BNy3Xy8ta6OgIgIAPzDw7EFB7vMqDz1+1OlfOtbxE6e/HUH7dRZmyEhLp2qIbfdxoABA7pV5o5cEi+6iMDExLMukxEzfnyX+/FEu+mtGGZeNkN4J287b/oqI4/DOXXsGhsb2bFjB6WlpZ1mcVx55ZW9kpjoPf7+/qpTMIS3las383W0P8qmW6xWAiIj8QsNxdHQoHfE4qZPp8VuJyIh4evO16lXzU6ZKDDqiScY/eST3QoXlZVFVFZWt7Y9lzo532UyPNFuvK1tir5D2qY5GHkcetyx+/zzz7n55ps5ceJEp/csFkuXU3iFWgcPHiQ5OVl1Gr3O28rVq/n24FbipH/8o8uV+1O/9S1y4+MZ3o3xNkbNYDvXOjmfMWieaDfe1jZF3yFt0xyMPA497tj96Ec/4lvf+ha//vWvSUhIMCInIcRZ2IKC+Oa2bd1aFsMbV+7vDhmDJoQQnfV4uZPw8HC2bt3KoEGDjMrJo/rCcid1dXWGPr5EFW8rlxH5nu+yGKrrUEV8T8RUXa9CuCNt0xx6ehx60lfp8dSw6667jhVnWJ5AmM/hw4dVp2AIbyuXEfl23JIMPO3qeWBiYrfWOlNdhyrieyKm6noVwh1pm+Zg5HHo8a3Y559/nm9961usXr2aUaNGdRoAeN999/VacqJ3VFRUqE7BEN5WLqPyPZ9bkqrrUEV8T8RUXa9CuCNt0xyMPA497ti99dZbLFmyhKCgIFasWOEyqNpisUjHzoSMetCwat5WLiPzPddlMVTXoYr4noipul6FcEfapjkY+v9BT8fYJSYmct999/HQQw9hNckin1dffTUrVqzgG9/4Bu+9916PPtsXxtg5HA6fXBDS28plxnxV56Qividiqq5XIdyRtmkOPT0Oho6xa25u5jvf+Y5pOnXQdvv3H//4h+o0TCsnJ0d1CobwtnKZMV/VOamI74mYqutVCHekbZqDkcehx72zW265hXfeeceIXM7ZrFmzCOvmMxyFEEIIIXxVj8fYORwOnnnmGZYsWcLo0aM7TZ5YuHBhj/a3atUqfve73/HVV19RXFzM4sWLmTdvnss2L7zwAr/73e8oLi5mxIgRPPfcc0yfPr2nqfdZqampqlMwhLeVy4z5qs5JRXxPxFRdr0K4I23THIw8Dj3u2O3cuZOx7Q8S37Vrl8t757I6fV1dHVlZWdx2221ce+21nd5/5513uP/++3nhhReYOnUqL730EnPnzmXPnj3SQLvJVwfLelu5zJiv6pxk8oQQniVt0xyMPA497th9+eWXvZrA3LlzmTt3rtv3Fy5cyPe//31uv/12AJ577jmWLFnCiy++yIIFC3ocr6mpiaamJv3n6urqniftZfbt2+eTTwnxtnKZMV/VOamI74mYqutVCHekbZqDkcehxx27U61Zs4bs7Gzsdntv5eOiubmZr776ioceesjl9dmzZ7N27dpz2ueCBQt47LHHOr2ek5NDSEgIU6ZMYfv27dTV1REZGcmQIUPYuHEjABkZGTidTo4cOQLApEmT2LNnD9XV1YSFhTFixAjWr18PQHp6OjabjUOHDgEwfvx4Dh06REVFBcHBwYwdO5Y1a9YAbZdkg4KC2L9/PwDjxo3j2LFjlJeXExgYyIQJE1i1ahUA/fv3Jzw8nD179gAwZswYioqKKC0txd/fnylTprB69WqcTidJSUnExMRw9OhRAEaNGkVZWRklJSXYbDamTZvGmjVraG1tJT4+nqSkJLZv3w5AZmYmVVVVFBYWAjBz5kzWr19PU1MTsbGxpKamsmXLFgCGDRtGfX09eXl5AEybNo0tW7ZQX19PVFQUgwYNYvPmzQAMHjyYlpYWPafJkyezc+dOamtriYiIYNiwYWzYsAFAf7pJx0KOEydOZN++fVRVVREaGorD4WDlypUApKWl4e/vz8GDBwHIzs7m8OHDen2PGzdOH6yamppKcHAw+/bt0+s7Ly+PEydOYLfbmTRpkr7ffv36ERERodd3VlYWxcXFlJaW4ufnx9SpU8nJycHhcJCYmEhcXBw7d+4EYOTIkZSXl1NcXKxPNlq7di0tLS3Ex8eTnJzMtm3b9Pqurq6moKAAgBkzZrBx40YaGxuJiYlhwIABen0PHTqUhoYGvb6nTp3K1q1b9frOyMhg06ZNept1OBzk5ubqbXb37t3U1NQQHh5Oa2urXtaBAwditVr1NjthwgQOHDhAZWUlISEhZGVl6b93aWlpBAQEcODAAb2+c3NzKS8vJygoiOzsbFavXg1ASkoKoaGh7N27F4CxY8dSUFBAWVkZ+fn5QNuQDE3TSE5OJioqit27dwMwevRojh8/zvHjx/U221HfCQkJJCQksGPHDgBGjBhBRUUFRUVFWCwWZsyYwbp162hubiYuLo7+/fuzdetWjh49yvDhw6mtrdXjT58+nc2bN9PQ0EBMTAzp6el6mx0yZAjNzc16m+3OOaJjW285R3TcffG1c8SoUaNYt26d3mbNfo6YPn264eeIkpIS6uvru32OyMzM1NusinNEQEAAkydP9ug5AjDdOaKuro7u6vFyJ6cKDw9n27ZtDBw48Fx34ZqMxeIyxq6oqIh+/fqxZs0apkyZom/31FNP8frrr+snuTlz5rBlyxbq6uqIjo5m8eLFjB8/vssYXV2xS0lJ8enlTmpqanxycom3lcuM+arOSUV8T8RUXa9CuCNt0xx6ehwMXe7kVOfRJ+yR08fuaZrm8tqSJUsoKyujvr6egoICt506ALvdTnh4uMuXr+v4q83XeFu5zJiv6pxUxPdETNX1KoQ70jbNwcjjYJ7F6LoQGxuLzWajpKTE5fXS0lIZI9ADJ06cUJ2CIbytXGbMV3VOKuJ7IqbqehXCHWmb5mDkcTivMXYvvfSS3sFyOp0UFBT06kzVgIAALrjgApYtW8bVV1+tv75s2TKuuuqq89r3okWLWLRoEQ6HA/DtMXYFBQWsXLnS58bP2Gw2rxpjZ7fbTTfG7tQ6VDF+pri4GPDsGLuCggJKS0sNHT/T8TvnLecIGWNnjnOEJ8bYlZeXyxg7E4yx6+k5wtAxdq+++irvvPMOx44dIzw8nOnTp/OTn/wEPz8/kpOT9Y5Sd9XW1uqNZOzYsSxcuJBZs2YRHR1Namoq77zzDjfddBN/+ctfmDx5Mi+//DKvvPIKu3fvZsCAAT2K1ZW+8EgxIYQQQngvQ8bYORwOrrrqKu68806CgoK48sorycrK4r333mP48OF8/vnn55Ts5s2bGTt2rL423gMPPMDYsWP59a9/DcB3vvMdnnvuOR5//HHGjBnDqlWr+PTTT3ulU9dXdPxl6Wu8rVxmzFd1TirieyKm6noVwh1pm+Zg5HHo9q3YZ599lg0bNrBt2zaGDx+uv+50Olm4cCE/+MEPzimBCy+88KyTMO6++27uvvvuc9q/EEIIIURf0e2O3Wuvvcbvfvc7l04dgNVq5ac//SmapvHzn/+81xM0Sl8aY3fy5EmfHGOXkJDgVWPs+vXrZ7oxdvHx8UrH2HUsEO7J8TMnT540fIxdx++ct5wjZIydOc4Rnhhj19zcLGPsTDDGrqfnCEPG2AUFBbFjxw4GDx7c7Z17g74wxq6srIy4uDjVafQ6byuXGfNVnZOK+J6IqbpehXBH2qY59PQ4GDLGLiQkhLKyMrfvb9u2je9973vdTlJ4Tsdfkr7G28plxnxV56Qividiqq5XIdyRtmkORh6HbnfsZs6cyV/+8pcu3yspKeH666/n9ddf77XEhBBCCCFEz3R7jN2jjz7K5MmTsVgs/OxnPyMjI4OTJ0/y3//+lyeffJK0tDR97II36Etj7BobG31yjF1mZqZXjbHrGH9ipjF2w4YNUzrGruP3z5PjZxobGw0fY9fxO+ct5wgZY2eOc4QnxtjZ7XYZY2eCMXY9PUcYto7dypUr+d73vqcnD+Dn58ePf/xj7r33XgYMGIDT6ex2cDPoC2Ps9u7d22nSiy/wtnKZMV/VOamI74mYqutVCHekbZpDT4+DYc+KnTlzJgcPHmTNmjW8+eab/Oc//6G4uJhnnnmG6OhoHn300Z7sTnhIaWmp6hQM4W3lMmO+qnNSEd8TMVXXqxDuSNs0ByOPQ48fKWa1Wpk0aRKTJk1yeT0kJEQ6dibl53deT44zLW8rlxnzVZ2TivieiKm6XoVwR9qmORh5HHr8SDFf0xduxQohhBDuOJwau/JOcrK2kejQQEamRmOzWlSnJU7Rk75Kn+2696XJE59++impqak+NzC6trZWP57eMDDaYrFgtVpNNXmiqqoKi6XtBK5iYHRhYSE33HCDRwdG5+XlMWfOHEMHRq9YsYLU1FSvOUfI5AlznCM8MXmitLSUyy67TD9HVPnF8tb6QirqW+gQEWjlGwMDmDAwWiZPmOQcYdjkCV/UF67YrVy5kpkzZ6pOo9d5W7nMmK/qnFTE90RM1fUq1DLzFbBT22bO3mKeeG+L220funoMs0b281RqfUpPzxFyxU64SExMVJ2CIbytXGbMV3VOKuJ7IqbqehXq5Owt5sUlezhR06i/FhsWyF1zMpk2PElhZm062qbDqfHikjMvkvv7j7YzIzPZNJ1SX2LkOUI6dn2Arz4+xtvKZcZ8VeekIr4nYqquV+F5Tk3jfzsK+MN/dnR670RNI0+8t4VHrhtnSOeu1eGkscVBY7ODphYHjS2t+s/D+0cRbG/7r353/knWHWtiTcE+Ck7WunQ+u9xv+5XHrLSYXs+5rzPyHCEduz5g586dPnlbyNvKZcZ8VeekIr4nYqquV+FZTk1j7pOfnnW7Fz7fzYC4MFpO6Yg1trTS1OJg8tBEAv1tAKw/cJxtR8tpbG49ZbuOTpuD+d++gITIYABe+3I/b+ccchtz0e3TyEiKAGDnsZO8uyG/R2U7WXvmzp84N0aeI6RjJ4QQQpwjp6ZRWtXQrW3La5u4/cWVXb732o9mkRTV1lnblXeSxRty3e6ntrGVhPbvA/y+Xo7WZrUQ6G8jMMCG3d9GoL8f1lNuo2YkRTAm0Y+01P5U1Tfz5a6is+YcHRrYjZIJM5GOXR8wcuRI1SkYwtvKZcZ8VeekIr4nYqquV9G7nJrGiepGiirqGJkSjZ+trTP19+X7WLwxl+bW7j9xyd9mITQwALu/lUB/PwIDbAT62zh1GFtWWgxWi+WUDlr7V4Afdn8biVFB+rZXT0zniuw0AgNs+NvO/MyB7EFxpEdmExMTg8OpnbVjFxfeNvFD9D4jzxF9tmPXl5Y7WblyJTExMT63lEFQUJC+TIM3LGWQkJDA/v37TbXcSUBAgF6HKpYyqKqq4sorr/ToUgbl5eVMmzbN0KUMNm3aRExMjNecI2S5k6/PEWV1Thr8Iqho1DhYUEZFg0ZVM3rn7d4pkVz+jamsXLmS4sJmmlud2KwWgv00apo5q4euGI7jZFs9jBw5Qj9HHNj5FQmnLHcyOTme5OT4tnNEk+s5YnNB1+eItd04RzQ2NjJ9+nQ2bdrElcPs/Gdfk9tc5wwOorWlmRxZ7kT5OUKWO+kBWe7Ee3lbucyYr+qcZLkT4UmaplFR10ThyXqKTtZRWF5H4ck6fjg7k/iItqtgb648wBurDnb6rM1qITEymAfnjWFYv0igbfxZY7ODhMggwMJNf1pOeY37jlJceCCv33uR0lmmp7fNrmbxxoUHcudsc8zi9VWy3Ik4L1Zrjx4J7DW8rVxG5nuu62aprkMV8T0RU3W9epveXPdN0zSq6psJtvsR4Nc2GWHl7iLeWXOYooo6GpodnT7zzbEpescuIymC7EFxJEcH0y86hH7RISRHh5AQEaTfgu1w+vizu+eMOOO6cHfOzlS+dMjpbXPa8CQmD0007bp7vsrIc4RcsesDV+yEbzP7ullCnMm5tt+6phaOldVSWF7XdvWt/auoop76plae+r8JXDCwbUmJ/+0o4Hcftd1CtlogPiKI5FM6bVOGJJDYPnHBiPLIFTBxvnrSV5GOXR/o2K1du5YpU6aoTqPXeVu5jMj3bCvHn23dLNV1qCK+J2Kqrldv0NTiYO2+En774Ta32/z0ytGkxIa23zKtZ0ZmEmnxYQAs3Z7f5ZpxABbggStHMzsrBYDymkYOFleRHB1CYmSQfiXPKGZ+8oS0TXPo6XGQW7HCRUtLy9k38kLeVq7ezrfF4eT5z3efcZu/LN3D5KGJbv9TUV2H5xv/XP4D9USZVder2Wmaxv1/X8OR0pozbvf70zpuMWF2vWPXLzqE2PDAU26Xfn3rNCkq2KXzFhMWSEyY55btsFktpl3UV9qmORh5HKRj1wfEx8erTsEQ3lau3szXqWlc/tRnZ92urLqRO19aSXRYIEH+fjx0zVh9EdR1+4+z42QAlZuOEhTQtuZVoL+t7fsAP9Ljw/QxRU5Nw2rp/SsO51Mn53oLzxPtprdimPnKD7R10OqbW6lpaKGmoYXqhmZqGloYnBhBv5gQAA4WV/GPlQeoaX+v48vZzZtF4UH+pMWHtd06bd8nwIiUaP75428YUi5f5m3nTV9l5HHosx27vrTcSX5+PqWlpT63lMGAAQP0ZUm8YbmT0aNH60sZnO9yJ3X19d1u63kn6sg70TZVvrWlmS0791JTU8Onhx1sK2yAXSe7/Nw/7p5GScFRKisr+V+ugy2FjfhZNfytFkKCAgj0t+FsacTfZuHhb0+k4ngh5eXlFNTaICyeovxj+NssJMbFEBkWTElRAQE2C7OnjqO0pIiysjJaHQ6GDRvG6tWru72UwerVq9la1MgnBzqvLdHx6KZrMwP5wbXf6HIpg6amJmJiYgxdyqDjd+58zhH1wcn8+ePt1DR/3QEKC7BwSYadG2ZP6PXlThxOjf4Dh5JXXEZBSRlNTgv9Bgxi175D1DU5mDwkjikj09m+fTtHK1r5+FArtY2tOLvon12dFc3/zRrJli1byKtysPFg9xbw7coPLh5KtOMEtbUVUOmksTHU0OVOQN05Yvopy50YtSSS3W6nvr6+20siZWZm6m1WljtRd46Q5U56oC+MsfPVpRe8rVy9ne+23BP8/M0NZ93ulguHkBgZTGOLg0vHpeqvf7oljy837yUiOpbGFgcNzQ6XRxj9/Z4Lsbdf3Xvmw20s31noNsY7D1xMZIgdgOc/28V/Nx9zu+2r91xIcnTblZf5ry1lfX5L+yKtXy/W2vHz/ZeN0ge1b809wfaj5Wd8fFKHmDA7T90wkQA/K342KzarRf933do1fGPWTEOuQHY4n2N9pmeOdnA3dlLTNDTQy1Ze08ie/ApqGluoaWimuqH93/oWahpb+PaUgUwc3PYMg3X7jzP/35vdxrx7TiZXTUgH2p6M8P9eX6e/52+zEh7sT3hQAGFB/lx2wQAuHJEMQGVdE+sPHCes/b2ObfYXVvDYu+7Hh3Z45qZJpr2t6Y287bzpq2S5EyFEJ6MGxBAbFnjGB3nHhQfynakZXd6+u3RcKiE1ucycecFZY/1o7khunTW0vdPX2t4RbNWfYRkS6K9vm9k/qu1ZmO3vNba0b9f+XMyOB5IDtDhAAxqa2zqWnPZHqeOUy0Fbc0/wzprDZ80VoLymiR++tMrt+8mDKxiR0rai/n83H+XvX+xv6/xZrdhsFvzav7daLdx/+Sh92w0Hj/PBhlz8rFb8rBZstrZ/OzqNV41P05/LebikipV7itu2tVmwtf/b8bmx6bH0a+/gltc0sr+wEqvVwqPvuO9cdfj9f7az8WAptY0t7Z21Fmoa2zpsD1wxmotG9QPgQFEVT77vvvM0Y3ii/n1YkD/+NithQf7tXwGEt38fHhTAoMQIfduMxHBe/MF0/b2OPwC6Ehli55tjUzu9PnFIYrfarzz5QIiekY5dH5CZmak6BUN4W7l6O1+b1cJdczLPa92s7uYUbPdz6ZCdyUWj+ukdi7O5+9IsgsMi2zqJHZ3FFgdNzW3fR4fZ9W2H94viiuwB5B6vZld+xVn3bfe3YsGCw6nhcDpdbhmeWieNzQ7qm1rd7qfllMdFlVY1si233O22U4clkpEUQWZmJtuKas7YEX3o6jF6x25PQQVPnuE4nq6h2cGS7QVdvlfd8PUt6rjwQEakRJ1ytezUDlsAg5O+7qyNSIniv7/4JpZuXMkMDPBjYML53eHojfYres7bzpu+ysjjIB27PqC6upq4uDjVafQ6byuXEflOG57EI9eNO+d1s1TXYWN9Lf2SEojCftZtJw9NYPLQBLYfLefBN9afdfsnrp/gcgvPqWm0OpwcPHSEwUmR+utzx6UyZWgirU4nrY62TqDDqdHq1HA4nC5Xqsalx/LzeWPa3/96+45/U2JDgbZ6TYmNYd6EtLZtHU59fx3/diyICxAW6M/w/pE4HBqVdU2UVru/itVh+vBEstJi9U5aR8et45Y4tC22u/DW7i2p0J0OXW873/Yrek7177xoY+RxkI5dH1BQUKAPMvYl3lYuo/I9n5XjVdfhucQfmRp9TrfwrBYLAX42ThwvwjZssP56aKA/oafcSj6TfjGuMzPdKSgoYObMQfqjp85mTHosz6XHAnS743pFdppPjD2TJx94lurfedHGyOMgHTshfICZ183qbb5+C29kajQxYfazPnPUl8ae9aX2K4TRZFZsH5gVq2maktssRvO2cpkxX9U5nU/8c310kyfKfL4xzveJIkK4o/p3XrTp6XHoSV9FnlTdB3Ssn+NrvK1cZsxXdU7nE3/a8CT+cd9FPHPTJB66egzP3DSJ1++96KwdHk+U+XxjdIw9iz3taQlx4YHSqRPnRfXvvGhj5HGQW7F9QGPj2QdieyNvK5cZ81Wd0/nGP5dbeJ4oc2/EkLFnwgiqf+dFGyOPQ5/t2PWlJ0+UlpaycuVKn3vyREREhFc9eSImJsbwVeWjoqLIyMjo9qry4eHhellVrCp/8mTbUy88uap8aWkppaWlhq4q3/E711vniLTUVIICbeSsXmXIOWLXrl0APneOkCdPdD5H1NXVyZMnTPDkiZ6eI+TJEz3QF8bY1dTUEBYWpjqNXudt5TJjvqpzUhHfEzFV16sQ7kjbNIeeHgcZYydcdPwV52u8rVxmzFd1TirieyKm6noVwh1pm+Zg5HGQjp0QQgghhI+Qjl0fMHToUNUpGMLbymXGfFXnpCK+J2Kqrlch3JG2aQ5GHgfp2PUBDQ0NqlMwhLeVy4z5qs5JRXxPxFRdr0K4I23THIw8DtKx6wM6Zkb5Gm8rlxnzVZ2TivieiKm6XoVwR9qmORh5HKRjJ4QQQgjhI2S5kz6w3Elrayt+fr63ZKG3lcuM+arOSUV8T8RUXa9CuCNt0xx6ehxkuRPhomPBRV/jbeUyY76qc1IR3xMxVderEO5I2zQHI4+DdOz6gPr6etUpGMLbymXGfFXnpCK+J2Kqrlch3JG2aQ5GHgfp2PUBUVFRqlMwhLeVy4z5qs5JRXxPxFRdr0K4I23THIw8DjLGrg+Msauvryc4OFh1Gr3O28plxnxV56Qividiqq5XIdyRtmkOPT0OMsZOuOh42LOv8bZymTFf1TmpiO+JmKrrVQh3pG2ag5HHoc9OjVm0aBGLFi3C4XAAkJOTQ0hICFOmTGH79u3U1dURGRnJkCFD2LhxIwAZGRk4nU6OHDkCwKRJk9izZw/V1dWEhYUxYsQI1q9fD0B6ejo2m41Dhw4BMH78eA4dOkRFRQXBwcGMHTuWNWvWAJCamkpQUBD79+8HYNy4cRw7dozy8nICAwOZMGECq1atAqB///6Eh4ezZ88eAMaMGUNRURGlpaX4+/szZcoUVq9ejdPpJCkpiZiYGI4ePQrAqFGjKCsro6SkBJvNxrRp01izZg2tra3Ex8eTlJTE9u3bAcjMzKSqqorCwkIAZs6cyfr162lqaiI2NpbU1FT9WXfDhg2jvr5eX5dn2rRpbNmyhfr6eqKiohg0aBCbN28GYPDgwbS0tOg5TZ48mZ07d1JbW0tERATDhg1jw4YNAAwaNAiAw4cPAzBx4kT27dtHVVUVoaGhOBwOVq5cCUBaWhr+/v4cPHgQgOzsbA4fPqzX97hx48jJydHrOzg4mH379un1nZeXx4kTJ7Db7UyaNEnfb79+/YiIiNDrOysri+LiYkpLS/Hz82Pq1Knk5OTgcDhITEwkLi6OnTt3AjBy5EjKy8spLi7Gam37G2rt2rW0tLQQHx9PcnIy27Zt0+u7urqagoICAGbMmMHGjRtpbGwkJiaGAQMG6PU9dOhQGhoa9PqeOnUqW7du1es7IyNDP2lkZGTgcDjIzc3V2+zu3bupqakhPDyc1tZWvawDBw7EarXqbXbChAkcOHCAyspKQkJCyMrKYu3atXp9BwQEcODAAb2+c3NzKS8vJygoiOzsbFavXg1ASkoKoaGh7N27F4CxY8dSUFBAWVkZ+fn5AKxatQpN00hOTiYqKordu3cDMHr0aI4fP87x48f1NttR3wkJCSQkJLBjxw4ARowYQUVFBUVFRVgsFmbMmMG6detobm4mLi6O/v37s3XrVo4ePcrw4cOpra3V40+fPp3NmzfT0NBATEwM6enpepsdMmQIzc3NepvtzjmiY1tvOUfs2rUL8L1zxKhRo1i3bp3eZs1+jpg+fbrh54iSkhLq6+u7fY7IzMzU26yKc0RAQACTJ0/26DkCMN05oq6uju6SW7F94FZsYWEh/fr1U51Gr/O2cpkxX9U5qYjviZiq61UId6RtmkNPj4PcihUuOq5K+hpvK5cZ81Wdk4r4noipul6FcEfapjkYeRykY9cHdFxi9zXeVi4z5qs6JxXxPRFTdb0K4Y60TXMw8jhIx04IIYQQwkfIGLs+MMauqakJu92uOo1e523lMmO+qnNSEd8TMVXXqxDuSNs0h54eBxljJ1x0zB7yNd5WLjPmqzonFfE9EVN1vQrhjrRNczDyOEjHrg+oqalRnYIhvK1cZsxXdU4q4nsipup6FcIdaZvmYORxkI5dH+Crt5i9rVxmzFd1TirieyKm6noVwh1pm+Zg5HGQMXYyxs5reVu5zJiv6pxkjJ0QniVt0xxkjJ04Lx2rWPsabyuXGfNVnZOK+J6IqbpehXBH2qY5GHkcpGMnhBBCCOEjpGPXBwwcOFB1CobwtnKZMV/VOamI74mYqutVCHekbZqDkcdBOnZ9QMcD6H2Nt5XLjPmqzklFfE/EVF2vQrgjbdMcjDwOcoT7gEOHDqlOwRDeVi4z5qs6JxXxPRFTdb0K4Y60TXMw8jhIx04IIYQQwkfIcid9YLmThoYGgoKCVKfR67ytXGbMV3VOKuJ7IqbqehXCHWmb5tDT49Dnljv5+OOPGTp0KIMHD+avf/2r6nRM58CBA6pTMIS3lcuM+arOSUV8T8RUXa9CuCNt0xyMPA5+hu3ZQ1pbW3nggQf48ssvCQ8PZ9y4cVxzzTVER0erTs00KisrVadgCG8rlxnzVZ2TivieiKm6XoVwR9qmORh5HLz+it3GjRsZMWIE/fr1IywsjEsvvZQlS5aoTstUQkJCVKdgCG8rlxnzVZ2TivieiKm6XoVwR9qmORh5HJR37FatWsUVV1xBcnIyFouFDz/8sNM2L7zwAunp6QQGBnLBBRewevVq/b2ioiL69eun/9y/f38KCws9kbrXyMrKUp2CIbytXGbMV3VOKuJ7IqbqehXCHWmb5mDkcVDesaurqyMrK4vnn3++y/ffeecd7r//fh5++GG2bt3K9OnTmTt3Lnl5eQB0NffDYrEYmrO3Wbt2reoUDOFt5TJjvqpzUhHfEzFV16sQ7kjbNAcjj4PyMXZz585l7ty5bt9fuHAh3//+97n99tsBeO6551iyZAkvvvgiCxYsoF+/fi5X6AoKCpg4caLb/TU1NdHU1KT/XFVVBbTNOPFVdXV1Plk+byuXGfNVnZOK+J6IqbpehXBH2qY59PQ4dGzbrYVMNBMBtMWLF+s/NzU1aTabTfvggw9ctrvvvvu0GTNmaJqmaS0tLVpGRoZWUFCgVVdXaxkZGdqJEyfcxnj00Uc1QL7kS77kS77kS77ky6u+8vPzz9qXUn7F7kxOnDiBw+EgISHB5fWEhARKSkoA8PPz4w9/+AOzZs3C6XTy4IMPEhMT43afv/jFL3jggQf0n51OJydPniQmJsZnb+GOHz+eTZs2qU6j13lbucyYr+qcVMQ3OmZ1dTUpKSnk5+f77NqYwnup/p0XbXp6HDRNo6amhuTk5LNua+qOXYfTO1yaprm8duWVV3LllVd2a192ux273e7yWmRk5HnnaGY2m80n/4PxtnKZMV/VOamI76mY4eHhpjveQqj+nRdtzuU4REREdGs75ZMnziQ2NhabzaZfnetQWlra6SqecO+ee+5RnYIhvK1cZsxXdU4q4qsusxAqSfs3ByOPg6keKWaxWFi8eDHz5s3TX5s4cSIXXHABL7zwgv5aZmYmV111FQsWLFCQpRBCuNcXHlMohDAv5bdia2trOXTokP5zbm4u27ZtIzo6mtTUVB544AFuuukmsrOzmTx5Mi+//DJ5eXnceeedCrMWQoiu2e12Hn300U5DPoQQwhOUX7FbsWIFs2bN6vT6LbfcwmuvvQa0LVD8zDPPUFxczMiRI3n22WeZMWOGhzMVQgghhDA35R07IYQQQgjRO0w9eUIIIYQQQnSfdOyEEEIIIXyEdOyEEEIIIXyEdOyEEEIIIXyEdOyEEMJD8vPzufDCC8nMzGT06NG8++67qlMSQvgYmRUrhBAeUlxczPHjxxkzZgylpaWMGzeO/fv3ExISojo1IYSPUL5AsRBC9BVJSUkkJSUBEB8fT3R0NCdPnpSOnRCi18itWCGE6KZVq1ZxxRVXkJycjMVi4cMPP+y0zQsvvEB6ejqBgYFccMEFrF69ust9bd68GafTSUpKisFZCyH6EunYCSFEN9XV1ZGVlcXzzz/f5fvvvPMO999/Pw8//DBbt25l+vTpzJ07l7y8PJftysvLufnmm3n55Zc9kbYQog+RMXZCCHEOLBYLixcvZt68efprEydOZNy4cbz44ov6a8OHD2fevHksWLAAgKamJi655BLuuOMObrrpJk+nLYTwcXLFTgghekFzczNfffUVs2fPdnl99uzZrF27FgBN07j11lu56KKLpFMnhDCEdOyEEKIXnDhxAofDQUJCgsvrCQkJlJSUALBmzRreeecdPvzwQ8aMGcOYMWPYuXOninSFED5KZsUKIUQvslgsLj9rmqa/Nm3aNJxOp4q0hBB9hFyxE0KIXhAbG4vNZtOvznUoLS3tdBVPCCGMIh07IYToBQEBAVxwwQUsW7bM5fVly5YxZcoURVkJIfoauRUrhBDdVFtby6FDh/Sfc3Nz2bZtG9HR0aSmpvLAAw9w0003kZ2dzeTJk3n55ZfJy8vjzjvvVJi1EKIvkeVOhBCim1asWMGsWbM6vX7LLbfw2muvAW0LFD/zzDMUFxczcuRInn32WWbMmOHhTIUQfZV07IQQQgghfISMsRNCCCGE8BHSsRNCCCGE8BHSsRNCCCGE8BHSsRNCCCGE8BHSsRNCCCGE8BHSsRNCCCGE8BHSsRNCCCGE8BHSsRNCCCGE8BHSsRNCCCGE8BHSsRNCCCGE8BHSsRNCCCGE8BHSsRNCCCGE8BHSsRNCCCGE8BHSsRNCCCGE8BHSsRNCCCGE8BHSsRNCCCGE8BHSsRNCCCGE8BF+qhNQzel0UlRURFhYGBaLRXU6QgghhBAuNE2jpqaG5ORkrNYzX5Pr8x27oqIiUlJSVKchhBBCCHFG+fn59O/f/4zb9PmOXVhYGNBWWeHh4YqzMcaGDRuYOHGi6jR6nbeVy4z5qs5JRXxPxFRdr0K4I23THHp6HKqrq0lJSdH7LGdi0TRNO5/kvF11dTURERFUVVX5bMdOCCGEEN6rJ30VmTzRB6xevVp1CobwtnKZMV/VOamI74mYqutVCHekbZqDkcdBOnZ9gNPpVJ2CIbytXGbMV3VOKuJ7IqbqehXCHWmb5mDkcZCOXR+QlJSkOgVDeFu5zJiv6pxUxPdETNX1KoQ70jbNwcjjIB27PiAmJkZ1CobwtnKZMV/VOamI74mYqutVCHekbZqDkcdBOnZ9wK5du1SnYAhvK5cZ81Wdk4r4noipul6FcEfapjkYeRykYyeEEEII4SOkY9cHjBo1SnUKhvC2cpkxX9U5qYjviZiq61UId6RtmoORx0E6dn1AWVmZ6hQM4W3lMmO+qnNSEd8TMVXXqxDuSNs0ByOPg3Ts+oCSkhLVKRjC28plxnxV56Qividiqq5XIdyRtmkORh4H6dj1ATabTXUKhvC2cpkxX9U5qYjviZiq61UId6RtmoORx8G0jxRrbW1l/vz5/POf/6SkpISkpCRuvfVWfvWrX2G1tvVHNU3jscce4+WXX6aiooKJEyeyaNEiRowY0e048kgxIYQQQpiZTzxS7Omnn+Yvf/kLzz//PHv37uWZZ57hd7/7HX/+85/1bZ555hkWLlzI888/z6ZNm0hMTOSSSy6hpqZGYebms2bNGtUpGMLbymXGfFXnpCK+J2Kqrlch3JG2aQ5GHgfTduzWrVvHVVddxWWXXUZaWhrXXXcds2fPZvPmzUDb1brnnnuOhx9+mGuuuYaRI0fy+uuvU19fz1tvvaU4e3NpbW1VnYIhvK1cZsxXdU4q4nsipup6FcIdaZvmYORxMG3Hbtq0aSxfvpwDBw4AsH37dnJycrj00ksByM3NpaSkhNmzZ+ufsdvtzJw5k7Vr17rdb1NTE9XV1S5fvi4+Pl51CobwtnKZMV/VOamI74mYqutVCHekbZqDkcfBz7A9n6ef//znVFVVMWzYMGw2Gw6Hg9/85jd897vfBb6eUZKQkODyuYSEBI4dO+Z2vwsWLOCxxx7r9HpOTg4hISFMmTKF7du3U1dXR2RkJEOGDGHjxo0AZGRk4HQ6OXLkCACTJk1iz549VFdXExYWxogRI1i/fj0A6enp2Gw2Dh06BMD48eM5dOgQFRUVBAcHM3bsWP1SbGpqKkFBQezfvx+AcePGcezYMcrLywkMDGTChAmsWrUKgP79+xMeHs6ePXsAGDNmDEVFRZSWluLv78+UKVNYvXo1TqeTpKQkYmJiyMvLo7S0lFGjRlFWVkZJSQk2m41p06axZs0aWltbiY+PJykpie3btwOQmZlJVVUVhYWFAMycOZP169fT1NREbGwsqampbNmyBYBhw4ZRX19PXl4e0NYp37JlC/X19URFRTFo0CD9SuvgwYNpaWnh6NGjAEyePJmdO3dSW1tLREQEw4YNY8OGDQAMGjQIgMOHDwMwceJE9u3bR1VVFaGhoaSmprJy5UoA0tLS8Pf35+DBgwBkZ2dz+PBhvb7HjRtHTk6OXt/BwcHs27dPr++8vDxOnDiB3W5n0qRJ+n779etHRESEXt9ZWVkUFxdTWlqKn58fU6dOJScnB4fDQWJiInFxcezcuROAkSNHUl5eTnFxMVarlVGjRrF27VpaWlqIj48nOTmZbdu26fVdXV1NQUEBADNmzGDjxo00NjYSExPDgAED9PoeOnQoDQ0Nen1PnTqVrVu36vWdkZHBpk2b9DbrcDjIzc3V2+zu3bupqakhPDyc5ORkvawDBw7EarXqbXbChAkcOHCAyspKQkJCyMrK0v9oSktLIyAgQP/DKzs7m9zcXMrLywkKCiI7O5vVq1cDkJKSQmhoKHv37gVg7NixFBQUUFZWhsPhYPjw4axatQpN00hOTiYqKordu3cDMHr0aI4fP87x48f1NttR3wkJCSQkJLBjxw4ARowYQUVFBUVFRVgsFmbMmMG6detobm4mLi6O/v37s3XrVr1Oa2tryc/PB2D69Ols3ryZhoYGYmJiSE9P19vskCFDaG5u1ttsd84RHb9z3nKO6FgF39fOEaNGjWLdunVec46YPn264ecIu91OfX19t88RmZmZeptVcY4ICAhg8uTJHj1HAAwfPtxU54i6ujq6TTOpt99+W+vfv7/29ttvazt27ND+8Y9/aNHR0dprr72maZqmrVmzRgO0oqIil8/dfvvt2pw5c9zut7GxUauqqtK/8vPzNUCrqqoytDwqrVixQnUKhvC2cpkxX9U5qYjviZiq61UId6RtmkNPj0NVVVW3+yqmvWL3s5/9jIceeojrr78eaPtL8tixYyxYsIBbbrmFxMREAH3GbIfS0tJOV/FOZbfbsdvtxiYvhBBCCKGAacfY1dfX68uadLDZbDidTqDtEmViYiLLli3T329ubmblypVMmTLFo7maXWZmpuoUDOFt5TJjvqpzUhHfEzFV16sQ7kjbNAcjj4NpO3ZXXHEFv/nNb/jkk084evQoixcvZuHChVx99dUAWCwW7r//fp566ikWL17Mrl27uPXWWwkODuaGG25QnL25VFVVqU7BEN5WLjPmqzonFfE9EVN1vQrhjrRNczDyOJi2Y/fnP/+Z6667jrvvvpvhw4fz05/+lB/+8Ic88cQT+jYPPvgg999/P3fffTfZ2dkUFhaydOlSwsLCFGZuPh2Dm32Nt5XLjPmqzklFfE/EVF2vQrgjbdMcjDwOph1jFxYWxnPPPcdzzz3ndhuLxcL8+fOZP3++x/ISQgghhDAr0z5SzFPkkWJCCCGEMDOfeKSY6D0da+L4Gm8rlxnzVZ2TivieiKm6XoVwR9qmORh5HKRj1wc0NTWpTsEQ3lYuM+arOicV8T0RU3W9CuGOtE1zMPI4SMeuD4iNjVWdgiG8rVxmzFd1TirieyKm6noVwh1pm+Zg5HGQjl0fkJqaqjoFQ3hbucyYr+qcVMT3REzV9SqEO9I2zcHI4yAduz6g4/mBvsbbymXGfFXnpCK+J2Kqrlch3JG2aQ5GHgfp2AkhhBBC+Ajp2PUBw4YNU52CIbytXGbMV3VOKuJ7IqbqehXCHWmb5mDkcZCOXR9QX1+vOgVDeFu5zJiv6pxUxPdETNX1KoQ70jbNwcjjIB27PiAvL091CobwtnKZMV/VOamI74mYqutVCHekbZqDkcdBOnZCCCGEED5CHinWBx4p5nA4sNlsqtPodd5WLjPmqzonFfE9EVN1vQrhjrRNc+jpcZBHigkXvjq93dvKZcZ8Vecky50I4VnSNs1BljsR58VXB8t6W7nMmK/qnGTyhBCeJW3THGTyhDgvUVFRqlMwhLeVy4z5qs5JRXxPxFRdr0K4I23THIw8DtKx6wMGDRqkOgVDeFu5zJiv6pxUxPdETNX1KoQ70jbNwcjjIB27PmDz5s2qUzCEt5XLjPmqzklFfE/EVF2vQrgjbdMcjDwO0rETQgghhPAR0rHrAwYPHqw6BUN4W7nMmK/qnFTE90RM1fUqhDvSNs3ByOMgHbs+oKWlRXUKhvC2cpkxX9U5qYjviZiq61UId6RtmoORx0E6dn3A0aNHVadgCG8rlxnzVZ2TivieiKm6XoVwR9qmORh5HKRjJ4QQQgjhI+SRYn3gkWLNzc0EBASoTqPXeVu5zJiv6pxUxPdETNX1KoQ70jbNoafHQR4pJlzs3LlTdQqG8LZymTFf1TmpiO+JmKrrVQh3pG2ag5HHwdQdu8LCQm688UZiYmIIDg5mzJgxfPXVV/r7mqYxf/58kpOTCQoK4sILL2T37t0KMzan2tpa1SkYwtvKZcZ8VeekIr4nYqquVyHckbZpDkYeB9N27CoqKpg6dSr+/v589tln7Nmzhz/84Q9ERkbq2zzzzDMsXLiQ559/nk2bNpGYmMgll1xCTU2NusRNKCIiQnUKhvC2cpkxX9U5qYjviZiq61UId6RtmoORx8G0Y+weeugh1qxZw+rVq7t8X9M0kpOTuf/++/n5z38OQFNTEwkJCTz99NP88Ic/7FacvjDGrrGxkcDAQNVp9DpvK5cZ81Wdk4r4noipul6FcEfapjn09Dj4xBi7//znP2RnZ/Otb32L+Ph4xo4dyyuvvKK/n5ubS0lJCbNnz9Zfs9vtzJw5k7Vr17rdb1NTE9XV1S5fvm7Dhg2qUzCEt5XLjPmqzklFfE/EVF2vQrgjbdMcjDwOfobt+TSVlZUut1HP5siRI7z44os88MAD/PKXv2Tjxo3cd9992O12br75ZkpKSgBISEhw+VxCQgLHjh1zu98FCxbw2GOPdXo9JyeHkJAQpkyZwvbt26mrqyMyMpIhQ4awceNGADIyMnA6nRw5cgSASZMmsWfPHqqrqwkLC2PEiBGsX78egPT0dGw2G4cOHQJg/PjxHDp0iIqKCoKDgxk7dixr1qwBIDU1laCgIPbv3w/AuHHjOHbsGOXl5QQGBjJhwgRWrVoFQP/+/QkPD2fPnj0AjBkzhqKiIkpLS/H392fKlCmsXr0ap9NJUlISMTEx+no5o0aNoqysjJKSEmw2G9OmTWPNmjW0trYSHx9PUlIS27dvByAzM5OqqioKCwsBmDlzJuvXr6epqYnY2FhSU1PZsmULAMOGDaO+vp68vDwApk2bxpYtW6ivrycqKopBgwbpz8UbPHgwLS0tek6TJ09m586d1NbWEhERwbBhw/QG3/GQ5MOHDwMwceJE9u3bR1VVFaGhoTgcDlauXAlAWloa/v7+HDx4EIDs7GwOHz6s1/e4cePIycnR6zs4OJh9+/bp9Z2Xl8eJEyew2+1MmjRJ32+/fv2IiIjQ6zsrK4vi4mJKS0vx8/Nj6tSp5OTk4HA4SExMJC4uTh8UO3LkSMrLyykuLsZqbfsbau3atbS0tBAfH09ycjLbtm3T67u6upqCggIAZsyYwcaNG2lsbCQmJoYBAwbo9T106FAaGhr0+p46dSpbt27V6zsjI4NNmzbpbdbhcJCbm6u32d27d1NTU0N4eDitra16WQcOHIjVatXb7IQJEzhw4ACVlZWEhISQlZWl/9GUlpZGQEAABw4c0Os7NzeX8vJygoKCyM7O1q+2p6SkEBoayt69ewEYO3YsBQUFlJWVkZ+fD8CqVav0q/BRUVH6WNnRo0dz/Phxjh8/rrfZjvpOSEggISGBHTt2ADBixAgqKiooKirCYrEwY8YM1q1bR3NzM3FxcfTv35+tW7dy9OhRhg8fTm1trR5/+vTpbN68mYaGBmJiYkhPT9fb7JAhQ2hubtbbbHfOER3bess5YteuXYDvnSNGjRrFunXr9DZr9nPE9OnTDT9HlJSUUF9f3+1zRGZmpt5mVZwjAgICmDx5skfPEYDpzhF1dXV0lyG3Yp9++mnS0tL4zne+A8C3v/1t3n//fRITE/n000/Jyso66z4CAgLIzs52ufp23333sWnTJtatW8fatWuZOnUqRUVFJCUl6dvccccd5Ofn8/nnn3e536amJpqamvSfq6urSUlJ8elbsQUFBfTv3191Gr3O28plxnxV56Qividiqq5XIdyRtmkOPT0Oym/FvvTSS6SkpACwbNkyli1bxmeffcbcuXP52c9+1q19JCUlkZmZ6fLa8OHD9b9AEhMTAfQrdx1KS0s7XcU7ld1uJzw83OVLCCGEEMIXGNKxKy4u1jt2H3/8Md/+9reZPXs2Dz74oH7592ymTp2q33bocODAAQYMGAC0XaJMTExk2bJl+vvNzc2sXLmSKVOm9FJJfEPHbQpf423lMmO+qnNSEd8TMVXXqxDuSNs0ByOPgyEdu6ioKP2+9Oeff87FF18MtM1kdTgc3drHT37yE9avX89TTz3FoUOHeOutt3j55Ze55557ALBYLNx///089dRTLF68mF27dnHrrbcSHBzMDTfcYESxhBBCCCFMzZAxdj/60Y/4+OOPGTx4sD5YOTQ0lHfeeYenn35aH+B5Nh9//DG/+MUvOHjwIOnp6TzwwAPccccd+vuapvHYY4/x0ksvUVFRwcSJE1m0aBEjR47sdq6y3In38rZymTFf1TnJcidCeJa0TXPwuuVOnn32WX70ox+RmZnJsmXLCA0NBdpu0d59993d3s/ll1/Ozp07aWxsZO/evS6dOmi7ajd//nyKi4tpbGxk5cqVPerU9RUdM7t8jbeVy4z5qs5JRXxPxFRdr0K4I23THIw8DoYsd+Lv789Pf/rTTq/ff//9RoQTZ1FVVaU6BUN4W7nMmK/qnFTE90RM1fUqhDvSNs3ByONg2ALFb7zxBtOmTSM5OVlfV+65557jo48+MiqkcKPjiqmv8bZymTFf1TmpiO+JmKrrVQh3pG2ag5HHwZCOXcfCwnPnzqWyslKfMBEZGclzzz1nREhxBqNGjVKdgiG8rVxmzFd1TirieyKm6noVwh1pm+Zg5HEwpGP35z//mVdeeYWHH34Ym82mv56dna2vuC08p2PldV/jbeUyY76qc1IR3xMxVderEO5I2zQHI4+DIR273Nxcxo4d2+l1u93eo8diCCGEEEKI7jOkY5eenq4/3+5Un332WaenSQjjpaWlqU7BEN5WLjPmqzonFfE9EVN1vQrhjrRNczDyOBgyK/ZnP/sZ99xzD42NjWiaxsaNG3n77bdZsGABf/3rX40IKc7A399fdQqG8LZymTFf1TmpiO+JmKrrVQh3pG2ag5HHwZArdrfddhuPPvooDz74IPX19dxwww385S9/4Y9//CPXX3+9ESHFGRw8eFB1CobwtnKZMV/VOamI74mYqutVCHekbZqDkcfBkCt2AHfccQd33HEHJ06cwOl0Eh8fb1QoIYQQQgiBQY8UA2htbWXFihUcPnyYG264gbCwMIqKiggPDzfVOjp94ZFidXV1hISEqE6j13lbucyYr+qcVMT3REzV9SqEO9I2zaGnx0H5I8WOHTvGqFGjuOqqq7jnnnsoKysD4JlnnunyiRTCWIcPH1adgiG8rVxmzFd1TirieyKm6noVwh1pm+Zg5HEwpGP34x//mOzsbCoqKggKCtJfv/rqq1m+fLkRIcUZVFRUqE7BEN5WLjPmqzonFfE9EVN1vQrhjrRNczDyOBgyxi4nJ4c1a9YQEBDg8vqAAQMoLCw0IqQ4g+DgYNUpGMLbymXGfFXnpCK+J2Kqrlch3JG2aQ5GHgdDrtg5nU79MWKnKigoICwszIiQ4gzGjRunOgVDeFu5zJiv6pxUxPdETNX1KoQ70jbNwcjjYEjH7pJLLnF5JqzFYqG2tpZHH32USy+91IiQ4gxycnJUp2AIbyuXGfNVnZOK+J6IqbpehXBH2qY5GHkcDLkVu3DhQi666CIyMzNpbGzkhhtu4ODBg8TGxvL2228bEVIIIYQQos8zpGPXr18/tm3bxr/+9S+++uornE4n3//+9/m///s/l8kUwjNSU1NVp2AIbyuXGfNVnZOK+J6IqbpehXBH2qY5GHkcer1j19LSwtChQ/n444+57bbbuO2223o7hOghXx0s623lMmO+qnOSyRNCeJa0TXPwqskT/v7+NDU1YbFYenvX4hzt27dPdQqG8LZymTFf1TmpiO+JmKrrVQh3pG2ag5HHwZDJE/feey9PP/00ra2tRuxeCCGEEEJ0wZBHinUsRBwaGsqoUaM6PTbjgw8+6O2Q56wvPFKspqbGJ5eZ8bZymTFf1TmpiO+JmKrrVQh3pG2aQ0+Pg/JHikVGRnLttdcyZ84ckpOTiYiIcPkSnpWXl6c6BUN4W7nMmK/qnFTE90RM1fUqhDvSNs3ByONgyKzYV1991YjdinN04sQJ1SkYwtvKZcZ8VeekIr4nYqquVyHckbZpDkYeB0Ou2BlhwYIFWCwW7r//fv01TdOYP38+ycnJBAUFceGFF7J79251SZqU3W5XnYIhvK1cZsxXdU4q4nsipup6FcIdaZvmYORxMGSM3dixY7ucFWuxWAgMDCQjI4Nbb72VWbNmdWt/mzZt4tvf/jbh4eHMmjVLf6rF008/zW9+8xtee+01hgwZwpNPPsmqVavYv39/t+9d94UxdkIIIYTwXsrH2H3zm9/kyJEjhISEMGvWLC688EJCQ0M5fPgw48ePp7i4mIsvvpiPPvrorPuqra3l//7v/3jllVeIiorSX9c0jeeee46HH36Ya665hpEjR/L6669TX1/PW2+9ZUSxvNbKlStVp2AIbyuXGfNVnZOK+J6IqbpehXBH2qY5GHkcDOnYnThxgv/3//4fq1ev5g9/+AMLFy5k1apV/PSnP6Wuro6lS5fyq1/9iieeeOKs+7rnnnu47LLLuPjii11ez83NpaSkhNmzZ+uv2e12Zs6cydq1a3u9TEIIIYQQZmdIx+7f//433/3udzu9fv311/Pvf/8bgO9+97vs37//jPv517/+xZYtW1iwYEGn90pKSgBISEhweT0hIUF/rytNTU1UV1e7fPm6fv36qU7BEN5WLjPmqzonFfE9EVN1vQrhjrRNczDyOBgyKzYwMJC1a9eSkZHh8vratWsJDAwEwOl0nnHwYH5+Pj/+8Y9ZunSp/pmunD6WT9O0Mz71YsGCBTz22GOdXs/JySEkJIQpU6awfft26urqiIyMZMiQIWzcuBGAjIwMnE4nR44cAWDSpEns2bOH6upqwsLCGDFiBOvXrwcgPT0dm83GoUOHABg/fjyHDh2ioqKC4OBgxo4dy5o1a4C2Z8YFBQXpHd1x48Zx7NgxysvLCQwMZMKECaxatQqA/v37Ex4ezp49ewAYM2YMRUVFlJaW4u/vz5QpU1i9ejVOp5OkpCRiYmI4ePAghYWFjBo1irKyMkpKSrDZbEybNo01a9bQ2tpKfHw8SUlJbN++HYDMzEyqqqooLCwEYObMmaxfv56mpiZiY2NJTU1ly5YtAAwbNoz6+np9+va0adPYsmUL9fX1REVFMWjQIDZv3gzA4MGDaWlp4ejRowBMnjyZnTt3UltbS0REBMOGDWPDhg0ADBo0CIDDhw8DMHHiRPbt20dVVRWhoaEkJSXpl7PT0tLw9/fn4MGDAGRnZ3P48GG9vseNG0dOTo5e38HBwfrK3+PGjSMvL48TJ05gt9uZNGmSvt9+/foRERGh13dWVhbFxcWUlpbi5+fH1KlTycnJweFwkJiYSFxcHDt37gRg5MiRlJeXU1xcjNVqZdiwYaxdu5aWlhbi4+NJTk5m27Zten1XV1dTUFAAwIwZM9i4cSONjY3ExMQwYMAAvb6HDh1KQ0ODXt9Tp05l69aten1nZGSwadMmvc06HA5yc3P1Nrt7925qamoIDw8nPj5eL+vAgQOxWq16m50wYQIHDhygsrKSkJAQsrKy9KvhaWlpBAQEcODAAb2+c3NzKS8vJygoiOzsbFavXg1ASkoKoaGh7N27F2gbg1tQUEBZWRktLS1kZGSwatUqNE0jOTmZqKgofRLU6NGjOX78OMePH9fbbEd9JyQkkJCQwI4dOwAYMWIEFRUVFBUVYbFYmDFjBuvWraO5uZm4uDj69++v11N4eDi1tbXk5+cDMH36dDZv3kxDQwMxMTGkp6frbXbIkCE0NzfrbbY754iO3zlvOUfs2rULwOfOEaNGjWLdunVec46YPn264ecIm81GcnJyt88RmZmZeptVcY4ICAhg8uTJHj1HAAwfPtxU54i6ujq6TTPAE088oQUFBWn33Xef9sYbb2hvvvmmdt9992nBwcHak08+qWmapi1cuFC7+OKL3e5j8eLFGqDZbDb9C9AsFotms9m0Q4cOaYC2ZcsWl89deeWV2s033+x2v42NjVpVVZX+lZ+frwFaVVVV7xTehFasWKE6BUN4W7nMmK/qnFTE90RM1fUqhDvSNs2hp8ehqqqq230VQ67Y/epXvyI9PZ3nn3+eN954A2j7C+KVV17hhhtuAODOO+/krrvucruPb3zjG/pfNR1uu+02hg0bxs9//nMGDhxIYmIiy5YtY+zYsQA0NzezcuVKnn76abf7tdvtMt1bCCGEED7JkOVOjHLhhRcyZswYl+VOFixYwKuvvsrgwYN56qmnWLFihSx3cprKykoiIyNVp9HrvK1cZsxXdU4q4nsipup6FcIdaZvm0NPjoHy5E2hL+q9//Su//OUvOXnyJABbtmzRx2P0hgcffJD777+fu+++m+zsbAoLC1m6dKk8B+80xcXFqlMwhLeVy4z5qs5JRXxPxFRdr0K4I23THIw8DoZ07Hbs2MGQIUN4+umn+d3vfkdlZSUAixcv5he/+MU573fFihX61Tpomzgxf/58iouLaWxsZOXKlYwcOfI8s/c9paWlqlMwhLeVy4z5qs5JRXxPxFRdr0K4I23THIw8DoZ07B544AFuvfVWDh486DKjde7cufrMLeE5fn6GDKVUztvKZcZ8VeekIr4nYqquVyHckbZpDkYeB0PG2EVERLBlyxYGDRpEWFgY27dvZ+DAgRw7doyhQ4fS2NjY2yHPWV8YYyeEEEII76V8jF1gYGCXC//u37+fuLg4I0KKM+hYm8nXeFu5zJiv6pxUxPdETNX1KoQ70jbNwcjjYEjH7qqrruLxxx+npaUFaBsLl5eXx0MPPcS1115rREhxBg6HQ3UKhvC2cpkxX9U5qYjviZiq61UId6RtmoORx8GQjt3vf/97ysrKiI+Pp6GhgZkzZ5KRkUFYWBi/+c1vjAgpziAxMVF1CobwtnKZMV/VOamI74mYqutVCHekbZqDkcfBkNF74eHh5OTk8OWXX/LVV1/hdDoZN24cF198sRHhxFn46u1vbyuXGfNVnZOK+J6I2VsxHE6NXXknOVnbSHRoICNTo7FZ3T8yUYizUf07L9oYeRx6/Yqd0+nk73//O5dffjn33nsvr7/+Ojk5ORQVFeFFayH7lNOf4OErvK1cZsxXdU4q4nsiZm/EyNlbzM1/+oIH31jPbxdv48E31nPzn74gZ6+sQybOnerfedHGyOPQqx07TdO48soruf322/WHzo8YMYJjx45x6623cvXVV/dmOCGE8DlOTWPJtnyeeG8LJ2pcVxA4UdPIE+9t4cudhfKHshCiS716K/a1115j1apVLF++nFmzZrm898UXXzBv3jz+8Y9/cPPNN/dmWHEWvrpos7eVy4z5qs5JRXxPxDzXGE5NY+6Tn551u99+uI0Jg+MJCfQ/pzii71L9Oy/aGHkcevWK3dtvv80vf/nLTp06gIsuuoiHHnqIf/7zn70ZUnRDeXm56hQM4W3lMjJfzeHgxPr1FP7nP5xYvx6tmzOuVNfh+cZ3ODW2Hy3ny12FbD9ajsN59qtYnihzT2OcrG1kW+6JHt1m3XHMu9q/MAfVv/OijZHHoVev2O3YsYNnnnnG7ftz587lT3/6U2+GFN1QXFzMkCFDVKfR67ytXEblW7xkCbsef5zGkhL9tcDEREb++tckzZmjJKfuOp/4OXuL+ctnuwg4tJvghmrqg8JpzhjBnXNHMm14kiExT6dpGvXNrdQ2tFDb2EJSVAjBdj+Ki4txhsSxbv9xahpb9PdrGtv+rW1o4VfXXUBWWgwA6/Yf50+f7uq0f4vTSfLxw3r5ihIGoVnb/h6f/++viA61ExceRFx4IHERQcSHBzJpSALJ0SG9Uj7he1T/zos2Rh6HXu3YnTx5koSEBLfvJyQkUFFR0ZshRTdYrYasaqOct5Wrt/PVnE7y33+f7Q89hAacOleyoaSEzXffzdhnn6XfFVdgsXQ9k1J1HZ5LfKemsWx7AR8+/waXbnifsPpK/b2a1ZH8c8+1tPz4Fi4cmdxluU+PqWkaDc2Oto5XQws1jc0uHbFZI/oRG972aMQVu4t4f/0RvXNW29iK85Sxbk/fOJEx6bFYrVYOl1TzrzWH3ZajuqFZ/z4mLJDU2FBC7H7sLWwrz8Bj25l+evmCI1k98VqODMgC4GRtEydrm9hf9PV+k6ND9I7d6j3F/HX5XuIjglw6gHHhgcSHB5EcHYLd33bmChc+RfXvvGhj5HHo1UeK2Ww2SkpK3E7jPX78OMnJyaZaIFEeKSa8keZ08vHgwd3adsYnnxAQEYHFzw97TAyW9hOKs7W1reNjtbrt+JmNU9OY+8THDDu0kW+seQtw7dB2nMyWTr+Zqx/4Hq1OqGnvpHV03GobW7hzdiYpsaEAvLPmEH//Yr/bmB2dNYBPvjrW5ZU1f5uVsCB/fnplFhcMajv/7Sus4IudRYQG+hMW5O/yb2igPwmRQQQFuP5trWka9U2tPPbTZ5n22Utuy7fm0jv5+VP3Ul7bRFlVA6XVDZRVN1JW1cDNFw6hf0xb2f699jB/W77Pbdke+042k4a0/TG+41g5y3cWEh8eRFxEIHHhQcSHBxEbHmh456+1pZWvPvmCqqJiIpKTuOCyi/Dzl2eaCtGhJ32VXv3N0TSNW2+9Fbvd3uX7TU1NvRlOdNPatWuZMmWK6jR6nbeVqzfzddTXd3vbVZddpn8/d9cu/IKCANj+i19Q8MEHAFj8/LDYbFj8/LDabFhsNi5csgR7TNutwl0Ln6Xk00/BagWbre3LakNr/3fyoj8TmtjWQdj8939StuJLnFYrmsWKZrXhtFpxtn8/4+GfEpuSDMCbv/8LzqP5OK02HBYrDqw4LBb9+2vuvYmUgf0B+OS/OWz8cgM/+ugFt2Xt6ATNWf0P3gwKo9U/sP1FS1unyNL2b+noeL1jF9LaSHRFEX42G0F2P4LtfgQH+hNi92/7V2vR9z8mMYRHZiQTHORPqN2fkEB/QoICCPCzYrFa8Y9o2+fatWuZeMEFpGcngMUCFktb51n/XsOGU9+v5nDgaG7GYrEQ0NrKjPXv4cS1U9dRPg2YvuF9IoN+QnRYIIOTItzWx5wxKYxIiaK0qq3j1/FvWVUDZdUNxLVfiQTYV1jJ51vzu9xPRHAAv7puHKMHtLWHvLIajpTWtF8JDCQ6NPCc19f74m//ouxPvye4tu1uTinw/qNRxN33Uy76/vXntE/hnredN32VkcehVzt2t9xyy1m3kRmxntfxaDdf423l6s18nT24wua0tl1tsTodp3Ql4EDBSYLbv9daW9FaW6GpiY7r6fUtTjr+RNu29QARuUfcxqiqrie0fSH1A+u+ImzNly7vW/l6plblHbfpHbv6nbtIyvnM7X4rr7xQ79g1rllJ9kd/P3NhT3HN0kVu34v45iAYmQZAZtFObvjot263DR3wAgxsH7P31VoqfvIT3A0oGfP735Ny9dW0tLRQtmoVm+680+1+Rz3xBGk33ADAifXrWX/audHdEbYAWnkZ/5s2Df/ISKz+/lgDAvSvlGuuof9VVwFgr6nA8fLzxAUEkHDKNraAAKxxAUQUHYbEcW31EB/MbREVVDZrnGxycrLRwYlGJw1OK44aPwKb6oG2jt36A8fbrgS2t0OrxUJseGDbrd7wIP5vegapcWEA1Da24HBqhAf561eGHQ4H5YXH2fzef2ld9AxBp5UxqLaC2qceZmljIxffdbPX3T7UHA7KN22iqbQUe3w8MePHY7GZ45a3t503fZWRx6FXO3avvvpqb+5O9JL4+HjVKRjC28rVm/m22AL4z8V3cuX//nLWbT+65G4Kk9pu215s+3p5jPxrfsCqQXOwOp1YNScWpwOr5sTqdGLRHEwL/noAfu0l1/Bl5HD80fDDiT8a/u1XnfzRGB/x9VWjsJkXcSgwEhsaNs15ylfb9qFxsfq2CWNH0eRnwdKeQ1t8BxanA4vTSVzy13U2dGQG+TtH0rqv863QrljCIwkMCwFNa1vzrX3USUtzM5GRYfp2AUFBBERHu2xD+/eapmHx+/o0abHZsAYG6u936Phsx23u+Ph4KCjoVp7nqqmsjKaysk6vx06c+PU2J05w7K233O4j4667iB7X1rFLszWS+8dHCQH6dbFtQ/ARmD8fgMjmOn70+o9x2PxotfrhsPnh6PjX5kfRtVeR+ssHAfh03QFKHvslmp8//nY7AYEBJGxbpe+3qw5sx2tNC5+gYFgaEUnx2IKC8A8P168im9X5TGbyBG87b/oqI49Dr46x80Z9YYxdVVUVERHub9d4K28rV2/m29jcyrwFn3Hze/MJra/s8j9HDagNjqT+D68zKDkKP6uVyUMT8LO1dT4Ky+soKjtJZEQ4/jYrNqul7V9b27/hwQFY26+waJpmyDi8ntaJ0+mkYPmXbL/zB2fdduKbbxI/efJ5xzwXHTH0zuKpncv2763tt7+h/VZsYyOt9fUsmzSpWzFG/PrXhA8ZgrO5+euvlhbChw8nfOhQABqPH+fYO++4btPUpH+fOHs2/a64AoC6vDy+uvdenC0trtu3f6XffDPDH2zrrNUXFLB85ky3ufX7zvWMe6rtueB//3ADcf/vhnOuy1PFXPQNprzysv7zZ1lZWPz8sAUGYgsKavu3/Stq7FiG/b//p2+77w9/AIvFdbugIGxBQdjj4vQOLkB9URFWf399O6v/2dcLPHUyUyftvztjFy4842QmT/C286av6ulxUDbGTpjTtm3bmHmGk7C38rZy9Wa+dn8b7//8mzxWtpdpn73UaVZsx19r2y+8nqcuHtHl+Kd+MSEc2rWZ8cPOnpNR/xH1tE6sVispF13Ijtg4nCfK3HZorbHxxE2Y0Csxz0VHDH1cHe5vrULblUC/kBBswcF8c9s2VsyZQ2NpqctVwVMFJiWRfuONZ729F5iQwND77utWziGpqcz46KNubRuUlMQl69e77TDaT7kacfOc0eQ1PEl1VT01NXVUlVeivft6t+IA1AWGgcWCX2sLDvvXN23fXrGP0NpaALq6qeUM+Hr8YKvDyeFXXsHp5vZXzKRJTDlljdVVV15JyykrOOidx8BAIseMYcJLL+nvbXvwQVqqqylZtsx9IdqP49af/ISEWbPwDwtzv63Bumr/8kxizzPyPCQdOyG8kMViISTQnyvvuYl/NrZ2Whajtn1ZjP+7+0afO0FbbDYuePwxNt99d5cdWgtwwePzTTOmqScsFgv+YWGMfPRRNt9zT1un8NTOXXsnceQjjygtn8VmI7CbDzH3Cwpi4He/q//c0NTCdQEjST5+uFtDCQpv+gnNQ0ZTWdfEL6/9+qpaZUML71/7KH6OFvxam7/+t7UFf0czP7xumr7tv9cc4vCwGQRbnATTSqDWit3Zir+zBf/WFvzTB+nbNja36pNcOupea22ltbaW1tpaWqqqXPIrXbmSphMnulUXAP+bPp3g1FQC4+MJTEggKDERe3w8ISkpxHpwUoNT06iub2bDwVJeX76XwMN79PUSmzIyuf2SEUwe2jYhyu5v85qZ80JuxfaJW7FlZWVul6DxZt5WLqPy7Wqh3pbBI/jhN8+8UK+ROXXX+cTvcixTUhIjH3nkjGOZPFHm3ohxruUzO03TaGpx0NrSysdTphFcW+H2ymt9aBTXbV7f5dIntY0tnKhupLK+icq6Zqrq2v6trG+msq6Jn1wxmvCgAABe+Hw3H2066janl344g7T4tqto/1x1kH+sPECQv5XoQBvR/hDpD5H+GuE2J7OyBpCSlQm0rUVY8vHHWKor2PfUU+dVL+HDhzPz44/1n9ffeiuOhoa2DmBiot4RDExMJCgpieCUlHOKU1ZWRkxsrP7ouu6sl/jRz+cQGCDXgXpTT88RcitWuKiurvaqDlB3eVu5jMp32vAkJg9NZFfeuB7fSlFdh+cTP2nOHBIvvrjHsw89UebeiHGu5TM7i8XS1kkI8CP+vp9S+9TDbocSxN/3U7fr2XWsBwhnv615+8XDuG7yQKraO32Vde3/tv8cE/b1bduq+raFoxtanBS2OCk8bV8Xzv26Q/WfTcd4Y58di5ZASjcnM9Xfch9+sfFYK8uxVpzAUnECS+VJQoZ9fdXwaGkNZZu/goaulzUKHTacWZ+0dQJPVDey8+FfgtOJX1wc/nHxBMTF49/+lTKwPyHBbfPb65paOFJ0gla/ENCcLutBuuy/vpK5X/6NpdNvJjd1FH38+o8hjDwPSceuDygoKGDQoEFn39DLeFu5jMzXZrXoj6fqCdV1eL7xLTYbsd2cbNBbMT0Z41zK500u+v71fAEu69hB25W6+F5cxy7Az0Z8RBDxEacvrNLZXXMyueXCIe1X/07pBLb/fGonsLG5tW35GYuF/ORh1ARHnnUy0z+0gWjlViAcwtMhHBgAz9/+9a3jDQdK+PTCHxDSUEVoXSUh9VXt31cRUl9FcPzXV+LX7CumddnnBLR0vU5s7uBhzP38EwBy9paw6skXcFqs/GjLx11uD67rQQL4/XwO2M8+gUR0n5HnIenYCSGEUOai719P683XmebJEx3jV0MC/ekXc+Zn7t5+8XBuu2goZVUN3PL8ClZPvJa5X/7N7RXI1ROvZcSAGBIig9E0DafWNtbN6dQIC/y645QQGULy5An6e9UaVLV/79A07r9slL5tsN2PtRfdgL22ksDaSgJrKgiqrSCorhJ7fTV+0V//wWe1WBi3czkBrT17WICMr/MuMsauD4yxM2qpCtW8rVxmzFd1TirieyKm6noVntXY3MpVTy8Bzj5m7dRH1BnN2dqKo6FBn4WrORzse/ZZavMLKPn4v93ez6UHDmDz8iEAZtPTc0RP+iqmXc57wYIFjB8/nrCwMOLj45k3bx7797s+z1HTNObPn09ycjJBQUFceOGF7N69W1HG5rVx40bVKRjC28plxnxV56Qividiqq5X4Vl2fxsf/Gw2MWF2jgzI4h/XzWfxnHtZMuMWFs+5l39cN58jA7KICw9k1ADPLbBs9fNzWVrFYrNRPX06mY897rEcRNeMPEeYtmO3cuVK7rnnHtavX8+yZctobW1l9uzZ1NXV6ds888wzLFy4kOeff55NmzaRmJjIJZdcQk1NjcLMzaexsVF1CobwtnKZMV/VOamI74mYqutVeFbH7du754wAQLNaKUwazMGBF1CYNBit/Ykkd87OVL78UGNjI0HhoczauBlLdCzubtlpANGxzN27V67WGcDIc4RpO3aff/45t956KyNGjCArK4tXX32VvLw8vvrqK6Dtat1zzz3Hww8/zDXXXMPIkSN5/fXXqa+v560zPEKnL4ox+SN4zpW3lcuM+arOSUV8T8RUXa9CjWnDk3jkunHEnjLBAiAuPJBHrht31uWHPCEmJgar1UpoTBQXPPl42+SP07bpGCOY/eTj+AUEeD7JPsDIc4TXTJ6oal8UMjo6GoDc3FxKSkqYPXu2vo3dbmfmzJmsXbuWH/7wh13up6mpiaamrweOVldXG5i1OQwYMEB1CobwtnKZMV/VOamI74mYqutVqPP18kPmfJLDqW0zac4csl94odN6iUE+sF6i2Rl5jvCKjp2maTzwwANMmzaNkSNHAlDS3ggTEhJctk1ISODYsWNu97VgwQIee+yxTq/n5OQQEhLClClT2L59O3V1dURGRjJkyBD9XnhGRgZOp5MjR44AMGnSJPbs2UN1dTVhYWGMGDGC9evXA5Ceno7NZuPQoUMAjB8/nkOHDlFRUUFwcDBjx45lzZo1AKSmphIUFKSPIRw3bhzHjh2jvLycwMBAJkyYwKpVbQ/N7t+/P+Hh4ezZsweAMWPGUFRURGlpKf7+/kyZMoXVq1fjdDpJSkoiJiaGjz/+mLS0NEaNGkVZWRklJSXYbDamTZvGmjVraG1tJT4+nqSkJLZv3w5AZmYmVVVVFBa2reI0c+ZM1q9fT1NTE7GxsaSmprJlyxYAhg0bRn19PXl5eQBMmzaNLVu2UF9fT1RUFIMGDWLz5s0ADB48mJaWFo4ePQrA5MmT2blzJ7W1tURERDBs2DA2bNgAoE8FP3z4MAATJ05k3759VFVVERoaSlVVlX6LIC0tDX9/fw4ePAhAdnY2hw8f1ut73Lhx5OTk6PUdHBzMvn379PrOy8vjxIkT2O12Jk2axMqVKwHo168fERERen1nZWVRXFxMaWkpfn5+TJ06lZycHBwOB4mJicTFxbFz504ARo4cSXl5OcXFxVitVpxOJ/7+/rS0tBAfH09ycjLbtm3T67u6upqC9gfHz5gxg40bN9LY2EhMTAwDBgzQ63vo0KE0NDTo9T116lS2bt2q13dGRgabNm3S26zD4SA3N1dvs7t376ampobw8HBOnjyJX/tD7gcOHIjVatXb7IQJEzhw4ACVlZWEhISQlZXF2rVr9foOCAjgwIEDen3n5uZSXl5OUFAQ2dnZrF69GoCUlBRCQ0PZu3cvAGPHjqWgoICysjLy8/O58cYbWbVqFZqmkZycTFRUlD5WdvTo0Rw/fpzjx4/rbbajvhMSEkhISGDHjh0AjBgxgoqKCoqKirBYLMyYMYN169bR3NxMXFwc/fv3Z+vWrRw9epS5c+dSW1tLfn4+ANOnT2fz5s00NDQQExNDenq63maHDBlCc3Oz3ma7c4744osvSEtL85pzxK5duwB87hwxatQo1q1bp+QcUVlaSoCfH1kju3+OmD59OmvXrjX0HFFSUsIVV1zx9Tli5EiGvPkmh5YuRausZMSUKRQFBnKgvp6SrVvJzMzU26yKc0RAQACTJ0/26DkCYPjw4aY6R5w6DO1svGJW7D333MMnn3xCTk4O/fv3B2Dt2rVMnTqVoqIikpK+vrx9xx13kJ+fz+eff97lvrq6YpeSkuLTs2JXrlzpVc9U7S5vK5cZ81Wdk4r4noipul6FcEfapjn09Dj41JMn7r33Xv7zn/+watUqvVMHkJiYCLRduTu1Y1daWtrpKt6p7HY7drvduIRNaOjQoapTMIS3lcuM+arOSUV8T8RUXa9CuCNt0xyMPA6mnTyhaRo/+tGP+OCDD/jiiy9IT093eT89PZ3ExESWLVumv9bc3MzKlSuZ4sEHKXuDhoYG1SkYwtvKZcZ8VeekIr4nYqquVyHckbZpDkYeB9N27O655x7efPNN3nrrLcLCwigpKaGkpESvDIvFwv33389TTz3F4sWL2bVrF7feeivBwcHccMMNirM3l45xFr7G28plxnxV56Qividiqq5XIdyRtmkORh4H096KffHFFwG48MILXV5/9dVXufXWWwF48MEHaWho4O6776aiooKJEyeydOlSwsLO/lBoIYQQQghf4xWTJ4zUFx4p1traqs989CXeVi4z5qs6JxXxPRFTdb0K4Y60TXPo6XHwiUeKid7TMX3b13hbucyYr+qcVMT3REzV9SqEO9I2zcHI4yAduz6gvr5edQqG8LZymTFf1TmpiO+JmKrrVQh3pG2ag5HHQTp2fUBUVJTqFAzhbeUyY76qc1IR3xMxVderEO5I2zQHI4+DjLHrA2Ps6uvrCQ4OVp1Gr/O2cpkxX9U5qYjviZiq61UId6RtmkNPj4OMsRMuOh4d42u8rVxmzFd1TirieyKm6noVwh1pm+Zg5HGQjp0QQgghhI+Qjl0fkJGRoToFQ3hbucyYr+qcVMT3REzV9SqEO9I2zcHI4yAduz7A4XCoTsEQ3lYuM+arOicV8T0RU3W9CuGOtE1zMPI4SMeuD8jNzVWdgiG8rVxmzFd1TirieyKm6noVwh1pm+Zg5HGQjp0QQgghhI+Q5U76wHInTU1N2O121Wn0Om8rlxnzVZ2TivieiKm6XoVwR9qmOfT0OMhyJ8LF7t27VadgCG8rlxnzVZ2TivieiKm6XoVwR9qmORh5HKRj1wfU1NSoTsEQ3lYuM+arOicV8T0RU3W9CuGOtE1zMPI4SMeuD/DVW8zeVi4z5qs6JxXxPRFTdb0K4Y60TXMw8jjIGDsZY+e1vK1cZsxXdU4yxk4Iz5K2aQ4yxk6cl/Xr16tOwRDeVi4z5qs6JxXxPRFTdb0K4Y60TXMw8jhIx04IIYQQwkdIx64PGDhwoOoUDOFt5TJjvqpzUhHfEzFV16sQ7kjbNAcjj4N07PoAq9U3D7O3lcuM+arOSUV8T8RUXa9CuCNt0xyMPA5yhPuAQ4cOqU7BEN5WLjPmqzonFfE9EVN1vQrhjrRNczDyOEjHTgghhBDCR8hyJ31guZOGhgaCgoJUp9HrvK1cZsxXdU4q4nsipup6FcIdaZvm0NPjIMudCBcHDhxQnYIhvK1cZsxXdU4q4nsipup6FcIdaZvmYORxkI5dH1BZWak6BUN4W7nMmK/qnFTE90RM1fUqhDvSNs3ByOPgEx27F154gfT0dAIDA7ngggtYvXq16pRMJSQkRHUKhvC2cpkxX9U5qYjviZiq61UId6RtmoORx8Hrx9i988473HTTTbzwwgtMnTqVl156ib/+9a/s2bOH1NTUs36+L4yxa2lpwd/fX3Uavc7bymXGfFXnpCK+J2Kqrlch3JG2aQ49PQ59aozdwoUL+f73v8/tt9/O8OHDee6550hJSeHFF19UnZpprF27VnUKhvC2cpkxX9U5qYjviZiq61UId6RtmoORx8HPsD17QHNzM1999RUPPfSQy+uz/3979x9TVf3Hcfx1xhcueK9ESqLIjYXSJv649wLVUPshKWjLcuOPmmXqsoZjmSnVCjeL2pgOs1ZB4mb9kTmrGVm6lDIDY81q4kyaWxNECmMCC7oZ6L33+wfjfr+3m4IKXO7h+dj847zPOZ/zPufCeO1zzj3m5Fz2onV3d6u7u9u//Mcff0jqTcNm5Xa7TXl+4XZeI7HfUPcUiuMPxzFDfV2By+Fnc2S42s+hb9uB3GQN62B3/vx5eTweJSQkBNQTEhJ07ty5f92npKREL7/8clDdbrcPSY8AAACDoaurSzfccMMVtwnrYNfHMIyAZZ/PF1Tr88ILL2jdunX+Za/Xq/b2do0fP/6y+4S72267Td9//32o2xh04XZeI7HfUPcUiuMP9TE7Oztlt9t19uxZ0z63i/AV6t959Lraz8Hn86mrq0uJiYn9bhvWwS4+Pl4RERFBs3Otra1Bs3h9LBaLLBZLQC0uLm6oWhwRIiIiTPkHJtzOayT2G+qeQnH84TpmbGzsiPu8gVD/zqPXtXwO/c3U9QnrL09ERUUpIyNDVVVVAfWqqirNnj07RF2NPAUFBaFuYUiE23mNxH5D3VMojh/qcwZCiZ//kWEoPwfTvO7knXfeUVZWlioqKrR9+3adPHlSycnJoW4PwCgzGl6hBGDkCutbsZL00EMPqa2tTcXFxWppadGMGTO0f/9+Qh2AkLBYLNq4cWPQIx8AMBzCfsYOAAAAvcL6GTsAAAD8D8EOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7ABgmJw9e1b33HOP0tLSNGvWLH300UehbgmAyfC6EwAYJi0tLfr999/ldDrV2tqq9PR0nTp1SlarNdStATCJsH9BMQCEi0mTJmnSpEmSpAkTJmjcuHFqb28n2AEYNNyKBYABqq6u1uLFi5WYmCjDMFRZWRm0TVlZmW655RZFR0crIyNDNTU1/zrWDz/8IK/XK7vdPsRdAxhNCHYAMEBut1sOh0NvvfXWv67fvXu31q5dq6KiIh07dkx33nmnFi1apKampoDt2tra9Nhjj6miomI42gYwivCMHQBcA8Mw9Mknn2jJkiX+2h133KH09HSVl5f7a9OmTdOSJUtUUlIiSeru7taCBQv0xBNPaNmyZcPdNgCTY8YOAAZBT0+PfvzxR+Xk5ATUc3JyVFtbK0ny+XxasWKFsrOzCXUAhgTBDgAGwfnz5+XxeJSQkBBQT0hI0Llz5yRJ3377rXbv3q3Kyko5nU45nU6dOHEiFO0CMCm+FQsAg8gwjIBln8/nr82dO1derzcUbQEYJZixA4BBEB8fr4iICP/sXJ/W1tagWTwAGCoEOwAYBFFRUcrIyFBVVVVAvaqqSrNnzw5RVwBGG27FAsAA/fnnn/rll1/8yw0NDaqrq9O4ceN08803a926dVq2bJkyMzOVlZWliooKNTU1KT8/P4RdAxhNeN0JAAzQ4cOHNW/evKD68uXL9d5770nqfUHx5s2b1dLSohkzZmjr1q266667hrlTAKMVwQ4AAMAkeMYOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2ADBAL730kpxO53WN0djYKMMwVFdXd8XtTp06pYkTJ6qrq6vfMU+cOKGkpCS53e7r6g1A+CPYATCdFStWyDAMGYahyMhIpaSkqLCw8LqDT2Fhob766qtB6vLKioqKVFBQoLFjx/a77cyZM3X77bdr69atw9AZgJGMYAfAlBYuXKiWlhadPn1ar776qsrKylRYWHhNY/l8Pl26dEk2m03jx48f5E6DNTc3a+/evVq5cuWA91m5cqXKy8vl8XiGsDMAIx3BDoApWSwWTZw4UXa7XUuXLtUjjzyiyspKSb1BbfPmzUpJSVFMTIwcDoc+/vhj/76HDx+WYRg6cOCAMjMzZbFYVFNTE3Qr1uv1qri4WElJSbJYLHI6nfriiy8C+jh69KhcLpeio6OVmZmpY8eO9dv7hx9+KIfDoaSkJH/tzJkzWrx4sW688UZZrVZNnz5d+/fv96/Pzc1VW1ubvvnmm2u8YgDM4D+hbgAAhkNMTIwuXrwoSdqwYYP27Nmj8vJypaamqrq6Wo8++qhuuukm3X333f59nnvuOZWWliolJUVxcXFBoemNN97Qli1btG3bNrlcLu3YsUMPPPCATp48qdTUVLndbt1///3Kzs7W+++/r4aGBj399NP99lpdXa3MzMyAWkFBgXp6elRdXS2r1ar6+nrZbDb/+qioKDkcDtXU1Cg7O/t6LhWAMEawA2B6R48e1QcffKB7771Xbrdbr732mg4dOqSsrCxJUkpKio4cOaJt27YFBLvi4mItWLDgsuOWlpbq+eef18MPPyxJ2rRpk77++mu9/vrrevvtt7Vz5055PB7t2LFDY8aM0fTp09Xc3KzVq1dfsd/GxkZlZGQE1JqampSXl6eZM2f6e/6nyZMnq7GxcUDXBIA5EewAmNLnn38um82mS5cu6eLFi3rwwQf15ptvqr6+Xn///XdQYOvp6ZHL5Qqo/XPW7P91dnbqt99+05w5cwLqc+bM0fHjxyVJP//8sxwOh8aMGeNf3xcmr+TChQuKjo4OqK1Zs0arV6/WwYMHNX/+fOXl5WnWrFkB28TExOivv/7qd3wA5kWwA2BK8+bNU3l5uSIjI5WYmKjIyEhJUkNDgyRp3759mjx5csA+FoslYNlqtfZ7HMMwApZ9Pp+/5vP5rqn3+Ph4dXR0BNRWrVql3Nxc7du3TwcPHlRJSYm2bNmip556yr9Ne3u7pkyZck3HBGAOfHkCgClZrVZNnTpVycnJ/lAnSWlpabJYLGpqatLUqVMD/tnt9gGPHxsbq8TERB05ciSgXltbq2nTpvmPdfz4cV24cMG//rvvvut3bJfLpfr6+qC63W5Xfn6+9uzZo/Xr12v79u0B63/66aegWUcAowszdgBGlbFjx6qwsFDPPPOMvF6v5s6dq87OTtXW1spms2n58uUDHuvZZ5/Vxo0bNWXKFDmdTr377ruqq6vTzp07JUlLly5VUVGRHn/8cW3YsEGNjY0qLS3td9zc3FytWrVKHo9HERERkqS1a9dq0aJFuvXWW9XR0aFDhw75A6TU+1zer7/+qvnz51/lFQFgJgQ7AKPOK6+8ogkTJqikpESnT59WXFyc0tPT9eKLL17VOGvWrFFnZ6fWr1+v1tZWpaWlae/evUpNTZUk2Ww2ffbZZ8rPz5fL5VJaWpo2bdqkvLy8K4573333KTIyUl9++aVyc3MlSR6PRwUFBWpublZsbKwWLlwY8ELiXbt2KScnR8nJyVd5NQCYieG71odAAABDpqysTJ9++qkOHDjQ77bd3d1KTU3Vrl27gr7MAWB0YcYOAEagJ598Uh0dHerq6ur3vxU7c+aMioqKCHUAmLEDAAAwC74VCwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBL/BacLxJWCKFGWAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -2891,35 +2844,35 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m2025-07-11T17:39:20.776612-0700 | INFO | aurora.pipelines.transfer_function_kernel | update_dataset_df | DECIMATION LEVEL 2\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:20.851477-0700 | INFO | aurora.pipelines.transfer_function_kernel | update_dataset_df | Dataset Dataframe Updated for decimation level 2 Successfully\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:21.227456-0700 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:21.530786-0700 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:39:21.534637-0700 | WARNING | aurora.pipelines.feature_weights | extract_features | Features could not be accessed from MTH5 -- \n",
+ "\u001b[1m2026-01-20T20:13:51.306035-0800 | INFO | aurora.pipelines.transfer_function_kernel | update_dataset_df | line: 137 | DECIMATION LEVEL 2\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:51.378528-0800 | INFO | aurora.pipelines.transfer_function_kernel | update_dataset_df | line: 156 | Dataset Dataframe Updated for decimation level 2 Successfully\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:52.940594-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:55.390737-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:55.390737-0800 | INFO | aurora.pipelines.feature_weights | extract_features | line: 43 | Features could not be accessed from MTH5 -- \n",
"Calculating features on the fly (development only)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:21.545095-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 411.663489s (0.002429Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:21.571250-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 342.524727s (0.002919Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:21.601020-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 275.526776s (0.003629Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:21.646823-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 216.783308s (0.004613Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:21.729840-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 172.015831s (0.005813Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:21.821838-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 133.242890s (0.007505Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:21.977956-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 411.663489s (0.002429Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:22.073634-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 342.524727s (0.002919Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:22.104439-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 275.526776s (0.003629Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:22.147826-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 216.783308s (0.004613Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:22.227662-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 172.015831s (0.005813Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:22.313085-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 133.242890s (0.007505Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:22.406633-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 411.663489s (0.002429Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:22.469859-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 342.524727s (0.002919Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:22.499366-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 275.526776s (0.003629Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:22.543015-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 216.783308s (0.004613Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:22.618067-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 172.015831s (0.005813Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:22.714298-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 133.242890s (0.007505Hz)\u001b[0m\n"
+ "\u001b[1m2026-01-20T20:13:55.424611-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 823.326978s (0.001215Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:55.507326-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 685.049455s (0.001460Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:55.605463-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 551.053553s (0.001815Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:55.701018-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 433.566617s (0.002306Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:55.788833-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 344.031663s (0.002907Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:55.885183-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 266.485780s (0.003753Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:55.984753-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 823.326978s (0.001215Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:56.081874-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 685.049455s (0.001460Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:56.174569-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 551.053553s (0.001815Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:56.265631-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 433.566617s (0.002306Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:56.364736-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 344.031663s (0.002907Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:56.457533-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 266.485780s (0.003753Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:56.554409-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 823.326978s (0.001215Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:56.651487-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 685.049455s (0.001460Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:56.746047-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 551.053553s (0.001815Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:56.833040-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 433.566617s (0.002306Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:56.932547-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 344.031663s (0.002907Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:57.047771-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 266.485780s (0.003753Hz)\u001b[0m\n"
]
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAG9CAYAAAAfotIVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLJUlEQVR4nO3de3yMZ8L/8e8YciRxSJsECaqqzlFBbdliU4dHq47blq2o1vPbNpRG26Xd3bTVXUsPqyqlh6203VItqbZayqaUWiWiaClF4yxRwkSCiJn790eeTGckYcJMZiY+79drXnKfruuawdzfXNd137fJMAxDAAAAkCTV8HYDAAAAfAnhCAAAwAHhCAAAwAHhCAAAwAHhCAAAwAHhCAAAwAHhCAAAwAHhCAAAwAHhCAAAwAHhCAAAwAHhCAAAwIHfh6ODBw+qZ8+eat26tdq3b6+PPvrI201CFcvNzdXUqVN1++23KzIyUgEBAQoNDVWbNm304IMPatmyZaroEYIvvviiTCaT02vp0qWXrO/QoUOaOHGi2rRpo9DQUAUGBioqKkrt2rXTPffco2nTpunkyZNljrNarXr99dfVvXt31atXT8HBwWrRooUmTJigo0ePXvZ9XrhwQZ06dXJq6+jRo136jAAAlWD4uSNHjhjfffedYRiGcfToUaNhw4ZGQUGBdxuFKpOammoEBQUZki75ys7OLvf4Nm3alNl36NChFdaXlZVlhIeHX7a+0n+Tpc6ePWv06dOnwv3r169vZGZmXvK9Pvfcc2WOS0xMrOQnBgC4nJpVEcA8KTo6WtHR0ZKkqKgoRUREKC8vT6GhoV5uGTxtxowZ+tOf/mRfNpvNGjBggL13Zc+ePfryyy+Vm5tb7vGZmZnavn17mfWfffaZ8vLyVL9+/TLbHnnkEVksFklSaGio7rnnHt1www0qLi7W7t27tXbtWh08eLDMcU8//bRWrFhhb+eYMWMUHR2ttLQ0HThwQHl5eRo+fLh++OGHcv/tbtu2TVOnTnXtgwEAXB1vp7Ovv/7auPPOO43o6GhDkvHxxx+X2Wf27NlGkyZNjMDAQKNLly7Ghg0byi1r06ZNRps2bTzcYv+xYsUKY+jQoUZMTIwREBBghISEGF27djXefvttw2azXVGZq1atMsaMGWN07NjRiIqKMgICAozg4GCjefPmxujRo41t27ZVqrx58+a51MNzse3btxtms9l+3PXXX29s3ry5zH7nz5833njjDSM3N7fMtkceecR+fGxsrFMP1Kuvvlpmf4vF4tTWtLS0ctu2ceNG45dffrEvnzhxwggMDLQf99RTT9m37dy50zCZTPZtr732WrnvIS4uzpBkxMfHG40aNaLnCAA8yOvh6IsvvjCefvppIz09vdxw9MEHHxgBAQHG22+/bWzfvt0YO3asUbdu3TInuxMnThitW7c21q1bV4Wt900XLlxwOvGX97rnnnuuKCBNmjTpkuUGBAQYK1eudLm8Kw1Hf/zjH52OW7x4caXex7lz54x69eo5BZbBgwfbl2+55ZYyx5w4ccKpzscff9y4cOHCZetasGCB03FZWVlO29u1a2ff1q9fvzLHp6SkGJKMwMBAY/v27UaTJk0IRwDgQV4fVuvfv7/69+9f4faXX35ZY8eO1QMPPCBJmjt3rj7//HO9/fbbmjx5siSpqKhIgwYN0uTJk/Wb3/zmkvUVFRWpqKjIvmyz2ZSXl6cGDRrIZDK54R153/PPP6/XXntNkmQymfT73/9eMTEx+vTTT/XTTz9JkhYuXKhbb71VY8aMqVTZNWvWVPfu3dW6dWvVq1dPQUFBysvL04oVK7Rr1y6dP39e48aN08aNG10q7+zZs07Lp0+fVn5+/mWPW7lypf3nunXrqnfv3i4dVyo9Pd1p0vSdd96pFi1a6OOPP5Ykbd68WevXr1ebNm3s+9SsWVOxsbE6cOCApJLJ3G+//bZuvfVWtW/fXp07d1aPHj0UGBjoVFdmZqbTckREhFNbY2Nj9f3330uStm7d6rRt27Zt+vvf/y5Jeuqpp9S4cWOnyeXFxcWVet8AUF0YhqHTp0+rYcOGqlHDzdeXeTudOdJFPUdFRUWG2Wwu05s0atQoY+DAgYZhGIbNZjPuvfdeIyUlxaU6Sn8L58WLFy9evHj5/+vgwYNuSiG/8nrP0aUcP35cVqtVkZGRTusjIyO1c+dOSdK6deu0cOFCtW/fXkuWLJEkvffee2rXrl25ZU6ZMkXJycn2ZYvFotjYWB08eFBhYWGeeSNVaM2aNbrrrrvsyz/88INiYmLsy0lJSfr3v/8tSQoMDNSxY8cqVf5XX32lRx99tNxJx45WrlypLl26VKrsyoiOjtaZM2ckSfHx8crIyHD52JycHLVu3VpWq1WS9Oc//1lPPPGEJOmhhx6y3w7iuuuu086dO1WzpvN/k7Vr12rGjBn65ptvZLPZyq1j8uTJmjJliiRp4sSJmjdvnn1bXl6ezGazfXns2LH68MMPJTn/nfztb3/TjBkzFBwcrLVr16pFixaSpHbt2tl7r0aMGKE5c+a4/N4BoLrIz89XTEyM6tSp4/ayfTocuaJ79+4VnqDKExgYWGbYQ5LCwsKqRTi6eIjlxhtvdHq/jRs3tv9cVFRU4edRniNHjmjkyJH2UHIpNWvW9Ojn2ahRI+3evVuStHfvXtWpU8flYdE5c+bYg5EkJSYm2ts6atQoezj65Zdf9M0332jgwIFOxw8YMEADBgyQxWLR+vXrtWHDBi1dulSbNm2y7/Paa69p2rRpkmS/mrKUyWRy+mzOnTtn/zkiIkJhYWE6cOCAXn75ZUklw6SdOnVyOr5UrVq1qsW/WwC4Up6YEuPTN4GMiIiQ2Wwucyl2bm6uoqKirqrs1NRUtW7dWp07d76qcnzN+fPnnZYv7hly/CyDgoJcDkZSySXujsHopZde0qlTp2QYRrmXxHvS7373O/vPJ0+e1CeffOLyse+8847TcosWLew3VXTsdZOktLS0CssJDw9Xv379lJKSoszMTKf5W/n5+fbPun379k7H/fzzz07Le/futf9c2uOZl5enCxcuSJImTZrkdOPH/fv3O70XbgYJAO7l0+EoICBAnTp1choysdlsysjIULdu3a6q7KSkJO3YsaPMZNnq5r333rP/nJ+fr88++8y+7Ngb4YoTJ044LT/wwAMKDw+XJPuwUGWlpaU5nfj37dvn0nHjxo1zGpp6+OGHtXXr1jL7FRcX66233rKHxA0bNujHH390uX1Lly7V8ePH7cuJiYnKysoqd9/atWvbf65Ro4a9q7dPnz4KCgqyb1u8eLH95x07dmjHjh325bvvvtvltgEAPMPrw2oFBQXas2ePfTk7O1tbtmxR/fr1FRsbq+TkZCUmJio+Pl5dunTRzJkzVVhYaL96DZf25z//WTt37lSTJk20aNEipxP92LFjK1VWy5YtnZYHDBig/v37a9u2bVq0aJFb2uuqNm3aaOrUqXrqqacklcwjio+P15133qmOHTuWuQlkQkKCJDnN/TGZTBo+fHiZLtmCggJ9/vnnkkrC1fvvv68JEyZIkt599129++67at68ubp3764bbrhBJpNJW7duVXp6ur2M3/72twoJCZEk1atXT0lJSXrppZckSdOnT9fx48cVHR2tt99+2371WZMmTXT//fdLKrkCb+jQoeW+92XLltl78Jo0aaL4+Phq1wMKAF7l9inelbRq1apyZ5873r/l1VdfNWJjY42AgACjS5cuxrfffuu2+ktv7GexWNxWpjddfN+gAQMGlPv5DhgwoNL3OTp//rzTPXku/vtyXF61atUVtdfV+xyVeuWVV5xusFjRKzs72zh79qxRt25d+7qEhIRyy7TZbE73EoqLi7Nvu1w9UsmjQL7//nunMs+ePWvccccdFR5Tr169yz4+pBT3OQIAz56/vT6s1rNnTxklN6N0ejnO9Rg3bpz279+voqIibdiwQV27dvVeg/1Menq6nnvuOTVv3lwBAQFq2rSpUlJStHjx4kpPYqtVq5a++uorjR49Wg0aNFBgYKDatm2rN954Q88884xn3sBlPProo8rOztYzzzyj7t2767rrrlPNmjUVEhKiVq1a6eGHH9bq1avVpEkTLVmyRKdOnbIfW9E9nkwmkxITE+3LW7ZssQ/Zbd68WS+88IIGDBigVq1aqUGDBjKbzapTp446duyoJ598Utu3b1fbtm2dygwKCtKyZcs0Z84cdevWTWFhYQoMDFTz5s01fvx4/fDDD4qPj3f/BwQAqDSTYVTwuPJqLjU1VampqbJarfrpp59ksViqxVU/aWlpTkOO1+hfLwCgmsvPz1d4eLhHzt9e7znylmtlQjYAAKicazYcAQAAlMfrV6vBuw4fPux0z6CKDB482H5TQwAAqjPCUTUzevToSt0QsLi4WLt27brsfkePHr2KVgEA4D+u2XDkOCH7Wta0aVMmbQMA4OCavVqtlCdnuwMAAM/gajUAAIAqQjgCAABwQDgCAABwcM2Go9TUVLVu3ZoHdgIAACdMyGZCNgAAfocJ2QAAAFWEcAQAAOCAcAQAAOCAcAQAAOCAcAQAAODgmg1HXMoPAADKw6X8XMoPAIDf4VJ+AACAKkI4AgAAcEA4AgAAcEA4AgAAcEA4AgAAcEA4AgAAcHDNhiPucwQAAMrDfY64zxEAAH6H+xwBAABUkZrebgAA4BphtUpr10pHj0rR0VKPHpLZ7O1WAWUQjgDgWuKtgJKeLk2YIB069Ou6xo2lV16RhgzxfP1AJTCsBgDXivR0qWlTqVcvacSIkj+bNi1Z7yk2mzRvnjRsmHMwkqTDh0vWL17sufqBK8CEbCZkA7gWpKeXBJGLv/JNppI/Fy1yfw+OzeZar1TjxtK+fQyxoVKYkA0A/spqlVavlhYsKPnTaq36NhQXS+PGlQ1G0q/rJkyQLlyo2naVOnSoZKgP8BGEIwDwFG8MY13MZpMCAkrmGFXEMEoCysqV7q377FnX971U+4AqRjgCAHdzZZ7N/Pnl9+S4W2Gh6/t6M6BER3uvbuAi1+zVaqmpqUpNTZXVG13cANzH1y4Pv9w8m9JANHKkdOedkqfnOtaoxO/ATZu6t+6QEMlikVq3lo4cKT8Mmkwlc4569HBv3cBVuGZ7jpKSkrRjxw5lZmZ6uykArpQvDFtdjXXrPF9HaUBp1OjXydcXM5mkmBjp9tvdW7fJVBL+Zs36dfni7ZI0cyaTseFTrtlwBMDPLVrkG8NWF6vMPJu8PM+1o5QvBJQhQ0r+vho1cl7fuLFnrpIDrhKX8nMpP+B/iotLJhlfjsXi+WGrixUWSrVru7ZvRobUu7dn2+OovBsxxsSUBKOqCCi+NgQKv+bJ8/c1O+cIgB9z9aqqb76R/ud/PNuWi1Vmno27h7EuZ8gQ6e67vRdQzGapZ8+qqQu4CoQjAP4nN9e1/U6e9Gw7yuM4jDVsWMmyY0Dy9jwbAgpwWcw5AuB/XL2q6uI5LlWJeTaA32LOEXOOANf40nwRq7UkIB0+fOlhq+xs789p8aXPDahGmHMEwLt87YnqZnNJ3b44bHUxhrEAv8OwGoCK+dKdni/GsBUAD2FYjWE1oHyuPlFd8s4l86UYtgKuSQyrAdWZr57cK/NMLm9cMl+KYSsAbkY4ArzJ1+byOKrMM7m8cck8AHgIc44Ab0lPv/RcHm8/HywkRPriC9f29eYl8wDgZoQjoKoZhnTqlJSUVP5E5tJ1EyeWDLl5i8kk9elT0pN1uQeW8kR1ANXINRuOUlNT1bp1a3Xu3NnbTcG1pqBAqldPysmpeB/DkA4eLJmL5E2ll8xLPFEdwDXjmg1HSUlJ2rFjhzIzM73dFKBiR496uwVcMg/gmsOEbKCq1a4tff65NGDA5feNjvZ8e1zh7QeWAkAVIhwBVc1kkvr2Lel5udzjL3xpLg+XzAO4Rlyzw2qAVzGXBwB8FuEI8Bbm8gCAT2JYDfAm5vIAgM8hHAHexlweAPApDKsBAAA4IBwBAAA4IBwBAAA4IBwBAAA4IBwBAAA4uKKr1c6dO6dt27bp2LFjstlsTtsGDhzoloYBAAB4Q6XD0fLlyzVq1CgdP368zDaTySSr1eqWhgEAAHhDpYfVxo8fr+HDh+vo0aOy2WxOL4IRAADwd5UOR7m5uUpOTlZkZKQn2gMAAOBVlQ5Hw4YN0+rVqz3QFAAAAO8zGYZhVOaAM2fOaPjw4bruuuvUrl071apVy2n7o48+6tYGelp+fr7Cw8NlsVgUFhbm7eYAAAAXePL8XekJ2QsWLNCKFSsUFBSk1atXy2Qy2beZTCa/C0cAAACOKj2s9vTTT+vZZ5+VxWLRvn37lJ2dbX/9/PPPnmjjZQ0ePFj16tXTsGHDvFI/AACoPiodjs6fP6977rlHNWr4zv0jJ0yYoHfffdfbzQAAANVApRNOYmKiFi5c6Im2XLGePXuqTp063m4GAACoBio958hqtWrGjBn68ssv1b59+zITsl9++eVKlbdmzRq98MILysrK0tGjR/Xxxx9r0KBBTvukpqbqhRdeUE5Ojjp06KBXX31VXbp0qWzTAQAALqvS4ej7779Xx44dJUk//PCD0zbHydmuKiwsVIcOHTRmzBgNGTKkzPaFCxcqOTlZc+fOVdeuXTVz5kz17dtXu3bt0vXXX1/p+gAAAC6l0uFo1apVbm1A//791b9//wq3v/zyyxo7dqweeOABSdLcuXP1+eef6+2339bkyZMrXV9RUZGKiorsy/n5+ZVvNAAAqLaualb1unXrnIKGu50/f15ZWVlKSEiwr6tRo4YSEhK0fv36Kypz2rRpCg8Pt79iYmLc1VwAAFANXFU46t+/vw4fPuyutpRx/PhxWa3WMo8qiYyMVE5Ojn05ISFBw4cP1xdffKHGjRtfMjhNmTJFFovF/jp48KDH2g8AAPxPpYfVHFXy5toe85///MflfQMDAxUYGOjB1gAAAH/mOzcrKkdERITMZrNyc3Od1ufm5ioqKuqqyk5NTVXr1q3VuXPnqyoHAABUL1cVjl5//XX7kJfNZtOBAwfc0qhSAQEB6tSpkzIyMuzrbDabMjIy1K1bt6sqOykpSTt27FBmZubVNhMAAFQjlR5WmzdvnhYuXKj9+/crLCxMmzdv1mOPPaaaNWuqWbNmslqtlSqvoKBAe/bssS9nZ2dry5Ytql+/vmJjY5WcnKzExETFx8erS5cumjlzpgoLC+1XrwEAALiTy+HIarVqyJAhWr58uQYMGKCBAwfq5MmT+uijj/TGG2/o1VdfvaIGbNq0Sb169bIvJycnSyq5E3daWpruuece/fLLL/rrX/+qnJwcxcXFafny5WUmaQMAALiDyXBxVvWLL76ol19+WatWrVLLli3t6202m15++WU9/fTTunDhQqV7jrwtPz9f4eHhslgsCgsL83ZzAACACzx5/nZ5zlFaWppmzJjhFIykkvsOPf7443r++ed95uo1VzAhGwAAlMflnqPg4GBt27ZNLVq08HSbqhQ9RwAA+B+f6DkKDQ3VL7/8UuH2LVu2aMyYMW5pFAAAgLe4HI5uv/12zZ07t9xtOTk5uvfee/XOO++4rWEAAADe4HI4SklJ0eLFi5WYmKgffvhB586d05EjR/T666+rc+fOioiI8GQ7AQAAqoTL4ah9+/ZatmyZ1q1bpw4dOig0NFQxMTF69NFHdd9992nBggVMyAYAAH7P5QnZpWw2mzZu3Kjs7GyFhYWpW7duql+/vgoLC/Xiiy8qJSXFU231CCZkAwDgfzx5/q50OKpuCEcAAPgfT56/K/34EADwJVartHatdPSoFB0t9eghmc3ebtWvfL19AMoiHAHwW+np0oQJ0qFDv65r3Fh65RVpyBDvtauUL7aPsAZcnssTsqsbJmQD/m3RImnYMOfgIUmHD5esnz9f8takAZtNmjfPd9pns0nHjpW0KSZG6tVLGjGi5M8mTUraUljovc8L8DXMOWLOEeB3ioulgIDL72exSFX939pmc70npiraV5n2FBRIoaGeawu9VnAnn7hDNoBrm9UqrV4tLVhQ8qc3nzG9dq1r+61b59l2XC1fa58n/07T06WmTZ17rZo2LVkP+BrCEYDL8rUTW06Oa/udPOnZdpTn7FnX983L81w7StWoIWVkuLZvVpb763dliHHxYvfXC1wNwhGACvna3JlS9eq5tl9UlGfbcbWioz1fh2FI+/e7tq+rodNVpUN6Y8aU/2/EMEpeEyd6tycSuBhzjphzBJTL1+bOOMrPl8LDL7/f+fNSrVqeb48jw5BOn5Zat5aOHCk/FJhMJVetZWd7fs5NYaFUu7Zr+2ZkSL17u6/uyvwbWrVK6tnTfXWj+mPOEQCfVtVzZ+rUkd5/vyRkmEzO20rXffRR1Qej0vrDwqRZs35dvni7JM2c6XuTkXv0cG95JpP0r3+5tu/Ro+6tG7ga12w44lJ+4NJ8be6MI5OpZO7TokVSo0bO2xo3/vUyf28aMuTS7auq+xyFhJRcheaNMHnmjPTgg67tWxVDjICrGFZjWA0olzeHYyrD1y8P96X2lXdTypiYkl4sT4Q1V/8NxcRUzRAjqheereZBhCOgfL42dwbuUZVhzTBKeo8++UT6wx9+XVeqtBerKnvSUH3wbDUAVc5x7sywYSXL5Z3YfHHuDCpmNlfdxGeTqeSmkiNGSEFB5T9KxVO9VsDVoOeIniN4mS8Nu1SkqodjUD35w791+A+G1TyIcARv8sUHk1aEExsAX0I48iDCEbzBZpPeeafkSp6L/weWDld99JE0dGjVtw0A/AFzjoBq5HI3xisNSxMnSoMG0TsDAFWN+xxxnyNUscJC1/Y7dMj1B6wCANznmg1HSUlJ2rFjhzIzM73dFFxjalTifx13DQaAqnfNhiPAW0JCpC++cG1f7hoMAFWPcARUMZNJ6tOn5Kq0ix/l4LhPTIz7n3UFALg8whHgBWZzyeX6kn89mBQArgWEI8BLfOXBpAAAZ1zKD3jRkCHS3Xdzc0UA8CWEI8DLqvJZVwCAy2NYDQAAwAHhCAAAwME1G464QzYAACgPD57lwbMAAPgdT56/r9meIwAAgPIQjgAAABwQjgAAABwQjgAAABwQjgAAABwQjgAAABwQjgAAABwQjgAAABwQjgAAABwQjgAAABwQjgAAABwQjgAAABwQjgAAABxcs+EoNTVVrVu3VufOnb3dFAAA4ENMhmEY3m6EN+Xn5ys8PFwWi0VhYWHebg4AAHCBJ8/f12zPEQAAQHkIRwAAAA4IRwAAAA4IRwAAAA4IRwAAAA4IRwAAAA4IRwAAAA4IRwAAAA4IRwAAAA4IRwAAAA4IRwAAAA4IRwAAAA4IRwAAAA4IRwAAAA4IRwAAAA4IRwAAAA4IRwAAAA4IRwAAAA6qRThaunSpWrZsqRYtWuitt97ydnMAAIAfq+ntBlytCxcuKDk5WatWrVJ4eLg6deqkwYMHq0GDBt5uGgAA8EN+33O0ceNGtWnTRo0aNVLt2rXVv39/rVixwtvNAgAAfsrr4WjNmjW666671LBhQ5lMJi1ZsqTMPqmpqWratKmCgoLUtWtXbdy40b7tyJEjatSokX25UaNGOnz4cFU0HQAAVENeD0eFhYXq0KGDUlNTy92+cOFCJScnKyUlRZs3b1aHDh3Ut29fHTt2rIpbCgAArgVen3PUv39/9e/fv8LtL7/8ssaOHasHHnhAkjR37lx9/vnnevvttzV58mQ1bNjQqafo8OHD6tKlS4XlFRUVqaioyL5ssVgkSfn5+Vf7VgAAQBUpPW8bhuH+wg0fIsn4+OOP7ctFRUWG2Wx2WmcYhjFq1Chj4MCBhmEYRnFxsXHjjTcahw4dMk6fPm3cdNNNxvHjxyusIyUlxZDEixcvXrx48aoGr71797o9j3i95+hSjh8/LqvVqsjISKf1kZGR2rlzpySpZs2aeumll9SrVy/ZbDY9+eSTl7xSbcqUKUpOTrYv22w25eXlqUGDBjKZTJ55I+Xo3LmzMjMz/bYed5d7teXl5+crJiZGBw8eVFhYmNvaBe+oqv8f/sDfPwtfbL+32lQV9XqyDneW7Y6yLBaLYmNjVb9+fbe0yZFPhyNXDRw4UAMHDnRp38DAQAUGBjqtq1u3rgdadWlms7lKTuKeqsfd5bqrvLCwMMJRNVBV/z/8gb9/Fr7Yfm+1qSrq9WQd7izbnWXVqOH+6dNen5B9KRERETKbzcrNzXVan5ubq6ioKC+1yj2SkpL8uh53l1tVnwf8A/8efuXvn4Uvtt9bbaqKej1ZhzvL9sV/F45M/zfXxyeYTCZ9/PHHGjRokH1d165d1aVLF7366quSSobBYmNjNW7cOE2ePNlLLYWvyc/PV3h4uCwWi8/9lgoAcD9Pfu97fVitoKBAe/bssS9nZ2dry5Ytql+/vmJjY5WcnKzExETFx8erS5cumjlzpgoLC+1XrwFSyXBpSkpKmSFTAED15Mnvfa/3HK1evVq9evUqsz4xMVFpaWmSpNmzZ+uFF15QTk6O4uLiNGvWLHXt2rWKWwoAAK4FXg9HAAAAvsSnJ2QDAABUNcIRAACAA8IRAACAA8IRqr2DBw+qZ8+eat26tdq3b6+PPvrI200CAHjIqVOnFB8fr7i4OLVt21ZvvvlmpctgQjaqvaNHjyo3N1dxcXHKyclRp06d9NNPPyk0NNTbTQMAuJnValVRUZFCQkJUWFiotm3batOmTZd8tNjFvH6fI8DToqOjFR0dLUmKiopSRESE8vLyCEcAUA2ZzWaFhIRIkoqKimQYhirbD8SwGnzemjVrdNddd6lhw4YymUxasmRJmX1SU1PVtGlTBQUFqWvXrtq4cWO5ZWVlZclqtSomJsbDrQYAXAl3fOefOnVKHTp0UOPGjfXEE08oIiKiUm0gHMHnFRYWqkOHDkpNTS13+8KFC5WcnKyUlBRt3rxZHTp0UN++fXXs2DGn/fLy8jRq1Ci98cYbVdFsAMAVcMd3ft26dbV161ZlZ2dr/vz5ZZ7RejnMOYJfqej5e507d9bs2bMllTx/LyYmRuPHj7c/f6+oqEh33HGHxo4dq/vvv98bTQcAVNKVfuc7euSRR9S7d28NGzbM5XrpOYJfO3/+vLKyspSQkGBfV6NGDSUkJGj9+vWSJMMwNHr0aPXu3ZtgBAB+zJXv/NzcXJ0+fVqSZLFYtGbNGrVs2bJS9RCO4NeOHz8uq9WqyMhIp/WRkZHKycmRJK1bt04LFy7UkiVLFBcXp7i4OH3//ffeaC4A4Cq48p2/f/9+9ejRQx06dFCPHj00fvx4tWvXrlL1cLUaqr3u3bvLZrN5uxkAgCrQpUsXbdmy5arKoOcIfi0iIkJms7nMZLvc3FxFRUV5qVUAAE+oqu98whH8WkBAgDp16qSMjAz7OpvNpoyMDHXr1s2LLQMAuFtVfeczrAafV1BQoD179tiXs7OztWXLFtWvX1+xsbFKTk5WYmKi4uPj1aVLF82cOVOFhYV64IEHvNhqAMCV8IXvfC7lh89bvXq1evXqVWZ9YmKi0tLSJEmzZ8/WCy+8oJycHMXFxWnWrFnq2rVrFbcUAHC1fOE7n3AEAADggDlHAAAADghHAAAADghHAAAADghHAAAADghHAAAADghHAAAADghHAAAADq75O2TbbDYdOXJEderUkclk8nZzAACACwzD0OnTp9WwYUPVqOHevp5rPhwdOXJEMTEx3m4GAAC4AgcPHlTjxo3dWuY1H47q1KkjqeTDDQsL83JrAACAK/Lz8xUTE2M/j7vTNR+OSofSwsLCCEcAAPgZT0yJYUI2AACAA8IRAACAA8IRAACAA8IRAACAA8IRAACAA8IRAACAA8IRAACAA8IRAACAA8IRAACAA8IRAACAA8IRAACAA8IRAACAA58NR1arVX/5y1/UrFkzBQcHq3nz5po6daoMw7DvYxiG/vrXvyo6OlrBwcFKSEjQ7t27vdhqAADg73w2HE2fPl1z5szR7Nmz9eOPP2r69OmaMWOGXn31Vfs+M2bM0KxZszR37lxt2LBBoaGh6tu3r86dO+fFlgMAAH9mMhy7YnzInXfeqcjISP3rX/+yrxs6dKiCg4P173//W4ZhqGHDhpo0aZIef/xxSZLFYlFkZKTS0tJ07733ulRPfn6+wsPDZbFYFBYW5pH3AgAA3MuT52+f7Tn6zW9+o4yMDP3000+SpK1bt+qbb75R//79JUnZ2dnKyclRQkKC/Zjw8HB17dpV69evr7DcoqIi5efnO70AAABK1fR2AyoyefJk5efn6+abb5bZbJbVatXf/vY3jRw5UpKUk5MjSYqMjHQ6LjIy0r6tPNOmTdOzzz7ruYYDAAC/5rM9Rx9++KHef/99zZ8/X5s3b9Y777yjF198Ue+8885VlTtlyhRZLBb76+DBg25qse/Jzc3V1KlTdfvttysyMlIBAQEKDQ1VmzZt9OCDD2rZsmWqaFT1xRdflMlkcnotXbr0kvUdOnRIEydOVJs2bRQaGqrAwEBFRUWpXbt2uueeezRt2jSdPHmyzHFWq1Wvv/66unfvrnr16ik4OFgtWrTQhAkTdPTo0cu+zwsXLqhTp05ObR09erRLnxEAAGUYPqpx48bG7NmzndZNnTrVaNmypWEYhrF3715DkvHdd9857fPb3/7WePTRR12ux2KxGJIMi8Vy1W32JampqUZQUJAh6ZKv7Ozsco9v06ZNmX2HDh1aYX1ZWVlGeHj4Zeu7+O/r7NmzRp8+fSrcv379+kZmZuYl3+tzzz1X5rjExMRKfmIAAH/iyfO3zw6rnTlzRjVqOHdsmc1m2Ww2SVKzZs0UFRWljIwMxcXFSSqZnLVhwwY9/PDDVd1cnzJjxgz96U9/si+bzWYNGDDA3ruyZ88effnll8rNzS33+MzMTG3fvr3M+s8++0x5eXmqX79+mW2PPPKILBaLJCk0NFT33HOPbrjhBhUXF2v37t1au3Ztub10Tz/9tFasWGFv55gxYxQdHa20tDQdOHBAeXl5Gj58uH744QeFhoaWOX7btm2aOnWqax8MAACucHvccpPExESjUaNGxtKlS43s7GwjPT3diIiIMJ588kn7Pv/4xz+MunXrGp988omxbds24+677zaaNWtmnD171uV6qlvP0fbt2w2z2WzvQbn++uuNzZs3l9nv/PnzxhtvvGHk5uaW2fbII4/Yj4+NjXXqgXr11VfL7F/6GZa+0tLSym3bxo0bjV9++cW+fOLECSMwMNB+3FNPPWXftnPnTsNkMtm3vfbaa+W+h7i4OEOSER8fbzRq1IieIwC4Rnjy/O2z4Sg/P9+YMGGC/eR8ww03GE8//bRRVFRk38dmsxl/+ctfjMjISCMwMND43e9+Z+zatatS9VS3cPTHP/7RKagsXry4UsefO3fOqFevnlNgGTx4sH35lltuKXPMiRMnnOp8/PHHjQsXLly2rgULFjgdl5WV5bS9Xbt29m39+vUrc3xKSoohyQgMDDS2b99uNGnShHAEANeIazIcVZXqFo5atGhhDwj16tUzrFZrpY5fuHChU2DZtm1buesu5hhMJBkNGjQwBg4caKSkpBjLly83zp07V+aYKVOmOB1z8uRJp+133323fVvDhg2dtn333XdGrVq1DEnG9OnTy7SBcAQA1Zsnz98+e7Uarszhw4ftP990001l5m1dTlpamv3nNm3aqF27drrrrrtUu3btcvcp9c9//lMmk8m+fOLECX366ad69tln1a9fP0VGRuq5556T1Wq175OXl+dUxsU38apTp45TeaWKi4s1evRoFRcX69Zbb9WkSZMq9R4BALgUwhHsjh49ap8cLcl+l/Hg4GANHDjQvv7f//63Lly44HTs4MGD9dVXX6l3797lBjKLxaKUlJRLTp42LrqtwMXLpaZOnaqtW7cqODhYaWlpMpvNl39zAAC4iHBUzTRq1Mj+808//VRhwCjPu+++69Sz4/gIlvvuu8/+87Fjx/TFF1+UOb5nz57KyMhQXl6eli1bpmeeeUbx8fFO+/zzn/+0/9ygQQOnbadPn65wOSIiQpJ04MABTZs2TZL0/PPPq2XLli6/PwAAXEE4qmZ+97vf2X8+efKkPvnkE5ePvfgGmy1atLDfVPGuu+5y2lbe0Fqp8PBw9evXTykpKcrMzNSYMWPs2/Lz8+23EGjfvr3TcT///LPT8t69e+0/t2vXTlLJUFxpr9WkSZOcbvy4f/9+p/fCzSABAFeCcFTNjBs3zmmY6eGHH9bWrVvL7FdcXKy33npLx44dkyRt2LBBP/74o8v1LF26VMePH7cvJyYmKisrq9x9Hecr1ahRwz6XqE+fPgoKCrJvW7x4sf3nHTt2aMeOHfblu+++2+W2AQBwNXz2JpC4Mm3atNHUqVP11FNPSSp5Bl18fLzuvPNOdezYscxNIEsf3Dtv3jx7GSaTScOHD3eaYC1JBQUF+vzzzyWVhKv3339fEyZMkFQyJPfuu++qefPm6t69u2644QaZTCZt3bpV6enp9jJ++9vfKiQkRJJUr149JSUl6aWXXpIkTZ8+XcePH1d0dLTefvtt+5BgkyZNdP/990uS6tatq6FDh5b73pctW6YzZ87Yj4mPj1fnzp2v4tMEAFyLTEZlJqVUQ/n5+QoPD5fFYilztZQ/mzVrlp588kkVFRVdcr/s7GxFRUUpOjpap06dkiQlJCRo5cqVZfY1DEPNmjWzD1/FxcXpu+++k6QyQao89evX19dff622bdva1507d04DBw4stz6pJECtWLGizNyl8jRt2tTetsTExEsO/QEA/Jsnz98Mq1VTjz76qLKzs/XMM8+oe/fuuu6661SzZk2FhISoVatWevjhh7V69Wo1adJES5YssQcjSU5zhByZTCYlJibal7ds2WIfstu8ebNeeOEFDRgwQK1atVKDBg1kNptVp04ddezYUU8++aS2b9/uFIwkKSgoSMuWLdOcOXPUrVs3hYWFKTAwUM2bN9f48eP1ww8/uBSMAABwF3qOqmnPEQAA1Rk9RwAAAFWEcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAODAp8PR4cOH9Yc//EENGjRQcHCw2rVrp02bNtm3G4ahv/71r4qOjlZwcLASEhK0e/duL7YYAAD4O58NRydPntRtt92mWrVqadmyZdqxY4deeukl1atXz77PjBkzNGvWLM2dO1cbNmxQaGio+vbtq3Pnznmx5QAAwJ+ZDMMwvN2I8kyePFnr1q3T2rVry91uGIYaNmyoSZMm6fHHH5ckWSwWRUZGKi0tTffee69L9eTn5ys8PFwWi0VhYWFuaz8AAPAcT56/fbbn6NNPP1V8fLyGDx+u66+/Xh07dtSbb75p356dna2cnBwlJCTY14WHh6tr165av359heUWFRUpPz/f6QUAAFDKZ8PRzz//rDlz5qhFixb68ssv9fDDD+vRRx/VO++8I0nKycmRJEVGRjodFxkZad9WnmnTpik8PNz+iomJ8dybAAAAfsdnw5HNZtMtt9yiv//97+rYsaP+93//V2PHjtXcuXOvqtwpU6bIYrHYXwcPHnRTiwEAQHVQZeHo1KlTldo/OjparVu3dlrXqlUrHThwQJIUFRUlScrNzXXaJzc3176tPIGBgQoLC3N6AQAAlPJIOJo+fboWLlxoX/7973+vBg0aqFGjRtq6datLZdx2223atWuX07qffvpJTZo0kSQ1a9ZMUVFRysjIsG/Pz8/Xhg0b1K1bNze8CwAAcC3ySDiaO3eufS7PypUrtXLlSi1btkz9+/fXE0884VIZjz32mL799lv9/e9/1549ezR//ny98cYbSkpKkiSZTCZNnDhRzz//vD799FN9//33GjVqlBo2bKhBgwZ54m0BAIBrQE1PFJqTk2MPR0uXLtXvf/979enTR02bNlXXrl1dKqNz5876+OOPNWXKFD333HNq1qyZZs6cqZEjR9r3efLJJ1VYWKj//d//1alTp9S9e3ctX75cQUFBnnhbAADgGuCR+xw1bNhQixYt0m9+8xu1bNlSzz//vIYPH65du3apc+fOPnX5PPc5AgDA/3jy/O2RnqMhQ4ZoxIgRatGihU6cOKH+/ftLkr777jvdeOONnqgSAADALTwSjv75z3+qadOmOnjwoGbMmKHatWtLko4ePapHHnnEE1UCAAC4hc8+PqSqMKwGAID/8cvHh7z33nvq3r27GjZsqP3790uSZs6cqU8++cRTVQIAAFw1j4SjOXPmKDk5Wf3799epU6dktVolSXXr1tXMmTM9USUAAIBbeCQcvfrqq3rzzTf19NNPy2w229fHx8fr+++/90SVAAAAbuGRcJSdna2OHTuWWR8YGKjCwkJPVAkAAOAWHglHzZo105YtW8qsX758uVq1auWJKgEAANzCI5fyJycnKykpSefOnZNhGNq4caMWLFigadOm6a233vJElQAAAG7hkXD00EMPKTg4WH/+85915swZjRgxQg0bNtQrr7yie++91xNVAgAAuIXH73N05swZFRQU6Prrr/dkNVeM+xwBAOB//PI+RxcuXNB//vMfvffeewoODpYkHTlyRAUFBZ6qEgAA4Kp5ZFht//796tevnw4cOKCioiLdcccdqlOnjqZPn66ioiLNnTvXE9UCAABcNY/0HE2YMEHx8fE6efKkvddIkgYPHqyMjAxPVAkAAOAWHuk5Wrt2rf773/8qICDAaX3Tpk11+PBhT1QJAADgFh7pObLZbPZHhjg6dOiQ6tSp44kqAQAA3MIj4ahPnz5Oz1AzmUwqKChQSkqK/ud//scTVQIAALiFRy7lP3jwoPr16yfDMLR7927Fx8dr9+7dioiI0Jo1a3zqsn4u5QcAwP948vztsfscXbhwQQsXLtTWrVtVUFCgW265RSNHjnSaoO0LCEcAAPgfvwpHxcXFuvnmm7V06VK/eI4a4QgAAP/jVzeBrFWrls6dO+fuYgEAAKqERyZkJyUlafr06bpw4YInigcAAPAYj9znKDMzUxkZGVqxYoXatWun0NBQp+3p6emeqBYAAOCqeSQc1a1bV0OHDvVE0QAAAB7lkXA0b948TxQLAADgcR6ZcwQAAOCvPBKOOnbsqFtuuaXMq1OnTrrtttuUmJioVatWVarMf/zjHzKZTJo4caJ93blz55SUlKQGDRqodu3aGjp0qHJzc938bgAAwLXEI+GoX79++vnnnxUaGqpevXqpV69eql27tvbu3avOnTvr6NGjSkhI0CeffOJSeZmZmXr99dfVvn17p/WPPfaYPvvsM3300Uf6+uuvdeTIEQ0ZMsQTbwkAAFwjPDLn6Pjx45o0aZL+8pe/OK1//vnntX//fq1YsUIpKSmaOnWq7r777kuWVVBQoJEjR+rNN9/U888/b19vsVj0r3/9S/Pnz1fv3r0llcx1atWqlb799lvdeuut7n9jAACg2vNIz9GHH36o++67r8z6e++9Vx9++KEk6b777tOuXbsuW1ZSUpIGDBighIQEp/VZWVkqLi52Wn/zzTcrNjZW69evr7C8oqIi5efnO70AAABKeSQcBQUF6b///W+Z9f/9738VFBQkSbLZbPafK/LBBx9o8+bNmjZtWpltOTk5CggIUN26dZ3WR0ZGKicnp8Iyp02bpvDwcPsrJibGhXcEAACuFR4ZVhs/frz++Mc/KisrS507d5ZUMm/orbfe0lNPPSVJ+vLLLxUXF1dhGQcPHtSECRO0cuXKy4aoypgyZYqSk5Pty/n5+QQkAABg5/YHz5Z6//33NXv2bPvQWcuWLTV+/HiNGDFCknT27FmZTKYKg8+SJUs0ePBgmc1m+zqr1SqTyaQaNWroyy+/VEJCgk6ePOnUe9SkSRNNnDhRjz32mEvt5MGzAAD4H0+evz0Wjq7W6dOntX//fqd1DzzwgG6++Wb96U9/UkxMjK677jotWLDAfjfuXbt26eabb9b69etdnpBNOAIAwP948vztkWE1STp16pQWLVqkn3/+WY8//rjq16+vzZs3KzIyUo0aNbrs8XXq1FHbtm2d1oWGhqpBgwb29Q8++KCSk5NVv359hYWFafz48erWrRtXqgEAgCvmkXC0bds2JSQkKDw8XPv27dNDDz2k+vXrKz09XQcOHNC7777rlnr++c9/qkaNGho6dKiKiorUt29fvfbaa24pGwAAXJs8MqyWkJCgW265RTNmzFCdOnW0detW3XDDDfrvf/+rESNGaN++fe6u8ooxrAYAgP/x5PnbI5fyZ2Zm6v/9v/9XZn2jRo0ueZk9AACAt3kkHAUGBpZ7c8WffvpJ1113nSeqBAAAcAuPhKOBAwfqueeeU3FxsSTJZDLpwIED+tOf/mS/sgwAAMAXeSQcvfTSSyooKNB1112ns2fP6vbbb9eNN96oOnXq6G9/+5snqgQAAHALj1ytFh4erpUrV2rdunXaunWrCgoKdMstt5R5PhoAAICvcXs4stlsSktLU3p6uvbt2yeTyaRmzZopKipKhmHIZDK5u0oAAAC3cWs4MgxDAwcO1BdffKEOHTqoXbt2MgxDP/74o0aPHq309HQtWbLEnVUCAHyYzSYdP17ys9UqffutdOqUFBUl3XabZDZLISESvzfDl7g1HKWlpWnNmjXKyMhQr169nLZ99dVXGjRokN59912NGjXKndUCAHyQzVYSfi6noEAKDfV8ewBXuXVC9oIFC/TUU0+VCUaS1Lt3b02ePFnvv/++O6sEAPi5Tz7xdgsAZ24NR9u2bVO/fv0q3N6/f39t3brVnVUCAHxUjRrS+fNSdHTF+5hM0uTJJUNugK9wazjKy8tTZGRkhdsjIyN18uRJd1YJAPBh69ZJR49WvN0wpIMHpbVrq65NwOW4NRxZrVbVrFnxNCaz2awLFy64s0oAgI8yDCk727V9LxWggKrm9qvVRo8ercDAwHK3FxUVubM6AIAPO3NGGjPm1+UasqqH1ipaR3VU0VqrHrKpZMb2pYbegKrm1nCUmJh42X24Ug1wZrWWDCkcPVpygujRw7UrfABXuXI5veTZS+oHK12vaIJidMi+7qAaa4Je0aaYIerRwzP1AlfCreFo3rx57iwOqPbS06XHHrWq2eFff5vObtRD/5xl1pAh3m4dqgNXL6eX3H9JfUiIVJBv07ZJ76jrmw9KMpy2N9JhLdIwbbznI5nNPHcTvsMjjw8BcGk2m/TOO9LSMen65uLfpg831sShr8hYNEQ8pxnudqmhLXczGTaFhpnVrcK2lISlWz+YKP1jEF2m8BkeefAsgIrZbFJNs01rxszTRxqmRg7BSCr5bfojDdPy/13sW5c3W63S6tXSggUlf/pU43yXtz82x8vpBytd+9RUq9VLCzRCq9VL+9RUQ5Suxo2lCqaLet6hQ1yuBp9COAKqms0mm8yapzGqIaPMf8KSdYb+mjdRa1f7SABJT5eaNpV69ZJGjCj5s2nTkvUow2aTjh2T5s2TYmKcP7YmTaT586XCwpKruarCurU29T06T4suEca7H5qvb9a6uUFnz7q+L5erwYcQjoAqdvZ4oUv7xeiQrKu9/Nu0zVZyhh82TMYh55OqcfiwNGxYyZm+qs7yfqB0jk9kZMmVWhef8w8flkaOlGrXLrmay9MMq009f3f5ML5AI/XLz6c936CKcLkafAjhCKhqNVz/bxctL/42XXqWHzNGMgxdfBGTyTBKQtHIkdJpL55UfVwNWXW7VuteLdDtWq0a+rU3sCqG2CoTwFocW+feykNCJItFatSo4svgTKaS7jUuV4MPIRwBVSwkIkSFi75wad+WPb3423Shaz1ckmSs/caDDfEvNWpIGRklP1c0x2ewSoYjs7KqoEGVGNpq2yjPvXWbTFJYmDRr1q/LF2+XpJkzmYwNn0I4AqqYqYZJoYP66EyDxrKV6Y8pYZNJZxrEyNzTe79N2yrx9XD2qBcfC+TtGc8XMQxpf7ZNo1XxHJ9FGqZ7NV85Rz0/HBkS4vq+NRt7KIwPGSItWlTSg+SoceOS9dy3Aj6GcAR4g9mskDdekUkqE5BsMskkKeSNmd79bTokRP3kWg/X9ycaXX4nT0hPl3HRRHHDyxPFzxTY9MBDrs3xia7t+eFIU+ivQ1tlB0dLGPq/oa3bb/dcQ4YMkfbtk1atKpmntmpVybNFCEbwQYQjwFuGDJFp8SKZGjsHC1PjxjIt9v5v06YaJt3zZh8d1KV7uA4oRj838kIP16JFMoaWM1H80GEZQ/1jonj3Gm6e41Meh6Etk0kyLhraMkymktGtqhjaMpulnj2l++4r+ZOhNPgowhHgTUOGyHTRb9Omfb7x2/SZM9KYsWZN0CuSyu/hkqSJmqnIhlV8kisuloYPl6mCnhmTSiaKG/lVP1E8xOT6HJ+aFjfP8bmU/xvaMjUqG8YZ2gKccYdswNtKf5v2UR9riIZpUZnnYh1SY03UTH2sIVpYxR1HF1atdenL68x/1il0aH+Pt8dRpZ5NVtWXrw8ZIt19Nw/zAy6DcASgXCEhJc/a+uQT6Q9/GKJPjbvV3eGxE9+oh2wmsz76UKpVq2rb9tN/9qu1C/vt3pCnuKp+BEvp5eutW0tHjpQ/tGcylUxG9uQcn4r4eBgHfIHPDqtNmzZNnTt3Vp06dXT99ddr0KBB2rVrl9M+586dU1JSkho0aKDatWtr6NChys3N9VKLgerFZCp5COmIESWjLtGNzfpaPfWB7tPX6qmGMWYtWlRyH8iqlqMol/Y7XssLt0Lg8nXA7/lsOPr666+VlJSkb7/9VitXrlRxcbH69OmjQod7rzz22GP67LPP9NFHH+nrr7/WkSNHNIRxc8DtfO1Co6Ied+iQGl12oniNnl7omSnF5euA3zIZho9fzvF/fvnlF11//fX6+uuv9dvf/lYWi0XXXXed5s+fr2H/96vrzp071apVK61fv1633nqrS+Xm5+crPDxcFotFYWFhnnwLANwkP18aHZ6uRSr5v1/6dHfp14niw7RIC88PqfIhvzKsVub4AB7gyfO3z/YcXcxisUiS6tevL0nKyspScXGxEhIS7PvcfPPNio2N1fr16yssp6ioSPn5+U4vAP6lTh1p2PtDNFyLdFjOPTOH1FjDtUgjPvKBYCRx+Trgh/xiQrbNZtPEiRN12223qW3btpKknJwcBQQEqG7duk77RkZGKicnp8Kypk2bpmeffdaTzQXgYSZTyVyooKAh6v7o3Wp2+NeJ4vsa99DLr5gZtQJwxfwiHCUlJemHH37QN99c/fObpkyZouTkZPtyfn6+YmJirrpcAFWv5Mp0s9au7cmoFQC38flwNG7cOC1dulRr1qxR48aN7eujoqJ0/vx5nTp1yqn3KDc3V1FRFV/JEhgYqMDAQE82GUAV4sp0AO7ms3OODMPQuHHj9PHHH+urr75Ss2bNnLZ36tRJtWrVUkbp468l7dq1SwcOHFC3bt2qurkAAKCa8Nmeo6SkJM2fP1+ffPKJ6tSpY59HFB4eruDgYIWHh+vBBx9UcnKy6tevr7CwMI0fP17dunVz+Uo1AACAi/nspfymCu7BP2/ePI0ePVpSyU0gJ02apAULFqioqEh9+/bVa6+9dslhtYtxKT8AAP7Hk+dvnw1HVYVwBACA/+E+RwAAAFWEcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCgWoSj1NRUNW3aVEFBQeratas2btzo7SYBAAA/5ffhaOHChUpOTlZKSoo2b96sDh06qG/fvjp27Ji3mwYAAPyQ34ejl19+WWPHjtUDDzyg1q1ba+7cuQoJCdHbb7/t7aYBAAA/VNPbDbga58+fV1ZWlqZMmWJfV6NGDSUkJGj9+vXlHlNUVKSioiL7ssVikSTl5+d7trEAAMBtSs/bhmG4vWy/DkfHjx+X1WpVZGSk0/rIyEjt3Lmz3GOmTZumZ599tsz6mJgYj7QRAAB4zokTJxQeHu7WMv06HF2JKVOmKDk52b5ss9mUl5enBg0ayGQyVVk7OnfurMzMTL+tx93lXm15+fn5iomJ0cGDBxUWFua2dsE7qur/hz/w98/CF9vvrTZVRb2erMOdZbujLIvFotjYWNWvX98tbXLk1+EoIiJCZrNZubm5Tutzc3MVFRVV7jGBgYEKDAx0Wle3bl1PNbFCZrO5Sk7inqrH3eW6q7ywsDDCUTVQVf8//IG/fxa+2H5vtakq6vVkHe4s251l1ajh/unTfj0hOyAgQJ06dVJGRoZ9nc1mU0ZGhrp16+bFll1eUlKSX9fj7nKr6vOAf+Dfw6/8/bPwxfZ7q01VUa8n63Bn2b7478KRyfDETKYqtHDhQiUmJur1119Xly5dNHPmTH344YfauXNnmblIqL7y8/MVHh4ui8Xic7+lAgDcz5Pf+349rCZJ99xzj3755Rf99a9/VU5OjuLi4rR8+XKC0TUmMDBQKSkpZYZMAQDVkye/9/2+5wgAAMCd/HrOEQAAgLsRjgAAABwQjgAAABwQjgAAABwQjgAAABwQjlDtHTx4UD179lTr1q3Vvn17ffTRR95uEgDAQ06dOqX4+HjFxcWpbdu2evPNNytdBpfyo9o7evSocnNzFRcXp5ycHHXq1Ek//fSTQkNDvd00AICbWa1WFRUVKSQkRIWFhWrbtq02bdqkBg0auFyG398EEric6OhoRUdHS5KioqIUERGhvLw8whEAVENms1khISGSpKKiIhmGocr2AzGsBp+3Zs0a3XXXXWrYsKFMJpOWLFlSZp/U1FQ1bdpUQUFB6tq1qzZu3FhuWVlZWbJarYqJifFwqwEAV8Id3/mnTp1Shw4d1LhxYz3xxBOKiIioVBsIR/B5hYWF6tChg1JTU8vdvnDhQiUnJyslJUWbN29Whw4d1LdvXx07dsxpv7y8PI0aNUpvvPFGVTQbAHAF3PGdX7duXW3dulXZ2dmaP3++cnNzK9UG5hzBr5hMJn388ccaNGiQfV3Xrl3VuXNnzZ49W5Jks9kUExOj8ePHa/LkyZJKulbvuOMOjR07Vvfff783mg4AqKQr/c539Mgjj6h3794aNmyYy/XScwS/dv78eWVlZSkhIcG+rkaNGkpISND69eslSYZhaPTo0erduzfBCAD8mCvf+bm5uTp9+rQkyWKxaM2aNWrZsmWl6iEcwa8dP35cVqtVkZGRTusjIyOVk5MjSVq3bp0WLlyoJUuWKC4uTnFxcfr++++90VwAwFVw5Tt///796tGjhzp06KAePXpo/PjxateuXaXq4Wo1VHvdu3eXzWbzdjMAAFWgS5cu2rJly1WVQc8R/FpERITMZnOZyXa5ubmKioryUqsAAJ5QVd/5hCP4tYCAAHXq1EkZGRn2dTabTRkZGerWrZsXWwYAcLeq+s5nWA0+r6CgQHv27LEvZ2dna8uWLapfv75iY2OVnJysxMRExcfHq0uXLpo5c6YKCwv1wAMPeLHVAIAr4Qvf+VzKD5+3evVq9erVq8z6xMREpaWlSZJmz56tF154QTk5OYqLi9OsWbPUtWvXKm4pAOBq+cJ3PuEIAADAAXOOAAAAHBCOAAAAHBCOAAAAHBCOAAAAHBCOAAAAHBCOAAAAHBCOAAAAHBCOAAAAHBCOAAAAHBCOAPil0aNHa9CgQVdVxurVq2UymXTq1KlL7peRkaFWrVrJarVetszly5crLi5ONpvtqtoGwHsIRwA8avTo0TKZTDKZTAoICNCNN96o5557ThcuXLiqcl955RX7c5Y87cknn9Sf//xnmc3my+7br18/1apVS++//34VtAyAJxCOAHhcv379dPToUe3evVuTJk3SM888oxdeeOGKyrJarbLZbAoPD1fdunXd29ByfPPNN9q7d6+GDh3q8jGjR4/WrFmzPNgqAJ5EOALgcYGBgYqKilKTJk308MMPKyEhQZ9++qkkqaioSI8//rgaNWqk0NBQde3aVatXr7Yfm5aWprp16+rTTz9V69atFRgYqAMHDpQZVisqKtKjjz6q66+/XkFBQerevbsyMzOd2vHFF1/opptuUnBwsHr16qV9+/Zdtu0ffPCB7rjjDgUFBdnXbd26Vb169VKdOnUUFhamTp06adOmTfbtd911lzZt2qS9e/de2QcGwKsIRwCqXHBwsM6fPy9JGjdunNavX68PPvhA27Zt0/Dhw9WvXz/t3r3bvv+ZM2c0ffp0vfXWW9q+fbuuv/76MmU++eSTWrx4sd555x1t3rxZN954o/r27au8vDxJ0sGDBzVkyBDddddd2rJlix566CFNnjz5sm1du3at4uPjndaNHDlSjRs3VmZmprKysjR58mTVqlXLvj02NlaRkZFau3btFX0+ALyrprcbAODaYRiGMjIy9OWXX2r8+PE6cOCA5s2bpwMHDqhhw4aSpMcff1zLly/XvHnz9Pe//12SVFxcrNdee00dOnQot9zCwkLNmTNHaWlp6t+/vyTpzTff1MqVK/Wvf/1LTzzxhObMmaPmzZvrpZdekiS1bNlS33//vaZPn37JNu/fv9/etlIHDhzQE088oZtvvlmS1KJFizLHNWzYUPv376/EpwPAVxCOAHjc0qVLVbt2bRUXF8tms2nEiBF65plntHr1almtVt10001O+xcVFalBgwb25YCAALVv377C8vfu3avi4mLddttt9nW1atVSly5d9OOPP0qSfvzxR3Xt2tXpuG7dul227WfPnnUaUpOk5ORkPfTQQ3rvvfeUkJCg4cOHq3nz5k77BAcH68yZM5ctH4DvIRwB8LhevXppzpw5CggIUMOGDVWzZslXT0FBgcxms7KysspcCVa7dm37z8HBwTKZTFXa5lIRERE6efKk07pnnnlGI0aM0Oeff65ly5YpJSVFH3zwgQYPHmzfJy8vT9ddd11VNxeAGzDnCIDHhYaG6sYbb1RsbKw9GElSx44dZbVadezYMd14441Or6ioKJfLb968uQICArRu3Tr7uuLiYmVmZqp169aSpFatWmnjxo1Ox3377beXLbtjx47asWNHmfU33XSTHnvsMa1YsUJDhgzRvHnz7NvOnTunvXv3qmPHji6/BwC+g3AEwGtuuukmjRw5UqNGjVJ6erqys7O1ceNGTZs2TZ9//rnL5YSGhurhhx/WE088oeXLl2vHjh0aO3aszpw5owcffFCS9Mc//lG7d+/WE088oV27dmn+/Pku3Sepb9+++uabb+zLZ8+e1bhx47R69Wrt379f69atU2Zmplq1amXf59tvv1VgYKBLw3YAfA/hCIBXzZs3T6NGjdKkSZPUsmVLDRo0SJmZmYqNja1UOf/4xz80dOhQ3X///brlllu0Z88effnll6pXr56kkivIFi9erCVLlqhDhw6aO3eufcL3pYwcOVLbt2/Xrl27JElms1knTpzQqFGjdNNNN+n3v/+9+vfvr2effdZ+zIIFCzRy5EiFhIRU6j0A8A0mwzAMbzcCAHzZE088ofz8fL3++uuX3ff48eNq2bKlNm3apGbNmlVB6wC4Gz1HAHAZTz/9tJo0aeLS89L27dun1157jWAE+DF6jgAAABzQcwQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAOCAcAQAAODg/wOkU5Lrhxj5zgAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHbCAYAAACtCWxXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACf2ElEQVR4nOzdeXxU1fk/8M/MZGYyk0z2ZLIvEAJkISQEQtixCuKKWuuKYtW6t8rPWltrBbVStUXbimv7VatiqQraWhUoSkIIECAhQFhCIJB9XybrzGTm/v5I5pLJOoF7c5d53q9XXmTu3HnOcw4nNyf3nnuugmEYBoQQQgghRNKUQidACCGEEEIuHQ3qCCGEEEJkgAZ1hBBCCCEyQIM6QgghhBAZoEEdIYQQQogM0KCOEEIIIUQGaFBHCCGEECIDNKgjhBBCCJEBGtQRQgghhMgADeoIIZyIjY2FQqFgvwghhEwsD6ETIMSd9fT04L333sOWLVtw7NgxtLa2Qq/XIyAgAEajEampqUhPT8f111+P0NBQp8++/vrraG1tZV+vXbuW8/zOnTuHDz74gH09c+ZMrFy5kvNypObIkSP46KOPkJ2djfPnz6OlpQVarRYxMTGYM2cOVq5ciauvvhoqlWrYzzc0NCA8PBy9vb1O23fs2IHLL798zPK//PJLfPjhhzh48CAaGhqgUqng7++PoKAgJCYmYtasWVi2bBlSUlKG/fzZs2exYcMGbN++HZWVldBoNJg8eTJuuOEG/OIXv4DBYHCpHU6dOoXU1FSYzWZ2W0xMDM6dO+fS5wkhHGMIIYKoqqpipk+fzgAY8+ujjz4a8vmYmBinffjwww8/OJVx9913j7hvRkYGYzQa2S85amtrY2655RZGoVCM+X/2wAMPjBjnr3/967CfWb169ajlW61W5qabbnKpz9x7773DxvjXv/7FeHp6jvi5qKgo5uTJky61x5IlS4Z8PiYmxqXPEkK4R5dfCRHIXXfdhRMnTjht02g0CAgIgIeH9E6iHzhwALW1teyX3DQ3NyMzMxObN28GwzBO73l5eQ05u9XT0zNirE2bNg27fcuWLaN+7g9/+AO++OILp20qlQoBAQHQarVjVQH5+fm4/fbbncrw8vKCRqNhX1dUVGDZsmXo6OgYNdYHH3yAXbt2jVkmIWTi0KCOEAGUlpZi586d7OuEhAQcOHAAZrMZTU1N6O7uxpEjR/DHP/4R6enpAmZKHG655RacPHnSadtDDz2EM2fOoKOjAyaTCfX19Xj//fcxY8aMEeOUlZVh7969w75nMpnw9ddfj/jZd955h/3ey8sLn3/+OXp6etDU1ISenh6UlZXh/fffH/HS72OPPeZ0yfcPf/gDTCYTmpqacNNNN7Hby8vLsX79+hHzaGpqwi9/+UsAcGkwSQiZIEKfKiTEHX3xxRdOl6xef/31Uffv6elhv1+8eLFLl9/KysoYhmGYyspK5g9/+ANz0003MYmJiYzRaGTUajXj5eXFTJkyhbnzzjuZnJwcp/LKyspcKmPx4sXsZ1y5HNzR0cG89tprzJIlS5igoCDGw8OD8ff3ZzIzM5l169YxDQ0Nw35uuNjfffcdc/nllzO+vr6MTqdj5syZw2zZsmXYz7///vtOn3/uuedGbe/BvvnmmyF1f/HFF0fc32azMQUFBcO+9+KLLzrFWbZsmdPrG264YdjPNTU1Oe23cuXKUXMe2GcYhmGOHj3q9Pnp06c7vV9dXc0olUr2/dDQUKa3t3fY2HfffTe739q1a+nyKyEiQYM6QgTw6aefDvnF3tbW5tJnxzuo++yzz1zaf+3atWwZfAzqioqKmNjY2FHjBQYGMjt37hzy2cGxn3322RFjfPzxx0M+f6mDusHz2KZNm8bYbLZxxXBISkpyilVcXMwEBgayr7VaLdPS0jLkczU1NU6fi4iIYEpLS10u97XXXnP6/MMPPzxkn8FzPIuKiobsM3Ce5dKlS4f0FRrUESIcuvxKiAASEhKcXm/fvh1hYWG48sorsXbtWnz33Xdob28f9rOOO2OVSucfX6PR6PQ13OU3pVIJX19f+Pv7D5m3t3btWuzfvx9A3zwto9EIf39/p308PT2dyggICHCpvg0NDVixYsWQuyL1er3T66amJqxcuRIlJSWjxnvhhRcAADqdbsh7Tz31FGw2m0t5ueqHH35wen3rrbcOaX9XHD58GMXFxezr5ORkJCYm4tprr2W3mc3mIfPmACAkJAR+fn7s66qqKkydOhVz587FmjVrsHnzZlRXV49Y9pEjR5xex8bGDtknJiZm1M+YzWY8+OCDAPouu7799tsjlkcImXg0qCNEAOnp6Zg9e7bTtq6uLmzbtg3r1q3DihUrEBgYiOuvvx6HDh1y2m/Lli2ora1FVFSU0/aBNykMfH/mzJn4z3/+g9raWvT29qK1tRXNzc3o7OzEv/71L6cYjuVLoqKiUFtbiy1btji9f8sttziVMfj9kbz66qtOA474+HgUFRWhs7MT586dQ2ZmJvtee3s7nn322VHj+fv743//+x86OztRWFiIwMBA9r3q6moUFRW5lJcr2tvb0dzc7LRttDlzoxl8g4RjHtuNN9446n5A34D8vvvuc9pms9mwf/9+vPbaa7j11lsRERGBOXPmDPl/BYDGxkan1wMHiCNta2hocHq9fv16nDp1CgDwzDPPDPnjhBAiMKFPFRLirsrKylxa0sTDw4PZtGnTkM+PZ0mTmpoa5qWXXmJWrFjBTJ06lYmIiGCXHhkYIzMz0+lz41nSZLR8Bl92/frrr53eHzzfS6fTOc0JGxx78BzEn/70p07vf/bZZ6O2x3hUVlYO+T/ZsWPHuOPY7XYmKipq2Mub3d3djLe3N7tdqVQyVVVVQ2J0d3czK1eudOnS+ODLqz/60Y+c3v+///u/IfFXrVrltM8LL7zAvnfq1ClGq9Wyl5/NZjPDMEMv1dPlV0KEQ2fqCBFIbGwsDh8+jHfffReLFy+GWq0edr/e3l48+OCDaGtru6hyvv/+eyQkJOA3v/kNvv32W5w6dQpVVVWoq6tDXV2d075NTU0XVcZoOjo6hlx2/dGPfuT0Ojk5GUajkX3d3d2N0tLSEWNed911Tq9DQkKcXnd2dl5ktkP5+PgM2TbSpfHR5OTkoKKign0dHx/PnvHz9PTEihUr2Pfsdjv++c9/Donh6emJrVu34ttvv8WNN94IX1/fEct78803nS4bD77UbbVah3xm8DYvLy/2+wcffBBmsxkKhQLvvPOO0zIohBBxoEEdIQLSaDS4//77sWvXLrS1tWH37t147rnnMGnSJKf9TCYTsrOzxx3fbDbjzjvvdHkQMtwv+ks1eDBqMBjg6ek5ZL/g4OBRPzdQZGSk0+vBAwxm0Dpyl8JgMAyZW3j06NFxxxl8SXXwJdcbbrhh1P0HuvLKK/HFF1+gubkZRUVF+Mtf/oL58+cP2e8///kP+31QUJDTewOfRuLQ0tLi9Nrxf7Jz5052gPjTn/4UixYtGjE3QohwaFBHiEjodDosWLAAa9euxfHjxzF16lSn9y9mQd+9e/eipqaGfR0eHo6dO3eio6MDDMOMutAtVwafTWpvbx+23MHzt0Y7CzX4rCbfz5pdunSp0+t//vOf4xo4Wq1WfP75507bXnnlFadn5d5+++1O7x86dIidvzYSpVKJGTNm4LHHHkNubi5Wr17t9P7APjN4HmBZWdmQeIPPqDo+M/CPgr///e9OecfFxTl95vz58+x79LgwQiYWDeoIEcDZs2exffv2Ed/XarVDBnWDLwMOvvtyuDs+B98Neeutt+Kyyy5jL6vt2bNn1DxdKWMs3t7eQ+60HLjwMgAcO3bM6VKwTqdDfHz8uMviy7333uv0+sSJE3j55ZdH3N9ut6OwsJB9/e233w652cIVg8/W/f3vf4fFYhlx/8EDt4F9ZvAl78FPg6iqqnK66zg0NBRJSUnjTZkQIiAa1BEigOrqaixfvhwzZ87Ea6+9hmPHjsFutwPoO6vzySefYNu2bU6fGfxkicFnsoa7PDt4n+3bt7Nnbw4dOoSf/exno+Y5+PMFBQVjPj5qOD/+8Y+dXj/xxBPschnnz58fclfnNddcw+mTCj744AOns0tr164d1+evuuoqXHbZZU7bfv3rX+PRRx91OuPV0NCADz74AOnp6fjzn//Mbh88OPPz8xuyBI3RaBxyCXrw5x544AHExcXh6aefxp49e2A2m9n39u3bh7/85S9O+w/sMykpKU53XJ88eRJ/+MMfYLfb0dHRgUcffdTp7OPq1avZZXEGL2Uz8GvwZV2lUjnqsjqEEB4Je58GIe5p9+7dQ+5WVKlUTEBAAKNSqYa8t3Tp0iEx7rrrriH7+fv7M0ajkbnqqqsYhmGY1tZWxsvLy2kfpVLJGAwG9i5TjHLnYldXF3vHo+PLw8ODCQkJYYxGI/Phhx+y+45292t9fT0TFhY2JN/BuQFgvL29hzxQfqw7fZ977jmn999//32n9y918WGGYZiGhgYmISFh2DtNDQYD26aOL8edwu3t7Yxer3d6r6SkZNgyent7maCgIKd98/Pz2fcH9w2FQsH4+/sP+T8CwAQEBAxZxHjv3r1DYnh5eTEajcZpW2RkJGMymVxqF7r7lRDxoDN1hAhguDtdbTYbmpubh1zinDp1Kj766KMh+z/44INDLo+2tLSgrq6OvYvV19d3yDM87XY72tvboVQq8fe//33UPHU6HX760586bevt7UV9fT3q6urQ1dU16ucdgoOD8e233w5Z3HbwXaqBgYH46quvhlx6FoOgoCDs379/yFlHoG/O2eCbURw3g2zdutWpnWbOnIkpU6YMW4ZKpcLKlSudtn3yySfs94P7DcMwaGlpcTpjB/T9v3/22WdD1p2bO3cuPv74Y6ezoJ2dnU6XdCMiIrB9+3YYDIZhcySEiBcN6ggRQGZmJs6dO4c333wTd955J9LS0hAQEAC1Wg2NRoOwsDAsW7YMb775Jg4fPoyIiIghMbKysvDtt99i6dKl8PX1HfFmgcceewyfffYZZs+eDU9PT/j5+eGKK67Azp07cdttt42Z65///GesW7cO06ZNu6RLoqmpqTh27Bhee+01LF68GIGBgfDw8ICvry/mzJmDtWvX4uTJk0Muc4qJn58fPvvsMxQWFmLNmjWYNWsWgoKC4OHhAS8vL0ybNg2rVq3Cli1bsHHjRgBDL6HefPPNo5Yx+P3NmzezA/2amhp8+umnePjhhzFv3jyEhYVBq9XCw8MDAQEBmDt3Ln73u9/hxIkTI7bjrbfeimPHjuGhhx5CfHw8PD09YTAYkJaWhnXr1uHEiROYPn36xTYRIURACobh8N5/QgghhBAiCDpTRwghhBAiAzSoI4QQQgiRARrUEUIIIYTIAA3qCCGEEEJkgAZ1hBBCCCEyQIM6QgghhBAZoEEdIYQQQogM0KCOEEIIIUQGaFBHCCGEECIDNKgjhBBCCJEBGtQRQgghhMgADeoIIYQQQmSABnWEEEIIITJAgzpCCCGEEBmgQR0hhBBCiAzQoI4QQgghRAZoUEcIIYQQIgM0qCOEEEIIkQEa1BFCCCGEyAAN6gghhBBCZIAGdYQQQgghMkCDOkIIIYQQGaBBHSGEEEKIDNCgjhBCCCFEBmhQRwghhBAiAzSoI4QQQgiRAckP6ioqKrBkyRIkJiZixowZ+Oyzz4ROiRBCCCFkwikYhmGETuJS1NTUoK6uDjNnzkR9fT3S09Nx6tQpeHl5CZ0aIYQQQsiE8RA6gUsVFhaGsLAwAEBISAgCAgLQ3NxMgzpCCCGEuBXBL7/m5OTg2muvRXh4OBQKBb788ssh+7z55puIi4uDp6cnZs2ahd27dw8b6+DBg7Db7YiKiuI5a0IIIYQQcRF8UNfZ2YnU1FS88cYbw76/efNmPP7443jmmWdQWFiIhQsXYsWKFSgvL3far6mpCXfddRfefffdiUibEEIIIURURDWnTqFQYOvWrVi5ciW7LTMzE+np6XjrrbfYbdOnT8fKlSuxfv16AIDZbMYVV1yB+++/H6tWrRq1DLPZDLPZzL622+1obm5GYGAgFAoFtxUihBBCCLlEDMOgvb0d4eHhUCpHPh8n6jl1FosFhw4dwtNPP+20fdmyZcjLywPQV9HVq1fjsssuG3NABwDr16/HunXreMmXEEIIIYQvFRUViIyMHPF9UQ/qGhsbYbPZYDQanbYbjUbU1tYCAPbs2YPNmzdjxowZ7Hy8jz76CCkpKcPG/PWvf401a9awr9va2hAdHY2Kigr4+PjwUxEiavv370dmZqbQaUiCXNtKCvUSS45C5MF3mXzF5zquWPoAmXgmkwlRUVEwGAyj7ifqy6/V1dWIiIhAXl4esrKy2P1+//vf46OPPsLJkycvuUyTyQRfX1+0tbXRoI4QQgghouPqWEXUZ+qCgoKgUqnYs3IO9fX1Q87ejdfGjRuxceNG2Gw2AEBubi68vLwwb948FBUVobOzE35+fkhISEB+fj4AID4+Hna7HWfPngUAzJ07F8ePH4fJZILBYEBSUhL27dsHAIiLi4NKpUJpaSkAYPbs2SgtLUVLSwv0ej3S0tKwZ88eAEB0dDR0Oh1OnToFAEhPT8f58+fR1NQET09PzJkzBzk5OQCAyMhI+Pj44Pjx4wCAmTNnorq6GvX19VCr1Zg3bx52794Nu92OsLAwBAYG4tixYwCAlJQUNDQ0oLa2FiqVCgsWLMCePXvQ29uLkJAQhIWFoaioCACQmJiItrY2VFVVAQAWL16Mffv2wWw2IygoCNHR0SgoKAAATJs2DV1dXezNKwsWLEBBQQG6urrg7++PyZMn4+DBgwCAKVOmwGq14ty5cwCArKwsHD16FB0dHfD19cW0adOwf/9+AMDkyZMBAGfOnAHQN7/y5MmTaGtrg7e3N1JSUrB3714AQGxsLNRqNU6fPg0AyMjIwJkzZ9j2Tk9PR25uLtveer2e/aPAarUiLCwMjY2N0Gq1mDt3LrKzswEAERER8PX1Zds7NTUVNTU1qK+vh4eHB+bPn4/c3FzYbDaEhoYiODgYR48eBQAkJyejqakJNTU1UCqVWLhwIfLy8mC1WhESEoLw8HAcPnyYbW+TyYTKykoAwKJFi5Cfn4+enh4EBgYiJiaGbe+pU6eiu7ubbe/58+ejsLCQbe/4+HgcOHCA7bM2mw1lZWVsny0uLkZ7ezt8fHyQmJjI9tlJkyZBqVSyfXbOnDkoKSlBa2srvLy8kJqaik8//RQxMTGIjY2FRqNBSUkJ295lZWVoamqCTqdDRkYGe5d6VFQUvL29ceLECQBAWloaKisr0dDQAI1Gg6ysLOTk5IBhGISHh8Pf3x/FxcUAgBkzZqCurg51dXVsn3W0t9FohNFoxJEjRwAASUlJaGlpQXV1NRQKBRYtWoS9e/fCYrEgODgYkZGRKCwsBNA3L7ejowMVFRWOQwJ0Oh26u7sRGBiIuLg4ts8mJCTAYrGwfVaoY8SJEyfYpZqEPEb8+9//RkxMzIQeI7Zs2YKwsDDejhHV1dX4yU9+MuIxIj09HeXl5eM+RlRUVODOO+/k7BiRl5cHPz8/AOI9RjimRsntGLFw4UIcPHhQsGNEZ2cnXMKICABm69atTtvmzJnDPPTQQ07bpk+fzjz99NOclNnW1sYAYNra2jiJR6Rn165dQqcgGXJtKynUSyw5CpEH32XyFZ/ruGLpA2TiuTpWEfxMXUdHBzvqB4CysjIcPnwYAQEBiI6Oxpo1a7Bq1SpkZGQgKysL7777LsrLy/Hggw8KmDWRE8fi1WRscm0rKdRLLDkKkQffZfIVn+u4YukDRLwEH9QdPHgQS5cuZV87bmK4++678cEHH+CWW25BU1MTnn/+edTU1CA5ORnffPMNYmJihEqZyExgYKDQKUiGXNtKCvUSS45C5MF3mXzF5zquWPrApbDb7bBYLEKnITpqtRoqleqS44jqRomJNHBOXUlJCf773//SnDo3nVNnNpsRERFBc+pcmC+zadMmxMbGym6+jN1uh5eXl6jn1B0/fhze3t4AhD1GfPXVV4iNjZ3QY8QXX3yB8PBw3o4RVVVVuOWWWzifU1deXo5Vq1ZxdozIzc1FQECAqI8Ro82pO3v2LMxmMzw8PKDRaNg1Yz08PKBQKGC1WgEAGo0GNpsNNpsNCoUCWq0WPT09AACVSgWlUjnsvgDg6enptK9KpWIHkWq1Gna73Wlfs9kMhmGG3ZdhGPT29gIAtFotLBYLGIaBUqmEh4eHy/uq1WqnugJw2tdqtcJms4FhGCQlJbH9e/CcuquvvnrMGyXcdlDnQHe/kuzsbCxevFjoNCRBrm0lhXqJJUch8uC7TL7icx1XLH3gYjAMg/Lyclit1jEX0HU3DMOgq6sL9fX18PPzG/YyuyzufiVkIoy0piEZSq5tJYV6iSVHIfLgu0y+4nMdVyx94GL09vaiq6sL4eHh0Ov1QqcjOjqdDkDf6h4hISEXfSmWhsrE7TU0NAidgmTIta2kUC+x5ChEHnyXyVd8ruOKpQ9cDMclT41GI3Am4uUY7DouLV8MGtQRtzd4HUQyMrm2lRTqJZYchciD7zL5is91XLH0gUtBz1gfGRdt47aXX2nxYbpRwjEJure3F8XFxXSjhAuToMvLy5GdnS27GyUUCgXy8/NFfaNEV1cX2y+FPEY4+sBEHiNqa2uRnZ3N2zGipqYGNpuN8xslHD/PXB0jWltb2XLFeowY6UaJlJQUWCwWdHZ2wmazQa/Xo6OjA0Df2TulUsne4KDX62GxWNDb2wuFQgFvb2+0t7cDuHCXqGNfnU4Hq9XK3nhgMBjYfT08PKBWq9Hd3Q2g78YIm83GngkzGAzo6OgAwzDszRtdXV3svgPv1PX29kZXVxfsdvuQfbVaLRiGYfd13HRlt9uhUqng6enJLh6s1WoBgL1xwsvLCz09PWxeDMMgPz8fDMNc1OLDdKME3ShBCCGE8KqnpwdlZWWIi4uDp6en0OmI0mht5OpYhS6/ErfnOBtCxibXtpJCvcSSoxB58F0mX/G5jiuWPiAkm51B0bkm/HCsCkXnmmCz839e6ptvvoFCoRjx6yc/+QnvObjKbS+/EuLgOG1PxibXtpJCvcSSoxB58F0mX/G5jiuWPiCU3BM1eGvbcTS297DbggyeeGh5IhZM5+9pG0uXLkVNTY3TNpvNhnvuuQeFhYV49tlneSt7vGhQR9xeSEiI0ClIhlzbSgr1EkuOQuTBd5l8xec6rlj6gBByT9Tghc8LhmxvbO/BC58X4Nkfp/M2sNPpdOySI0DfgO7OO+9EYWEhvv/+e1EtNeO2gzq6UYJulHBMgp48eTLdKAHXb5Sor6+X3Y0SKSkpor9RwsPDQzQ3StTX10/oMaKpqYnXGyUc/89c3yjR29uL6dOnc3aMsFgssrtRosdqg0atgVKpQE//zQN6nQ4WixV2uw1atQo6vRfe/K6vj45k43fHkBzuBT9fH7S3t6PHaoOHygNqtQe6+2+q8NRqoVYpLulGCavVip/97Gf4/vvv8Z///AexsbHs0yPoRgkRoBsliJRXaZ9ocm0rKdRLLDnSEyWEiyuWPnAxRroJYPkL/x3xM3Pig/HCbXNQdK4JT320b8wyXlk1F6mxfc/H/cmfdqCta+gzZrc9e/VFZN/HZrNh1apV2L59O3bu3InU1NSLjjUculGCEEIIIbLW3NEz9k7j2O9i8D2g44rbXn4lxCExMVHoFCRDrm0lhXqJJUch8uC7TL7icx1XLH2AS1/9avmI7ymVfYvxBni7tgTKwP3+8djSS0tsAMeAbtu2bSMO6DIzM7Fx40ZkZGTg7rvvxty5c5GZmYnf/OY3+O677wAAX3zxBb7//nts3LiRs9wGo0EdcXttbW0IDg4WOg1JkGtbSaFeYslRiDz4LpOv+FzHFUsf4JKnZuxhSHJ0AIIMnk53vQ4W7OOJ5OiAccV1hc1mw1133YVt27bhf//7H2bOnDnsfs8++yxeeuklzJ8/H97e3njooYfQ29vLzrW0Wq34/e9/j2+//ZaTvEZCl1+J23NM9CZjk2tbSaFeYslRiDz4LpOv+FzHFUsfmGgqpQIPLR/9LOWDyxKhUnL7CDK73Y677roLX375JT7++GOEhYWhtrbW6ctxs+U111yDs2fPYtu2bfjzn/8MoO+JFpGRkaioqMBbb72FlStXwmg0cprjYG57po7ufqW7Xx13tpnNZrr7Fa7d2eb4f5Pb3a92u130d792dHSI4u5XRztM5DGiurqa17tfq6qqeHlMmKO+XB0jmpubZXf3K+DaY8JSI73x5DWJeH/XGTR19N05CvStU3fv0nikRvY9SozLx4Tt27cPmzZtAgBcddVVGE55eTmMRiPy8/PR0tLCtlFnZyfsdjvS0tLwv//9D++88w527tzJ3iFLd7/yhO5+JYQQQvjF1WPCbHYGx8qb0dzRgwDvvkuuXJ+hG6+qqiqsWLECX331FW688UZs2rQJ06dPBwBs2rQJjz32GF566SU88MADo8ahu18J4YDjr1AyNrm2lRTqJZYchciD7zL5is91XLH0ASGplAqkxgZiaXIEUmMDBR/QdXd348c//jHeeOMNxMXF4amnnsKLL77Ivp+QkICQkBDcd999E5KP215+JcTBcRqcjE2ubSWFeoklRyHy4LvMwfEZmw1NBw7AXF8PbUgIAmfPhkKluuS4l0osfYBcoNPp2Ev8AHDbbbfhtttuY19v3LgRr776KlQX0X8uBg3qiNsLCgoSOgXJkGtbSaFeYslRiDz4LnNg/Jpt23Ds+efRU1vLbvMMDUXy736HsOUjL78xVlwuiKUPkLGdOXMGV111FZYvX45rrrlmwsqlQR1xe9HR0UKnIBlybSsp1EssOfKZx0hnyPiue3R0NBi7HRVffIGip58e8n5PXR0OPvII0jZsQMS110KhcO2SH9d5i6UPkLFNnjyZvflxItGcOuL2HHeMkbHJta2kUK9LzZGx2dC4bx+q/v1vNO7bB6b/zv+JzmMkNdu24X+LFmHvHXeg4IknsPeOO/C/RYtQs20br/8/jM2Gg9nZ+HrKlGEHdH07MQDDoPCJJ9Dbf8emK7jOWwr9lAiLztQRQojMcXlJkUuM3Q5LczPqfvhh1DNknvffD2bRomHPkNl7e2FpaYHVZEJve7vTv1aTCX4zZyIoMxMA0FlejsInn7ywX0fHuAZpANBcUACjRJ+/SuTPbQd1tE4drVPnWIMqKiqK1qmDa2tQdXZ2Ijs7W3br1Dl+zsW8Tl1QUNC416lj7HaEVVSgZN06DNZTW4uDDz+MKS+8gNrwcCgUCpeOEY4+cDHHiPPnzgFWKzLT03H4wAE0PvrokLyc9K+41fPuu/j2wAF42O3Q2mywzJoFzeLFmDx5MrpKSnDq/vtHDKG56ip49vQgNjYW9oYGtBw6NHqZYzhx8CCMixe7dIxwrLvG1THCy8vLbdepc6w9p1aroVKp2H11Oh2sVit6e3sBgNN16ux2O7uunLe3N7q6umC324fsq9VqwTAMu6+Xlxe6u7tht9uhUqng6enJrjOn1WoB0Dp1vKF16ohjXSAyNrm21cXUi6s7JF013hwZux1fT5ni0r6X79kDXWgoAMDc1IS2Y8dgM5th7+mBzWKB3WyGracHdrMZ1vh4JC5bBgAwnTqF0rffvrCv2dy3b//+Ux58EFE33QQAaDpwAHm33jrOWg8v/sEHMf2XvwTQd/bt+8sug9pggIfBALWPD/uv2tsbIUuXIqJ/orqtpwd1P/zQ996A/SsqK3HixhtdKnvuxx8jOCvLpX25/nmR8s8fV+vUyRkX69S57Zk6QhzKy8sle6CcaHJtq/HWS4jLmYNzNDc1ob20tO9SYnt736XEAd9H/+QnLsc++/77SPr1rwEALYcP48DPfjbivp533skO6izNzaj6979H3Nfc2Mh+r+o/Q+Gg8PAA0392xRWRN96I4PnzofbxgdeAdtBHReGakhIolGNPEVd5eiJ8xYoh2yuPHsWVhw9j1/Ll6KmvZ88QDuYZFoagOXNczpnrnxe5/vwR7tCgjhBCXHSxd0gyDANbdzd6Ozr6Bl39Ay9rezsCMjLg2f+Q9qYDB1DxxRcXBmft7bD2D9bMbW2oe/NNGJcuBQDU79qFw089NWKuvikpLtert/9yFQBo/Pzgk5QElUYDlacnlFotlFotVJ6eUGm1aAwLY/f1io1F4m9+w77n2M/xr37A3Zo+06dj2YED7H52iwXfjiPHyBtvHPYMmUKhAFy8G3UkCoUCaoMByc89h4OPPNIXb+DArj9+8rPP8no2lpBLRYM64vYWLFggdAqSwXdbTfQlTQdX6mW32fDfhISRd+gfBBQ+8QT0EREImDULAHBu0yYcW7duxLNSc/72N3j2D9S6ystR8dlnIxZhHTD40gYHw2vSJKi9vfsuIxoM8BjwvcHFS68AEH7ttez3AbNmYfEoZ99sA+6a1YWFYfK997pUhlKthjYggH2tUKmw4uhRMDbb2GfIQkPHdYZsvBz//2HLlyNj48bhz8I+++y4z8Jy/fNCxyoyFhrUEbdXUFCA2bNnC52GJPDZVhN1SZNhGPR2dMDS0gJPoxEqrRYFBQWYrFKhPjsb1tZWWJqbYWlt7ftqaYGlpQVz3n3X5TIacnPZQZ1Ko7kwoFMqhwzCVDod+zm/lBRMe/JJpwGah7c31AYDjp89i9Af/YjdN2TRIly2Y8eo9eTjkiJXfUChUMBDrweAMc+Qed5+O6+D+4F1Clu+HKGXX87JHxdc/7zQsYqMhQZ1xO057mAiY+OjrS5l0VfGZoOlra1vSYuWFlhaWxE4Zw7U/ROJa3fsQMWWLX0Ds9ZWdh/HIGv+Z58hID0dXV1daD17FqffeGPEPK0mk8t1Uvv6st+HXXklghYsgNpggEqvH3XhWkNCAgwjnA20NDTAY8AAcCx8XVLkow+MdYashOeJ9YPrpFCpEDR3LudxxRaPyA8N6ojb8/f3FzoFzvB9+ZLrthrzDs0BlzSNS5dCbTDg/Kef4sx77/UN0kymIWeg5v/rX+xZsq7KStRu3z5saKWnJ2z9vyT9/f3hm5yMmDvugMbfHxo/P2j8/aH284M2IKDv35AQzPm//0P+T386Zr18pk1jv/fw9oaHt/eYnxnLxbY915cU+fp5Ge0MWUP/sjV84atOXMeV07GK8IMGdcTtOdbDk7qJuHw5UlvZzGb0trdD7esLpVoNAGg7cQKtR46g12SCdeCisP3fz3z5ZWgDA10uu/ngQRiXLoXNbEbn+fNO73kYDOxgbOBdkEHz5iHl+eeh8fODun+g5vhSDTj7M3nyZHh5eSFwjEtbIQsWwDM0FD11dcNfzlQo4BkaOmaci3Ep/ZTLS4p8/ryMdIaM759RvuJzHVcuxyqp+eabb3D11VeP+P7NN9+Mf/3rXxOY0choUEfc3sGDB7FYwivEu3r5MvTyy6HS6YZewrTb0dvZ2Xe3Zf8AjF2Rv70dkStXQm0wAADy/vxnGEpK2NX6HfvZ+xfdXPLdd+wE/dodO1Dy5z+PmLe5sRHa/rs+XeG4/Bm2bBl8k5IunE0bMJAczGfqVPhMnTpmbFf7gEKlQvLvfifIHZKX2k+5uqQoxM8L32XyFZ/ruFI/VnFBiJupli5dipqaGqdtNpsN99xzDwoLC/Hss8/yWv54uO2gjp4oQU+UcDxRwmw2S/aJEozdjvb77hu5ow+4fAkAQYsWwdTQAM0DD8AvMhKJiYnY9YtfwDLKhPsylQo+CQlITU1Fc2kpevqfFDGc/N27YWhpQUZGBiqsVnjMnAmvwEB4+vujpacHCr0eMVOnos1iQVF1NbRms8uXNE/X1yMSwKGzZ/ueKGEwwKhS4Uj/CvaX8kQJu93u+hMlLrsMfk88gbb33wfT0sLmp/D3R+wTT6A3MZHtP1weIzo6Osb9RAmA+2OEox0m8hhRXV2N7Oxs3o4RVVVVsNlsIx4j0tPTUV5ePu5jhKO+XB0jmpub3fqJEg07d6L0lVdgrqtjf+48Q0OR8KtfIaD/DnK+nihhNBrZJ0ooFArcd999KCgowNdff42pU6fCbDbTEyXEgJ4oQaqrqxEeHi50Ghelt6MD36amjvtzA8+onfrzn1Hyl79AoVZD7ViJf8Cq/NN/+Ut4xcQAAEqzs6Ftbmb3Y1fuNxjg4eV1UX8xMzYb/rdo0ZiXNC/PzubtL/KL6QMTfcZALP1UiDz4LpOv+FzHFUsfuBiX+kSJmm3b+s6QDz5G9J8hz9i4cUKeY2yz2XDnnXdix44d+P777zFjxgzOYtMTJQjhgOOvNklyYRX9gVJefBEaHx94Go3stsk/+xniH3gASq121DszAUAdG4soji//CHlJ0+Fi+gBXlzNdJZZ+KkQefJfJV3yu44qlD3Cpd5Q7ehUqFVRaLRibDceef374P/oYBlAocOz55xF6+eXscWKkuI5ldC6GzWbDqlWrsGPHDuzcuZPTAR1XaFBH3N65c+cQ038mSmpUOp3Lly9HembleJbJ4KutuL5Dc7yk0AfEkqMQefBdJl/xuY4rlj7ApdGeKhKyZAky//53NB044HRcGIJh0FNbi6YDB9g/tHYuXgxLc/OQXa/tv1Q/Xo4B3fbt27Fz506kXsQVkokwvj/zCSGiolAo2DsyR3xUkkIx7gVmhRC2fDkuz8lB1iefIP2115D1ySe4PDt7Qi6pEELEy1xfz+l+4+UY0G3btg3/+9//hgzoCgoKcOWVV7Kvv/jiCzzyyCMA+uZ5OuaL3n333Xjrrbd4ydGB5tTRnDq3Z7FYoNFohE7jkrDzTYBhL19yNd9EDm01HCnUSyw5CpEH32XyFZ/ruGLpAxdjpPlirlx+bdy3D3vvuGPMMrI++YQ9U8fV5VebzYa77roL3333Hf73v/8hLS1tyD69vb2YNGkSysvLYbVakZmZiW+//RZGoxFff/01/u///g/z58/H2bNnsXHjxhHL4mJOHZ2pI27PcSealDkuXw6cKwf0Xb7kcgKxHNpqOFKol1hyFCIPvsvkKz7XccXSB7jkodeP+KXqv1M0cPZsl65GDFwfcqSY42G323HXXXfhyy+/xMcff4ywsDDU1tY6fdlsNnh4eCAyMhIVFRV46623sHLlShj7j8XXXHMNzp49i23btuHPoyzxxBWaU0fcnuO2eqnjcoHZkcilrQaTQr3EkqMQefBdJl/xuY4rlj4w0YS6merAgQPYtGkTAOCqq64adp+Wlhb4+flhzpw5+P777/Hee++xS8AAQH5+PlpbW5GQkAAPD/6HXHSmjrg93wHP6ZQ6xx2ZEdddh6C5czk/yMmprQaSQr3EkqMQefBdJl/xuY4rlj4ghIm6GjFQZmYmGIYZ9cvPzw9A35p9a9aswaOPPgovLy8AQFVVFe677z788MMPOH36NE6cOMF5joPRnDqaU+f2enp6LmrdJHck17aSQr3EkqMQefBdJl/xuY4rlj5wMS51nToHIZ4o4YqDBw9i1apVOHbsGFQqFbq7u3HZZZfh5ZdfxqJFi/Dpp5/i66+/xieffDJiDJpTRwgHHKvTk7HJta2kUC+x5ChEHnyXyVd8ruOKpQ8Iie+rERdr48aNePXVV6Hqz0en02Hv3r1YtGgRAOC2224bdUDHFRrUEUIIIYRchDNnzmDq1KkwGAy45pprhE6HbpQgxPH8SDI2ubaVFOollhyFyIPvMvmKz3VcsfQBcsHkyZPZ57aLgdsO6jZu3IiNGzfCZrMB6HvgspeXF+bNm4eioiJ0dnbCz88PCQkJyM/PB9D34GO73Y6zZ88C4PZh3Tqdju0YQj6su6ioCMDEPqz76NGj6Ojo4O1h3Xq9Hunp6SM+rDs0NBTFxcXjfli3h4cH5s+fz9nDuk0mEyorKwGI92HdhYWFOHPmzJCHdWdkZKCsrAxNTU3Q6XTIyMjA7t27AQBRUVHw9vZmJwmnpaWhsrISDQ0N0Gg0yMrKQk5ODhiGQXh4OPz9/VFcXAwAmDFjBurq6lBXV8f2WUd7G41GGI1GHDlyBACQlJSElpYWVFdXQ6FQYNGiRdi7dy8sFguCg4MRGRmJwsJCAMD06dPR0dGBiooK9uc1Pz8f3d3dCAwMRFxcHNtnExISYLFY2D4r1DHCZDKxPwtCHiMcfWAijxEnT57EmTNneDtGmM1mhIWFjXiMSE9PR3l5+biPEZ2dnYiMjOTsGFFVVcXWVazHiLy8PLa9Bx4jUlJSYLFY0NnZCZvNBr1ez97Nq9FooFQq0dPTAwDQ6/WwWCzo7e2FQqGAt7c32tvbAQBqtRoqlYrdV6fTwWq1ore3FwBgMBjYfT08PKBWq9Hd3Q0A8PT0hM1mYx+3ZjAY0NHRAYZh4OHhAY1Gg67+9e08PT1ht9thsVgAAN7e3ujq6oLdbh+yr1arBcMw7L5eXl7o7u6G3W6HSqWCp6cnOjs72X0BwGw2s/v29PSweTEMg/z8fDAM43SMcHx+LHSjBN0o4fays7OxmOPnmcqVXNtKCvUSS45C5MF3mXzF5zquWPrAxeDqRgk5oxslCCGEEEIIADpTR2fqiKSXCZhocm0rKdRLLDnSkibCxRVLH7gYdKZubHSmjhAOOObNkLHJta2kUC+x5ChEHnyXyVd8ruOKpQ8Q8aJBHXF7bW1tQqcgGXJtKynUSyw5CpEH32XyFZ/ruGLpA5fCzS8Ojsput19yDLe9+5UQB29vb6FTkAy5tpUU6iWWHIXIg+8y+YrPdVyx9IGLoVaroVAo0NDQgODgYCj6n9lKwN4529DQAKVSCY1Gc9GxaE4dzalzexaL5ZJ+iNyJXNtKCvUSS45C5MF3mXzF5zquWPrAxero6EBlZSWdrRuBXq9HWFjYsP/Hro5V6EwdcXt79+6V7DIBE02ubSWFeoklRyHy4LtMvuJzHVcsfeBieXt7s+sQEmcqlQoeHh6XfAaTBnWEEEIImRAqlYp9PirhHt0oQdxebGys0ClIhlzbSgr1EkuOQuTBd5l8xec6rlj6ABGvizpT19PTgyNHjqC+vn7I3RrXXXcdJ4kRMlHUarXQKUiGXNtKCvUSS45C5MF3mXzF5zquWPoAEa9xD+q+++473HXXXWhsbBzynkKhYJ+lSohUnD59GuHh4UKnIQlybSsp1EssOQqRB99l8hWf67hi6QNEvMZ9+fXRRx/FzTffjJqaGtjtdqcvGtARQgghhAhj3Eua+Pj4oLCwEJMnT+YrpwlFS5qQzs5OeHl5CZ2GJMi1raRQL7HkKEQefJfJV3yu44qlD5CJx9tjwn784x9j165dl5IbIaJy5swZoVOQDLm2lRTqJZYchciD7zL5is91XLH0ASJe455T98Ybb+Dmm2/G7t27kZKSMmTi5s9//nPOkiNkIrS0tAidgmTIta2kUC+x5ChEHnyXyVd8ruOKpQ8Q8Rr3oG7Tpk3Ytm0bdDoddu3a5bRQnkKhoEEdkRy9Xi90CpIh17aSQr3EkqMQefBdJl/xuY4rlj5AxGvcc+pCQ0Px85//HE8//TSUSnEsc3fDDTdg165d+NGPfoTPP/98XJ+lOXXEZrPRYpgukmtbSaFeYslRiDz4LpOv+FzHFUsfIBOPtzl1FosFt9xyi2gGdEDfJd9//OMfQqdBJCo3N1foFCRDrm0lhXqJJUch8uC7TL7icx1XLH2AiNe4R2Z33303Nm/ezEcuF23p0qUwGAxCp0EIIYQQIphxz6mz2Wx45ZVXsG3bNsyYMWPIjRIbNmwYV7ycnBy8+uqrOHToEGpqarB161asXLnSaZ8333wTr776KmpqapCUlITXX38dCxcuHG/qhAwrOjpa6BQkQ65tJYV6iSVHIfLgu0y+4nMdVyx9gIjXuAd1R48eRVpaGgDg2LFjTu8NvGnCVZ2dnUhNTcU999yDm266acj7mzdvxuOPP44333wT8+fPxzvvvIMVK1bg+PHj1MEJJ2jysevk2lZSqJdYcqQbJYSLK5Y+QMRr3IO6H374gdMEVqxYgRUrVoz4/oYNG3DvvffivvvuAwC8/vrr2LZtG9566y2sX79+3OWZzWaYzWb2tclkGn/SRFZOnjwJo9EodBqSINe2kkK9xJKjEHnwXSZf8bmOK5Y+QMRr3IO6gfbs2YOMjAxotVqu8nFisVhw6NAhPP30007bly1bhry8vIuKuX79eqxbt27I9tzcXHh5eWHevHkoKipCZ2cn/Pz8kJCQgPz8fABAfHw87HY7zp49CwCYO3cujh8/DpPJBIPBgKSkJOzbtw8AEBcXB5VKhdLSUgDA7NmzUVpaipaWFuj1eqSlpWHPnj0A+k6p63Q6nDp1CgCQnp6O8+fPo6mpCZ6enpgzZw5ycnIAAJGRkfDx8cHx48cBADNnzkR1dTXq6+uhVqsxb9487N69G3a7HWFhYQgMDGTPqKakpKChoQG1tbVQqVRYsGAB9uzZg97eXoSEhCAsLAxFRUUAgMTERLS1taGqqgoAsHjxYuzbtw9msxlBQUGIjo5GQUEBAGDatGno6upCeXk5AGDBggUoKChAV1cX/P39MXnyZBw8eBAAMGXKFFitVpw7dw4AkJWVhaNHj6KjowO+vr6YNm0a9u/fDwDsU0scC25mZmbi5MmTaGtrg7e3N1JSUrB3714AQGxsLNRqNU6fPg0AyMjIwJkzZ9j2Tk9PZycZR0dHQ6/X4+TJkwD6BvrFxcVobGyEVqvF3LlzkZ2dDQCIiIiAr68v296pqamoqalBfX09PDw8MH/+fOTm5sJmsyE0NBTBwcE4evQoACA5ORlNTU2oqamBUqnEwoULkZeXB6vVipCQEISHh+Pw4cNse5tMJlRWVgIAFi1ahPz8fPT09CAwMBAxMTFse0+dOhXd3d1se8+fPx+FhYVse8fHx+PAgQNsn7XZbCgrK2P7bHFxMdrb2+Hj44PExES2z06aNAlKpZLts3PmzEFJSQlaW1vh5eWF1NRU9v8tNjYWGo0GJSUlbHuXlZWhqakJOp0OGRkZ2L17NwAgKioK3t7eOHHiBAAgLS0NlZWVaGhogEajQVZWFnJycsAwDMLDw+Hv74/i4mIAwIwZM1BXV4e6ujq2zzra22g0wmg04siRIwCApKQktLS0oLq6GgqFAosWLcLevXthsVgQHByMyMhIFBYWAgCmT5+Ojo4OVFRUAADsdjvy8/PR3d2NwMBAxMXFsX02ISEBFouFrbtQx4iOjg62Xwp5jHC0w0QeI6qrq5Gdnc3bMaKqqgo2m23EY0R6ejrKy8vHfYxw1JerY0RzczNbrliPEY7fzXI7RixcuBAHDx4U7BjR2dkJV4x7SZOBfHx8cPjwYUyaNOliQzgno1A4zamrrq5GREQE9uzZg3nz5rH7vfTSS/jwww/ZQdDy5ctRUFCAzs5OBAQEYOvWrZg9e/awZQx3pi4qKoqWNHFj7e3tdKONi+TaVlKol1hyFCIPvsvkKz7XccXSB8jE421Jk4EuYTw4LoPn6jEM47Rt27ZtaGhoQFdXFyorK0cc0AGAVquFj4+P0xdxb46/ZsnY5NpWUqiXWHIUIg++y+QrPtdxxdIHiHiJZ7G5YQQFBUGlUqG2ttZpe319Pc0rIJxpbGwUOgXJkGtbSaFeYslRiDz4LpOv+FzHFUsfIOJ1SXPq3nnnHXZwZbfbUVlZyekdqRqNBrNmzcKOHTtwww03sNt37NiB66+//pJib9y4ERs3boTNZgNAc+rceU4dwzA0pw6uzZeprKxEdna27ObLqNVq0c+pM5vNophT5+gDE3mMqK+v53VOXV1dHS9z6qqrqwFwN6euvb2d5tTRnLpRjXtO3fvvv4/Nmzfj/Pnz8PHxwcKFC/HEE0/Aw8MD4eHh7CDJVR0dHWwHSUtLw4YNG7B06VIEBAQgOjoamzdvxqpVq/D2228jKysL7777Lt577z0UFxcjJiZmXGUNhx4TRgghhBAx43xOnc1mw/XXX48HH3wQOp0O1113HVJTU/H5559j+vTp+O677y4q0YMHDyItLY1d+27NmjVIS0vD7373OwDALbfcgtdffx3PP/88Zs6ciZycHHzzzTecDOgIAcD+5UvGJte2kkK9xJKjEHnwXSZf8bmOK5Y+QMTL5cuvr732Gvbv34/Dhw9j+vTp7Ha73Y4NGzbgZz/72UUlsGTJkjFvuHj44Yfx8MMPX1R8QgghhBB34PKg7oMPPsCrr77qNKADAKVSiSeffBIMw+BXv/oV5wnyhebU0Zw6x3wZx/wMmlM39nwZxzpZcpsvExYWJvo5dXq9XhRz6hx9YCKPEd3d3bzOqevs7ORlTl1bWxsA7ubUKZVKmlNHc+pG5fKcOp1OhyNHjmDKlCkuBZYKmlNHGhoaEBwcLHQakiDXtpJCvcSSoxB58F0mX/G5jiuWPkAmHudz6ry8vNDQ0DDi+4cPH8ZPf/rT8WVJiAg4/sImY5NrW0mhXmLJUYg8+C6Tr/hcxxVLHyDi5fKgbvHixXj77beHfa+2tha33norPvzwQ84SI4QQQgghrnN5Tt1zzz2HrKwsKBQK/PKXv0R8fDyam5vxn//8By+++CJiY2PZuQpSQHPqaE6dY77M5MmTaU4dXJsv09PTI8s5dSkpKaKfUxceHi6KOXWOPjCRxwiVSsXrnDoAvMyp6+3tBcDdnDo/Pz+aU0dz6kY1rnXqsrOz8dOf/pRNHAA8PDzwi1/8Ao899hhiYmJgt9tdDScKNKeOnDhxYsgNQGR4cm0rKdRLLDkKkQffZfIVn+u4YukDZOLx8uzXxYsX4/Tp09izZw8+/vhj/Pvf/0ZNTQ1eeeUVBAQE4LnnnrvkxAmZaPX19UKnIBlybSsp1EssOQqRB99l8hWf67hi6QNEvMb9mDClUom5c+di7ty5Ttu9vLxoUEckycPjkp6W51bk2lZSqNel5Nhj6UW3xYbjlc3o6OlFgLcWiZH+UCkV8NSML64QbcV3mXzF5zquFPopEda4HxMmN3T5lRAidze8vA1dlt5h39v27NUTnM0FdoaBqcsCAPBUq2CzMzhe2YKWTjOMvnokRwdApVRMaC5OeXSY4e+tRVJUAPRaGlAR4bg6VnHbXko3StCNEo5J0L29vQgNDaUbJVyYBP3Pf/4T0dHRvE2CDg0NQ12PB46VnIW3RoGrF6ShoaGe90nQCoUCnp6e45oE3d7RgRabDl7+IairOIsoXxUSpkzh7Rhx8uRJ6PX6cR8jzN6RIw7oAODb/NPQd/c9eN6VY8R//vMfREdHX/Ix4uChQ/jdtpGXyQIAg0aBR69KQd3xPISGhvJ2jKiursEHpYYR81ApFVg1Owjh2u5xHSMqKytxxx13cHaMyMvLg5+fHwDxHiPoRgkJ3SghR3SmjmRnZ2Px4sVCp8EJm53BsfJmNHf0IMDbk/MzHXy2Ve6JGry17Tga23vYbUEGTzy0PBELpofxUqbDeOv1w7EqvLvjBJo7zOy2QIMW9/9oOpamRPCRoss5Wm12dPZY4aFSQqfxwF1/+d6pTQfz0anx8p1zMSm07/hnZxi0dprhqfaAVq0a0n+46gN2hsGKF79xad8bEz3xwE0/uuQyR7Jr1y6s3z32L81nf5w+rr7I9c+LnI5VZHzoTB0hLgoNDRU6BU78cLQK7/3vBJqGGWjMmxYKrVp1yWXw1VY/HKvCH7YeHrK9sb0HL3xeMO5fpuM1nnrlnqgZNtemdjP+8OVhqD2UF52rnWHQbe5Fp7kXHT1WdJp70dljRWePFWfbPRFc2YLESH8AQG1LF/7y7TF09Vid9jX39q1AcMv8yZg1KXjUAR0AmLqt+DD7FNbdMhsA0N5txW2v7WTfV6uU8NSo4Knu+0oM0cAxrLDa7HjtP0egVasG7OPBfh8R4IXk6AA21rn69r59+t//7zMrYOq04JG/5ToNkAf7vqwX99kZ3i7FhoWF4evfTMFdf/l+1Dze3n4cWVNDXc6D658XuRyrCH9oUEfcnhweu5N7ogZ/+PLwkO2OgUaYnx4fPLb0ksvho61sdgZ/+nfRqPuM95fpeLlaL5udwVvbRl/V/83vipESEwhfvQYA0NJhxt6Sur6B18CBWv/gbfnMSCxLjQIAlNa04bG/7xkxtkrvyw7qbAyDQ2dGvnxpttrQ3DH6gM5BN+BmCbPVBgUAxyUcq80Oa7cd7d1WAECC0Yvdt9vSi51Hq0aMuyQpnB3U9drseOCdnCH7qJUKWO2jXzBq7e7Fw+/thsFTDYUCmBbhj3t/NI19/7l/HoDFZocCABQKKPr+gUKhQFywAT8dsO8fvypCl9nqtJ/FYkXP/v2jDugAoMHUg2PlzUiNDRx1Pweuf17kcKwi/KJBHXF7R48elfQlDVcGGnVtXfjqQBkABex2Bj+aEQEfXd+g48j5Jhw93wyGYWBjGNjtDOwM2Nc3ZsYh2EcHAPgyuxBt6mAwDAO7ve/Mkp39DIO7FicgOrhvblLeqVp8faicfY/9t/+zDy5PRGKkP46VN8NqG/2X+sBfpvmn6/HO9kH1HTDWu/eyaZg3re+MRtG5Jrzx7bER496xcAqWJIfj6NGjMMan4rX/HHEOOyDuTXMnIcRXN+aZr6YOMz744SR+cfWM/ty78ef/Hh1x/+Qof/Z7L60aQN/ZMS9PD3hp1ey/Xe0tiAnyZvcNNHjiyetS4aX1gJen+sK/nh7w0npApVSi6FzTqLk6rEiLZr8P8dXh299eBUuvHWarDT1WG3osveix2mC22lBy/EIbaVRK3Hf5NJgt/ftZbejp/95s7UV82IXLRJZeO3z1GvRYetmziQDGHNA5nKtvZ78ffNa5sKzRKeZA3Wbn+YT5pfVo678542K4OlAGuD+2SP1YRfhHgzpCJO5YefOYAw07A7z53YWB0KxJQeygrrCsEZt2l4742aVJ4eygrr7Tjh/KKkbc97rZsXAMDxpMPaOeSeroP/Pj6i9Jx35dll5UNo88/6lzwC/xbksvyhs7Rty3vcfKft9j6cW5hvYR923rssBD5dqZQlP3hbj+3lrMTTDCS+sB70GDL2+tGjHBFwZqYQF6/OfXV0LjMfRSeXZ2NhbPiGRfe6pVuCI1csh+Aw289DmSYB/PIfspFApo1Spo1SoMnr3TfO7C8qaeGg/cnDV5zDIAQK/1wL/+3xUA+v4YsPQPAvNP1+FP/xl50Otw56IpiAk2gGEYBHhrnd5bc20qbHY7HONDBgwcs8X9vZz3vf/y6TD32sD0/+HCADh9+jR0AWH494HzY+YR4O05dmUJEQgN6ojbS05OFjqFS+LqoGhquC+MfnooFQroBizPMDXcD1elR0PZf7lKpVRAqVBAoQCUCgX8BvxSXDxzCqJjrFAqFFAq+/ZRsd8rEO5/4dJcWlwQnrwuFUoFoOyPyf6rUGBKmC8A139JOvabGRuIP92dxW4ffJ4nMuBCDomR/nj1rr41NZkBv/Av7Ns3oEpOToZab8DLd2Y6xRx4G1lEgB61rd0u5XpdRiz7fbCPDutuyXDpc0qFYtgBnSPH8VIpFXh65cxhL807PLgscVyXtbn4eVEq+tbH89R4uDSgC/TW4PaFU0bMc0lyuMtlDzcQbppkgJ9/APacrEVT+8iXYIcbAI+G62OL1I9VhH9uO6ijJU1oSRPHkia+vr6ora2V7JImvpGuPTYoI8iMW66cjeLiYhwvzGeXKzDXnMRM75GXKzhxOB/l/csV1JQUICIwcMTlCooL97PLFZQVH4IGzssV2AGk9i9XcOTQSWg0GszJnDty0v18tAq0VRwHYhfiWOGBUZcrOHLoKLtcQXHRoVGXKygu7FsWwWg0wmQ6M+pyBSeLimF3YbEAf70azeeOIvu8gtNjRH19PfuzPJ5jRPrMmbgny4jPD9Wj3XIhfx+tAjdnhGJ6iIbt764cI7KzsxEYGMjZMcIVc0MsyN2dw9sxoqOjA1deeeWoAzoAWBgJHMjf7/IxorW1Fddffz1nxwhHGQAtaUJLmgyPljShJU3cntSXCbDZGaz6y84xzzB8+Nhll3yjAV9t9cPRqlHPJvF99+t46iVUrpfa9lwtd8N1H+jpX0Nv76k6vLfzhFM/dixpY6sv4fVn1FGn5S/8d8R94kN9sPH+hRcVlytSP1aRi0dLmhDiIqVyXI9AFh2VUoGHlyfhhc8LRtxnvJfYRsJXWy1NiYDaQzlknbpgH088uIz/derGUy+hcr3UtlcpFS7ftclnHoM5HlO2NCUCi5LChx147m4cec4nFxx1+upXywH0DYCLK1vQ0NaNEF8dEiP9ofYYf725biupH6sI/+hMHZ2pIzIx3OK9EzUo4grfiydzSUq5EkKkzdWxCg3qaFDn9vLy8jBv3jyh0+AE3wMNObXVQFKol1hyFCIPvsvkKz7XccXSB8jEo8uvhLjIarWOvZNEcHWJbSRyaquBpFAvseQoRB58l8lXfK7jiqUPEPGiC/TE7YWEhAidgmTIta2kUC+x5ChEHnyXyVd8ruOKpQ8Q8XLbM3W0pAktaeJY0iQ+Ph7FxcWSXdJkIpcrqKioQH19veyWK5gxYwby8/MFW64AGPsYoVar2X4p5DHC0Qcm8hjR1NSE7Oxs3o4RCoUCCQkJIx4j0tPTUV5ePu5jRG9vL6ZPn87ZMcJqtbLlivUYQUua0JImgqI5dYSWCXCdXNtKCvUSS45C5MF3mXzFpyVNCFdcHavQ5VdCCCGEEBmgQR1xe4mJiUKnIBlybSsp1EssOQqRB99l8hWf67hi6QNEvGhQR9yeyWQSOgXJkGtbSaFeYslRiDz4LpOv+FzHFUsfIOJFgzri9hw3J5CxybWtpFAvseQoRB58l8lXfK7jiqUPEPGiQR0hhBBCiAzQ3a9096vbYxgGCgU93skVcm0rKdRLLDkKkQffZfIVn+u4YukDZOLR3a+EuMixfhAZm1zbSgr1EkuOQuTBd5l8xec6rlj6ABEvGtQRt9fT0yN0CpIh17aSQr3EkqMQefBdJl/xuY4rlj5AxIueKEFPlHD7J0ro9Xp6ogRcWy2+vr4e2dnZslst3t/fX/RPlFCpVKJ4ooSjD0zkMcJkMvH6RInW1lbYbDbOnyjR2NgIAJwdI3p7e+mJEvREiVHRnDqaU+f22tvbYTAYhE5DEuTaVlKol1hyFCIPvsvkKz7XccXSB8jEozl1hLjI8dctGZtc20oK9RJLjkLkwXeZfMXnOq5Y+gARLxrUEUIIIYTIAA3qiNubOnWq0ClIhlzbSgr1EkuOQuTBd5l8xec6rlj6ABEvGtQRt9fd3S10CpIh17aSQr3EkqMQefBdJl/xuY4rlj5AxIsGdcTtOe4QI2OTa1tJoV5iyVGIPPguk6/4XMcVSx8g4kWDOkIIIYQQGaAlTWhJE7fX29sLDw+3XbJxXOTaVlKol1hyFCIPvsvkKz7XccXSB8jEoyVNCHGRY7FJMja5tpUU6iWWHIXIg+8y+YrPdVyx9AEiXjSoI26vq6tL6BQkQ65tJYV6iSVHIfLgu0y+4nMdVyx9gIgXDeqI2/P39xc6BcmQa1tJoV5iyVGIPPguk6/4XMcVSx8g4kVz6mhOndvr6uqCXq8XOg1JkGtbSaFeYslRiDz4LpOv+FzHFUsfIBOP5tQR4iLHg63J2OTaVlKol1hyFCIPvsvkKz7XccXSB4h4ue1tNBs3bsTGjRths9kAALm5ufDy8sK8efNQVFSEzs5O+Pn5ISEhAfn5+QCA+Ph42O12nD17FgAwd+5cHD9+HCaTCQaDAUlJSdi3bx8AIC4uDiqVCqWlpQCA2bNno7S0FC0tLdDr9UhLS8OePXsAANHR0dDpdDh16hQAID09HefPn0dTUxM8PT0xZ84c5OTkAAAiIyPh4+OD48ePAwBmzpyJ6upq1NfXQ61WY968edi9ezfsdjvCwsIQGBiIY8eOAQBSUlLQ0NCA2tpaqFQqLFiwAHv27EFvby9CQkIQFhaGoqIiAEBiYiLa2tpQVVUFAFi8eDH27dsHs9mMoKAgREdHs88hnDZtGrq6utg1lBYsWICCggJ0dXXB398fkydPxsGDBwEAU6ZMgdVqxblz5wAAWVlZOHr0KDo6OuDr64tp06Zh//79AIDJkycDAM6cOQMAyMzMxMmTJ9HW1gZvb2+kpKRg7969AIDY2Fio1WqcPn0aAJCRkYEzZ86w7Z2eno7c3Fy2vfV6PU6ePAkAMJvNKC4uRmNjI7RaLebOnYvs7GwAQEREBHx9fdn2Tk1NRU1NDerr6+Hh4YH58+cjNzcXNpsNoaGhCA4OxtGjRwEAycnJaGpqQk1NDZRKJRYuXIi8vDxYrVaEhIQgPDwchw8fZtvbZDKhsrISALBo0SLk5+ejp6cHgYGBiImJYdt76tSp6O7uZtt7/vz5KCwsZNs7Pj6ePfjHx8fDZrOhrKyM7bPFxcVob2+Hj48PEhMT2T47adIkKJVKts/OmTMHJSUlaG1thZeXF1JTU9n/t9jYWGg0GpSUlLDtXVZWhqamJuh0OmRkZGD37t0AgKioKHh7e+PEiRMAgLS0NFRWVqKhoQEajQZZWVnIyckBwzAIDw+Hv78/iouLAQAzZsxAXV0d6urq2D7raG+j0Qij0YgjR44AAJKSktDS0oLq6mooFAosWrQIe/fuhcViQXBwMCIjI9mJ5tOnT0dHRwcqKioAAHa7Hfn5+eju7kZgYCDi4uLYPpuQkACLxcLWXahjREdHB9svhTxGONphIo8R1dXVyM7O5u0YUVVVBZvNNuIxIj09HeXl5eM+Rjjqy9Uxorm5mS1XrMeIvLw8tr3ldIxYuHAhDh48KNgxorOzE66gy690+dXtVVVVISIiQug0JEGubSWFeoklRyHy4LtMvuJzHVcsfYBMPLr8SoiLHGdrydjk2lZSqJdYchQiD77L5Cs+13HF0geIeNGgjrg9x2UHMja5tpUU6iWWHIXIg+8y+YrPdVyx9AEiXjSoI4QQQgiRAZpTR3Pq3J7ZbIZWqxU6DUmQa1tJoV5iyVGIPPguk6/4XMcVSx8gE4/m1BHiIsddVGRscm0rKdRLLDkKkQffZfIVn+u4YukDRLxoUEfcXnt7u9ApSIZc20oK9RJLjkLkwXeZfMXnOq5Y+gARLxrUEbdHl91dJ9e2kkK9xJKjEHnwXSZf8bmOK5Y+QMSL5tTRnDq3R/NUXCfXtpJCvcSSI82pEy6uWPoAmXg0p44QFzlW7yZjk2tbSaFeYslRiDz4LpOv+FzHFUsfIOJFgzpCCCGEEBmgQR1xe5MmTRI6BcmQa1tJoV5iyVGIPPguk6/4XMcVSx8g4kWDOuL2lEr6MXCVXNtKCvUSS45C5MF3mXzF5zquWPoAES/qIcTtlZaWCp2CZMi1raRQL7HkKEQefJfJV3yu44qlDxDxokEdIYQQQogM0JImtKSJ2+vu7oZOpxM6DUmQa1tJoV5iyVGIPPguk6/4XMcVSx8gE8+tljT5+uuvMXXqVEyZMgV/+9vfhE6HSExJSYnQKUiGXNtKCvUSS45C5MF3mXzF5zquWPoAES8PoRO4VL29vVizZg1++OEH+Pj4ID09HTfeeCMCAgKETo1IRGtrq9ApSIZc20oK9RJLjkLkwXeZfMXnOq5Y+gARL8mfqcvPz0dSUhIiIiJgMBhw1VVXYdu2bUKnRSTEy8tL6BQkQ65tJYV6iSVHIfLgu0y+4nMdVyx9gIiX4IO6nJwcXHvttQgPD4dCocCXX345ZJ8333wTcXFx8PT0xKxZs7B79272verqakRERLCvIyMjUVVVNRGpE5lITU0VOgXJkGtbSaFeYslRiDz4LpOv+FzHFUsfIOIl+KCus7MTqampeOONN4Z9f/PmzXj88cfxzDPPoLCwEAsXLsSKFStQXl4OABjuPg+FQsFrzkRe8vLyhE5BMuTaVlKol1hyFCIPvsvkKz7XccXSB4h4CT6nbsWKFVixYsWI72/YsAH33nsv7rvvPgDA66+/jm3btuGtt97C+vXrERER4XRmrrKyEpmZmSPGM5vNMJvN7Ou2tjYAfXeWEPfU2dlJ//8ukmtbSaFeYslRiDz4LpOv+FzHFUsfIBPP8f8+5oIljIgAYLZu3cq+NpvNjEqlYrZs2eK0389//nNm0aJFDMMwjNVqZeLj45nKykrGZDIx8fHxTGNj44hlPPfccwwA+qIv+qIv+qIv+qIvSX1VVFSMOo4S/EzdaBobG2Gz2WA0Gp22G41G1NbWAgA8PDzwpz/9CUuXLoXdbsdTTz2FwMDAEWP++te/xpo1a9jXra2tiImJQXl5OXx9ffmpCBG12bNn48CBA0KnIQlybSsp1EssOQqRB99l8hWfy7gmkwlRUVGoqKigNVXdEMMwaG9vR3h4+Kj7iXpQ5zB4jhzDME7brrvuOlx33XUuxdJqtdBqtUO2+/r60g+Km1KpVPR/7yK5tpUU6iWWHIXIg+8y+YrPR1wfHx9R9AMy8Vw58ST4jRKjCQoKgkqlYs/KOdTX1w85e0fIxXrkkUeETkEy5NpWUqiXWHIUIg++y+Qrvlj+z4j7ENVjwhQKBbZu3YqVK1ey2zIzMzFr1iy8+eab7LbExERcf/31WL9+/SWXSY8JI4QQInb0u4q4QvDLrx0dHSgtLWVfl5WV4fDhwwgICEB0dDTWrFmDVatWISMjA1lZWXj33XdRXl6OBx98kJPytVotnnvuuWEvyRJCCCFiQL+riCsEP1O3a9cuLF26dMj2u+++Gx988AGAvsWHX3nlFdTU1CA5ORmvvfYaFi1aNMGZEkIIIYSIl+CDOkIIIYQQculEfaMEIYQQQghxDQ3qCCGEEEJkgAZ1hBBCCCEyQIM6QgghhBAZoEHdCCoqKrBkyRIkJiZixowZ+Oyzz4ROiRBCCHHS3t6O2bNnY+bMmUhJScF7770ndEpEQHT36whqampQV1eHmTNnor6+Hunp6Th16hS8vLyETo0QQggBANhsNpjNZuj1enR1dSE5ORkHDhwY9RnoRL4EX3xYrMLCwhAWFgYACAkJQUBAAJqbm2lQRwghRDRUKhX0ej0AoKenBzabDXSuxn3J9vJrTk4Orr32WoSHh0OhUODLL78css+bb76JuLg4eHp6YtasWdi9e/ewsQ4ePAi73Y6oqCiesyaEEOJOuPhd1draitTUVERGRuKpp55CUFDQBGVPxEa2g7rOzk6kpqbijTfeGPb9zZs34/HHH8czzzyDwsJCLFy4ECtWrEB5ebnTfk1NTbjrrrvw7rvvTkTahBBC3AgXv6v8/PxQVFSEsrIybNq0CXV1dROVPhEZt5hTp1AosHXrVqxcuZLdlpmZifT0dLz11lvstunTp2PlypVYv349AMBsNuOKK67A/fffj1WrVk102oQQQtzIxf6uGuihhx7CZZddhptvvnkiUiYiI9szdaOxWCw4dOgQli1b5rR92bJlyMvLAwAwDIPVq1fjsssuowEdIYSQCefK76q6ujqYTCYAgMlkQk5ODqZOnTrhuRJxcMsbJRobG2Gz2WA0Gp22G41G1NbWAgD27NmDzZs3Y8aMGewch48++ggpKSkTnS4hhBA35MrvqsrKStx7771gGAYMw+DRRx/FjBkzhEiXiIBbDuocFAqF02uGYdhtCxYsgN1uFyItQgghhDXa76pZs2bh8OHDAmRFxMgtL78GBQVBpVKxf+k41NfXD/mLiBBCCBEC/a4i4+WWgzqNRoNZs2Zhx44dTtt37NiBefPmCZQVIYQQcgH9riLjJdvLrx0dHSgtLWVfl5WV4fDhwwgICEB0dDTWrFmDVatWISMjA1lZWXj33XdRXl6OBx98UMCsCSGEuBP6XUW4JNslTXbt2oWlS5cO2X733Xfjgw8+ANC3oOMrr7yCmpoaJCcn47XXXsOiRYsmOFNCCCHuin5XES7JdlBHCCGEEOJO3HJOHSGEEEKI3NCgjhBCCCFEBmhQRwghhBAiAzSoI4QQQgiRARrUEUIIIYTIAA3qCCGEEEJkgAZ1hBBCCCEyQIM6QgghhBAZoEEdIYQQQogM0KCOEEIIIUQGaFBHCCGEECIDNKgjhBBCCJEBGtQRQgghhMgADeoIIYQQQmSABnWEEEIIITJAgzpCCCGEEBmgQR0hhBBCiAx4CJ2A0Ox2O6qrq2EwGKBQKIROhxBCCCHECcMwaG9vR3h4OJTKkc/Huf2grrq6GlFRUUKnQQghhBAyqoqKCkRGRo74vtsP6gwGA4C+hvLx8RE4GyKE/fv3IzMzU+g0JEGubSWFeoklRyHy4LtMvuJzHVcsfYBMPJPJhKioKHbMMhIFwzDMBOUkSiaTCb6+vmhra6NBHSGEEEJEx9WxCt0oQdze7t27hU5BMuTaVlKol1hyFCIPvsvkKz7XccXSB4h40aCOuD273S50CpIh17aSQr3EkqMQefBdJl/xuY4rlj5AxIsGdcTthYWFCZ2CZMi1raRQL7HkKEQefJfJV3yu44qlDxDxokEdcXuBgYFCpyAZcm0rKdRLLDkKkQffZfIVn+u4YukDRLxoUEfc3rFjx4ROQTLk2lZSqJdYchQiD77L5Cs+13HF0geIeNGgjhBCCCFEBmhQR9xeSkqK0ClIhlzbSgr1EkuOQuTBd5l8xec6rlj6ABEvGtQRt9fQ0CB0CpIh17aSQr3EkqMQefBdJl/xuY4rlj5AxIsGdcTt1dbWCp2CZMi1raRQL7HkKEQefJfJV3yu44qlDxDxokEdcXsqlUroFCRDrm0lhXqJJUch8uC7TL7icx1XLH2AiJdoHxPW29uLtWvX4pNPPkFtbS3CwsKwevVq/Pa3v4VS2TcWZRgG69atw7vvvouWlhZkZmZi48aNSEpKcrkcekwYIYQQQsRM8o8Je/nll/H222/jjTfewIkTJ/DKK6/g1VdfxV//+ld2n1deeQUbNmzAG2+8gQMHDiA0NBRXXHEF2tvbBcycSM2ePXuETkEy5NpWUqiXWHIUIg++y+QrPtdxxdIHiHiJdlC3d+9eXH/99bj66qsRGxuLH//4x1i2bBkOHjwIoO8s3euvv45nnnkGN954I5KTk/Hhhx+iq6sLmzZtEjh7IiW9vb1CpyAZcm0rKdRLLDkKkQffZfIVn+u4YukDRLxEO6hbsGABdu7ciZKSEgBAUVERcnNzcdVVVwEAysrKUFtbi2XLlrGf0Wq1WLx4MfLy8kaMazabYTKZnL6IewsJCRE6BcmQa1tJoV5iyVGIPPguk6/4XMcVSx8g4uUhdAIj+dWvfoW2tjZMmzYNKpUKNpsNv//973HbbbcBuHAXkNFodPqc0WjE+fPnR4y7fv16rFu3bsj23NxceHl5Yd68eSgqKkJnZyf8/PyQkJCA/Px8AEB8fDzsdjvOnj0LAJg7dy6OHz8Ok8kEg8GApKQk7Nu3DwAQFxcHlUqF0tJSAMDs2bNRWlqKlpYW6PV6pKWlsafSo6OjodPpcOrUKQBAeno6zp8/j6amJnh6emLOnDnIyckBAERGRsLHxwfHjx8HAMycORPV1dWor6+HWq3GvHnzsHv3btjtdoSFhSEwMJBdhTwlJQUNDQ2ora2FSqXCggULsGfPHvT29iIkJARhYWEoKioCACQmJqKtrQ1VVVUAgMWLF2Pfvn0wm80ICgpCdHQ0CgoKAADTpk1DV1cXysvLAfQNyAsKCtDV1QV/f39MnjyZPcM6ZcoUWK1WnDt3DgCQlZWFo0ePoqOjA76+vpg2bRr2798PAJg8eTIA4MyZMwCAzMxMnDx5Em1tbfD29kZKSgr27t0LAIiNjYVarcbp06cBABkZGThz5gzb3unp6cjNzWXbW6/X4+TJk2w5xcXFaGxshFarxdy5c5GdnQ0AiIiIgK+vL9veqampqKmpQX19PTw8PDB//nzk5ubCZrMhNDQUwcHBOHr0KAAgOTkZTU1NqKmpgVKpxMKFC5GXlwer1YqQkBCEh4fj8OHDbHubTCZUVlYCABYtWoT8/Hz09PQgMDAQMTExbHtPnToV3d3dbHvPnz8fhYWFbHvHx8fjwIEDbJ+12WwoKytj+2xxcTHa29vh4+ODxMREts9OmjQJSqWS7bNz5sxBSUkJWltb4eXlhdTUVJSXl6O+vh6xsbHQaDTsH10ZGRkoKytDU1MTdDodMjIysHv3bgBAVFQUvL29ceLECQBAWloaKisr0dDQAI1Gg6ysLOTk5IBhGISHh8Pf3x/FxcUAgBkzZqCurg51dXVsn3W0t9FohNFoxJEjRwAASUlJaGlpQXV1NRQKBRYtWoS9e/fCYrEgODgYkZGRKCwsBABMnz4dHR0dqKioYH828vPz0d3djcDAQMTFxbF9NiEhARaLhe2zQh0jPDw82H4p5DHC0Qcm8hjR1NSE7Oxs3o4Rjv/nkY4R6enpKC8vH/cxore3F9OnT+fsGGGxWNhyxXqMcJxUkdsxYuHChTh48KBgx4jOzk64hBGpTz/9lImMjGQ+/fRT5siRI8w//vEPJiAggPnggw8YhmGYPXv2MACY6upqp8/dd999zPLly0eM29PTw7S1tbFfFRUVDACmra2N1/oQ8dq1a5fQKUiGXNtKCvUSS45C5MF3mXzF5zquWPoAmXhtbW0ujVVEe6bul7/8JZ5++mnceuutAPr+gjx//jzWr1+Pu+++G6GhoQDA3hnrUF9fP+Ts3UBarRZarZbf5AkhhBBCJpho59R1dXWxS5c4qFQq2O12AH2nJUNDQ7Fjxw72fcep6Xnz5k1orkTaEhMThU5BMuTaVlKol1hyFCIPvsvkKz7XccXSB4h4iXZQd+211+L3v/89/vvf/+LcuXPYunUrNmzYgBtuuAEAoFAo8Pjjj+Oll17C1q1bcezYMaxevRp6vR633367wNkTKWlraxM6BcmQa1tJoV5iyVGIPPguk6/4XMcVSx8g4iXaQd1f//pX/PjHP8bDDz+M6dOn48knn8QDDzyAF154gd3nqaeewuOPP46HH34YGRkZqKqqwvbt22EwGATMnEiNY6I3GZtc20oK9RJLjkLkwXeZfMXnOq5Y+gARL9HOqTMYDHj99dfx+uuvj7iPQqHA2rVrsXbt2gnLixBCCCFEjET7mLCJQo8JI4QQQoiYSf4xYYRMFMeaQGRscm0rKdRLLDkKkQffZfIVn+u4YukDRLxoUEfcntlsFjoFyZBrW0mhXmLJUYg8+C6Tr/hcxxVLHyDiRYM64vaCgoKETkEy5NpWUqiXWHIUIg++y+QrPtdxxdIHiHjRoI64vejoaKFTkAy5tpUU6iWWHIXIg+8y+YrPdVyx9AEiXjSoI27P8bxEMja5tpUU6iWWHIXIg+8y+YrPdVyx9AEiXjSoI4QQQgiRARrUEbc3bdo0oVOQDLm2lRTqJZYchciD7zL5is91XLH0ASJeNKgjbq+rq0voFCRDrm0lhXqJJUch8uC7TL7icx1XLH2AiBcN6ojbKy8vFzoFyZBrW0mhXmLJUYg8+C6Tr/hcxxVLHyDiRYM6QgghhBAZoMeE0WPC3J7NZoNKpRI6DUmQa1tJoV5iyVGIPPguk6/4XMcVSx8gE48eE0aIi2iZANfJta2kUC+x5EhLmggXVyx9gIgXDeqI26PJx66Ta1tJoV5iyZFulBAurlj6ABEvGtQRt+fv7y90CpIh17aSQr3EkqMQefBdJl/xuY4rlj5AxIsGdcTtTZ48WegUJEOubSWFeoklRyHy4LtMvuJzHVcsfYCIFw3qiNs7ePCg0ClIhlzbSgr1EkuOQuTBd5l8xec6rlj6ABEvGtQRQgghhMgADeqI25syZYrQKUiGXNtKCvUSS45C5MF3mXzF5zquWPoAES8a1BG3Z7VahU5BMuTaVlKol1hyFCIPvsvkKz7XccXSB4h40aCOuL1z584JnYJkyLWtpFAvseQoRB58l8lXfK7jiqUPEPGiQR0hhBBCiAzQY8LoMWFuz2KxQKPRCJ2GJMi1raRQL7HkKEQefJfJV3yu44qlD5CJR48JI8RFR48eFToFyZBrW0mhXmLJUYg8+C6Tr/hcxxVLHyDiJepBXVVVFe68804EBgZCr9dj5syZOHToEPs+wzBYu3YtwsPDodPpsGTJEhQXFwuYMZGijo4OoVOQDLm2lRTqJZYchciD7zL5is91XLH0ASJeoh3UtbS0YP78+VCr1fj2229x/Phx/OlPf4Kfnx+7zyuvvIINGzbgjTfewIEDBxAaGoorrrgC7e3twiVOJMfX11foFCRDrm0lhXqJJUch8uC7TL7icx1XLH2AiJdo59Q9/fTT2LNnD3bv3j3s+wzDIDw8HI8//jh+9atfAQDMZjOMRiNefvllPPDAAy6VQ3PqSE9PDzw9PYVOQxLk2lZSqJdYchQiD77L5Cs+13HF0gfIxJP8nLp///vfyMjIwM0334yQkBCkpaXhvffeY98vKytDbW0tli1bxm7TarVYvHgx8vLyRoxrNpthMpmcvoh7279/v9ApSIZc20oK9RJLjkLkwXeZfMXnOq5Y+gARL4+JKqi1tdXp0ulYzp49i7feegtr1qzBb37zG+Tn5+PnP/85tFot7rrrLtTW1gIAjEaj0+eMRiPOnz8/Ytz169dj3bp1Q7bn5ubCy8sL8+bNQ1FRETo7O+Hn54eEhATk5+cDAOLj42G323H27FkAwNy5c3H8+HGYTCYYDAYkJSVh3759AIC4uDioVCqUlpYCAGbPno3S0lK0tLRAr9cjLS0Ne/bsAQBER0dDp9Ph1KlTAID09HScP38eTU1N8PT0xJw5c5CTkwMAiIyMhI+PD44fPw4AmDlzJqqrq1FfXw+1Wo158+Zh9+7dsNvtCAsLQ2BgII4dOwYASElJQUNDA2pra6FSqbBgwQLs2bMHvb29CAkJQVhYGIqKigAAiYmJaGtrQ1VVFQBg8eLF2LdvH8xmM4KCghAdHY2CggIAwLRp09DV1YXy8nIAwIIFC1BQUICuri74+/tj8uTJ7DMLp0yZAqvVyq63lJWVhaNHj6KjowO+vr6YNm0ae+ByPLz6zJkzAIDMzEycPHkSbW1t8Pb2RkpKCvbu3QsAiI2NhVqtxunTpwEAGRkZOHPmDNve6enpyM3NZdtbr9fj5MmTAPoG+sXFxWhsbIRWq8XcuXORnZ0NAIiIiICvry/b3qmpqaipqUF9fT08PDwwf/585ObmwmazITQ0FMHBwexk5uTkZDQ1NaGmpgZKpRILFy5EXl4erFYrQkJCEB4ejsOHD7PtbTKZUFlZCQBYtGgR8vPz0dPTg8DAQMTExLDtPXXqVHR3d7PtPX/+fBQWFrLtHR8fjwMHDrB91mazoaysjO2zxcXFaG9vh4+PDxITE9k+O2nSJCiVSrbPzpkzByUlJWhtbYWXlxdSU1PZ/7fY2FhoNBqUlJSw7V1WVoampibodDpkZGSwZ9mjoqLg7e2NEydOAADS0tJQWVmJhoYGaDQaZGVlIScnhz377u/vz86NnTFjBurq6lBXV8f2WUd7G41GGI1GHDlyBACQlJSElpYWVFdXQ6FQYNGiRdi7dy8sFguCg4MRGRmJwsJCAMD06dPR0dGBiooKAIDdbkd+fj66u7sRGBiIuLg4ts8mJCTAYrGwdRfqGNHR0cH2SyGPEY52mMhjRHV1NbKzs3k7RlRVVcFms414jEhPT0d5efm4jxGO+nJ1jGhubmbLFesxwnFSRW7HiIULF+LgwYOCHSM6OzvhCl4uv7788suIjY3FLbfcAgD4yU9+gi+++AKhoaH45ptvkJqaOmYMjUaDjIwMp7NuP//5z3HgwAHs3bsXeXl5mD9/PqqrqxEWFsbuc//996OiogLffffdsHHNZjPMZjP72mQyISoqii6/urHKykpERkYKnYYkyLWtpFAvseQoRB58l8lXfK7jiqUPkIkn6OXXd955B1FRUQCAHTt2YMeOHfj222+xYsUK/PKXv3QpRlhYGBITE522TZ8+nf3LIzQ0FADYM3YO9fX1Q87eDaTVauHj4+P0RQghhBAidbwM6mpqathB3ddff42f/OQnWLZsGZ566in2lO9Y5s+fz16OdCgpKUFMTAyAvtOSoaGh2LFjB/u+xWJBdnY25s2bx1FNiDtwXLohY5NrW0mhXmLJUYg8+C6Tr/hcxxVLHyDixcugzt/fn70O/d133+Hyyy8H0HfHqs1mcynGE088gX379uGll15CaWkpNm3ahHfffRePPPIIAEChUODxxx/HSy+9hK1bt+LYsWNYvXo19Ho9br/9dj6qRQghhBAiWrzMqXv00Ufx9ddfY8qUKSgsLMS5c+fg7e2NzZs34+WXX2Ync47l66+/xq9//WucPn0acXFxWLNmDe6//372fYZhsG7dOrzzzjtoaWlBZmYmNm7ciOTkZJdzpSVNCC0T4Dq5tpUU6iWWHGlJE+HiiqUPkIkn6Jy61157DY8++igSExOxY8cOeHt7A+i7LPvwww+7HOeaa67B0aNH0dPTgxMnTjgN6IC+s3Vr165FTU0Nenp6kJ2dPa4BHSEA2DvcyNjk2lZSqJdYchQiD77L5Cs+13HF0geIePGypIlarcaTTz45ZPvjjz/OR3GEXJK2tjahU5AMubaVFOollhyFyIPvMvmKz3VcsfQBIl68LT780UcfYcGCBQgPD2fXjXv99dfx1Vdf8VUkIRfFcSaZjE2ubSWFeoklRyHy4LtMvuJzHVcsfYCIFy+DOseiwStWrEBrayt7c4Sfnx9ef/11Pook5KKlpKQInYJkyLWtpFAvseQoRB58l8lXfK7jiqUPEPHiZVD317/+Fe+99x6eeeYZqFQqdntGRga7kjYhYuFYcZ6MTa5tJYV6iSVHIfLgu0y+4nMdVyx9gIgXL4O6srIypKWlDdmu1WpdftQFIYQQQghxHS+Duri4OPZ5dQN9++23Q54SQYjQYmNjhU5BMuTaVlKol1hyFCIPvsvkKz7XccXSB4h48XL36y9/+Us88sgj6OnpAcMwyM/Px6effor169fjb3/7Gx9FEnLR1Gq10ClIhlzbSgr1EkuOQuTBd5l8xec6rlj6ABEvXs7U3XPPPXjuuefw1FNPoaurC7fffjvefvtt/PnPf8att97KR5GEXLTTp08LnYJkyLWtpFAvseQoRB58l8lXfK7jiqUPEPHi5UwdANx///24//770djYCLvdjpCQEL6KIoQQQghxe7w8JgwAent7sWvXLpw5cwa33347DAYDqqur4ePjI6q1dugxYaSzsxNeXl5CpyEJcm0rKdRLLDkKkQffZfIVn+u4YukDZOIJ+piw8+fPIyUlBddffz0eeeQRNDQ0AABeeeWVYZ80QYiQzpw5I3QKkiHXtpJCvcSSoxB58F0mX/G5jiuWPkDEi5dB3S9+8QtkZGSgpaUFOp2O3X7DDTdg586dfBRJyEVraWkROgXJkGtbSaFeYslRiDz4LpOv+FzHFUsfIOLFy5y63Nxc7NmzBxqNxml7TEwMqqqq+CiSkIum1+uFTkEy5NpWUqiXWHIUIg++y+QrPtdxxdIHiHjxcqbObrezjwYbqLKyEgaDgY8iCblo6enpQqcgGXJtKynUSyw5CpEH32XyFZ/ruGLpA0S8eBnUXXHFFU7PeFUoFOjo6MBzzz2Hq666io8iCbloubm5QqcgGXJtKynUSyw5CpEH32XyFZ/ruGLpA0S8eLn8umHDBlx22WVITExET08Pbr/9dpw+fRpBQUH49NNP+SiSEEIIIcSt8TKoi4iIwOHDh/HPf/4Thw4dgt1ux7333os77rjD6cYJQsQgOjpa6BQkQ65tJYV6iSVHIfLgu0y+4nMdVyx9gIgX54M6q9WKqVOn4uuvv8Y999yDe+65h+siCOEUTT52nVzbSgr1EkuOdKOEcHHF0geIeHE+p06tVsNsNkOhUHAdmhBenDx5UugUJEOubSWFeoklRyHy4LtMvuJzHVcsfYCIFy83Sjz22GN4+eWX0dvby0d4QgghhBAyCC+PCXMsMuzt7Y2UlJQhjzXZsmUL10VeNHpMGGlvb6eldlwk17aSQr3EkqMQefBdJl/xuY4rlj5AJp6gjwnz8/PDTTfdhOXLlyM8PBy+vr5OX4SISXl5udApSIZc20oK9RJLjkLkwXeZfMXnOq5Y+gARL17ufn3//ff5CEsILxobG4VOQTLk2lZSqJdYchQiD77L5Cs+13HF0geIePFypo4P69evh0KhwOOPP85uYxgGa9euRXh4OHQ6HZYsWYLi4mLhkiSSpNVqhU5BMuTaVlKol1hy5DIPO8OgtdM85Kvb0oueAV8KDw14mCnE4qttuY4rlj5AxIuXOXVpaWnD3v2qUCjg6emJ+Ph4rF69GkuXLnUp3oEDB/CTn/wEPj4+WLp0Kfu0ipdffhm///3v8cEHHyAhIQEvvvgicnJycOrUKZfnHdCcOkIImXh2hsGKF79xef+vfrUcnhpeLi4RInqCzqm78sorcfbsWXh5eWHp0qVYsmQJvL29cebMGcyePRs1NTW4/PLL8dVXX40Zq6OjA3fccQfee+89+Pv7s9sZhsHrr7+OZ555BjfeeCOSk5Px4YcfoqurC5s2beKjWkSmsrOzhU5BMuTaVlKol1hyFEseXOKrTlzHlWPbE27xMqhrbGzE//t//w+7d+/Gn/70J2zYsAE5OTl48skn0dnZie3bt+O3v/0tXnjhhTFjPfLII7j66qtx+eWXO20vKytDbW0tli1bxm7TarVYvHgx8vLyOK8TIYQQ7igVCnz726uwec3lWHPtjFH3vW6aFlq1aoIyI0S6eBnU/etf/8Jtt902ZPutt96Kf/3rXwCA2267DadOnRo1zj//+U8UFBRg/fr1Q96rra0FABiNRqftRqORfW84ZrMZJpPJ6Yu4t4iICKFTkAy5tpUU6iWWHLnMQ6lQwKDT4B+7Skbdb3e5DXb+ptTx1rZcxxVLHyDixcsEBU9PT+Tl5SE+Pt5pe15eHjw9PQEAdrt91EmfFRUV+MUvfoHt27eznxnO4Ll7DMOM+jSL9evXY926dUO25+bmwsvLC/PmzUNRURE6Ozvh5+eHhIQE5OfnAwDi4+Nht9tx9uxZAMDcuXNx/PhxmEwmGAwGJCUlYd++fQCAuLg4qFQqlJaWAgBmz56N0tJStLS0QK/XIy0tDXv27AHQ9zw/nU7HDnLT09Nx/vx5NDU1wdPTE3PmzEFOTg4AIDIyEj4+Pjh+/DgAYObMmaiurkZ9fT3UajXmzZuH3bt3w263IywsDIGBgTh27BgAICUlBQ0NDaitrYVKpcKCBQuwZ88e9Pb2IiQkBGFhYSgqKgIAJCYmoq2tDVVVVQCAxYsXY9++fTCbzQgKCkJ0dDQKCgoAANOmTUNXVxd7u/2CBQtQUFCArq4u+Pv7Y/LkyTh48CAAYMqUKbBarTh37hwAICsrC0ePHkVHRwd8fX0xbdo07N+/HwAwefJkAMCZM2cAAJmZmTh58iTa2trYNRD37t0LAIiNjYVarcbp06cBABkZGThz5gzb3unp6cjNzWXbW6/Xs6uzx8TEoLi4GI2NjdBqtZg7dy57mSMiIgK+vr5se6empqKmpgb19fXw8PDA/PnzkZubC5vNhtDQUAQHB+Po0aMAgOTkZDQ1NaGmpgZKpRILFy5EXl4erFYrQkJCEB4ejsOHD7PtbTKZUFlZCQBYtGgR8vPz0dPTg8DAQMTExLDtPXXqVHR3d7PtPX/+fBQWFrLtHR8fjwMHDrB91mazoaysjO2zxcXFaG9vh4+PDxITE9k+O2nSJCiVSrbPzpkzByUlJWhtbYWXlxdSU1Nx+vRpVFVVITY2FhqNBiUlJWx7l5WVoampCTqdDhkZGdi9ezcAICoqCt7e3jhx4gSAvjm3lZWVaGhogEajQVZWFnJycsAwDMLDw+Hv78/e8DRjxgzU1dWhrq6O7bOO9jYajTAajThy5AgAICkpCS0tLaiuroZCocCiRYuwd+9eWCwWBAcHIzIyEoWFhQCA6dOno6OjAxUVFWwfzs/PR3d3NwIDAxEXF8f22YSEBFgsFrbPCnWMsFqtbL8U8hjh6ANcHSOabTo0tvdgNC1dvfjkP99jRkwgL8cIu92OmNhY7Pihr89GREZCr9Ph3NlStg0rKirQ1NQEb50WWVlZLh0jzGYz4uPjOT1GOMoV6zHCcaVMbseIhQsX4uDBg4IdIzo7O0f9GXHg5UaJF198ES+99BLuv/9+zJ49GwqFAvn5+fjb3/6G3/zmN3jmmWfw2muv4ZtvvsGOHTuGjfHll1/ihhtugEp14ZS7zWaDQqGAUqnEqVOnEB8fj4KCAqSlpbH7XH/99fDz88OHH344bFyz2Qyz2cy+NplMiIqKohsl3Fh2djYWL14sdBqSINe2kkK9xJLjpeRhs9tR3tCB07VtOF3T9xUZ4I0dRyrH/Gyonw53LkrAFamRAMDeDcvFIyl37dqF9btd+6U5nhs2uP4/E0sfIBPP1RsleDlT99vf/hZxcXF444038NFHHwHo+8vhvffew+233w4AePDBB/HQQw+NGONHP/oR+9eMwz333INp06bhV7/6FSZNmoTQ0FDs2LGDHdRZLBZkZ2fj5ZdfHjGuVqul28IJIWSCmLos+Ed2CUpr2nC2zgRzr93pfY2Ha3Plalu70W258OjJ0loTfvXRPsQEGxAbYkBMsDdi+7/386JjPHFPvN0ffscdd+COO+4Y8X2dTjfq5w0GA5KTk522eXl5ITAwkN3++OOP46WXXsKUKVMwZcoUvPTSS9Dr9ezAkRBXpKamCp2CZMi1raRQL7HkOFwevTY7zje043RNG0prTTD66XBzVt+lUU+NCt8UlMPWPylOr/HA5FAfTAnzxZQwXySE+eJXH+8f9RKsn16Nh1ckY2qYH7vtXH07Os29OF7ZguOVLU77++o1eHh5EpYkhwMAeiy9sNoYGHTqYePPnDkT3y72hanLgv2n6/H+D6fQ0nHhik6gQYv7fzQdWVON47phg+v/M7H0ASJevA3qWltb8fnnn+Ps2bN48sknERAQgIKCAhiNRs4mez711FPo7u7Gww8/jJaWFmRmZmL79u30bDwyLjU1NfDz8xM6DUmQa1tJoV4Xk6OdYWDqsvR9b2dwoqoFHT29CPDWIjHSHypl36VLrVrl8mXMmpoa+Pr64rvDFewl1LK6dlhtF87AJYT7soM6jYcK91w2FUEGT0wJ80V4gBeUCgUYhoHZagMA3PejafjDl4dHLHPlDH8sTgx32rY4KQzxoT4419COc/XtON/QgXMN7aht6UJblwVenhd+ve07XY/1WwoRaNAiNtgw4Oxe3xk+R9seK2/Ghv8cGVJ+U7sZf/jyMJ79cToWTA9zqZ0cbcVlv5JCPyXC4mVQd+TIEVx++eXw9fXFuXPncN999yEgIABbt27F+fPn8Y9//OOi4u7atcvptUKhwNq1a7F27dpLT5q4rfr6ekyfPl3oNCRBrm0lhXqNN8fxLO470jwxq82Oc/V9Z+B6LL24ce4kNo9Pc0tR19rN7uul9UB8/9m3aRF+TnEcA7yBzFYbrn95m0v5fbCvHrdczkA5YOCp8VAhzuiDOKPz/KIeqw0VjR2ICPBitzW09eXZ1G5GU7sZh846P27rlmRPJEydhre2HR81j7e3H0fW1FB2MDwWrvuVFPopERYvg7o1a9Zg9erVeOWVV5zOmq1YsYIujRLR8fCgVepdJde2kkK9JiLHM7UmnKxqYc/AnatvR2//ZVNvTzVuyIxj81ieGoVuSy97GTXMX8/JTQuXylOtwpQwX6dtN8+bjKtmRaO8/2ye48ze+YZ2NHeYEeytxrHy5jHvwm0w9eBYeTNSYwNdyoXr/zMp9FMiLF7ufvX19UVBQQEmT54Mg8GAoqIiTJo0CefPn8fUqVPR0zP6D85EoseEEULkymqz466/fI/mAfPDBgsyeOLDx5bCQ6XE0x/vR2GZ81ksb081O3BbtXiKyzc2jGXg5Ven7cCQ7T56jdNZOi6Zuizw1qmRXVyNP2w9DABQ2O0IrzsDfbcJXTofVBsng1H2Lev69A0zsTSZ1osjE0vQu189PT2HXdT31KlTCA4O5qNIQi5abm4uFixYIHQakiDXtpJCvS4mx+MVLaMO6ACgsb0HxRUtSI0NxMzYQCgUwJRQX3YgZ/TTOZ2B46qtFArFiEuD6AZt5/P/x0evQW5uLgIi+y5rTjpfhIX7v4Chq5Xdp13vh92ZN+FsTCoCvEdeN3UwrvOWQj8lwuJlUHf99dfj+eefZ58eoVAoUF5ejqeffho33XQTH0USctFstqFnC8jw5NpWUqjXWDn2WG0ob2hHWX07FieGwVPjgeYO166KOPa7dUE8bl0QP+q+QrQV32XabDYkRfphdsUhzPlh6Bqn3l2tWPHD37F3+b1IiloxrrhckkI/JcLiZVD3xz/+EVdddRVCQkLQ3d2NxYsXo7a2FllZWfj973/PR5GEXLTQ0FChU5AMubaVFOo1MMem9h6cqmrF2fp2nKs3oayuHdUtneyjtGKCvTE13A/ensMv4THYeM4+8dlWjM2GpgMHYK6vhzYkBIGzZ0OhUvH+/xMSHIxvpyYgc4T3Hecp5237O5iuxwAXV1jgOm8p9FMiLF4GdT4+PsjNzcUPP/yAQ4cOwW63Iz09HZdffjkfxRFySWhKgOvk2lZirZep24Jz9X1n36aHXJhHk328Bu9sH3qnpq9eg7gQAximb17abz894FI5iVH+LufEZVsxdjsszc0AgLoffsDJDRtgrq9n3/c0GjH96acRMGvWmI+AdIXVZELn+fOwtLTA0toKS3MzLC0taK2qdjlG06FDCF2yxKV9ue5XYu2nRDw4H9TZ7XZ88MEH2LJlC86dOweFQoG4uDiEhoZy8kNJCNeOHj1Kj95xkVzbytV68bHum0NzRw8KzzairL4d5xraUVbX7nQ35nVTtUiI6VsjLT7UB/GhPogL8UFsiAFxRgPiQgzw99Ky5fYMePoCMPrkf1eX6AC46wOM3Y6vp0wZdZ+eujoUPvEEAGDF0aPw0OuHPB6sq6ICLYWFfQO1Yb6Sn3sOgbNnAwBqvvsORb/+9SXlbW1rc3lfrn9e5PrzR7jD6aCOYRhcd911+Oabb5CamoqUlBQwDIMTJ05g9erV2LJlC7788ksuiySEyIjNzuBYeTOaO3oQ4O2J5OiAcQ04+MTFum8Mw6CxvQdldX1n32bGBWJquB8AoKS6Da98VTTkM0Y/HeKCDdCrL9x8NiMmEBvvXzhqDlq1Cl/9ajkAYPcH/0LTxg3w6rjw5IVOb3/4PvQElj9wO293lnJp9003oddkgqWlBbPfeQchC/vq37hvH4qefnrEz/XU1LDfa4OD4RkaCo2fHzT+/lD7+0Pj74/q5mZYv/3WpTw8Q0IurSKE8IjTQd0HH3yAnJwc7Ny5E0uXLnV67/vvv8fKlSvxj3/8A3fddReXxRJySQY/jo6MjI+2cpz92n+6Hh/8cMrpbs3Bj2fi60w/X32grcuC3BM1KOu/hHqu3oSOngtn0FYtmsIO6iYZfZAU5Y9Jxv6zbyF9Tz3w0vbNi2tqahpX2QqFAloPJSq++AI9Lz8Lr0Hve3W2ovePz6E63ICIa691uW0HtxVjt8Pa3g5rWxusra2wmkywtrXB0tYG42WXQdc/D6x2506Uvf8+LG1tffuO44wXAHSUlLDfW1ouDE71UVEIyspiB2gaf/++QVtAADT+/vBNTGT3NS5diiv27BkSO7yxEb7r12PX8uXoqa8HRljpyzMsDEFz5ricM9f9io5VZCycDuo+/fRT/OY3vxkyoAOAyy67DE8//TQ++eQTGtQRUWlqakJgoGuLibo7rttqrLNfjsczASOf/eKCK/VSKhT4+jcr2HXfRrqcadCp4aHqu6zZ1mXBX745NiROVJAX4kKcn4YQ4qvDhtXzLinHgca8vNk/cCl84gkYly6Fun/yf09dHTrOnIHFZOobpLW1OQ3UtNdfj8D++dFl//gHjj3//IiDIH1EBDuoszQ3o3HvXpfzH2zyz36G8BUroAkIgHbA3LKguXMRNHfuRccFgObmZgQlJCD5uedw8JFHAIXCuU79A97kZ5+FQuX6On1c/7zQsYqMhdMj5JEjR/DKK6+M+P6KFSvwl7/8hcsiCblkNTU1SEhIEDoNSRCyrRwPhHd9fzua2s2w9Npg7bXDYrPD0mvv+77XhmAfT0wO7XvyQHllNY41e/S979jPZmc/Oy3CD1fPimHXfRtrLTPHum8RAXrMmRKCmCDv/jNvPogK8rqoBXzHanvGbkdvRwc7+PKKjXU5dvkXX2Dy6tUAgKqvv8bxl14acV/91KlA/6BOpdezgx+VTge1r++FLx8fqAcskhqYmYm0116Dpv99pUaDnGuvdTnH4EWL4Ddjhsv7j4ejbcOWL0fGxo049vzz6KmtZd/3DA1F8rPPImz58ouKy3WehIyE00Fdc3MzjEbjiO8bjUa0DDhtTogYKPsni5Oxcd1WSoUCL9+ZiV99vH/MfU/XtCHMX4/nPzsEq23A4MvxZbPj2owYPLCs73Jbc4cZq/7y/YjxrkyLwhPX9A0SGCjxzo4TI+5r6bXj6lkxaDJ1YdrpffjRnk1D9nGsZbZ94V1oak8FAKiUSrxw6+wx6+Zgt1r7zor1nxljz5KZTLAUFcGclARtUBAAoOLzz1H2j39c2Le93ensUtYnn7hcrrmujv1eFxoK7ylToPbxYQdgji+Nry/OD1jOI3zFChiXLIGHwQCVVjtqGV7R0fCKjmZfMwyDFUePgrHZxrzsqQgIGNdlz/Ea2K/Dli9H6OWXD7u0yqXE5QIdq8hYOB3U2Wy2UZ9Np1Kp0NvbO+L7hAhh4cLRJ5yTC7hoq44eK3ptdvh5acEwfTdGuKKl04xQPz1Ka4c+rcbB0nthcVaNhwpqlRIaD2Xf9x5KaFRKqD36voy+OnbfxYvm41DbEWg8lP2fufBZtYcSMcEG2G02dN6wBCMtzOSYkbZ89z/g+8Qqdrvp1Cm0FRc7DdAGfp/26qvQR0UBAEr++lec3rhxxPp13X47O6iztLWhrbh4yD5KrRZqX1/YrdYR4wwWMGDAFH711Qi/+uoR940b8L2Hlxc8vAbP1nONQqGAh14PAGNe9pz14osXNahy1eB+rVCpLvmS7nBxxRaPyA/nd7+uXr0a2hH+YjObR39cDSFCyMvLw7x5I89lIheMp63sDIOa5i6crTNd+KpvR31bN1bOicVDy5NgttrwUc5p9jOjLbvh76WFv7cWL942G+r+wZlj8KXuH4x5eV44pPnqNfj6N66t/n8wfz+evsG5XozNBktbW9/SGM3l6O50ffDiV7wfSJ0EAKj+739HHaiZGxvZQZ3at+9ysIe394UzZAYD1L6+aOnpcbqcGXr55fCeNOnCpc7+fx1nzBiGwZWHD7s0+d+4aJHLdePj52Wsy55lBgPCOC3RGV/HAK7j0rGKjIXTQd3dd9895j50kwQRG+s4zmi4u5Haqsvci06zFcE+fWe/2rutuPPPO9EzzAPbAaBlmOeRjjVPLSk6AGqVErPjx7+kBMMwsHV39y0227/grLm5GWFXXgkPnQ5WqxXnP/0UlV99xb5vaW0F7HY2xtwtX7pcnrXhwgK6hvh4BC9cyA7OBs43U/v6Qh8Tw+4bt2oV4u6+G8phrnhkZ2fDe9Ik9rVXTAy8Bnx2MIVCAbXBwPnkf75+Xka77FmSnc1LmQ581YnruHSsImPhdFD3/vvvcxmOkAkRQutOuSw4OBi1rY6zb+3sGbiali7MmRLCzh8z6NTw1KhgZxjEBhswyeiDSca+f+OMPuzjq7RqFb785RXIeetDmH/4+5DyHPPUvJ78HTwGrFdn7+2Ftf+JAGbHIKx/wDbpnnvg4e0NADj91ls498knsDQ3wz7MlQL/1FR4T5rU90jDggI0Hxj6BAa1jw80/v5Q2V2fOuJY7BYAIq67DhHXXefS55QazYjvXWw/5XryP58/LyNd9uT7Z5Sv+FzHpWMVGQs/6wMQIiHh4eFCp8AZLhfvNVttaO4wI8y/b94TwzB4cVs1mjrKht2/tdN50PTXexcg0KCFarTJ3QyD/yVNB3BhTtpAjm1df3wevXfeCLXBgOPr1+PM3/42Ysjwq6+Gd/+gzm42Oy0+q9Ro+tYv61/DjP1MeDgUV10Fn6lT2fc0AQHQ+PlBqVaz9Xf1cmZQ5khPEb14l9JPuZz8L8TPC99l8hWf67hyOlYRftCgjri9w4cPS/rROwMX7/1w5wl4njnOzkkzxyfiviuSkDW176704RbwZRgGTe1m57lvdSZUNXciPMALf394CYC+y3k6pRUeSgWigw3smTfHl6/e+SyTb28X2otLYW5q6juL1tTUd1atqQnmpiakbdjAro3miuaCAhgXL+5bRqMvIaj7nwygdQzE/P2hHDCnN+rmm2G87DJ2oKbS64ddZNfRB3ymTh2xfL4uZ7rqUvspV5P/hfh54btMvuJzHVfqxyrCPxrUESJhAxfvnXS+CNcMnpO22w//On4T/hDTt8TG5//vCrR0WRAd5M3u89RH+3Dk/PB3oHb29MJqs0Pdv5juyuB2ZMw0wtbSBHPTaVhK+gZop5qbYW5qQubf/saeASv5619x7qOPRszd3NDAngVzhbW1r16T7rkHsatWQePrO+bgSR8RAX1EhMtluILry5mEEMIVGtQRt5c44DFCksTYMa00f8y108qiU3DLhh1QKpX46unl7GXRqM569JQVIUxlgVFhgb+9G97mDmi62mFvbYH97jSgfxV7Y9EhHHz28xFTMTc2soM6T6Ox7zmbAQHQBgYO+Vc7zpXxtf3ziQbeAcqV8fYBLi9nukos/VSIPPguk6/4XMcVSx8g4kWDOuL2TCYTggc8dkhKFAyDRz98fOT3+/9dvvsfAIAWn2DozF2ovjUZUZP6ltGYX30IcdnOC9Wa+78AwNLUdGEAFhwMn2nTnAZomsDAvsufgYHw7H8kFABMeeghTHnooVHzH9c8NR4Xn72YPsDV5UxXiaWfCpEH32XyFZ/ruGLpA0S8aFBH3F5lZSUmT54sdBoXhRlhEDQSf1MDAMDX2sVuC0qcDvPcuezATBsYCM2AM2q6yEh23+7Zs7H4ySe5SR7Cz1NzkEIfEEuOQuTBd5l8xec6rlj6ABEvGtQRImHd7Z3j2j/zo4+gCw6GfsDjmmJuuw0xt93GdWrjQvPUCCHk0imY8f6pLzMmkwm+vr5oa2uDDw9zdYj4MQwz7B2RUtDZasL3s9Jc3v+qkhKoLuGMF99txdhsEzpPjS1XAn1ALDkKkQfv/Y6n+FzHFUsfIBPP1bGKaJ8OvH79esyePRsGgwEhISFYuXIlTp065bQPwzBYu3YtwsPDodPpsGTJEhQP8yxEQkaTn58vdAoXTefjjaX5B6EICMJIf50xABAQhBUnTlzSgA7gv60c89QirrsOQXPnTsiADpBGHxBLjkLkwXeZfMXnOq5Y+gARL9EO6rKzs/HII49g37592LFjB3p7e7Fs2TJ0dl643PTKK69gw4YNeOONN3DgwAGEhobiiiuuQHt7u4CZE6np6ekROoWLplQq4R3oj1kvPg8FMGRgx6DvZomMF5+HxyhPK3CVlNtqNFKol1hyFCIPvsvkKz7XccXSB4h4iXZQ991332H16tVISkpCamoq3n//fZSXl+PQoUMA+s7Svf7663jmmWdw4403Ijk5GR9++CG6urqwadPQpR0IGUngOJfWEKOw5cuR8eab0A24+xQAdGFhyHjzTc7mpMmhrYYjhXqJJUch8uC7TL7icx1XLH2AiJdkbpRoa2sDAAQEBAAAysrKUFtbi2XLlrH7aLVaLF68GHl5eXjggQeGjWM2m2Ee8AxIk8nEY9ZECmJGeSi6lEzE2mlyaavBpFAvseQoRB58l8lXfK7jiqUPEPGSxKCOYRisWbMGCxYsQHJyMgCgtv8OOaPR6LSv0WjE+fPnR4y1fv16rFu3bsj23NxceHl5Yd68eSgqKkJnZyf8/PyQkJDAzmOIj4+H3W7H2bNnAQBz587F8ePHYTKZYDAYkJSUhH379gEA4uLioFKpUFpaCgCYPXs2SktL0dLSAr1ej7S0NOzZswcAEB0dDZ1Ox84ZTE9Px/nz59HU1ARPT0/MmTMHOTk5AIDIyEj4+Pjg+PHjAICZM2eiuroa9fX1UKvVmDdvHnbv3g273Y6wsDAEBgbi2LFjAICUlBQ0NDSgtrYWKpUKCxYswJ49e9Db24uQkBCEhYWhqKgIQN8il21tbaiqqgIALF68GPv27YPZbEZQUBCio6NRUFAAAJg2bRq6urpQXl4OAFiwYAEKCgrQ1dUFf39/TJ48GQcPHgQATJkyBVarFefOnQMAZGVl4ejRo+jo6ICvry+mTZuG/fv3AwB76/6ZM2cAAJmZmTh58iTa2trg7e2NlJQU7N27FwAQGxsLtVqN06dPAwAyMjJw5swZtr3T09ORm5vLtrder8fJkycB9A30IyIi0NjYCK1Wi7lz5yI7OxsAEBERAV9fX7a9U1NTUVNTg/r6enh4eGD+/PnIzc2FzWZDaGgogoODcfToUQBAcnIympqaUFNTA6VSiYULFyIvLw9WqxUhISEIDw/H4cOH2fY2mUyorKwEACxatAj5+fno6elBYGAgYmJi2PaeOnUquru72faeP38+CgsL2faOnzEDxQcOAGYz4mtrYbPZUFZWxvbZ4uJitLe3w8fHB4mJiWyfnTRpEpRKJdtn58yZg5KSErS2tsLLywupqanYsmULYmNjERsbC41Gg5KSEra9y8rK0NTUBJ1Oh4yMDOzevRsAEBUVBW9vb5w4cQIAkJaWhsrKSjQ0NECj0SArKws5OTlgGAbh4eHw9/dn58bOmDEDdXV1qKurY/uso72NRiOMRiOOHDkCAEhKSkJLSwuqq6uhUCiwaNEi7N27FxaLBcHBwYiMjERhYSEAYPr06ejo6EBFRQUAwG63w8vLC93d3QgMDERcXBzbZxMSEmCxWNg+K9Qx4vjx4+wzbYU8Rnz11VeIjY2d0GPE119/jfDwcN6OEVVVVbjllltGPEakp6ejvLx83MeI8vJyrFq1irNjRG5uLnti45KOEfHxOHDgANtnuTxG5OXlse0tp2PEwoULcfDgQcGOEQOnno1GEne/PvLII/jvf/+L3NxcRPavmZWXl4f58+ejuroaYWFh7L73338/Kioq8N133w0ba7gzdVFRUXT3qxvLzs6m5ym6SK5tJYV6iSVHIfLgu0y+4nMdVyx9gEw8V+9+Ff2Zusceewz//ve/kZOTww7oACC0f+5QbW2t06Cuvr5+yNm7gbRaLbQDHvhNyNRRHuJOnMm1raRQL7HkKEQefJfJV3yu44qlDxDxEu2NEgzD4NFHH8WWLVvw/fffIy4uzun9uLg4hIaGYseOHew2i8WC7OxszJs3b6LTJRLW3d0tdAqSIde2kkK9xJKjEHnwXSZf8bmOK5Y+QMRLtIO6Rx55BB9//DE2bdoEg8GA2tpa1NbWsp1aoVDg8ccfx0svvYStW7fi2LFjWL16NfR6PW6//XaBsydS4ph3QsYm17aSQr3EkqMQefBdJl/xuY4rlj5AxEu0l1/feustAMCSJUuctr///vtYvXo1AOCpp55Cd3c3Hn74YbS0tCAzMxPbt2+HwWCY4GwJIYQQQoQliRsl+ESPCSO9vb3w8BDt3zeiIte2kkK9xJKjEHnwXSZf8bmOK5Y+QCae5B8TRshEcdzCTsYm17aSQr3EkqMQefBdJl/xuY4rlj5AxIsGdcTtdXV1CZ2CZMi1raRQL7HkKEQefJfJV3yu44qlDxDxokEdcXv+/v5CpyAZcm0rKdRLLDkKkQffZfIVn+u4YukDRLxoTh3NqXN7XV1d0Ov1QqchCXJtKynUSyw5CpEH32XyFZ/ruGLpA2Ti0Zw6QlzkeFwOGZtc20oK9RJLjkLkwXeZfMXnOq5Y+gARLxrUEUIIIYTIAA3qiNuLj48XOgXJkGtbSaFeYslRiDz4LpOv+FzHFUsfIOJFgzri9mw2m9ApSIZc20oK9RJLjkLkwXeZfMXnOq5Y+gARLxrUEbdXVlYmdAqSIde2kkK9xJKjEHnwXSZf8bmOK5Y+QMSLBnWEEEIIITJAS5rQkiZuz2w2Q6vVCp2GJMi1raRQL7HkKEQefJfJV3yu44qlD5CJR0uaEOKi4uJioVOQDLm2lRTqJZYchciD7zL5is91XLH0ASJeNKgjbq+9vV3oFCRDrm0lhXqJJUch8uC7TL7icx1XLH2AiBcN6ojbo8vurpNrW0mhXmLJUYg8+C6Tr/hcxxVLHyDiRXPqaE6d26N5Kq6Ta1tJoV5iyZHm1AkXVyx9gEw8mlNHiIv27dsndAqSIde2kkK9xJKjEHnwXSZf8bmOK5Y+QMSLBnWEEEIIITJAgzri9iZNmiR0CpIh17aSQr3EkqMQefBdJl/xuY4rlj5AxIsGdcTtKZX0Y+AqubaVFOollhyFyIPvMvmKz3VcsfQBIl7UQ4jbKy0tFToFyZBrW0mhXmLJUYg8+C6Tr/hcxxVLHyDiRYM6QgghhBAZoCVNaEkTt9fd3Q2dTid0GpIg17aSQr3EkqMQefBdJl/xuY4rlj5AJh4taUKIi0pKSoROQTLk2lZSqJdYchQiD77L5Cs+13HF0geIeNGgjri91tZWoVOQDLm2lRTqJZYchciD7zL5is91XLH0ASJeshjUvfnmm4iLi4OnpydmzZqF3bt3C50SkRAvLy+hU5AMubaVFOollhyFyIPvMvmKz3VcsfQBIl6Sn1O3efNmrFq1Cm+++Sbmz5+Pd955B3/7299w/PhxREdHj/l5mlNHrFYr1Gq10GlIglzbSgr1EkuOQuTBd5l8xec6rlj6AJl4bjOnbsOGDbj33ntx3333Yfr06Xj99dcRFRWFt956S+jUiETk5eUJnYJkyLWtpFAvseQoRB58l8lXfK7jiqUPEPHyEDqBS2GxWHDo0CE8/fTTTtuXLVs2Yuc3m80wm83s67a2NgB9o2Dinjo7O+n/30VybSsp1EssOQqRB99l8hWf67hi6QNk4jn+38e6uCrpQV1jYyNsNhuMRqPTdqPRiNra2mE/s379eqxbt27I9qioKF5yJIQQQgjhQnt7O3x9fUd8X9KDOgeFQuH0mmGYIdscfv3rX2PNmjXs69bWVsTExKC8vHzUhiLyNXv2bBw4cEDoNCRBrm0lhXqJJUch8uC7TL7icxnXZDIhKioKFRUVNP/bDTEMg/b2doSHh4+6n6QHdUFBQVCpVEPOytXX1w85e+eg1Wqh1WqHbPf19aUfFDelUqno/95Fcm0rKdRLLDkKkQffZfIVn4+4Pj4+ougHZOK5cuJJ0jdKaDQazJo1Czt27HDavmPHDsybN0+grIjUPPLII0KnIBlybSsp1EssOQqRB99l8hVfLP9nxH3IZkmTt99+G1lZWXj33Xfx3nvvobi4GDExMWN+npY0IYQQInb0u4q4QtKXXwHglltuQVNTE55//nnU1NQgOTkZ33zzjUsDOqDvcuxzzz037CVZQgghRAzodxVxheTP1BFCCCGEEInPqSOEEEIIIX1oUEcIIYQQIgM0qCOEEEIIkQEa1BFCCCGEyAAN6gghhBBCZIAGdSOoqKjAkiVLkJiYiBkzZuCzzz4TOiVCCCHESXt7O2bPno2ZM2ciJSUF7733ntApEQHRkiYjqKmpQV1dHWbOnIn6+nqkp6fj/7d37yFR5X0cx98HHxt1prCym2mxprtk6TgpRXey0optN5CFpd22oguK3bOCDIoKpLAblVJBLWwXjKVt223Zardtx1aiCymVEUSa2JXKmLLSGuf5I5pnZ91H7aZ25vMC/zjfc87vfDn//D5zbl65cgWr1drSrYmIiADgdrupqakhJCSEJ0+e0LdvX86cOUPHjh1bujVpAR/8x4ffl27dutGtWzcAOnfuTIcOHXjw4IFCnYiItBoBAQGEhIQA8OzZM9xuN7pW479Me/vV6XQyfvx4wsPDMQyDgwcP1tsmLy+Pjz76iKCgIBITEyksLPzXsc6ePUtdXR2RkZHvuWsREfEn72KuevjwIXa7nYiICBYvXkxYWFgzdS+tjWlDXXV1NXa7nS1btvzr+oKCAubNm0d2djbnz59n6NChjB07loqKCp/t7t+/zzfffMP27dubo20REfEj72KuCg0NpaSkhLKyMvbu3cudO3eaq31pZfzimTrDMPjhhx+YMGGCtzZgwAD69etHfn6+t9a7d28mTJhATk4OADU1NYwePZoZM2YwadKk5m5bRET8yJvOVX+XkZFBcnIyX3zxRXO0LK2Maa/UNaS2tpZz586RkpLiU09JSaGoqAgAj8fDlClTSE5OVqATEZFm15S56s6dO7hcLgBcLhdOp5NPPvmk2XuV1sEvX5S4d+8ebrebLl26+NS7dOnC7du3Afjrr78oKCggPj7e+4zDd999R1xcXHO3KyIifqgpc1VlZSXTpk3D4/Hg8XiYNWsW8fHxLdGutAJ+GepeMQzDZ9nj8XhrQ4YMoa6uriXaEhER8WporkpMTKS4uLgFupLWyC9vv4aFhREQEOD9pfPK3bt36/0iEhERaQmaq+R1+WWoa9OmDYmJiRw7dsynfuzYMQYNGtRCXYmIiPyP5ip5Xaa9/fr48WOuXr3qXS4rK6O4uJgOHTrQo0cPFixYwKRJk0hKSmLgwIFs376diooK0tPTW7BrERHxJ5qr5F0y7SdNTpw4wYgRI+rVJ0+ezLfffgu8/KDj2rVruXXrFn379mXDhg0MGzasmTsVERF/pblK3iXThjoRERERf+KXz9SJiIiImI1CnYiIiIgJKNSJiIiImIBCnYiIiIgJKNSJiIiImIBCnYiIiIgJKNSJiIiImIBCnYiIiIgJKNSJiIiImIBCnYhIE61YsYKEhIS3GqO8vBzDMCguLm5wuytXrtC1a1cePXrU6JgXLlwgIiKC6urqt+pNRD5sCnUiYjpTpkzBMAwMwyAwMJCoqCiysrLeOvRkZWXx+++/v6MuG5adnU1mZiZt27ZtdNu4uDj69+/Phg0bmqEzEWmtFOpExJTGjBnDrVu3uHbtGqtXryYvL4+srKw3Gsvj8fDixQtsNhsdO3Z8x53WV1lZyaFDh5g6dWqT95k6dSr5+fm43e732JmItGYKdSJiShaLha5duxIZGcnEiRP56quvOHjwIPAypK1du5aoqCiCg4Ox2+18//333n1PnDiBYRgcOXKEpKQkLBYLhYWF9W6/1tXVsXLlSiIiIrBYLCQkJPDrr7/69HH69GkcDgdBQUEkJSVx/vz5Rnvfv38/drudiIgIb+369euMHz+e9u3bY7Va6dOnD7/88ot3fWpqKvfv3+fPP/98wzMmIh+6/7R0AyIizSE4OJjnz58DsGzZMg4cOEB+fj4xMTE4nU6+/vprOnXqxPDhw737LF68mNzcXKKioggNDa0XmDZt2sS6devYtm0bDoeDnTt38tlnn3Hp0iViYmKorq7m008/JTk5md27d1NWVsbcuXMb7dXpdJKUlORTy8zMpLa2FqfTidVqpbS0FJvN5l3fpk0b7HY7hYWFJCcnv82pEpEPlEKdiJje6dOn2bt3LyNHjqS6upr169dz/PhxBg4cCEBUVBQnT55k27ZtPqFu5cqVjB49+v+Om5uby5IlS/jyyy8BWLNmDX/88QcbN25k69at7NmzB7fbzc6dOwkJCaFPnz5UVlaSkZHRYL/l5eUkJib61CoqKkhLSyMuLs7b8z91796d8vLyJp0TETEfhToRMaWff/4Zm83GixcveP78OZ9//jmbN2+mtLSUZ8+e1QtrtbW1OBwOn9o/r5b9ncvl4ubNmwwePNinPnjwYEpKSgC4fPkydrudkJAQ7/pXQbIhT58+JSgoyKc2Z84cMjIyOHr0KKNGjSItLY34+HifbYKDg3ny5Emj44uIOSnUiYgpjRgxgvz8fAIDAwkPDycwMBCAsrIyAA4fPkz37t199rFYLD7LVqu10eMYhuGz7PF4vDWPx/NGvYeFhVFVVeVTmz59OqmpqRw+fJijR4+Sk5PDunXrmD17tnebBw8e0KtXrzc6poh8+PSihIiYktVqJTo6mp49e3oDHUBsbCwWi4WKigqio6N9/iIjI5s8frt27QgPD+fkyZM+9aKiInr37u09VklJCU+fPvWuP3XqVKNjOxwOSktL69UjIyNJT0/nwIEDLFy4kB07dvisv3jxYr2rjSLiP3SlTkT8Stu2bcnKymL+/PnU1dUxZMgQXC4XRUVF2Gw2Jk+e3OSxFi1axPLly+nVqxcJCQns2rWL4uJi9uzZA8DEiRPJzs5m2rRpLFu2jPLycnJzcxsdNzU1lenTp+N2uwkICABg3rx5jB07lo8//piqqiqOHz/uDY/w8jm8GzduMGrUqNc8IyJiFgp1IuJ3Vq1aRefOncnJyeHatWuEhobSr18/li5d+lrjzJkzB5fLxcKFC7l79y6xsbEcOnSImJgYAGw2Gz/99BPp6ek4HA5iY2NZs2YNaWlpDY47btw4AgMD+e2330hNTQXA7XaTmZlJZWUl7dq1Y8yYMT4fG963bx8pKSn07NnzNc+GiJiF4XnThz5EROS9ycvL48cff+TIkSONbltTU0NMTAz79u2r9+KGiPgPXakTEWmFZs6cSVVVFY8ePWr0X4Vdv36d7OxsBToRP6crdSIiIiImoLdfRURERExAoU5ERETEBBTqRERERExAoU5ERETEBBTqRERERExAoU5ERETEBBTqRERERExAoU5ERETEBBTqREREREzgvylBVEE6heV8AAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -2931,32 +2884,32 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m2025-07-11T17:39:23.259964-0700 | INFO | aurora.pipelines.transfer_function_kernel | update_dataset_df | DECIMATION LEVEL 3\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:23.290801-0700 | INFO | aurora.pipelines.transfer_function_kernel | update_dataset_df | Dataset Dataframe Updated for decimation level 3 Successfully\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:23.568881-0700 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:23.786675-0700 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[33m\u001b[1m2025-07-11T17:39:23.789638-0700 | WARNING | aurora.pipelines.feature_weights | extract_features | Features could not be accessed from MTH5 -- \n",
+ "\u001b[1m2026-01-20T20:13:57.507633-0800 | INFO | aurora.pipelines.transfer_function_kernel | update_dataset_df | line: 137 | DECIMATION LEVEL 3\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:57.545901-0800 | INFO | aurora.pipelines.transfer_function_kernel | update_dataset_df | line: 156 | Dataset Dataframe Updated for decimation level 3 Successfully\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:13:59.041684-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:14:00.864792-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:14:00.877486-0800 | INFO | aurora.pipelines.feature_weights | extract_features | line: 43 | Features could not be accessed from MTH5 -- \n",
"Calculating features on the fly (development only)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:23.796944-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 1514.701336s (0.000660Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:23.821246-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 1042.488956s (0.000959Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:23.847033-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 723.371271s (0.001382Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:23.874233-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 532.971560s (0.001876Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:23.898372-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 412.837995s (0.002422Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:23.928249-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 1514.701336s (0.000660Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:23.955901-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 1042.488956s (0.000959Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:23.984639-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 723.371271s (0.001382Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:24.019940-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 532.971560s (0.001876Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:24.052375-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 412.837995s (0.002422Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:24.090261-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 1514.701336s (0.000660Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:24.118385-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 1042.488956s (0.000959Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:24.159490-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 723.371271s (0.001382Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:24.197207-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 532.971560s (0.001876Hz)\u001b[0m\n",
- "\u001b[1m2025-07-11T17:39:24.235168-0700 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Accessing band 412.837995s (0.002422Hz)\u001b[0m\n"
+ "\u001b[1m2026-01-20T20:14:00.894180-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 3029.402672s (0.000330Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:14:00.981611-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 2084.977911s (0.000480Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:14:01.081655-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 1446.742543s (0.000691Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:14:01.171270-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 1065.943120s (0.000938Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:14:01.266621-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 825.675990s (0.001211Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:14:01.363438-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 3029.402672s (0.000330Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:14:01.451416-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 2084.977911s (0.000480Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:14:01.544483-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 1446.742543s (0.000691Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:14:01.629596-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 1065.943120s (0.000938Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:14:01.720388-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 825.675990s (0.001211Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:14:01.809728-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 3029.402672s (0.000330Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:14:01.903119-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 2084.977911s (0.000480Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:14:01.992773-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 1446.742543s (0.000691Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:14:02.084010-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 1065.943120s (0.000938Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-20T20:14:02.169954-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 825.675990s (0.001211Hz)\u001b[0m\n"
]
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG9CAYAAAAcFdw9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIPUlEQVR4nO3deXhU1eH/8c8kkBUS9oSEsIiI7FsCUrGKTVmKIGtRaAmi9FcFBIMoSNuoWCmoFJEILoW4gaggKMrWCIIUIYCAgiBghLAkyJaQACHM3N8f883IkAQmksnM3Lxfz3Mf5u7nDiH3wznnnmsxDMMQAACACfl5ugAAAADuQtABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACm5fNBJyMjQ3fddZeaN2+u1q1b68MPP/R0kVCOsrKyNGXKFN15552KiIhQQECAQkND1aJFCz344INasWKFSnqd24svviiLxeI0LV++/JrnO3LkiMaNG6cWLVooNDRUgYGBioyMVKtWrTR48GBNnTpVZ86cKbKf1WrVa6+9pi5duqh69eoKDg5WkyZNNHbsWB0/fvy613n58mV16NDBqazDhw936TsCgArN8HHHjh0zvvnmG8MwDOP48eNGVFSUkZub69lCoVwkJycbQUFBhqRrTunp6cXu36JFiyLbDhgwoMTzbdu2zQgPD7/u+Qp/HgtduHDB6NatW4nb16hRw0hLS7vmtT777LNF9ktISCjlNwYAFU+l8ghT7lS3bl3VrVtXkhQZGalatWrp9OnTCg0N9XDJ4E7Tp0/Xk08+6Zj39/dXr169HLUeBw4c0KpVq5SVlVXs/mlpadq9e3eR5Z9++qlOnz6tGjVqFFn3yCOPKDs7W5IUGhqqwYMH66abblJBQYH279+vDRs2KCMjo8h+kydP1urVqx3lHDFihOrWrauUlBQdPnxYp0+f1qBBg/Tdd98V+3O7a9cuTZkyxbUvBgDgzNNJ68svvzTuueceo27duoYk4+OPPy6yzezZs40GDRoYgYGBRseOHY3NmzcXe6ytW7caLVq0cHOJfcPq1auNAQMGGDExMUZAQIAREhJidOrUyZg3b55hs9l+1THXrl1rjBgxwmjXrp0RGRlpBAQEGMHBwUbjxo2N4cOHG7t27SrV8ebPn+9SzcvVdu/ebfj7+zv2q1OnjrF9+/Yi2126dMl4/fXXjaysrCLrHnnkEcf+9evXd6oZeuWVV4psn52d7VTWlJSUYsu2ZcsW4+eff3bMnzp1yggMDHTs99RTTznW7d2717BYLI51r776arHX0LZtW0OSERsba0RHR1OjAwCl4PGg8/nnnxuTJ082lixZUmzQef/9942AgABj3rx5xu7du42RI0ca1apVK3LzOnXqlNG8eXNj48aN5Vh673P58mWnm3hx0+DBg39V2Bk/fvw1jxsQEGCsWbPG5eP92qDz17/+1Wm/xYsXl+o6Ll68aFSvXt0pfPTr188x3759+yL7nDp1yumcjz/+uHH58uXrnmvhwoVO+23bts1pfatWrRzrevToUWT/pKQkQ5IRGBho7N6922jQoAFBBwBKweNNVz179lTPnj1LXD9jxgyNHDlSDzzwgCRp7ty5+uyzzzRv3jxNnDhRkpSfn6++fftq4sSJ+s1vfnPN8+Xn5ys/P98xb7PZdPr0adWsWVMWi6UMrsiznnvuOb366quSJIvFoj/+8Y+KiYnRJ598oh9++EGStGjRIt12220aMWJEqY5dqVIldenSRc2bN1f16tUVFBSk06dPa/Xq1dq3b58uXbqk0aNHa8uWLS4d78KFC07z586dU05OznX3W7NmjeNztWrVdPfdd7u0X6ElS5Y4dRi+55571KRJE3388ceSpO3bt2vTpk1q0aKFY5tKlSqpfv36Onz4sCR7R+Z58+bptttuU+vWrRUXF6c77rhDgYGBTudKS0tzmq9Vq5ZTWevXr69vv/1WkrRz506ndbt27dLzzz8vSXrqqadUr149p47VBQUFpbpuADATwzB07tw5RUVFyc/vGs9WeTppXUlX1ejk5+cb/v7+RWp5hg0bZvTp08cwDMOw2WzGfffdZyQlJbl0jsL/ITMxMTExMTH5/pSRkXHN+77Ha3Su5eTJk7JarYqIiHBaHhERob1790qSNm7cqEWLFql169ZaunSpJOmdd95Rq1atij3mpEmTlJiY6JjPzs5W/fr1lZGRobCwMPdcSDlZv369evfu7Zj/7rvvFBMT45gfNWqU3n33XUlSYGCgTpw4Uarjf/HFF3r00UeL7XB7pTVr1qhjx46lOnZp1K1bV+fPn5ckxcbGKjU11eV9MzMz1bx5c1mtVknS3/72N02YMEGS9NBDDzmGJ6hdu7b27t2rSpWc/4ls2LBB06dP11dffSWbzVbsOSZOnKhJkyZJksaNG6f58+c71p0+fVr+/v6O+ZEjR+qDDz6Q5Px38s9//lPTp09XcHCwNmzYoCZNmkiSWrVq5ahVGjJkiObMmePytQOAmeTk5CgmJkZVq1a95nZeHXRc0aVLlxJvOMUJDAws0rwgSWFhYT4fdK5uxrj55pudrrVevXqOz/n5+SV+F8U5duyYhg4d6ggY11KpUiW3fpfR0dHav3+/JOngwYOqWrWqy82Oc+bMcYQcSUpISHCUddiwYY6g8/PPP+urr75Snz59nPbv1auXevXqpezsbG3atEmbN2/W8uXLtXXrVsc2r776qqZOnSpJjicCC1ksFqfv5uLFi47PtWrVUlhYmA4fPqwZM2ZIsjdFdujQwWn/QpUrV/b5n1kAuFHX+/3v1QMG1qpVS/7+/kUeEc7KylJkZOQNHTs5OVnNmzdXXFzcDR3Hm1y6dMlp/uoamyu/x6CgIJdDjmR/7PrKkPPSSy/p7NmzMgyj2Me03el3v/ud4/OZM2e0bNkyl/d96623nOabNGniGIDvytowSUpJSSnxOOHh4erRo4eSkpKUlpbm1N8pJyfH8V23bt3aab8ff/zRaf7gwYOOz4W1kKdPn9bly5clSePHj3caJPDQoUNO18LAgQBwbV4ddAICAtShQwenpgmbzabU1FR17tz5ho49atQo7dmzp0hnUTN55513HJ9zcnL06aefOuavrCVwxalTp5zmH3jgAYWHh0uSo+mltFJSUpxu4j/99JNL+40ePdqp+efhhx/Wzp07i2xXUFCgN9980xH4Nm/erO+//97l8i1fvlwnT550zCckJGjbtm3FblulShXHZz8/P0dVardu3RQUFORYt3jxYsfnPXv2aM+ePY75e++91+WyAQBc4/Gmq9zcXB04cMAxn56erh07dqhGjRqqX7++EhMTlZCQoNjYWHXs2FEzZ85UXl6e4ykslOxvf/ub9u7dqwYNGuijjz5yummPHDmyVMdq2rSp03yvXr3Us2dP7dq1Sx999FGZlNdVLVq00JQpU/TUU09Jsve7iY2N1T333KN27doVGTAwPj5ekpz6ylgsFg0aNKhIlWdubq4+++wzSfag9N5772ns2LGSpLfffltvv/22GjdurC5duuimm26SxWLRzp07tWTJEscxfvvb3yokJESSVL16dY0aNUovvfSSJGnatGk6efKk6tatq3nz5jmeomrQoIH+/Oc/S7I/STZgwIBir33FihWOmrUGDRooNjbWVLWSAFDmXH8myj3Wrl1bbC/qK8cIeeWVV4z69esbAQEBRseOHY2vv/66zM5fOBBcdnZ2mR3TU64el6ZXr17Ffre9evUq9Tg6ly5dchrz5eq/qyvn165d+6vK6+o4OoVefvllp8H4SprS09ONCxcuGNWqVXMsi4+PL/aYNpvNaayatm3bOtZd7zyS/XUO3377rdMxL1y4YPz+978vcZ/q1atf9xUQhRhHBwDsXL1/e7zp6q677pJhH7jQabqyf8To0aN16NAh5efna/PmzerUqZPnCuxDlixZomeffVaNGzdWQECAGjZsqKSkJC1evLjUYwZVrlxZX3zxhYYPH66aNWsqMDBQLVu21Ouvv66nn37aPRdwHY8++qjS09P19NNPq0uXLqpdu7YqVaqkkJAQNWvWTA8//LDWrVunBg0aaOnSpTp79qxj35LGELJYLEpISHDM79ixw9Estn37dr3wwgvq1auXmjVrppo1a8rf319Vq1ZVu3bt9MQTT2j37t1q2bKl0zGDgoK0YsUKzZkzR507d1ZYWJgCAwPVuHFjjRkzRt99951iY2PL/gsCAMhiGCW82tnkkpOTlZycLKvVqh9++EHZ2dk+/wRLSkqKU5NeBf2rBQBUADk5OQoPD7/u/dvjNTqeUhE6IwMAUNFV2KADAADMz+NPXcFzjh496jQmTUn69evnGAAPAABfQtAxkeHDh5dq8LiCggLt27fvutsdP378BkoFAIDnVNigc2Vn5IqqYcOGdFgGAJhahX3qqpCrvbYBAID34KkrAABQ4RF0AACAaRF0AACAaVXYoJOcnKzmzZvzQkQAAEyMzsh0RgYAwOfQGRkAAFR4BB0AAGBaBB0AAGBaBB0AAGBaBB0AAGBavOuqAr/rCgBMx2qVNmyQjh+X6taV7rhD8vf3dKngQTxezuPlAGAOS5ZIY8dKR478sqxePenll6X+/T1XLrgFj5cDQEVmtUrr1kkLF9r/NHvt9ZIl0sCBziFHko4etS9fssQz5YLHEXQAwGyWLJEaNpS6dpWGDLH/2bCheW/2BQXS6NFScQ0UhcvGjTN/2EOxCDoAYBY2mzR//rVrNhYv9kzZ3MVmkwIC7H1ySmIYUkaGve8OKpwK2xkZQAVSETqo2mzXvqYrazb69jXP9eflub7ttcIQTIsaHQDmVtGaca7nyBFz1Wz4leI2Vreu+8oBr0XQAVAyX+7Q6kozzoIFxffr8EUXLri+rZlqNkJCpOxsKTpasliK38ZikWJi7DV5qHAqbNBJTk5W8+bNFRcX5+miAN7Jl2tCCptxRowouYOqYUhDh0rnzpV/+TzNTDUbFosUFibNmvXL/NXrJWnmTPM016FUGEeHcXSAogof1b3610PhTeOjj7x7XJLr9Ve50uefSz17urc85cEw7KGteXPp2LHiA57FYh9XJj3dnDf94sbRiYmxhxxv/nnFr8I4OgB+HTM8qluaZpzTp91XjvJEzYY9zPz0k7R2rb1Zcu1ae6gj5FRoPHUFlDdvfgKo8FHda7nyUd277iqXYrmVmZpxJPtN/aOPih8huCLUbPj7m+PnEmWGoAOUJ28fot4sj+oWdlB1pRnnzjvLv3zu1r+/dO+93huogXJE0xVQHnzlCSCzPKpLM84vNRv332//06zXCVwHQQdwN196Ashsj+oWNuNERzsvr1fP+ztUAygTBB3A3UrTHPTVV+4rhyvMWBNCB1WgQqOPDuBupWkOOnPGfeUoDbN1aKWDKlBhEXQAdwsJsY/V8oc/XH/bq5tYPIkOrQBMoMIGneTkZCUnJ8vqzWOBwBwsFqlbN3ttyNGj134CyNv6vVATAsDHMTIyIyOjvBSONiw5hx1fGW0YALwIIyMD3oYngACg3FXYpivAI+j3AgDliqADlDf6vQBAuaHpCgAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmBZBBwAAmFaFDTrJyclq3ry54uLiPF0UAADgJhbDMAxPF8KTXH3NOwAA8B6u3r8rbI0OAAAwP4IOAAAwLYIOAAAwLYIOAAAwLYIOAAAwLYIOAAAwLYIOAAAwLYIOAAAwLYIOAAAwLYIOAAAwLYIOAAAwrUq/ZqeLFy9q165dOnHihGw2m9O6Pn36lEnBAAAAblSpg87KlSs1bNgwnTx5ssg6i8Uiq9VaJgUDAAC4UaVuuhozZowGDRqk48ePy2azOU2EHAAA4E1KHXSysrKUmJioiIgId5QHAACgzJQ66AwcOFDr1q1zQ1EAAADKlsUwDKM0O5w/f16DBg1S7dq11apVK1WuXNlp/aOPPlqmBXS3nJwchYeHKzs7W2FhYZ4uDgAAcIGr9+9Sd0ZeuHChVq9eraCgIK1bt04Wi8WxzmKx+FzQAQAA5lXqpqvJkyfrmWeeUXZ2tn766Selp6c7ph9//NEdZbyufv36qXr16ho4cKBHzg8AALxTqYPOpUuXNHjwYPn5ec9Yg2PHjtXbb7/t6WIAAAAvU+q0kpCQoEWLFrmjLL/aXXfdpapVq3q6GAAAwMuUuo+O1WrV9OnTtWrVKrVu3bpIZ+QZM2aU6njr16/XCy+8oG3btun48eP6+OOP1bdvX6dtkpOT9cILLygzM1Nt2rTRK6+8oo4dO5a26AAAoIIpddD59ttv1a5dO0nSd99957Tuyo7JrsrLy1ObNm00YsQI9e/fv8j6RYsWKTExUXPnzlWnTp00c+ZMde/eXfv27VOdOnVKfT4AAFBxlDrorF27tkwL0LNnT/Xs2bPE9TNmzNDIkSP1wAMPSJLmzp2rzz77TPPmzdPEiRNLfb78/Hzl5+c75nNyckpfaAAA4BNuqEfxxo0bnUJDWbt06ZK2bdum+Ph4xzI/Pz/Fx8dr06ZNv+qYU6dOVXh4uGOKiYkpq+ICAAAvc0NBp2fPnjp69GhZlaWIkydPymq1FnndREREhDIzMx3z8fHxGjRokD7//HPVq1fvmiFo0qRJys7OdkwZGRluKz8AAPCsUjddXamUgyq7zX//+1+Xtw0MDFRgYKAbSwMAALyF9wyGU4xatWrJ399fWVlZTsuzsrIUGRl5Q8dOTk5W8+bNFRcXd0PHAQAA3uuGgs5rr73maFay2Ww6fPhwmRSqUEBAgDp06KDU1FTHMpvNptTUVHXu3PmGjj1q1Cjt2bNHaWlpN1pMAADgpUrddDV//nwtWrRIhw4dUlhYmLZv367HHntMlSpVUqNGjWS1Wkt1vNzcXB04cMAxn56erh07dqhGjRqqX7++EhMTlZCQoNjYWHXs2FEzZ85UXl6e4yksAACAkrgcdKxWq/r376+VK1eqV69e6tOnj86cOaMPP/xQr7/+ul555ZVfVYCtW7eqa9eujvnExERJ9hGYU1JSNHjwYP3888/6xz/+oczMTLVt21YrV64s0kEZAADgahbDxR7FL774ombMmKG1a9eqadOmjuU2m00zZszQ5MmTdfny5VLX6Hiaq695BwAA3sPV+7fLfXRSUlI0ffp0p5Aj2ce1efzxx/Xcc895zVNYrqAzMgAA5udyjU5wcLB27dqlJk2auLtM5YoaHQAAfE+Z1+iEhobq559/LnH9jh07NGLEiNKVEgCAG2SzSSdOOE+5uVJe3i+TDzU4oIy5XKMzYMAAhYaG6u233y6yLjMzU3fddZf2799PHx0AQLmx2SR//+tvl5srhYa6vzwoP2Veo5OUlKTFixcrISFB3333nS5evKhjx47ptddeU1xcnGrVqlUmBQcAACgrLged1q1ba8WKFdq4caPatGmj0NBQxcTE6NFHH9X999+vhQsX0hkZAFCu/Pwkq1WaN0+yWIqut1js08qV5V82eAeXm64K2Ww2bdmyRenp6QoLC1Pnzp1Vo0YN5eXl6cUXX1RSUpK7yuoWNF0BgG+zWqWGDaUjR4pfb7FI9epJ6emuNXPBN7h6/y510DEbgg4A+LZ166Qrxp0t0dq10l13ubs0KC9l3kcHAABvdPx42W4HcyHoAAB8Wt26ZbsdzKXCBh06IwOA7zMMqX17KTq6+M7Ikn15TIx0xx3lWzZ4B/ro0EcHgEnYbNLJk/bPVqv09dfS2bNSZKR0++32jrghISUHAl+UlydVqXL97T78UBo40P3lQflx9f7t8tvLAcBXWa3Shg32Php169r/Z2+2p28YOO/a+vf3dAngKQQdAKZUWLvx2WfS5MnOHVGjo6Xp06V77zVfDcf1LFsmDRni6VKUnZAQe3grZLVKGzdKhw5JERHSbbfZ//SrsB01QNMVTVdAiXy1JsTV2g3JXDUcBQVSgwYlP13EeDIwEx4vB7yU1Wof92PhQvuf3vZ6uMIXJM6fb+/A2bWrvQaga1f7TXTBAnO9INHbvv8bsXHjtR+hNgwpI8MeXoGKgqYroBz4SjPK9WpCjh6Vhg61f/bm5g8/Pyk1Vfrd766/7bZtrg025wsYTwYoqsIGneTkZCUnJ/vc29bhe0oTHnylGeXJJ6XBg723+cMw7H00XJGZ6d6ylBfDkKpVc21bxpNBRUIfHfrowM1K018kO1vy9I/hF1+4VhPizcPpu/rIsWSv+bn7bveWpzy4es0xMfTRgTnQRwfwEhaLvcnKFdu2ubcs11OamhCzNH9UtEHkZswg5KBiIegAbnb+vNSrl2vbHjvm3rJcz/nz0ogRrm3rzc0fhY8cv/eePWhe3e+pcNmHH0qVK3umjGWt8JoLrzs62nl9VBSD5qFiqrB9dABv5M3h4UrePpy+xWLv6zRkiBQUJI0dKx058sv6evWkmTPNNYhc4TVL9usePNg3hwYAyhp9dOijAzczDOncOal5c3uNTXH/4rxlfBPDsNfqLFsm/elPvywrVFgz8tFHvhUSfHU8IAAl4xUQgJewWOwdjGfNsjcbWCzFh4eZMz1/8zVrTYi/v/d2nAbgXtToUKODcrRkSdHwEBPjveGBmhAA3srV+3eFDTpXjqPzww8/EHRQbggPAHDjCDouokYHAADfwzg6AACgwiPoAAAA0yLoAAAA0yLoAAAA0yLoAAAA0yLoAAAA0yLoAAAA0yLoAAAA06qwQSc5OVnNmzdXXFycp4sCAADchJGRGRkZAACfw8jIAACgwiPoAAAA0yLoAAAA0yLoAAAA0yLoAAAA0yLoAAAA0yLoAAAA0yLoAAAA0yLoAAAA0yLoAAAA0yLoAAAA0yLoAAAA0yLoAAAA06qwQSc5OVnNmzdXXFycp4sCAADcxGIYhuHpQniSq695BwAA3sPV+3eFrdEBAADmR9ABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmZYqgs3z5cjVt2lRNmjTRm2++6eniAAAAL1HJ0wW4UZcvX1ZiYqLWrl2r8PBwdejQQf369VPNmjU9XTQAAOBhPl+js2XLFrVo0ULR0dGqUqWKevbsqdWrV3u6WAAAwAt4POisX79evXv3VlRUlCwWi5YuXVpkm+TkZDVs2FBBQUHq1KmTtmzZ4lh37NgxRUdHO+ajo6N19OjR8ig6AADwch4POnl5eWrTpo2Sk5OLXb9o0SIlJiYqKSlJ27dvV5s2bdS9e3edOHGinEsKAAB8jcf76PTs2VM9e/Yscf2MGTM0cuRIPfDAA5KkuXPn6rPPPtO8efM0ceJERUVFOdXgHD16VB07dizxePn5+crPz3fMZ2dnS5JycnJu9FIAAEA5KbxvG4Zx7Q0NLyLJ+Pjjjx3z+fn5hr+/v9MywzCMYcOGGX369DEMwzAKCgqMm2++2Thy5Ihx7tw545ZbbjFOnjxZ4jmSkpIMSUxMTExMTEwmmDIyMq6ZLTxeo3MtJ0+elNVqVUREhNPyiIgI7d27V5JUqVIlvfTSS+ratatsNpueeOKJaz5xNWnSJCUmJjrmbTabTp8+rZo1a8pisbjnQn6luLg4paWleboYXsHXvwtvLL+nylRe53XXecryuGVxrJycHMXExCgjI0NhYWFlUi54jjf+rvCU630XhmHo3LlzioqKuuZxvDrouKpPnz7q06ePS9sGBgYqMDDQaVm1atXcUKob5+/vzy+u/+Pr34U3lt9TZSqv87rrPGV53LI8VlhYmNf9jKH0vPF3hae48l2Eh4df9zge74x8LbVq1ZK/v7+ysrKclmdlZSkyMtJDpSo/o0aN8nQRvIavfxfeWH5Plam8zuuu85Tlcb3x5wKexc/EL8rqu7D8X98Yr2CxWPTxxx+rb9++jmWdOnVSx44d9corr0iyNzXVr19fo0eP1sSJEz1UUgDwDjk5OQoPD1d2djY1AUAxPN50lZubqwMHDjjm09PTtWPHDtWoUUP169dXYmKiEhISFBsbq44dO2rmzJnKy8tzPIUFABVZYGCgkpKSijTJA7DzeI3OunXr1LVr1yLLExISlJKSIkmaPXu2XnjhBWVmZqpt27aaNWuWOnXqVM4lBQAAvsbjQQcAAMBdvLozMgAAwI0g6AAAANMi6AAAANMi6ACACZ09e1axsbFq27atWrZsqTfeeMPTRQI8gs7IAGBCVqtV+fn5CgkJUV5enlq2bKmtW7de8xU5gBlRowMAJuTv76+QkBBJUn5+vgzDuP5bngETIugAgBdav369evfuraioKFksFi1durTINsnJyWrYsKGCgoLUqVMnbdmyxWn92bNn1aZNG9WrV08TJkxQrVq1yqn0gPcg6ACAF8rLy1ObNm2UnJxc7PpFixYpMTFRSUlJ2r59u9q0aaPu3bvrxIkTjm2qVaumnTt3Kj09XQsWLCjy3kCgIqCPDgB4uZLeAxgXF6fZs2dLsr8HMCYmRmPGjCn2PYCPPPKI7r77bg0cOLC8ig14BWp0AMDHXLp0Sdu2bVN8fLxjmZ+fn+Lj47Vp0yZJUlZWls6dOydJys7O1vr169W0aVOPlBfwJI+/1BMAUDonT56U1WpVRESE0/KIiAjt3btXknTo0CH95S9/cXRCHjNmjFq1auWJ4gIeRdABABPq2LGjduzY4eliAB5H0xUA+JhatWrJ39+/SOfirKwsRUZGeqhUgHci6ACAjwkICFCHDh2UmprqWGaz2ZSamqrOnTt7sGSA96HpCgC8UG5urg4cOOCYT09P144dO1SjRg3Vr19fiYmJSkhIUGxsrDp27KiZM2cqLy9PDzzwgAdLDXgfHi8HAC+0bt06de3atcjyhIQEpaSkSJJmz56tF154QZmZmWrbtq1mzZqlTp06lXNJAe9G0AEAAKZFHx0AAGBaBB0AAGBaBB0AAGBaBB0AAGBaBB0AAGBaBB0AAGBaBB0AAGBaFX5kZJvNpmPHjqlq1aqyWCyeLg4AAHCBYRg6d+6coqKi5OdXcr1NhQ86x44dU0xMjKeLAQAAfoWMjAzVq1evxPUVPuhUrVpVkv2LCgsL83BpAACAK3JychQTE+O4j5ekwgedwuaqsLAwgg4AAD7met1O6IwMAABMi6ADAABMi6ADAABMi6ADAABMi6ADAABMi6ADAABMi6ADAABMi6ADAABMi6ADAABMi6ADAABMi6ADAABMi6ADAABMy2uDjtVq1d///nc1atRIwcHBaty4saZMmSLDMBzbGIahf/zjH6pbt66Cg4MVHx+v/fv3e7DUAADAm3ht0Jk2bZrmzJmj2bNn6/vvv9e0adM0ffp0vfLKK45tpk+frlmzZmnu3LnavHmzQkND1b17d128eNGDJQcAAN7CYlxZReJF7rnnHkVEROg///mPY9mAAQMUHBysd999V4ZhKCoqSuPHj9fjjz8uScrOzlZERIRSUlJ03333uXSenJwchYeHKzs7W2FhYW65FgAAULZcvX97bY3Ob37zG6WmpuqHH36QJO3cuVNfffWVevbsKUlKT09XZmam4uPjHfuEh4erU6dO2rRpU4nHzc/PV05OjtMEAADMqZKnC1CSiRMnKicnR7feeqv8/f1ltVr1z3/+U0OHDpUkZWZmSpIiIiKc9ouIiHCsK87UqVP1zDPPuK/gAADAa3htjc4HH3yg9957TwsWLND27dv11ltv6cUXX9Rbb711Q8edNGmSsrOzHVNGRkYZldi7ZGVlacqUKbrzzjsVERGhgIAAhYaGqkWLFnrwwQe1YsUKldRq+eKLL8pisThNy5cvv+b5jhw5onHjxqlFixYKDQ1VYGCgIiMj1apVKw0ePFhTp07VmTNniuxntVr12muvqUuXLqpevbqCg4PVpEkTjR07VsePH7/udV6+fFkdOnRwKuvw4cNd+o4AABWA4aXq1atnzJ4922nZlClTjKZNmxqGYRgHDx40JBnffPON0za//e1vjUcffdTl82RnZxuSjOzs7Bsus7dITk42goKCDEnXnNLT04vdv0WLFkW2HTBgQInn27ZtmxEeHn7d8139d3XhwgWjW7duJW5fo0YNIy0t7ZrX+uyzzxbZLyEhoZTfGADA17h6//bapqvz58/Lz8+5wsnf3182m02S1KhRI0VGRio1NVVt27aVZO+YtHnzZj388MPlXVyvMX36dD355JOOeX9/f/Xq1ctR63HgwAGtWrVKWVlZxe6flpam3bt3F1n+6aef6vTp06pRo0aRdY888oiys7MlSaGhoRo8eLBuuukmFRQUaP/+/dqwYUOxNWeTJ0/W6tWrHeUcMWKE6tatq5SUFB0+fFinT5/WoEGD9N133yk0NLTI/rt27dKUKVNc+2IAABVTOQWvUktISDCio6ON5cuXG+np6caSJUuMWrVqGU888YRjm3/9619GtWrVjGXLlhm7du0y7r33XqNRo0bGhQsXXD6PmWp0du/ebfj7+ztqNurUqWNs3769yHaXLl0yXn/9dSMrK6vIukceecSxf/369Z1qhl555ZUi2xd+f4VTSkpKsWXbsmWL8fPPPzvmT506ZQQGBjr2e+qppxzr9u7da1gsFse6V199tdhraNu2rSHJiI2NNaKjo6nRAYAKxNX7t9cGnZycHGPs2LGOm+1NN91kTJ482cjPz3dsY7PZjL///e9GRESEERgYaPzud78z9u3bV6rzmCno/PWvf3UKHYsXLy7V/hcvXjSqV6/uFD769evnmG/fvn2RfU6dOuV0zscff9y4fPnydc+1cOFCp/22bdvmtL5Vq1aOdT169Ciyf1JSkiHJCAwMNHbv3m00aNCAoAMAFYjPB53yYqag06RJE8fNvnr16obVai3V/osWLXIKH7t27Sp22dWuDBmSjJo1axp9+vQxkpKSjJUrVxoXL14sss+kSZOc9jlz5ozT+nvvvdexLioqymndN998Y1SuXNmQZEybNq1IGQg6AGB+rt6/vfapK5Te0aNHHZ9vueWWIn2criclJcXxuUWLFmrVqpV69+6tKlWqFLtNoX//+9+yWCyO+VOnTumTTz7RM888ox49eigiIkLPPvusrFarY5vTp087HePqwZ6qVq3qdLxCBQUFGj58uAoKCnTbbbdp/PjxpbpGAEDFQtCBJOn48eOOjsGSHCNLBwcHq0+fPo7l7777ri5fvuy0b79+/fTFF1/o7rvvLjZcZWdnKykp6Zodh42rHnW/er7QlClTtHPnTgUHByslJUX+/v7XvzgAQIVF0DGR6Ohox+cffvihxLBQnLffftupxuXKV2jcf//9js8nTpzQ559/XmT/u+66S6mpqTp9+rRWrFihp59+WrGxsU7b/Pvf/3Z8rlmzptO6c+fOlThfq1YtSdLhw4c1depUSdJzzz2npk2bunx9AICKiaBjIr/73e8cn8+cOaNly5a5vO/VAzE2adLEMQBf7969ndYV13xVKDw8XD169FBSUpLS0tI0YsQIx7qcnBzHY+2tW7d22u/HH390mj948KDjc6tWrSTZm7sKa5PGjx/vNEjgoUOHnK6FgQMBABJBx1RGjx7t1JTz8MMPa+fOnUW2Kygo0JtvvqkTJ05IkjZv3qzvv//e5fMsX75cJ0+edMwnJCRo27ZtxW57Zf8ePz8/R9+bbt26KSgoyLFu8eLFjs979uzRnj17HPP33nuvy2UDAOBKXjtgIEqvRYsWmjJlip566ilJ9veBxcbG6p577lG7du2KDBhY+ELU+fPnO45hsVg0aNAgp87FkpSbm6vPPvtMkj0ovffeexo7dqwke7PX22+/rcaNG6tLly666aabZLFYtHPnTi1ZssRxjN/+9rcKCQmRJFWvXl2jRo3SSy+9JEmaNm2aTp48qbp162revHmOZrcGDRroz3/+sySpWrVqGjBgQLHXvmLFCp0/f96xT2xsrOLi4m7g2wQAmIHFKE1HDhNy9TXvvmTWrFl64oknlJ+ff83t0tPTFRkZqbp16+rs2bOSpPj4eK1Zs6bItoZhqFGjRo4morZt2+qbb76RpCKhqDg1atTQl19+qZYtWzqWXbx4UX369Cn2fJI9DK1evbpIX5/iNGzY0FG2hISEazavAQB8n6v3b5quTOjRRx9Venq6nn76aXXp0kW1a9dWpUqVFBISombNmunhhx/WunXr1KBBAy1dutQRciQ59am5ksViUUJCgmN+x44djmax7du364UXXlCvXr3UrFkz1axZU/7+/qpataratWunJ554Qrt373YKOZIUFBSkFStWaM6cOercubPCwsIUGBioxo0ba8yYMfruu+9cCjkAAJSEGh0T1ugAAGB21OgAAIAKj6ADAABMi6ADAABMi6ADAABMi6ADAABMi6ADAABMi6ADAABMi6ADAABMi6ADAABMi6ADAABMi6ADAABMi6ADAABMi6ADAABMi6ADAABMi6ADAABMi6ADAABMi6ADAABMy6uDztGjR/WnP/1JNWvWVHBwsFq1aqWtW7c61huGoX/84x+qW7eugoODFR8fr/3793uwxAAAwJt4bdA5c+aMbr/9dlWuXFkrVqzQnj179NJLL6l69eqObaZPn65Zs2Zp7ty52rx5s0JDQ9W9e3ddvHjRgyUHAADewmIYhuHpQhRn4sSJ2rhxozZs2FDsesMwFBUVpfHjx+vxxx+XJGVnZysiIkIpKSm67777XDpPTk6OwsPDlZ2drbCwsDIrPwAAcB9X799eW6PzySefKDY2VoMGDVKdOnXUrl07vfHGG4716enpyszMVHx8vGNZeHi4OnXqpE2bNpV43Pz8fOXk5DhNAADAnLw26Pz444+aM2eOmjRpolWrVunhhx/Wo48+qrfeekuSlJmZKUmKiIhw2i8iIsKxrjhTp05VeHi4Y4qJiXHfRQAAAI/y2qBjs9nUvn17Pf/882rXrp3+8pe/aOTIkZo7d+4NHXfSpEnKzs52TBkZGWVUYgAA4G3KLeicPXu2VNvXrVtXzZs3d1rWrFkzHT58WJIUGRkpScrKynLaJisry7GuOIGBgQoLC3OaAACAObkl6EybNk2LFi1yzP/xj39UzZo1FR0drZ07d7p0jNtvv1379u1zWvbDDz+oQYMGkqRGjRopMjJSqampjvU5OTnavHmzOnfuXAZXAQAAfJ1bgs7cuXMdfV/WrFmjNWvWaMWKFerZs6cmTJjg0jEee+wxff3113r++ed14MABLViwQK+//rpGjRolSbJYLBo3bpyee+45ffLJJ/r22281bNgwRUVFqW/fvu64LAAA4GMqueOgmZmZjqCzfPly/fGPf1S3bt3UsGFDderUyaVjxMXF6eOPP9akSZP07LPPqlGjRpo5c6aGDh3q2OaJJ55QXl6e/vKXv+js2bPq0qWLVq5cqaCgIHdcFgAA8DFuGUcnKipKH330kX7zm9+oadOmeu655zRo0CDt27dPcXFxXvVIN+PoAADge1y9f7ulRqd///4aMmSImjRpolOnTqlnz56SpG+++UY333yzO04JAABQhFuCzr///W81bNhQGRkZmj59uqpUqSJJOn78uB555BF3nBIAAKAIr30FRHmh6QoAAN/j8VdAvPPOO+rSpYuioqJ06NAhSdLMmTO1bNkyd50SAADAiVuCzpw5c5SYmKiePXvq7NmzslqtkqRq1app5syZ7jglAABAEW4JOq+88oreeOMNTZ48Wf7+/o7lsbGx+vbbb91xSgAAgCLcEnTS09PVrl27IssDAwOVl5fnjlMCAAAU4Zag06hRI+3YsaPI8pUrV6pZs2buOCUAAEARbnm8PDExUaNGjdLFixdlGIa2bNmihQsXaurUqXrzzTfdcUoAAIAi3BJ0HnroIQUHB+tvf/ubzp8/ryFDhigqKkovv/yy7rvvPnecEgAAoAi3j6Nz/vx55ebmqk6dOu48za/GODoAAPgej4+jc/nyZf33v//VO++8o+DgYEnSsWPHlJub665TAgAAOHFL09WhQ4fUo0cPHT58WPn5+fr973+vqlWratq0acrPz9fcuXPdcVoAQAVks0knTzovCwmRLJaS51FxuCXojB07VrGxsdq5c6dq1qzpWN6vXz+NHDnSHacEAFRANpt0xXBtJcrNlUJD3V8eeB+3BJ0NGzbof//7nwICApyWN2zYUEePHnXHKQEAAIpwSx8dm83meO3DlY4cOaKqVau645QAgArIz0+yWqWsLPu0f/8v65YskbKz7bU5ISGeKyM8yy1Bp1u3bk7vtLJYLMrNzVVSUpL+8Ic/uOOUAIAKys9PqlNH+uor6a67flnev7/UooW0ahX9cyoytzxenpGRoR49esgwDO3fv1+xsbHav3+/atWqpfXr13vVo+Y8Xg4Avm/JEmngQOnqO1phwPnoI3vwgXm4ev922zg6ly9f1qJFi7Rz507l5uaqffv2Gjp0qONRc29B0AEA32a1Sg0bSkeOFL/eYpHq1ZPS013ruAzf4LGgU1BQoFtvvVXLly/3ifdaEXQAwLetWyd17Xr97daudW7agm/z2ICBlStX1sWLF8v6sAAAFOv48bLdDubils7Io0aN0rRp03T58mV3HB4AAIe6dct2O5iLW8bRSUtLU2pqqlavXq1WrVop9KpRmpYsWeKO0wIAKqA77rD3wTl6tGhnZOmXPjp33FH+ZYPnuSXoVKtWTQMGDHDHoQEAcOLvL738sv2pK4vFOewUPnU1cyYdkSsqt7+93NvRGRkAfJdhSOfP2z8vWyY9/rhzX5yoqF9CEMzF1fu3W2p0AAAoD+fPS1WqlLz+2DFp0CD7I+h+bumVCm/nlr/2du3aqX379kWmDh066Pbbb1dCQoLWrl1bqmP+61//ksVi0bhx4xzLLl68qFGjRqlmzZqqUqWKBgwYoKysrDK+GgAA4KvcEnR69OihH3/8UaGhoeratau6du2qKlWq6ODBg4qLi9Px48cVHx+vZcuWuXS8tLQ0vfbaa2rdurXT8scee0yffvqpPvzwQ3355Zc6duyY+jP0JQBUGCEh9ndZXTmdO/fLu6+ysqjNqejc0nR18uRJjR8/Xn//+9+dlj/33HM6dOiQVq9eraSkJE2ZMkX33nvvNY+Vm5uroUOH6o033tBzzz3nWJ6dna3//Oc/WrBgge6++25J0vz589WsWTN9/fXXuu2228r+wgDAi9ls0smTzstCQpzf83T1vK+zWKSrHuyVdO3mLFQsbsm4H3zwge6///4iy++77z598MEHkqT7779f+/btu+6xRo0apV69eik+Pt5p+bZt21RQUOC0/NZbb1X9+vW1adOmEo+Xn5+vnJwcpwkAfJ3NZn+qKCLCeapa1X7TL5wKO+4CFYVbgk5QUJD+97//FVn+v//9T0FBQZIkm83m+FyS999/X9u3b9fUqVOLrMvMzFRAQICqVavmtDwiIkKZmZklHnPq1KkKDw93TDExMS5cEQAA8EVuaboaM2aM/vrXv2rbtm2Ki4uTZO9n8+abb+qpp56SJK1atUpt27Yt8RgZGRkaO3as1qxZc91AVBqTJk1SYmKiYz4nJ4ewA8Dn+fnZ+6K89Zb04IMlv8V75UqJYc5QkbhtHJ333ntPs2fPdjRPNW3aVGPGjNGQIUMkSRcuXJDFYikxxCxdulT9+vWT/xUjPFmtVlksFvn5+WnVqlWKj4/XmTNnnGp1GjRooHHjxumxxx5zqZyMowPALHiLNyoSj729vKycO3dOhw4dclr2wAMP6NZbb9WTTz6pmJgY1a5dWwsXLnSMwrxv3z7deuut2rRpk8udkQk6gLMrO7RardLXX0tnz0qRkdLtt9tvkL7QodWV65B841pcxVu8UZF4fMDAs2fP6qOPPtKPP/6oxx9/XDVq1ND27dsVERGh6Ojo6+5ftWpVtWzZ0mlZaGioatas6Vj+4IMPKjExUTVq1FBYWJjGjBmjzp0788QV8CsVdmi9ntzc4p908RauXofk/ddSGrzFW/ZUu2GD/SLr1rW/4IrqqwrNLUFn165dio+PV3h4uH766Sc99NBDqlGjhpYsWaLDhw/r7bffLpPz/Pvf/5afn58GDBig/Px8de/eXa+++mqZHBtAyZYtk/6vFRpe5Mq3c/vJqju0QXV1XMdVVxt0h2zyL7KdqSxZIo0d69x2V6+e/R0QjLFWYbml6So+Pl7t27fX9OnTVbVqVe3cuVM33XST/ve//2nIkCH66aefyvqUvxpNV4CzggKpQYOS/9fvK/08XLmO6Gj7dVQyyctwCvvodDyyRDM1VjH65YafoXoap5eVFtPf6//uSs1mu34v7A8/pBe2ybh6/3bL4+VpaWn6f//v/xVZHh0dfc1HvwF43saN127aMAwpI8PeOuDNXLmOI0ekr74qvzK5k2FIF8/b9EHP+fpQAxUt5x7J0TqqDzVQHwxebL6Q4+8vjRhRNORI9mWGIY0bZ0+CqHDcEnQCAwOLHYjvhx9+UO3atd1xSgBlxCz9PMxyHa46n2tTaJi/Or8xQn4yivxyty8z1GnhuIp5wz9yxPvTOdzCLUGnT58+evbZZ1VQUCBJslgsOnz4sJ588knHE1IAvI9hSFeNwVkib+7nYZbrcAfLUZPd8C0W6T//cW1bs6RalIpbgs5LL72k3Nxc1a5dWxcuXNCdd96pm2++WVWrVtU///lPd5wSQBk4f176wx+uv11MjP1hFm919XX4yao7tU73aaHu1Dr56Zcajdtv90AB3SDEcsH1jc10wz9/3t43xxUVLdVCkpueugoPD9eaNWu0ceNG7dy5U7m5uWrfvn2R91UBFZEZnn6dMcN3ytxPS/RyMR1zx+plfaz+PnMd11OqsYAq4g3f29M53KbMg47NZlNKSoqWLFmin376SRaLRY0aNVJkZKQMw5DFLCNzAaVQOHjdZ59Jkyc7/4c6OlqaPl26917PD14XEmIfV0ayP0L+xBPS0aO/rI+Ksj+pO3CgZ8rnqpAQKTfHJv9331LgIw/KkHMn1Wgd1WINlPHuu/Kz3C/JBL+XQkKk7GypeXPp2LHiO+YWPjJnpht+4Q/tsmXSn/5kX3bltRf+g5o503fSOcpUmT5ebhiGevfurc8//1xt2rTRrbfeKsMw9P333+vbb79Vnz59tHTp0rI6XZng8XK4my8PXueztU+l+dKzsyUz/dtfsuSXJFrcDf+jj8w7pkxx4+jExNhDjlmvuQLzyMjIKSkpWr9+vVJTU9X1qnHIv/jiC/Xt21dvv/22hg0bVpanBUzD2x6G8ZdVd2mDpOOS6kq6Q5IPJJ28PNe3/eor1zom+Yr+/e1hpriB88x+w+/f31416pPpHO5SpjU63bp10913362JEycWu/7555/Xl19+qVWrVpXVKW8YNTooD198If3ud65t58q7isqFL48ym5cnVani2rbvvisNHere8niCz1bHAa7xyICBu3btUo8ePUpc37NnT+3cubMsTwl4PcOQrno/bYm8YjxNm02aP9/e/HH1a7CPHrUvX7zYM2VzVUiI9Pnnrm3rwrv3fJK/v/3Nnfffb/+TkIMKqkyDzunTpxUREVHi+oiICJ05c6YsTwl4vfPn7YO2uuIa/3zKh1lGmbVYpG7d7DVQJfXutlh4EgeoAMo06FitVlW6xktj/P39dfny5bI8JeBzrjWmi8/cc31hlFl/f3szm1Q07PAkDlBhlGlnZMMwNHz4cAUGBha7Pj8/vyxPB/iEK59+XTy05Jct3v9hf1Wu7MGCStIFkw06V5E75gKQVMZBJyEh4brb8MQVKhqLxf7I+JCgJbpfA4sd0+UjDZTF7yNJPnTj9ZVB53gSB6jQyvSpK1/EU1coFwUFUoMGJdeCWCz2TrHp6dI1mn/dzjCkc+dcG3QuPZ2wAMBjPPLUFYBi2GxSQMC1m3oMw960smZN+ZWrOBaLffC8WbN+mb96vUTfFgA+g6ADuFtpBq/zln4vhX1brn70ul49c4+sC8B0PFhHDlQQfqX4/0TDhm4rRqnRtwWACRB0AHcrzcsW77yz/Mt3LYWDzgGAj6LpCnA3+r0AgMcQdIDyQr8XACh3NF0B5Yl+LwBQrgg6QHmj3wsAlBuargAAgGkRdAAAgGkRdAAAgGkRdAAAgGl5bdCZOnWq4uLiVLVqVdWpU0d9+/bVvn37nLa5ePGiRo0apZo1a6pKlSoaMGCAsrKyPFRiAADgbbw26Hz55ZcaNWqUvv76a61Zs0YFBQXq1q2b8q54b9Bjjz2mTz/9VB9++KG+/PJLHTt2TP0ZiwQAAPwfi2EUNx699/n5559Vp04dffnll/rtb3+r7Oxs1a5dWwsWLNDAgQMlSXv37lWzZs20adMm3XbbbS4d19XXvAMAAO/h6v3ba2t0rpadnS1JqlGjhiRp27ZtKigoUHx8vGObW2+9VfXr19emTZtKPE5+fr5ycnKcJgAAYE4+EXRsNpvGjRun22+/XS1btpQkZWZmKiAgQNWqVXPaNiIiQpmZmSUea+rUqQoPD3dMMTEx7iw6AADwIJ8IOqNGjdJ3332n999//4aPNWnSJGVnZzumjIyMMighAADwRl7/CojRo0dr+fLlWr9+verVq+dYHhkZqUuXLuns2bNOtTpZWVmKjIws8XiBgYEKDAx0Z5EBAICX8NoaHcMwNHr0aH388cf64osv1KhRI6f1HTp0UOXKlZWamupYtm/fPh0+fFidO3cu7+ICAAAv5LU1OqNGjdKCBQu0bNkyVa1a1dHvJjw8XMHBwQoPD9eDDz6oxMRE1ahRQ2FhYRozZow6d+7s8hNXAADA3Lz28XKLxVLs8vnz52v48OGS7AMGjh8/XgsXLlR+fr66d++uV1999ZpNV1fj8XIAAHyPq/dvrw065YWgAwCA7zHdODoAAAClRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmRdABAACmZYqgk5ycrIYNGyooKEidOnXSli1bPF0kAADgBXw+6CxatEiJiYlKSkrS9u3b1aZNG3Xv3l0nTpzwdNEAAICH+XzQmTFjhkaOHKkHHnhAzZs319y5cxUSEqJ58+Z5umgAAMDDKnm6ADfi0qVL2rZtmyZNmuRY5ufnp/j4eG3atKnYffLz85Wfn++Yz87OliTl5OS4t7AAAKDMFN63DcO45nY+HXROnjwpq9WqiIgIp+URERHau3dvsftMnTpVzzzzTJHlMTExbikjAABwn3Pnzik8PLzE9T4ddH6NSZMmKTEx0TFvs9l0+vRp1axZUxaLxYMlKyouLk5paWmeLoZX8PXvwhvL76kyldd53XWesjxuWRwrJydHMTExysjIUFhYWJmUC57jjb8rPOV634VhGDp37pyioqKueRyfDjq1atWSv7+/srKynJZnZWUpMjKy2H0CAwMVGBjotKxatWruKuIN8ff35xfX//H178Iby++pMpXXed11nrI8blkeKywszOt+xlB63vi7wlNc+S6uVZNTyKc7IwcEBKhDhw5KTU11LLPZbEpNTVXnzp09WLKyMWrUKE8XwWv4+nfhjeX3VJnK67zuOk9ZHtcbfy7gWfxM/KKsvguLcb1ePF5u0aJFSkhI0GuvvaaOHTtq5syZ+uCDD7R3794ifXcAwGxycnIUHh6u7OxsagKAYvh005UkDR48WD///LP+8Y9/KDMzU23bttXKlSsJOQAqhMDAQCUlJRVpkgdg5/M1OgAAACXx6T46AAAA10LQAQAApkXQAQAApkXQAQAApkXQAQAApkXQAQATOnv2rGJjY9W2bVu1bNlSb7zxhqeLBHgEj5cDgAlZrVbl5+crJCREeXl5atmypbZu3aqaNWt6umhAuaJGBwBMyN/fXyEhIZKk/Px8GYYh/l+LioigAwBeaP369erdu7eioqJksVi0dOnSItskJyerYcOGCgoKUqdOnbRlyxan9WfPnlWbNm1Ur149TZgwQbVq1Sqn0gPeg6ADAF4oLy9Pbdq0UXJycrHrFy1apMTERCUlJWn79u1q06aNunfvrhMnTji2qVatmnbu3Kn09HQtWLBAWVlZ5VV8wGvQRwcAvJzFYtHHH3+svn37OpZ16tRJcXFxmj17tiTJZrMpJiZGY8aM0cSJE4sc45FHHtHdd9+tgQMHllexAa9AjQ4A+JhLly5p27Ztio+Pdyzz8/NTfHy8Nm3aJEnKysrSuXPnJEnZ2dlav369mjZt6pHyAp7k828vB4CK5uTJk7JarYqIiHBaHhERob1790qSDh06pL/85S+OTshjxoxRq1atPFFcwKMIOgBgQh07dtSOHTs8XQzA42i6AgAfU6tWLfn7+xfpXJyVlaXIyEgPlQrwTgQdAPAxAQEB6tChg1JTUx3LbDabUlNT1blzZw+WDPA+NF0BgBfKzc3VgQMHHPPp6enasWOHatSoofr16ysxMVEJCQmKjY1Vx44dNXPmTOXl5emBBx7wYKkB78Pj5QDghdatW6euXbsWWZ6QkKCUlBRJ0uzZs/XCCy8oMzNTbdu21axZs9SpU6dyLing3Qg6AADAtOijAwAATIugAwAATIugAwAATIugAwAATIugAwAATIugAwAATIugAwAATIugAwAATIugAwAATIugA8AnDR8+XH379r2hY6xbt04Wi0Vnz5695napqalq1qyZrFbrdY+5cuVKtW3bVjab7YbKBqBsEHQAuNXw4cNlsVhksVgUEBCgm2++Wc8++6wuX758Q8d9+eWXHe98crcnnnhCf/vb3+Tv73/dbXv06KHKlSvrvffeK4eSAbgegg4At+vRo4eOHz+u/fv3a/z48Xr66af1wgsv/KpjWa1W2Ww2hYeHq1q1amVb0GJ89dVXOnjwoAYMGODyPsOHD9esWbPcWCoAriLoAHC7wMBARUZGqkGDBnr44YcVHx+vTz75RJKUn5+vxx9/XNHR0QoNDVWnTp20bt06x74pKSmqVq2aPvnkEzVv3lyBgYE6fPhwkaar/Px8Pfroo6pTp46CgoLUpUsXpaWlOZXj888/1y233KLg4GB17dpVP/3003XL/v777+v3v/+9goKCHMt27typrl27qmrVqgoLC1OHDh20detWx/revXtr69atOnjw4K/7wgCUGYIOgHIXHBysS5cuSZJGjx6tTZs26f3339euXbs0aNAg9ejRQ/v373dsf/78eU2bNk1vvvmmdu/erTp16hQ55hNPPKHFixfrrbfe0vbt23XzzTere/fuOn36tCQpIyND/fv3V+/evbVjxw499NBDmjhx4nXLumHDBsXGxjotGzp0qOrVq6e0tDRt27ZNEydOVOXKlR3r69evr4iICG3YsOFXfT8Ayk4lTxcAQMVhGIZSU1O1atUqjRkzRocPH9b8+fN1+PBhRUVFSZIef/xxrVy5UvPnz9fzzz8vSSooKNCrr76qNm3aFHvcvLw8zZkzRykpKerZs6ck6Y033tCaNWv0n//8RxMmTNCcOXPUuHFjvfTSS5Kkpk2b6ttvv9W0adOuWeZDhw45ylbo8OHDmjBhgm699VZJUpMmTYrsFxUVpUOHDpXi2wHgDgQdAG63fPlyValSRQUFBbLZbBoyZIiefvpprVu3TlarVbfccovT9vn5+apZs6ZjPiAgQK1bty7x+AcPHlRBQYFuv/12x7LKlSurY8eO+v777yVJ33//vTp16uS0X+fOna9b9gsXLjg1W0lSYmKiHnroIb3zzjuKj4/XoEGD1LhxY6dtgoODdf78+eseH4B7EXQAuF3Xrl01Z84cBQQEKCoqSpUq2X/15Obmyt/fX9u2bSvyRFOVKlUcn4ODg2WxWMq1zIVq1aqlM2fOOC17+umnNWTIEH322WdasWKFkpKS9P7776tfv36ObU6fPq3atWuXd3EBXIU+OgDcLjQ0VDfffLPq16/vCDmS1K5dO1mtVp04cUI333yz0xQZGeny8Rs3bqyAgABt3LjRsaygoEBpaWlq3ry5JKlZs2basmWL035ff/31dY/drl077dmzp8jyW265RY899phWr16t/v37a/78+Y51Fy9e1MGDB9WuXTuXrwGAexB0AHjMLbfcoqFDh2rYsGFasmSJ0tPTtWXLFk2dOlWfffaZy8cJDQ3Vww8/rAkTJmjlypXas2ePRo4cqfPnz+vBBx+UJP31r3/V/v37NWHCBO3bt08LFixwaRye7t2766uvvnLMX7hwQaNHj9a6det06NAhbdy4UWlpaWrWrJljm6+//lqBgYEuNY0BcC+CDgCPmj9/voYNG6bx48eradOm6tu3r9LS0lS/fv1SHedf//qXBgwYoD//+c9q3769Dhw4oFWrVql69eqS7E9CLV68WEuXLlWbNm00d+5cR2fnaxk6dKh2796tffv2SZL8/f116tQpDRs2TLfccov++Mc/qmfPnnrmmWcc+yxcuFBDhw5VSEhIqa4BQNmzGIZheLoQAODNJkyYoJycHL322mvX3fbkyZNq2rSptm7dqkaNGpVD6QBcCzU6AHAdkydPVoMGDVx6f9VPP/2kV199lZADeAlqdAAAgGlRowMAAEyLoAMAAEyLoAMAAEyLoAMAAEyLoAMAAEyLoAMAAEyLoAMAAEyLoAMAAEyLoAMAAEzr/wNMVxE1QQbSqwAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACxTElEQVR4nOydd3xUVfr/P9NLeu8NQklCCAmB0BELCBaw7FrWuqtfu6v81rK6Kq6uWHYVXdEVd1dd27L21RUBUQKhBUjoNRBI720mk8xMZu7vjyGXTOoN3Jl77uR5v17zgrnlPJ9TcvLklOcoOI7jQBAEQRAEQcgepdQCCIIgCIIgCHEgx44gCIIgCMJHIMeOIAiCIAjCRyDHjiAIgiAIwkcgx44gCIIgCMJHIMeOIAiCIAjCRyDHjiAIgiAIwkcgx44gCIIgCMJHIMeOIAiCIAjCRyDHjiAIUUhOToZCoeA/BEEQhPdRSy2AIEYynZ2dePfdd/Hll1/iwIEDaGlpgdFoRGhoKKKiopCVlYWcnBwsXrwY0dHRbu+uWLECLS0t/Pdly5aJru/UqVN4//33+e+TJk3CkiVLRLcjN/bt24cPP/wQ+fn5OH36NJqbm6HT6ZCUlISpU6diyZIluOyyy6BSqfp9v76+HrGxsejq6nK7vn79elx88cVD2v/666/xwQcfYNeuXaivr4dKpUJISAjCw8ORnp6OyZMnY/78+cjMzOz3/ZMnT+LVV1/FunXrUFFRAa1Wi9GjR+Oqq67Cb3/7WwQEBAgqh6NHjyIrKwtWq5W/lpSUhFOnTgl6nyAID8ARBCEJlZWVXFpaGgdgyM+HH37Y5/2kpCS3ZzzBzz//7Gbj1ltvHfDZ3NxcLioqiv/4Iq2trdx1113HKRSKIevsrrvuGjCdv/71r/2+c9tttw1q3263c9dcc42gNvOb3/ym3zT+85//cHq9fsD3EhISuCNHjggqjwsuuKDP+0lJSYLeJQjCM9BULEFIxC233ILDhw+7XdNqtQgNDYVaLb/B9J07d6Kmpob/+BpNTU3Iy8vD6tWrwXGc2z0/P78+o1ydnZ0DpvXJJ5/0e/3LL78c9L0XX3wRX3zxhds1lUqF0NBQ6HS6obKAwsJC3HjjjW42/Pz8oNVq+e/l5eWYP38+zGbzoGm9//772Lhx45A2CYLwLuTYEYQElJSUYMOGDfz3sWPHYufOnbBarWhsbERHRwf27duHP//5z8jJyZFQKdHNddddhyNHjrhdu+eee3DixAmYzWa0tbWhrq4O7733HiZOnDhgOqWlpdi2bVu/99ra2vDdd98N+O4777zD/9/Pzw+ff/45Ojs70djYiM7OTpSWluK9994bcBr4gQcecJv+ffHFF9HW1obGxkZcc801/PWysjIsX758QB2NjY145JFHAECQQ0kQhBeResiQIEYiX3zxhdv01YoVKwZ9vrOzk///3LlzBU3FlZaWchzHcRUVFdyLL77IXXPNNVx6ejoXFRXFaTQazs/PjxszZgx30003cZs2bXKzV1paKsjG3Llz+XeETA2bzWbutdde4y644AIuPDycU6vVXEhICJeXl8c9++yzXH19fb/v9Zf2Dz/8wF188cVcUFAQZzAYuKlTp3Jffvllv++/9957bu8/88wzg5Z3b77//vs+eX/++ecHfN7hcHBFRUX93nv++efd0pk/f77b96uuuqrf9xobG92eW7JkyaCae7YZjuO4/fv3u72flpbmdr+qqopTKpX8/ejoaK6rq6vftG+99Vb+uWXLltFULEEwBDl2BCEBn376aZ9f7q2trYLeHa5j99lnnwl6ftmyZbwNTzh2e/fu5ZKTkwdNLywsjNuwYUOfd3un/dRTTw2YxkcffdTn/fN17Hqvaxs/fjzncDiGlUY3GRkZbmkdPHiQCwsL47/rdDquubm5z3vV1dVu78XFxXElJSWC7b722mtu79977719num95nPv3r19num57nLevHl92go5dgQhLTQVSxASMHbsWLfv69atQ0xMDC699FIsW7YMP/zwA0wmU7/vdu+YVSrdf3yjoqLcPv1NxSmVSgQFBSEkJKTPOr5ly5Zhx44dAFzrtqKiohASEuL2jF6vd7MRGhoqKL/19fVYuHBhn92SRqPR7XtjYyOWLFmCY8eODZrec889BwAwGAx97j366KNwOByCdAnl559/dvt+/fXX9yl/IezZswcHDx7kv0+YMAHp6em44oor+GtWq7XPOjoAiIyMRHBwMP+9srIS48aNw7Rp07B06VKsXr0aVVVVA9ret2+f2/fk5OQ+zyQlJQ36jtVqxd133w3ANQX7t7/9bUB7BEFIAzl2BCEBOTk5mDJlits1i8WCtWvX4tlnn8XChQsRFhaGxYsXY/fu3W7Pffnll6ipqUFCQoLb9Z4bF3renzRpEr799lvU1NSgq6sLLS0taGpqQnt7O/7zn/+4pdEd2iQhIQE1NTX48ssv3e5fd911bjZ63x+IV155xc3pSE1Nxd69e9He3o5Tp04hLy+Pv2cymfDUU08Nml5ISAh+/PFHtLe3o7i4GGFhYfy9qqoq7N27V5AuIZhMJjQ1NbldG2wN3WD03jTRva7t6quvHvQ5wOWU33HHHW7XHA4HduzYgddeew3XX3894uLiMHXq1D71CgANDQ1u33s6iQNdq6+vd/u+fPlyHD16FADw5JNP9vkDhSAIBpB6yJAgRiqlpaWCwp2o1Wruk08+6fP+cMKdVFdXcy+88AK3cOFCbty4cVxcXBwflqRnGnl5eW7vDSfcyWB6ek/Bfvfdd273e6//MhgMbmvEeqfde03ir3/9a7f7n3322aDlMRwqKir61Mn69euHnY7T6eQSEhL6ners6Ojg/P39+etKpZKrrKzsk0ZHRwe3ZMkSQdPkvadaL7roIrf7//znP/ukf/PNN7s989xzz/H3jh49yul0On4q2mq1chzXd9qepmIJQlpoxI4gJCI5ORl79uzBqlWrMHfuXGg0mn6f6+rqwt13343W1tZzsvPTTz9h7NixeOKJJ7BmzRocPXoUlZWVqK2tRW1trduzjY2N52RjMMxmc58p2Isuusjt+4QJExAVFcV/7+joQElJyYBpXnnllW7fIyMj3b63t7efo9q+BAYG9rk20DT5YGzatAnl5eX899TUVH7kT6/XY+HChfw9p9OJf//7333S0Ov1+Oqrr7BmzRpcffXVCAoKGtDeW2+95TaF3Hva226393mn9zU/Pz/+/3fffTesVisUCgXeeecdtxApBEGwAzl2BCEhWq0Wd955JzZu3IjW1lZs3rwZzzzzDEaNGuX2XFtbG/Lz84edvtVqxU033STYEenvl/350tshDQgIgF6v7/NcRETEoO/1JD4+3u17byeD6xVn7nwICAjos9Zw//79w06n9/Rq7+nXq666atDne3LppZfiiy++QFNTE/bu3Ys33ngDM2fO7PPct99+y/8/PDzc7V7PU0u6aW5udvveXScbNmzgncRf//rXmDNnzoDaCIKQFnLsCIIRDAYDZs2ahWXLluHQoUMYN26c2/1zCfq7bds2VFdX899jY2OxYcMGmM1mcBw3aDBcseg9qmQymfq123s912CjUb1HNz19Nu28efPcvv/73/8elvNot9vx+eefu117+eWX3c7WvfHGG93u7969m1/PNhBKpRITJ07EAw88gIKCAtx2221u93u2md7rAktLS/uk13tktfudnn8Y/OMf/3DTnZKS4vbO6dOn+Xt0tBhBeB9y7AhCAk6ePIl169YNeF+n0/Vx7HpPCfbeldnfTtDeuySvv/56XHjhhfwU25YtWwbVKcTGUPj7+/fZgdkzODMAHDhwwG1a2GAwIDU1ddi2PMVvfvMbt++HDx/GSy+9NODzTqcTxcXF/Pc1a9b02YAhhN6jdv/4xz9gs9kGfL6389azzfSe/u59akRlZaXbbuTo6GhkZGQMVzJBEBJDjh1BSEBVVRUWLFiASZMm4bXXXsOBAwfgdDoBuEZ3Pv74Y6xdu9btnd4nUPQe0epvqrb3M+vWreNHcXbv3o3/+7//G1Rn7/eLioqGPGqqP6699lq37w8//DAfSuP06dN9dntefvnlop5o8P7777uNMi1btmxY7y9atAgXXnih27Xf//73uP/++91Gvurr6/H+++8jJycHr7/+On+9t4MWHBzcJzxNVFRUn+no3u/dddddSElJweOPP44tW7bAarXy97Zv34433njD7fmebSYzM9NtJ/aRI0fw4osvwul0wmw24/7773cbhbztttv4kDm9w9z0/PSe4lUqlYOG3CEIwsNIu3eDIEYmmzdv7rOLUaVScaGhoZxKpepzb968eX3SuOWWW/o8FxISwkVFRXGLFi3iOI7jWlpaOD8/P7dnlEolFxAQwO8+xSA7Gi0WC78TsvujVqu5yMhILioqivvggw/4ZwfbFVtXV8fFxMT00dtbGwDO39+/zyH0Q+0AfuaZZ9zuv/fee273zzdAMcdxXH19PTd27Nh+d6AGBATwZdr96d5BbDKZOKPR6Hbv2LFj/dro6uriwsPD3Z4tLCzk7/duGwqFggsJCelTRwC40NDQPoGOt23b1icNPz8/TqvVul2Lj4/n2traBJUL7YolCLagETuCkID+dsA6HA40NTX1me4cN24cPvzwwz7P33333X2mSpubm1FbW8vvbg0KCupz5qfT6YTJZIJSqcQ//vGPQXUaDAb8+te/drvW1dWFuro61NbWwmKxDPp+NxEREVizZk2fALi9d6+GhYXhm2++6TMNzQLh4eHYsWNHn9FHwLUGrfcGle4NIl999ZVbOU2aNAljxozp14ZKpcKSJUvcrn388cf8/3u3G47j0Nzc7DZyB7jq/bPPPusTl27atGn46KOP3EZD29vb3aZ34+LisG7dOgQEBPSrkSAItiHHjiAkIC8vD6dOncJbb72Fm266CdnZ2QgNDYVGo4FWq0VMTAzmz5+Pt956C3v27EFcXFyfNKZPn441a9Zg3rx5CAoKGnADwQMPPIDPPvsMU6ZMgV6vR3BwMC655BJs2LABN9xww5BaX3/9dTz77LMYP378eU2PZmVl4cCBA3jttdcwd+5chIWFQa1WIygoCFOnTsWyZctw5MiRPlOeLBEcHIzPPvsMxcXFWLp0KSZPnozw8HCo1Wr4+flh/PjxuPnmm/Hll19i5cqVAPpOp/7iF78Y1Ebv+6tXr+ad/erqanz66ae49957MWPGDMTExECn00GtViM0NBTTpk3D008/jcOHDw9Yjtdffz0OHDiAe+65B6mpqdDr9QgICEB2djaeffZZHD58GGlpaedaRARBSIyC40SMC0AQBEEQBEFIBo3YEQRBEARB+Ajk2BEEQRAEQfgI5NgRBEEQBEH4COTYEQRBEARB+Ajk2BEEQRAEQfgI5NgRBEEQBEH4COTYEQRBEARB+Ajk2BEEQRAEQfgI5NgRBEEQBEH4COTYEQRBEARB+Ajk2BEEQRAEQfgI5NgRBEEQBEH4COTYEQRBEARB+Ajk2BEEQRAEQfgI5NgRBEEQBEH4COTYEQRBEARB+Ajk2BEEQRAEQfgI5NgRBEEQBEH4COTYEQRBEARB+Ajk2BEEQRAEQfgI5NgRBEEQBEH4COTYEQRBEARB+Ajk2BEEQRAEQfgI5NgRBEEQBEH4COTYEQRBEARB+Ajk2BEEQRAEQfgIsnfsysvLccEFFyA9PR0TJ07EZ599JrUkgiAIgiAISVBwHMdJLeJ8qK6uRm1tLSZNmoS6ujrk5OTg6NGj8PPzk1oaQRAEQRCEV1FLLeB8iYmJQUxMDAAgMjISoaGhaGpqIseOIAiCIIgRh+RTsZs2bcIVV1yB2NhYKBQKfP31132eeeutt5CSkgK9Xo/Jkydj8+bN/aa1a9cuOJ1OJCQkeFg1QRAEQRAEe0ju2LW3tyMrKwtvvvlmv/dXr16Nhx56CE8++SSKi4sxe/ZsLFy4EGVlZW7PNTY24pZbbsGqVau8IZsgCIIgCII5mFpjp1Ao8NVXX2HJkiX8tby8POTk5ODtt9/mr6WlpWHJkiVYvnw5AMBqteKSSy7BnXfeiZtvvnlQG1arFVarlf/udDrR1NSEsLAwKBQKcTNEEARBEARxnnAcB5PJhNjYWCiVg4/JMb3GzmazYffu3Xj88cfdrs+fPx9bt24F4MrsbbfdhgsvvHBIpw4Ali9fjmeffdYjegmCIAiCIDxFeXk54uPjB32GaceuoaEBDocDUVFRbtejoqJQU1MDANiyZQtWr16NiRMn8uvzPvzwQ2RmZvab5u9//3ssXbqU/97a2orExESUl5cjMDDQMxkRkR07diAvL09qGUPCgk4pNHjDpqdsiJkuC/VPSAu1AeH4YlnJJU+s6BxKR1tbGxISEhAQEDBkWkxPxVZVVSEuLg5bt27F9OnT+ef+9Kc/4cMPP8SRI0fO22ZbWxuCgoLQ2toqC8eOIAiCIIiRxXB8FaZH7MLDw6FSqfjRuW7q6ur6jOINl5UrV2LlypVwOBwAgIKCAvj5+WHGjBnYu3cv2tvbERwcjLFjx6KwsBAAkJqaCqfTiZMnTwIApk2bhkOHDqGtrQ0BAQHIyMjA9u3bAQApKSlQqVQoKSkBAEyZMgUlJSVobm6G0WhEdnY2tmzZAgBITEyEwWDA0aNHAQA5OTk4ffo0GhsbodfrMXXqVGzatAkA0NLSghkzZuDQoUMAgEmTJqGqqgp1dXXQaDSYMWMGNm/eDKfTiZiYGISFheHAgQMAgMzMTNTX16OmpgYqlQqzZs3Cli1b0NXVhcjISMTExGDv3r0AgPT0dLS2tqKyshIAMHfuXGzfvh1WqxXh4eFITExEUVERAGD8+PGwWCz8hpZZs2bhP//5D2JjYxESEoLRo0dj165dAIAxY8bAbrfj1KlTAIDp06dj//79MJvNCAoKwvjx47Fjxw4AwOjRowEAJ06cAOBab3nkyBG0trbC398fmZmZ2LZtGwAgOTkZGo0Gx48fBwDk5ubi+++/R2RkJIxGI3JyclBQUMCXt9Fo5P8wyMnJQVlZGRoaGqDT6TBt2jTk5+cDAOLi4hAUFMSXd1ZWFqqrq1FXVwe1Wo2ZM2eioKAADocD0dHROHXqFPR6PQBgwoQJaGxsRHV1NZRKJWbPno2tW7fCbrcjMjISsbGx2LNnD1/ebW1tqKioAADMmTMHhYWF6OzsRFhYGJKSkvjybm9vR1paGl/eM2fORHFxMSwWC0JCQpCamoqdO3fybdbhcKC0tJRvswcPHoTJZEJgYCDS09P5NmsymZCdnc232alTp+LYsWNoaWmBn58fsrKy+CUQycnJ0Gq1OHbsGF/epaWlaGxshMFgQEdHB/+zlpCQAH9/fxw+fBgAkJ2djYqKCtTX10Or1WL69OnYtGkTOI7j28zBgwcBABMnTkRtbS1qa2v5Nttd3lFRUYiKisK+ffsAABkZGWhubkZVVRUUCgXmzJmDbdu2wWazISIiAvHx8SguLgbgWqdrNptRXl4OAJg9ezZ27dqFjo4OhIWFISUlhW+zY8eOhc1m49ss631EfHw8AgMDJe8jqqurodFoAPTfRxQVFfFtVqo+4sSJE3x5e6uPiIiIwP79+wGc7SO2b9+OlJQU0fqIcePGoaOjQ/Q+YtSoUVAqlYL6iNbWVkyZMmXAPiI3N5ePcCFlH/Hxxx8jPj5e8j5i//79mDBhwoB9RHt7OwTDMQQA7quvvnK7NnXqVO6ee+5xu5aWlsY9/vjjothsbW3lAHCtra2ipOdpNm7cKLUEQbCgUwoN3rDpKRtipstC/RPSQm1AOL5YVnLJEys6h9IxHF9F8hE7s9nMe/8AUFpaij179iA0NBSJiYlYunQpbr75ZuTm5mL69OlYtWoVysrKcPfdd0uoWjq6gzGzDgs6pdDgDZuesiFmuizUPyEt1AaE44tlJZc8saJTTB2SO3a7du3CvHnz+O/dGxtuvfVWvP/++7juuuvQ2NiIP/7xj6iursaECRPw/fffIykpSSrJkhIWFia1BEGwoFMKDd6w6SkbYqbLQv0T0kJtQDi+WFYD5cnpdMJms3lZzcAEBASgs7NTahkICQkRLS2mNk94k55r7I4dO4b//e9/slhj19TUhFmzZkm+fmaoNXarV69GXFycpOtn/ve//yEqKsqr62dKS0thMBgAeG6NndlsRnp6uujrZ1pbWzF58mRR1ti1t7fzsZZojd3IXGNXWVkJnU4HgNbYDbXGbtu2bRg1apRPrbFraWnh73eX98mTJ2G1WqFWq6HVavmYsmq1GgqFAna7HQCg1WrhcDjgcDigUCig0+l450ulUkGpVPb7LADo9Xq3Z1UqFe9IajQaOJ1Ot2fNZjPUanW/z3Ich66uLgCATqeDzWYDx3FQKpVQq9WCn9VoNG55BeD2rN1uR2dnJ9RqNTIyMvj23XuN3WWXXSZo88SIdey6kduu2Pz8fMydO1dqGUPCgk4pNHjDpqdsiJkuC/VPSAu1AeH4Yln1zhPHcSgrK4PdbhcUZNdbtLe3S362PMdxaGpqQltbG4KDg/udlvWZXbFEXwaKz8caLOiUQoM3bHrKhpjpslD/hLRQGxCOL5ZV7zx1dXXBYrEgNjYWRqNRIlV9UavV/CialERFRUGv16Ourg6RkZFQqVTnnBYbLjMhmPr6eqklCIIFnVJo8IZNT9kQM10W6p+QFmoDwvHFsuqdp+7pT61WK4WcAemeEpWarq4u3uHtnmY+V8ixkxm9Y/qxCgs6pdDgDZuesiFmuizUPyEt1AaE44tlNVCeWDuT/XydKLGw2+2ilY30448SIecAxfX19ZIvjB5q80R1dTXy8/MlXRhdX1+P/Px8ry6Mtlqt/Lue2jxhsVhQWlrqkQDFlZWVomyeUCgUfDnQ5omRuXmiq6uLbwO0eWLwzRNlZWXYvHmzT22eaGtrQ3V1Nd9HZGZmwmazob29HQ6HA0ajEWazGYBrFE+pVPKbHoxGI2w2G7q6uqBQKODv7w+TyQTAtVFBpVLxzxoMBtjtdn7kLSAggH9WrVZDo9HwAdP1ej0cDgfvzAUEBMBms8FkMvEbOiwWC/9szx28/v7+sFgscDqdfZ7V6XTgOI5/1s/PDx0dHXA6nVCpVNDr9XyA4e4NRd2bKfz8/NDZ2QmbzQa73Q6O41BYWAiO4845QDFtnpDZ5gmCIAiCkBudnZ0oLS1FSkoKfzoP4c5gZTQcX4WmYmVG91/wrMOCTik0eMOmp2yImS4L9U9IC7UB4fhiWXkqTw4nh72nGvHzgUrsPdUIh/P8xqa6Rw0H4/vvv4dCoRjw88tf/vK8NAjVIZQROxUrV1hZ6DkULOiUQoM3bHrKhpjpslD/hLRQGxCOL5aVJ/JUcLgab689hAbT2YDC4QF63LMgHbPSzu3kBiGTlvPmzUN1dbXbNYfDgdtvvx3FxcV46qmnzsn2cHUIhRw7mREZGSm1BEGwoFMKDd6w6SkbYqbLQv0T0kJtQDi+WFZi56ngcDWe+7yoz/UGUyee+7wIT12bc07OnZBQJwaDgQ88D7icuptuugnFxcX46aefRAlXI2bIlRHr2Ml180RwcLAsNk/U1dWhrq5O0oXRra2tXt88YTAYPL55IjY21iObJyIiIkTbPJGamkqbJzCyN08EBQXR5olhbJ5oaGjwqc0T4eHhgjZPdNod0Gq0UCoV6DyzocBoMMBms8PpdECnUcFg9MNbP7ja6ECs/OEAJsT6ITgoECaTCZ12B9QqNTQaNTrObLTQ63TQqBRumye6N14I3Txht9vxf//3f/jpp5/w7bffIjk5mT9l4nw2T9jtdjgcDto8IQZy2zwhlwjlLOikkyekS5eF+iekhdqAcHyxrHrnaaCNAQue+9+AaUxNjcBzN0zF3lONePTD7UPafPnmachKdp1R+8u/rEerpe+ZtGufusztu8lkQkBAwJBpA66Ruptvvhnr1q3Dhg0bkJWVJeg9IZhMJmg0Gto8QRAEQRCEb9Nk7hz6oWE8dy540qkTmxE7FStX0tPTpZYgCBZ0SqHBGzY9ZUPMdFmof0JaqA0IxxfLSmievnlswYD3lEpXwN5Qf2HhUXo+968H5gl6R0jolW6nbu3atQM6dXl5eVi5ciVyc3Nx6623Ytq0acjLy8MTTzyBH374AQDwxRdf4KeffsLKlSv71dG9NOx8oRE7mdHa2iq1BEGwoFMKDd6w6SkbYqbLQv0T0kJtQDi+WFZC86TXqgf8aNWu81InJIYiPGBwBywiUI8JiaFDptuboZwph8OBW265BWvXrsWPP/6ISZMm9fvcU089hRdeeAF/+ctf4O/vj3vuuQcTJ07k117a7Xb86U9/wtNPPz2gHbEgx05mdC9UZh0WdEqhwRs2PWVDzHRZqH9CWgZqA5zDgYbt21H53/+iYft2cCL+QpMrFeXlPlcmYvYBKqUC9ywYfATw7vnpUCmHfyTXYEeKOZ1O3HLLLfj666/x0UcfISYmBjU1NW6fbofs8ssvx8mTJ7F27Vq8/vrrAFw7XePj41FeXo63334bS5YsQVRU1LB1DJcROxUr112xTU1NstgVW1lZKfmRYrW1tV7fFdvR0eHxXbFms9kju2K761uMXbFOp5N2xWJk74rtebxedx9x4quv0PnJJ+Cam9GNKiwMaU8+ibLgYAAjb1fsqf/+Fy1vvIFtbW18mShCQhB1zz0Ye+21st0V29LSIuqRYlnx/vjd5el4b+MJNJqtfFmFB+jxm3mpyIr35zdCiHWk2Pbt2/HJJ58AABYtWoT+KCsrQ1RUFAoLC9Hc3MyXUXt7O5xOJ7Kzs/Hjjz/inXfewYYNG/ids713xVqtVjpSTCzktiuWIAhCTnBOJ2xNTaj9+Wfsffzxvg+cOfg8+9VXEXfFFcwdEu8pOKcT5V98MWLKRKwjxRxODgfKmtBk7kSov2v69VxG6sSksrISCxcuxDfffIOrr74an3zyCdLS0gAAn3zyCR544AG88MILuOuuuwZNh44UG6F0/+XEOizolEKDN2x6yoaY6QpNayRMy42EPPbH9u3bwTmd+G7MGKzLy+vfgQEAjgM4DsUPP4wuEY9VYpnucvHlMvFUP6VSKpCVHIZ5E+KQlRx23k7d+R7l1dHRgWuvvRZvvvkmUlJS8Oijj+L555/n748dOxaRkZG44447PKqjJyN2KlaudA/fsg4LOqXQ4A2bnrIhZrpC0qpeuxYH/vhHdNbU8Nf00dGY8PTTiFkw8E45OeGLeeScTjisVjg6OuDs7ISjsxOOjg44OjoApRKhOTkAXG2g8ttvh5X2zrvvhr6fNUhKrRaTXnyR/16yahXazkyT9kGhQM5f/sJ/Lf3gAzSfma7vj6wXXoDqTNDYU598gqbduwd8NnPZMmjOxDwr/+ILNJyZduyP9CefhC7UtZi/8ttvUbdxI39vONNkTUVFiJJhjDsWfgcI4XwnLQ0GAz/dDwA33HADbrjhBv77ypUr8corr0ClUnlUR0/IsZMZ4eHhUksQBAs6pdDgDZu9bXAOBxp37oS1rg66yEiETZkCxRCdiJB0z4fB0hpsCqqztha77rtP9lNQUuSRczqhUJ6dhDGVlMBhsaDrjNPlPOOMOTo7oQkIQOxlZwO1Hv7zn2Gtq+Pv885aZycMsbGYumoV/+zPCxag/cwawt4YExJw0RkHJjw8HCf+/Odh5aFxgFEelcHg5tg1bt+OujNr3Pqjp2PXuHMnqtesGfDZiT1GV5qLilD59dcDPpvxxBNnn927FxWDPDtu6VL+/60HDgz67GDYZbpjloXfAUIQ8yivnpw4cQKLFi3CggULcPnll3tVBzl2MiMxMVFqCYJgQacUGrxhs6cNMUeExNTenZbTbuedBJXBALWfH74bM2bgF8/81Vr88MOImjcPmoAA2E0m1P78s8sBUihc/yqV/P/9kpMROG4cAMDR2YmGbdtcDk7382ecHYVSCX10NPxTUnhtLXv3nn2mx7NQKqENCYExLs4ly+mEuaTElaZS2UeL2miE7swvsu5pNqF5rN+06axD1cuxMiYmYtRtt/Gvbr/tNthaWtxHys78PyQ7GzP//W/+2W2/+hWsDQ39SghMT3dz7Kr+9z9Yziy0743jzGLyblQ91v4otVqo9HqoDAao9HroY86e1ZmYmAjF7NloO7OpQAhJv/oV/JKT+1xX9vpDJfG66xA+c6agNOOvugoh2dkD3lf2+IUae/nlCBw/fsBnVUYj//+YBQvgN8jPjKbHOqjICy/k2wcAOOx2HO3hfA6GLiJC0HOswcLvACFotVqPpDt69Gh+s5NQHWLtjCXHTmYUFRXJ4ugZFnRKocEbNouKijBn9uzzHhFydnWddQwsFuwsKEB2RgaM8fH8LyFLZSVqf/rJ7bmeU28J11yDyDP5bS4uRtHSpXB0dsJqMkHR1QWuR0eV/vvfI+n66wXns2nXLkTNm4fOmhoUP/zwgM+N+s1v+JEUa2MjCgdZy5J0442Y+NxzAAB7Wxu2XHfdgM/GL1mC7DO/fB1WKzYuXDjgszGXXorcfoKODkVTURGKf/c7OG19jz4CgLBp09wcu5YDB2DvsaO0J45O96j7+uhol+NlMECp17s5YH5JSW7Pjvr1r+GwWPhnej6v6bVQe/pHH0GpVkOl1w86MlxUVIQ5jzyCsfffD87hwMYFC9BZV8c7tr3Rx8Qg85lnBI02D+ePluiLLhL8bNQFFyDqggsEPRsxcyYiBDqX4Xl5CM/L4793WSyCHbuw3FxBz7EGC78DhGCxWAQfKeZpHRqNRpS0yLEjCJkxnBGh059+Cs5ux9gHH0TknDkAgJr167HrgQfcnK5uCgBMfOEFJJ1xeMwnTuDAsmUDmgqeNIl37Din023Ux+3Xt1IJp93uGmkTiP1M+AeVwYDwGTMAjgPndJ7JIgc4neA4DsaEhLNmNBoETZjgevbMAnT+PY6DPjKSf1ahVMLYParQ45luG5oz4Te60YaGnk3zjO1uO8oeo1hdZ0IrCMpjSwsiZs0C53DwTpeypwPWa/Qq++WXAYUCKp2ujwOm7jGaBABzvvlGsI6Um28W/Kw2KEjwswqFgtc14ZlnsOu++1yjnj2duzN/eEx46qlzWkIgR1QGAxbu34+aH39E8dKlAzq7k998E0qRftkTI4cRG+6kZxy7Y8eO4X//+58s4tj5+fkhKSlJ8hhVQ8Wx27hxI9RqtaRx7IqKiuB0Or0ao0qhUKC6uhqA5+LYhRqNODWMkS8A0N9+O7SzZ2PatGnY/dFHaHzhhbM3FQpAq4VSr4faaITy8suhnT4dU6dOxYH169Hw8cfQGI0Ij41FbXMzoNUiNCoKGj8/NIWEQJWY6IoJdvAg6vftgz4wELFJSThVVQWFVov40aMREBKCI0eOgOM4JHV04MD99w+p2fjoo8j55S9lF8fO3t6O/YOM7vUk9bXXUHfGUfK1OHYGg4Ev30Hj2IWHI+2JJ0Z0HLuqN98EWlr4MlGEhiLq7rtlHccuMDAQ0dHRbnHsysvLER8fD71eP+w4dt2x6TQaDVQqFf+swWCA3W5HV1cXAAw7jl1rayuUSmW/ceycTicfd87f3x8WiwVOp7PPszqdDhzH8c/6+fmho6MDTqcTKpUKer2ej0OnO7NRp3ccO7vdDofDgZqaGjQ0NPQbx+6yyy4TFO5kxDp23cgtjl13jBvWYUGnFBq8YfPEoUM4dMUVgp5NuukmRM6ahcCMDBhjYwG4RpTsLS2uUSGDAUqtFgqFQlTtg6XFORz4cc4cdNbW9j9SoVBAHx2Ni/PzZTmCw3EcusxmQVOPcs2jEAZqA2Jt9vElTpaUILChwafKpHf9ixXHTmysVivvbEmtg+M4imM3EikbYIEza7CgUwoN3rBZXleHqf/8p6BnYxcuRPQll/BOHQCoDQYYYmKgDQ6GSqfj1+CJqX2wtBQqFSZ0n5fYe/2fD0zLKRQKaAICMOGZZ7ov9H4AUChknUchDNQGFCoVwqdNQ9yVVyJ82jSfLgOhlFdW+lyZsPA7QAi2Ada3ehsxdZBjRxAyQ6FQIHLWLOijo/s6DWcfgj4mBmFTpnhXnEBiFixA7sqVfWKW6aOjkbtypWxjvPVkJOSRIAj2oKlYmU3FOhyOIQMdsgALOqXQ4A2b3Taq1651LUYH+l2MPlznQUztQtMaCdNyIyGP/cFCHyAXfLGseueJ1alYjuOYiJfJcRysVitNxY5EuhfHsg4LOqXQ4A2b3TbEHhESU7vQtEbCtNxIyGN/sNAHyAVfLCu55MnSK06jVIipg8KdyAxWGuFQsKBTCg3esNnTRsyCBYi++GJRRoTE1M5C/RPSQm1AOL5YVnLJk/NMeCOp6d5BKwbk2MmMkJAQqSUIggWdUmjwhs3eNrpHhMROl5W0CHlCbUA4vlhWcskTK1PgYuqgqViZ0R23iXVY0CmFBm/Y9JQNMdNlof4JaaE2IBxfLCu55ElIqJPvv/8eijNHCPb3+eUvf+kVHUIhx05mdAdNZR0WdEqhwRs2PWVDzHRZqH9CWqgNCMcXy8pTeeIcDjRs347K//4XDdu3g3M4zis9IVPG8+bNQ3V1tdunoqICl1xyCcLDw/HUU0+dlwahOoQyYqdie548AQAFBQWyOHmiqakJ9fX1kkeVH+rkicrKSuTn50t68kRtbS3y8/O9GlW+o6ODf9dTJ0+YzWaUlpaKHlW+u76FRJVPTk6GVqvlo8rn5uaitLQUjY2NMBgMcDqdfDkkJCTA398fhw8fBgBkZ2ejoqIC9fX10Gq1mD59OjZt2gSO4xAbG4uQkBAcPHgQADBx4kTZnTwhdR/ByskTVquVbwP99RFFRUV8m5Wqj2Dh5InGxkacOnVK1D6ChZMnWlpaUF1d7XbyhM1mQ3t7OxwOxzmdPFG/YQNKXn4Z1tpadKOPjsbYxx5D6Lx5AIZ/8oTNZoPJZBry5ImoqCj+5AmFQoE77rgDRUVF+O677zBu3DhYrdbzOnnCarXCbreD4zgUFhb2e/KEUCjciczCnVRVVSG2R7BZVmFBpxQavGHTUzbETJeF+iekhdqAcHyxrHrn6XzDnfDhnXq7LOcY3qkbm80GrVYr+HmHw4GbbroJ69evx08//YSJEycO2+ZAOpxOpyjhTkbsiJ1csfdzcDuLsKBTCg3esOkpG2Kmy0L9E9JCbUA4vlhWQvPUNcgUpEKlgkqnA+dw4MAf/9j/8XwcBygUOPDHPyL64ov5iAADpas2Gnu9Lnxsy+Fw4Oabb8b69euxYcMG0Zy64eoYCnLsZMapU6eQlJQktYwhYUGnFBq8YdNTNsRMl4X6J6SF2oBwfLGshOZpTWbmgPciL7gAef/4Bxp37kRnTc3AiXAcOmtq0LhzJx8hYMPcubA1NfV59Ioz0/bd2Gw2QRsXup26devWYcOGDcjKyhryneFgs9mg0WhESYs2TxAEQRAEwSzWujpRnxsu3U7d2rVr8eOPP/Zx6oqKinDppZfy37/44gvcd+ZUoLy8PH796K233oq3337bIxp7QmvsZLbGbrjrAaSCBZ1SaPCGTU/ZEDNdFuqfkBZqA8LxxbLqnaeB1tgJmYpt2L4d2371qyFtTv/4Y37ETuhUrNPphFI58BiXw+HALbfcgh9++AE//vgjsrOz+zzT1dWFUaNGoaysDHa7HXl5eVizZg2ioqLw3Xff4Z///CdmzpyJkydPYuXKlf3a6d6oQUeKjUC6d1OxDgs6pdDgDZuesiFmuizUPyEt1AaE44tlJTRPaqNxwI/qzBRp2JQp0EdH8xsl+qBQQB8Tg7ApU4ZMtzfdO2b7w+l04pZbbsHXX3+Njz76CDExMaipqXH7OBwOqNVqxMfHo7y8HG+//TaWLFmCqDNHPV5++eU4efIk1q5di9dff31AW4PpGC60xk5mdG8PZx0WdEqhwRs2PWVDzHRZqH9CWqgNCMcXy0rMPClUKkx4+mnXrliFwn0TxRlnb8JTT53TUYqDHSm2c+dOfPLJJwCARYsW9ftMc3MzgoODMXXqVPz000949913+fAwAFBYWIiWlhaMHTsWavXALpeYR4rRiJ3MCAoKklqCIFjQKYUGb9j0lA0x02Wh/glpoTYgHF8sK7HzFLNgAXJXroT+zEhYN/ro6HMOdQIMfpRXXl4eOI4b9BMcHAzAFdNv6dKluP/+++Hn5wcAqKysxB133IGff/4Zx48f52N5DlfHcKE1djJbY9fZ2XlOMYC8DQs6pdDgDZuesiFmuizUPyEt1AaE44tl1TtP5xvHrhvO4UDjzp2w1tVBFxmJsClTzmmkrpuh1tgJZdeuXbj55ptx4MABqFQqdHR04MILL8RLL72EOXPm4NNPP8V3332Hjz/+eEAdtMZuhNIdcZ11WNAphQZv2PSUDTHTZaH+CWmhNiAcXywrT+VJoVIhfNo0xF15JcKnTTsvpw7AsE50GIyVK1filVde4UfeDAYDtm3bhjlz5gAAbrjhhgGdOjF1AOTYEQRBEARBnBMnTpzAuHHjEBAQgMsvv1xqOQBo84Ts6D4bkXVY0CmFBm/Y9JQNMdNlof4JaaE2IBxfLCu55ElIcOLBGD16NH+G8/nqGGwjx3AYsY7dypUrsXLlSjgcDgBAQUEB/Pz8mD/gW6/XQ6fTSX7Ad2JiIn/gdH8HfB86dAgnTpyQ9IDvkpISnDhxwqsHfDscDv7d7gO+q6urRT3gOzg4GHa7XfQDvv39/aFQKAQd8J2cnAytVssf8J2bm4vS0lI0NjbCYDAgOjqaL4eEhAT4+/vzC4ezs7NRUVGB+vp6aLVaTJ8+HZs2bQLHcYiNjUVISAgOHjwIAJg4cSJqa2tRW1vLt9nu8o6KikJUVBT27dsHAMjIyEBzczOqqqqgUCgwZ84cbNu2DTabDREREYiPj0dxcTEAIC0tDWazGeXl5QCA2bNnY9euXejo6EBYWBhSUlL4Njt27FjYbDa+zbLeR8THxyMwMFDyPkKtVvNtoL8+oqioiG+zUvURJ06c4MvbW31EREQEHwqku484evQoSktLResjxo0bh46ODtH7iFGjRkGpVArqI4xGI1QqFd9HZGZmwmazob29HQ6HA0ajkd85q9VqoVQq0dnZyb9rs9nQ1dUFhUIBf39/mEwmAIBGo4FKpeKfNRgMsNvt6OrqAgAEBATwz6rVamg0Gj6UiF6vh8Ph4I87CwgIQEdHB6xWK9RqNbRaLSxn4t/p9Xp+3Rvg6h8tFgucTmefZ3U6HTiO45/18/NDR0cHv9NVr9fzU63djqTVauWf7ezs5M+K5TgOhYWF4DjOrY8YzlQtbZ6Q2eaJ/Px8zJ07V2oZQ8KCTik0eMOmp2yImS4L9U9IC7UB4fhiWfXOk1ibJ8TGZDIhICBAahkwmUzQaDS0eYIgCIIgCII4C43YyWzETi7b4lnQSeFOpEuXhfonpIXagHB8saw8Fe5EbMQKdyKGDgp3MkLpXvPBOizolEKDN2x6yoaY6bJQ/4S0UBsQji+WlVzy1L1WT2rE1DFiN0/IldbWVqklCIIFnVJo8IZNT9kQM10W6p+QFmoDwvHFshooT6xNEnZvoJQaMXWQYycz/P39pZYgCBZ0SqHBGzY9ZUPMdFmof0JaqA0IxxfLqneeNBoNFAoF6uvrERERAcWZM16lxm63Sz5qx3EcLBYLTCYTlEoltFrteaVHa+xktsbOZrOdd6V7AxZ0SqHBGzY9ZUPMdFmof0JaqA0IxxfLqr88mc1mVFRUMDVqx3EcE04mx3Hw8/NDTExMv21hOL4KjdjJjG3btsliWzwLOqXQ4A2bnrIhZros1D8hLdQGhOOLZdVfnvz9/fk4haxQWFiIqVOnSi0DO3bsQFpamihOJjl2BEEQBEF4BZVKxZ+nygIcxzGzS1eskUPaFSszkpOTpZYgCBZ0SqHBGzY9ZUPMdFmof0JaqA0IxxfLSi55YkWnmDrOacSus7MT+/btQ11dXZ+zza688kpRhBH9o9FopJYgCBZ0SqHBGzY9ZUPMdFmof0JaqA0IxxfLSi55YkWnmDqG7dj98MMPuOWWW9DQ0NDnnkKhYGbrsK9y/PhxxMbGSi1jSFjQKYUGb9j0lA0x02Wh/glpoTYgHF8sK7nkiRWdYuoY9lTs/fffj1/84heorq6G0+l0+5BTRxAEQRAEIR3DDncSGBiI4uJijB492lOavIrcwp20t7fDz89PahlDwoJOKTR4w6anbIiZLgv1T0gLtQHh+GJZySVPrOgcSodHjxS79tprsXHjxuG+RojEiRMnpJYgCBZ0SqHBGzY9ZUPMdFmof0JaqA0IxxfLSi55YkWnmDqGvcbuzTffxC9+8Qts3rwZmZmZfRb8Pfjgg6KJI/rS3NwstQRBsKBTCg3esOkpG2Kmy0L9E9JCbUA4vlhWcskTKzrF1DFsx+6TTz7B2rVrYTAYsHHjRre4KwqFghw7D2M0GqWWIAgWdEqhwRs2PWVDzHRZqH9CWqgNCMcXy0oueWJFp5g6hr3GLjo6Gg8++CAef/xxKJVshMG76qqrsHHjRlx00UX4/PPPh/Wu3NbYORwOpoI7DgQLOqXQ4A2bnrIhZros1D8hLdQGhOOLZSWXPLGicygdHl1jZ7PZcN111zHj1AGu6d9//etfUsvwCgUFBVJLEAQLOqXQ4A2bnrIhZros1D8hLdQGhOOLZSWXPLGiU0wdw/bObr31VqxevVo0AWIwb948BAQESC2DIAiCIAhCUoa9xs7hcODll1/G2rVrMXHixD6bJ1599dVhpbdp0ya88sor2L17N6qrq/HVV19hyZIlbs+89dZbeOWVV1BdXY2MjAysWLECs2fPHq50nyAxMVFqCYJgQacUGrxh01M2xEyXhfonpIXagHB8sazkkidWdIqpY9iO3f79+5GdnQ0AOHDggNu9cznAtr29HVlZWbj99ttxzTXX9Lm/evVqPPTQQ3jrrbcwc+ZMvPPOO1i4cCEOHTrETIV4E1YWeg4FCzpp84R06bJQ/4S0UBsQji+WlVzyxIpOMXUM27H7+eefRTMOAAsXLsTChQsHvP/qq6/iN7/5De644w4AwIoVK7B27Vq8/fbbWL58+bDtWa1WWK1W/ntbW9vwRUvIkSNHEBUVJbWMIWFBpxQavGHTUzbETJeF+iekhdqAcHyxrOSSJ1Z0iqlj2I5dT7Zs2YLc3FzodDpRxPTGZrNh9+7dePzxx92uz58/H1u3bj2nNJcvX45nn322z/WCggL4+flhxowZ2Lt3L9rb2xEcHIyxY8eisLAQAJCamgqn04mTJ08CAKZNm4ZDhw6hra0NAQEByMjIwPbt2wEAKSkpUKlUKCkpAQBMmTIFJSUlaG5uhtFoRHZ2NrZs2QLANQRrMBhw9OhRAEBOTg5Onz6NxsZG6PV6TJ06FZs2bQIANDU1ob6+HocOHQIATJo0CVVVVairq4NGo8GMGTOwefNmOJ1OxMTEICwsjB9ZzczMRH19PWpqaqBSqTBr1ixs2bIFXV1diIyMRExMDPbu3QsASE9PR2trKyorKwEAc+fOxfbt22G1WhEeHo7ExEQUFRUBAMaPHw+LxYKysjIAwKxZs1BZWYn8/HyEhIRg9OjR2LVrFwBgzJgxsNvtOHXqFABg+vTp2L9/P8xmM4KCgjB+/Hjs2LEDAPjTTboDN+bl5eHIkSNobW2Fv78/MjMzsW3bNgBAcnIyNBoNjh8/DgDIzc1FbW0t8vPzYTQakZOTwy9OTUxMhNFoxJEjR/jyLisrQ0NDA3Q6HaZNm4b8/HwAQFxcHIKCgvjyzsrKQnV1Nerq6qBWqzFz5kwUFBTA4XAgOjoaHR0d/LsTJkxAY2MjqquroVQqMXv2bGzduhV2ux2RkZGIjY3Fnj17+PJua2tDRUUFAGDOnDkoLCxEZ2cnwsLCkJSUxJe32WxGaWkpX94zZ85EcXExLBYLQkJCkJqaip07d/Jt1uFwoLS0lG+zBw8ehMlkQmBgINLT0/k2213f3W126tSpOHbsGFpaWuDn54esrCz+5y45ORlarRbHjh3jy7u0tBSNjY0wGAxwOp18OSQkJMDf3x+HDx8GAGRnZ6OiogL19fXQarWYPn06Nm3aBI7jEBsbi5CQEBw8eBAAMHHiRNTW1qK2tpZvs93lHRUVhaioKOzbtw8AkJGRgebmZlRVVUGhUGDOnDnYtm0bbDYbIiIiEB8fj+LiYgBAWloazGYzysvLAQCzZ8/Grl270NHRgbCwMKSkpPBtduzYsbDZbHybZb2PiI+PR2BgoOR9hNVq5dtAf31EUVER32al6iNOnDjBl7e3+oiIiAjs378fwNk+4tSpU6L2EePGjUNHR4fofcSoUaOgVCoF9REtLS2orq4esI/Izc3F5s2bAUjbR5SXlyM/P1/yPuLUqVOD9hHt7e0QyrDDnfQkMDAQe/bswahRo841CXcxCoXbGruqqirExcVhy5YtmDFjBv/cCy+8gA8++IDv5BYsWICioiK0t7cjNDQUX331FaZMmdKvjf5G7BISEmQT7sRkMsliowgLOqXQ4A2bnrIhZros1D8hLdQGhOOLZSWXPLGicygdHg130pPz8AmHRe+1exzHuV1bu3Yt6uvrYbFYUFFRMaBTBwA6nQ6BgYFuHznR/RcY67CgUwoN3rDpKRtipstC/RPSQm1AOL5YVnLJEys6xdTBTjC6fggPD4dKpUJNTY3b9bq6OibmxKWgoaFBagmCYEGnFBq8YdNTNsRMl4X6J6SF2oBwfLGs5JInVnSKqeO81ti98847vIPldDpRUVEh6k5VrVaLyZMnY/369bjqqqv46+vXr8fixYvPK+2VK1di5cqVcDgcAOSzxs5kMslijV33+jYp1880NjZ6fY2dw+Hw+Bo7q9XqkTV2FotFtDV2Go2G1thhZK+x4ziO1tgJXGNXUVGBzZs3+9Qau/b2dlmssauurmZijV1FRQWKioqkWWP33nvvYfXq1Th9+jQCAwMxe/ZsPPzww1Cr1YiNjeUdJaGYzWa+kWRnZ+PVV1/FvHnzEBoaisTERKxevRo333wz/va3v2H69OlYtWoV3n33XRw8eBBJSUnDstUfcjtSjCAIgiCIkYVH1tg5HA4sXrwYd999NwwGA6688kpkZWXh888/R1paGn744YdzErtr1y5kZ2fzsfGWLl2K7OxsPP300wCA6667DitWrMAf//hHTJo0CZs2bcL3338vilMnR7r/SmQdFnRKocEbNj1lQ8x0Wah/QlqoDQjHF8tKLnliRaeYOgRPxb722mvYsWMH9uzZg7S0NP660+nEq6++iv/7v/87JwEXXHDBkJsw7r33Xtx7773nlD5BEARBEMRIQbBj9/777+OVV15xc+oAQKlU4ne/+x04jsNjjz0mukBPIdc1dkqlUhZr7Nrb2yVfY2ez2by+xi4wMNDja+yMRqNH1thptVrR1tjFxMTQGjuM7DV2ISEhtMZO4Bq7pqYmn1tjp1arZbHGrq2tjYk1dk1NTd5fY2cwGLBv3z6MGTNGcOJyQG5r7Orr6xERESG1jCFhQacUGrxh01M2xEyXhfonpIXagHB8sazkkidWdA6lwyNr7Pz8/FBfXz/g/T179uDXv/610OSIc6T7r0LWYUGnFBq8YdNTNsRMl4X6J6SF2oBwfLGs5JInVnSKqUOwYzd37lz87W9/6/deTU0Nrr/+enzwwQeiCSMIgpArTo5DS7sVnbYutHfasbOkDuv2lGNnSR0s1i6p5REE4cMInordt28fpk+fjmuvvRaPPPIIUlNT0dTUhG+//RbPP/88kpOTsXXr1mGHO5GKnmvsjh07hv/973+yWGMXHByM2NhYydfPDLXGrnutipTrZ/bv3w+r1erV9TM6nQ6nT58G4Lk1drGxsVCr1aKvn4mIiEBQUJAoa+xSU1P5dUQjbY1dl8OB//vAlff+UCqAJWl6LJwyxqfX2AUFBfE/u7TGbvA1dqWlpTAajT61xi48PByhoaHMr7H76aefoFKpJF9jV1dXh4iIiEHX2F122WWCpmKHFccuPz8fv/71r3nxgGuB5G9/+1s88MADSEpKgtPpFJocE8htjd3hw4f7bGBhERZ0SqHBGzY9ZUPMdFmof6lwchwWPv/9kM89dW0OZqXFeEGRNIzkNjBcfLGs5JInVnQOpcNjZ8XOnTsXx48fx5YtW/DRRx/hv//9L6qrq/Hyyy8jNDQUzzzzzHCSI86Buro6qSUIggWdUmjwhk1P2RAzXRbqXyqUCgW+e2IhQv11gz73t3WH4HB657xtKRjJbWC4+GJZySVPrOgUU8ewjxRTKpWYNm0apk2b5nbdz8+PHDsvoFaf1ylwXoMFnVJo8IZNT9kQM10W6l8qLNYu/HSgEk1m66DP1bd14kBZE7KSw7ykzLuM5DYwXHyxrOSSJ1Z0iqlj2EeK+Rpym4olCIINrHYHjle3oqzBfPZTb0J9W6fgNDISQnBBRiympEYiJsToQbUEQciZ4fgqbLiqEiDXAMUtLS2YMWOG5Aujh9o88dlnnyEmJkbShdFr1qxBRESEVxdGnz59GjqdawrOU5snLBYLxo8fL/rCaJPJhOzsbFE2T3R2dvInysh58wTHcYiMT0FZgxkHTlYh3KjEry6bg71796K0rg1/392B/tCrgU4Bm18PljfjYHkzFo4pwf9dOQMlJSU4Xd2IRpsai2bn4PDeXXybldvmiZqaGn4UgjZPDL55YseOHUhOTvapzRNtbW3Izc1lfvPEJ598gri4OMk3Txw4cAAZGRneDVDsq8htxC4/Px9z586VWsaQsKBTCg3esOkpG2Kmy0L9nwsWaxe+LypDWYMJZfWuUbj2HuFJFkyKx9IrsgAAti4H7nw7H/Fh/kgM90dixJl/wwNg1Klx8xsb0GgaeDo2yKjF5ZMTcaSqFf93cRqSIwMAAN/uOo0317gcrcggA8bHBSMtLhhp8SEYHR0IrVrlwRIQD7m2ASnwxbKSS55Y0TmUDhqx82Gio6OlliAIFnRKocEbNj1lQ8x0Waj//nA4nahqsqC8wYzTDWaUN5iRFOGP62amAnCFInn3x8Nu7ygVQEyIHxLC/TE2Npi/rlWr8MEDFw5oazCnDgAeXDSh312xOo0SKZEBOF1vQl1rB+paO7DpUDUAQKNS4s+3Tsf4OJcOW5cDGpUSCoVCSPa9CqttgBWcHIc2iw0A4BccgU5bF6BQQK+Rh+M+FHKpf1Z0iqmDHDuZwcLRJ0JgQacUGrxh01M2xEx3sLS6f6HpNSo4nBwOVTSj2WxFiL8OGQmhMOrOv1tychyUZ5wdh9OJ5V/uQVmDCZWN7ejqtRM1MzGUd+z0WjUun5yIYD8dEsL9kRTuj7gwP9FHyVKjAwcMdTI/KwHzsxJgsXbhWHULjlS04HBFMw5XtqDNYkNCuB//7Ps/H8XPB6owPi4Y4+NCkB4fjDExQdBrpe/aWegDWKXfkDj/LUViuD/evUf60SMxkEv9s6JTTB3S//QTw2L//v1MDBsPBQs6pdDgDZuesiFmugOlNVSMN7VSgd9fnS04vpvF2oXyRjM/bVpWb0JZoxmxIX74041TAQAqpRIHy5v4Xap6jQoJ4d3Tpv5IjQlyS/OBRZlCszko3zy2AADgcHI4WNGM+tYORAYZkB4fAo166EhTRp0ak5LDMSk5HADAcRzq2zrhp9PwzxytakWT2YqtR2ux9WgtAFe4lVFRAUiLD8GdF6dBJ9EIEAt9ACEdcql/VnSKqYMcO4IgmKHLyeG5z4v6BO9t67Ch2WxFUkQAf+2+dzejpKat33RsdvdA6fcsyIBBq0JiuD8iggz8aJ4n6TlqNjU18rzTUygUiAwyuF174capKKlpxaGKZtfIXmUzGk1WlNS0ocHUifsuzeCf/bSgBBzHYXxcCMbFBbk5iIR3USoUWPOHRfxU7Nat23Dh3FkAg1PqhPygzRMy2zzR2NiIsDD2416xoFMKDd6w6SkbYqY7WFp2hxO3vPHToHHe/PVqzE2PQXljO8oazGhptyE62OC2pu3/fbANB8qaEOKnQ0K4H5IiAvjp04Rwf4QF6EXJi9yob+vA4YoWWKx2XJqdCMA12nfjig18mSsAJEUEYHy8a2NGekIoEsP9RdXBQh8gF6pr6/HCt64dz3++dbpko6xiIpf6Z0XnUDqG46uMWMdOrmfFAq5t71KHMhgq3MkPP/wAf39/SUMZbNmyBTqdzquhDMxmM8xmMwDPhTvR6/WIjIwUPZSBWq1GcnKyKOFOAgMDUVvrmhrsHcpAG5GCZV8MfJbqQATrFfh46aXYvs11JrXKLxRJcVE4ecyVLitnxUrdR/QX7qS8ohI/7K1EtZlDvVWN2hb3MC1xgUrcOsnI9xGFRyoRHajGJfPmnHMfYbfb0draCo7jEJ+Sii6blS/vybl5OHRwHzo6OhASHIyUUaNwYK+rbkZiuJPdew/g/SOuMEk3ZvkhMRCIjoqSdbgTlUqF0aNHMx/u5L///S+CgoIk7yNKS0uRnJzs/bNifRG5jdixsjV7KFjQSeFOpEt3sLR+PlCJF7/aM2Qa08ZEYnZ6DBLPjMAZGNgQ4Cs0mTtxpLIFhytacKSyGRkJobht3jgArnWL17yyFk4OiA/1w/j4sxszkiMDoFIKO4kyPz8fs+fMEXRuLgCsfeqyc86PnCk4XI3X/lsMs+3sr+LwAD3uWZAu67OEWfgdIARWdFK4kxGMUmCnKjUs6JRCgzdsesqGmOkOlFZLu5Vf5D8UV08b5bPHbUlNqL8eM8ZFY8a4viEWGkydiA3xQ0VTO//5cZ9rVE6nUeH6maNx4+wxQ9pgoQ9gnYLD1Xju86I+1xtMnf2uNZUTcql/VnSKqYNG7GQ2YkcQcqTZbMVn207gu12nYe1yDvl8RKAeHzxwIVRKWkwuFW0WG45Wtbg2ZlS24EhlCyzWLtx7aQYWT0kGAJyqM+GZ1TsxPi4EaWdG9kZHB0KjOvtLyslxMHXYoVMrse1oLVb9eNhtfWVYgA53XpSGeZlx3s6ipDicHG554yc0mAY+go5+DohuaMTOh9m6dStmzJghtYwhYUGnFBq8YdNTNsRMt2daLe1W3Pbmz+i0u47vGxcbjKNVLYO+f/f8dPplJjGBRi2mpEZiypkdvU6OQ3mDGUFGLf/Mkcpm1LR0oKalAxsPVgFwBVEeExOEQKUFty/MQ3JkAIKMWhQcrsaLX+/pY6fRZMWLX++BRq1kbnSK4zjYHU50OTh0OZywn/l0OZwIC9DzywMaTZ04VW9yPdPlet7ucKLL6fqeOzoCsaGu+IMnalrx84EqVLdYBnXqAKC+rRMHyppkOXLNwu8AIbCiU0wd5NjJDLvdLrUEQbCgUwoN3rDpKRtiptveaeP/H+ynw+TREWg0deKmOWOQOzoClw6y7mqw4L2EdCgVCrdwMwAwJz0WUcFGPoDykYpmtHXYcaiiGQBwWWsHkiMD4HBy+OuZY9IG4u11hzB9XDRUSgUaTZ1oMlv7OFNdDg72LiemjIngw7UcLG/CgbLmM/f7Pn/j7FREBRsBABsPVmFNcRnvqHU5nLB1uRywLgeHJ6/Jxvi4EADAN4WleGvtoQH1Pn/DFN7p3VlSh9e+G3hD0B+uzeEdu/LGdny27eSgZdGTJvPgzh+rsPA7QAis6BRTBzl2MiMy8vzjYXkDFnRKocEbNj1lQ4x0G02d+M/WE/ihyIKJORb+F+oji7Og16j4o6/ON3gvwQZGnRrZKeHITjkbRLmqyYLDlc3YdqAU4+ODAQAHyprQ0m4bJCWgocfo1Fc7Sgd1ft65aw78Il2OXfHJBny46fiAzy7MSeDbYX1bB/aUNg74bKfNwf9fperbDpUKBTQqBdS97gUZdUiJDIBGpYRapYRapYBGrYJG6Xo21F/HP5sQ5o+rp6Wg2WzFzweqBtTSTai/PMP2sPA7QAis6BRTx4h17HqGOwGAgoICWYQ7CQkJQX19PfPhTurr61FXVydpuJO2tjbk5+d7NZSB0Wjk3/VUuJO4uDiUlpaKHsogMjISlZWV5xTuZNT4THyw4QC2lZrQvYTun99uwYxELR/KoHCIUAYWM4cqTtxQBhTuxLt9xI4dO2C1WhETHo5fzx2F4kLXz2ezWthxSVt2FiNCm46uznYEaBVQKQF/oxFddisUcEKnViMgwA/FRbtw2qDE6NGjEayxY2KUGiolEBsTjbaWFjjsVhj0OsTFROP4wT2oLVEiOTkZyYHA4vE6KBUKjB+bivq6GljazfAz6JGRnobyo/uQX6ZAYmIiJkbp8NtpflApgck5k1BdWYGmxka3PiK/8jDi4uKQGhqEG8ZzABzIyprQbx+Rf/JsuJPx2no4Qzjs9dOiaRCHN8xfi6ZT+5F/WiG7cCfh4eGorq5mPtxJTU0N6urqJO8j6uvr0dHRMWi4E6HQ5gmZbZ5gZWv2ULCgk8KdeD7dhjbXCN33RWWwO1weXXp8CLJCOnDr4guZPJye8A4929PeU4149MPtQ77z8s3TZLme7FwZaFdsN3LeFcvC7wAhsKKTwp0QBCE5ti4H7n13M1rPHIuUkRCCm+aMRXZKGDZt2kROHcEzITEU4QH6IXeATkgM9aIq6ZmVFoOnrs3Biv8Ww9Qjjl1EoB53z5d3HDtCOsixkxnp6elSSxAECzql0OANm56yISTdZrMVwX5aKBQKaNUqXJqdgANlTbh57lhMSg7jnTkW6p+Qlp5tQKVU4J4F6YOOTo3UndCz0mKQFKjAC/87BrvDibsvSUf2qAjZl4Vc+gBWdIqpg1Ypy4y2tv4PPWcNFnRKocEbNj1lY7B061o78Nfv9+PmN37C3tNnF5/fMncs/nLrdGSnhLuN0LFQ/4S09GwDnbYu5I6OwONLJrltJABcpyzIecpRDExmE07WmlDe0I4JiaGyd+oA+fQBrOgUUwc5djKje+Es67CgUwoN3rDpKRv9pVvX2oE3vt+P29/8Gd/tdq2j23G8jr+vVin7nXJlof4JaenZBha/tBaLX1qLF7/e4xacGABSIv1HtFMHgN+A4kvIpQ9gRaeYOmgqliCIPtS2WPDvLSewbk85upyutT8Tk0Jx05yxI2pxO+F5aC0mQYgL7YqV2a5YjuNk0RGyoFMKDd6w6Skb3elyHIe73tmE0/VmAEBWchhumjMGE5OEO3Qs1D8hLT3bQKety/0eAOuZk0iMOjW0apW35TFFh9WOJS+vA+CK8ajXyn/MRS59ACs6h9IxHF+FpmJlRncsHNZhQacUGrxh0xM2alos2LrdFT9QoVDgF9NHY1JyGP58yzS8fPO0YTl1ntJIyIuebUCvVbt9DFo1gv10CPbTjWinrtPWhU5bF7bu2HX2mt2BTlsXbF2OQd5kH7n0AazoFFOH/P8sGGF0dsrjeBkWdEqhwRs2xbRR02zBp1tKsH5vBS4ZpcXM6a7rF0+MwyVZ8eecLgv1T0gLtYGhWfzS2j7Xrnv1RwDA1NQIPHfDVG9LEg251D8rOsXUMWIdO7mePNHV1SWLkydaWlqQn58v6ckT7e3tXj95QqfTefzkCZVKdd4nT5TVtWJnDVBc2QHHmTV0VSbHOZ880TuqfEhICF8OUkaVp5MnpOsjep7C0l8fUVRUxLdZqfqIEydO8OXtrT4iIiIC+/cPfK5sN2azGa2trefUR7Bw8oTT6ZTFyRNNTU3Iz8+XvI+oq6tDUVERnTwhBnJbY2cymRAQEDD0gxLDgk4pNHjD5vnYqGpqx6cFJfhxXyWcZ370J48Kx6/mjEFisEY07SzUPyEt1AaGpnvtoclshr+/P6x2B/Qa19S0UqmQ9TS1XOqfFZ1D6aA1dj5M919krMOCTik0eMNmUVERnByHlnYrWtqt/DqdTlsXvyB9IP627hDW7a2Ak+MweXQEXrt9Bl74VR4yEkJF1c5C/RPSQm1gaLrXHB7av5dfd9h9Tc5OHSCf+mdFp5g6RuxULEHIFY7jsPD57/u9Fx/qh1X3zOUDnFY2tcOoVSPkTFDYG2enwuHkcNOcMUiLD/GaZoIgCMI7kGMnM8aNGye1BEGwoFMKDd6wOXbcOGBz/3/dVTS145Y3fsJ1M0bjaHULftpfiSunJOOeBRkAgPFxIfjTjf0vyBZTOwv1T0gLtQHh+GJZySVPrOgUUwdNxcqMjo4OqSUIggWdUmjwhk1rZyfW/GERll4xsd/7DaZOrFx78Mw6OqDR1AkhS2nF1M5C/RPSQm1AOL5YVnLJEys6xdRBjp3M6N7lxDos6JRCgzdslpWVgeOAf208NuhzWrUSK26fgT9cO1lQAE4xtbNQ/4S0UBsQji+WlVzyxIpOMXWQY0cQMuRAWRMaTIPHPbJ1OWHrcnpJEUEQBMECFO5EZuFOurq6oFazvzSSBZ1SaPCGza6uLmw+UosXv9oz5LOPXzUJ8ybECU5XLO0s1D8hLdQGhOOLZSWXPLGicygdFO7Eh+kOnsg6LOiUQoM3bBYXFyPUXy/oWaHPdacrFizUPyEt1AaE44tlJZc8saJTTB3k2MkMi8UitQRBsKBTCg3esGmxWDAhMRRhAbpBn4sI1GNCYuiw0hULFuqfkBZqA8LxxbKSS55Y0SmmDnLsZEZIiDxij7GgUwoN3rAZEhIClVKBRpN10Ofunp/Ox7MTmq5YsFD/hLRQGxCOL5aVXPLEik4xdZBjJzNSU1OlliAIFnRKocEbNoXYSI0OxKy0GNHTlSItQp5QGxCOL5aVXPLEik4xdZBjJzO6D25mHRZ0SqHBGza7bXzz2AJ889gCfPnIfDx3wxQ8uGgCnr9hCr58ZD5eu33GOacrpkZi5EJtQDi+WFZyyRMrOsXUIf1WEIlYuXIlVq5cCYfDdbZmQUEB/Pz8MGPGDOzduxft7e0IDg7G2LFjUVhYCMDlUTudTpw8eRIAMG3aNBw6dAhtbW0ICAhARkYGtm/fDgBISUmBSqVCSUkJAGDKlCkoKSlBc3MzjEYjsrOzsWXLFgBAYmIiDAYDjh49CgDIycnB6dOn0djYCL1ej6lTp2LTpk0AgKamJtTX1+PQoUMAgEmTJqGqqgp1dXXQaDSYMWMGNm/eDKfTiZiYGISFheHAgQMAgMzMTNTX16OmpgYqlQqzZs3Cli1b0NXVhcjISMTExGDv3r0AgPT0dLS2tqKyshIAMHfuXGzfvh1WqxXh4eFITEzkz7YbP348LBYLH4dn1qxZqKysRH5+PkJCQjB69Gjs2rULADBmzBjY7XacOnUKADB9+nTs378fZrMZQUFBGD9+PHbs2AEAGD16NADgxIkTAIC8vDwcOXIEra2t8Pf3R2ZmJrZt2wYASE5OhkajwfHjxwEAubm5qK2tRX5+PoxGI3JyclBQUMCXt9FoxJEjR/jyLisrQ0NDA3Q6HaZNm4b8/HwAQFxcHIKCgvjyzsrKQnV1Nerq6qBWqzFz5kwUFBTA4XAgOjoaHR0d/LsTJkxAY2MjqquroVQqMXv2bGzduhV2ux2RkZGIjY3Fnj17+PJua2tDRUUFAGDOnDkoLCxEZ2cnwsLCkJSUxJe32WxGaWkpX94zZ86Eovk0/C0W6DQhUDj9sW3LTr7NOhwOlJaW8m324MGDMJlMCAwMRHp6Ot9mu+u7u81OnToVx44dQ0tLC/z8/JCVlYWtW7fy5a3VanHs2DG+vEtLS9HY2AiDwQCn08mXQ0JCAvz9/XH48GEAQHZ2NioqKlBfXw+tVovp06dj06ZN4DgOsbGxCAkJwcGDBwEAEydORG1tLWpra/k2213eUVFRiIqKwr59+wAAGRkZaG5uRlVVFRQKBebMmYNt27bBZrMhIiIC8fHx/ALltLQ0mM1mlJeXAwBmz56NXbt2oaOjA2FhYUhJSeHb7NixY2Gz2fg2y3ofER8fj8DAQMn7CKvVyreB/vqIoqIiWCwWSfuIEydO8OXtrT4iIiIC+/fvB3C2jzh16pSofcS4cePQ0dHh1kcUFxfz5Z2amso7EsPpI0aNGgWlUimoj2hpaUF1dfWAfURubi42b94MQNo+ory8HPn5+ZL3EadOnRq0j2hvb4dQKNyJzMKdVFZWIi5OWPgKKWFBpxQavGHTUzbETJeF+iekhdqAcHyxrOSSJ1Z0DqWDwp34MN0jjKzDgk4pNHjDpqdsiJkuC/VPSAu1AeH4YlnJJU+s6BRTBzl2MqN7uJx1WNAphQZv2PSUDTHTZaH+CWmhNiAcXywrueSJFZ1i6iDHjiAIgiAIwkegNXYyW2NntVqh0w0emJYFWNAphQZv2PSUDTHTZaH+CWmhNiAcXywrueSJFZ1D6aA1dj5M904g1mFBpxQavGHTUzbETJeF+iekhdqAcHyxrOSSJ1Z0iqmDHDuZYTKZpJYgCBZ0SqHBGzY9ZUPMdFmof0JaqA0IxxfLSi55YkWnmDrIsZMZcpguBtjQKYUGb9j0lA0x02Wh/glpoTYgHF8sK7nkiRWdYuqgNXa0xs4jsKCT1thJly4L9U9IC7UB4fhiWcklT6zopDV2I5juiNSsw4JOKTR4w6anbIiZLgv1T0gLtQHh+GJZySVPrOgUUwc5dgRBEARBED4COXYyY9SoUVJLEAQLOqXQ4A2bnrIhZros1D8hLdQGhOOLZSWXPLGiU0wd5NjJDKVSHlXGgk4pNHjDpqdsiJkuC/VPSAu1AeH4YlnJJU+s6BS1/xUtJcIrlJSUSC1BECzolEKDN2x6yoaY6bJQ/4S0UBsQji+WlVzyxIpOMXWQY0cQBEEQBOEjULgTmYU76ejogMFgkFrGkLCgUwoN3rDpKRtipstC/RPSQm1AOL5YVnLJEys6h9Ix4sKdfPfddxg3bhzGjBmDv//971LL8SjHjh2TWoIgWNAphQZv2PSUDTHTZaH+CWmhNiAcXywrueSJFZ1i6lCLlpJEdHV1YenSpfj5558RGBiInJwcXH311QgNDZVamkdoaWmRWoIgWNAphQZv2PSUDTHTZaH+CWmhNiAcXywrueSJFZ1i6pD9iF1hYSEyMjIQFxeHgIAALFq0CGvXrpValsfw8/OTWoIgWNAphQZv2PSUDTHTZaH+CWmhNiAcXywrueSJFZ1i6pDcsdu0aROuuOIKxMbGQqFQ4Ouvv+7zzFtvvYWUlBTo9XpMnjwZmzdv5u9VVVUhLi6O/x4fH4/KykpvSJeErKwsqSUIggWdUmjwhk1P2RAzXRbqn5AWagPC8cWykkueWNEppg7JHbv29nZkZWXhzTff7Pf+6tWr8dBDD+HJJ59EcXExZs+ejYULF6KsrAwA0N/eD4VC4VHNUrJ161apJQiCBZ1SaPCGTU/ZEDNdFuqfkBZqA8LxxbKSS55Y0SmmDsnX2C1cuBALFy4c8P6rr76K3/zmN7jjjjsAACtWrMDatWvx9ttvY/ny5YiLi3MboauoqEBeXt6A6VmtVlitVv57a2srANeOEznQ3t4uC60s6JRCgzdsesqGmOmyUP+EtFAbEI4vlpVc8sSKzqF0dN8TFMiEYwgA3FdffcV/t1qtnEql4r788ku35x588EFuzpw5HMdxnN1u51JTU7mKigqura2NS01N5RoaGga08cwzz3AA6EMf+tCHPvShD31k9SkvLx/Sl5J8xG4wGhoa4HA4EBUV5XY9KioKNTU1AAC1Wo2//OUvmDdvHpxOJx599FGEhYUNmObvf/97LF26lP/udDrR1NSEsLAwWUzhTpkyBTt37pRaxpCwoFMKDd6w6SkbYqXb1taGhIQElJeXyyI2JOEZWOgD5IIvlpVc8sSKzqF0cBwHk8mE2NjYIdNi2rHrprfDxXGc27Urr7wSV155paC0dDoddDqd27Xg4ODz1ugtVCqVLH5ZsqBTCg3esOkpG2KnGxgYKHkbIKSDhT5ALvhiWcklT6zoFKIjKChIUFqSb54YjPDwcKhUKn50rpu6uro+o3gjhfvuu09qCYJgQacUGrxh01M2WKgzwneg9iQcXywrueSJFZ1i6mDqSDGFQoGvvvoKS5Ys4a/l5eVh8uTJeOutt/hr6enpWLx4MZYvXy6BSoIgBkNux/QRBEH4EpJPxZrNZpSUlPDfS0tLsWfPHoSGhiIxMRFLly7FzTffjNzcXEyfPh2rVq1CWVkZ7r77bglVEwQxEDqdDs8880yfJQ8EQRCE55F8xG7jxo2YN29en+u33nor3n//fQCuAMUvv/wyqqurMWHCBLz22muYM2eOl5USBEEQBEGwjeSOHUEQBEEQBCEOTG+eIAiCIAiCIIRDjh1BEARBEISPQI4dQRAEQRCEj0COHUEQBEEQhI9Ajh1BEF7DZDJhypQpmDRpEjIzM/Huu+9KLYkgCMKnoF2xBEF4DYfDAavVCqPRCIvFggkTJmDnzp2Dnu9MEARBCIdG7AiC8BoqlQpGoxEA0NnZCYfDAfrbkiAIQjzIsSMIQjCbNm3CFVdcgdjYWCgUCnz99dd9nnnrrbeQkpICvV6PyZMnY/PmzW73W1pakJWVhfj4eDz66KMIDw/3knqCIAjfhxw7giAE097ejqysLLz55pv93l+9ejUeeughPPnkkyguLsbs2bOxcOFClJWV8c8EBwdj7969KC0txSeffILa2lpvyScIgvB5aI0dQRDnhEKhwFdffYUlS5bw1/Ly8pCTk4O3336bv5aWloYlS5Zg+fLlfdK45557cOGFF+IXv/iFNyQTBEH4PDRiRxCEKNhsNuzevRvz5893uz5//nxs3boVAFBbW4u2tjYAQFtbGzZt2oRx48Z5XStBEISvopZaAEEQvkFDQwMcDgeioqLcrkdFRaGmpgYAUFFRgd/85jfgOA4cx+H+++/HxIkTpZBLEAThk5BjRxCEqCgUCrfvHMfx1yZPnow9e/ZIoIogCGJkQFOxBEGIQnh4OFQqFT86101dXV2fUTyCIAjCM5BjRxCEKGi1WkyePBnr1693u75+/XrMmDFDIlUEQRAjC5qKJQhCMGazGSUlJfz30tJS7NmzB6GhoUhMTMTSpUtx8803Izc3F9OnT8eqVatQVlaGu+++W0LVBEEQIwcKd0IQhGA2btyIefPm9bl+66234v333wfgClD88ssvo7q6GhMmTMBrr72GOXPmeFkpQRDEyIQcO4IgCIIgCB+B1tgRBEEQBEH4COTYEQRBEARB+Ajk2BEEQRAEQfgI5NgRBEEQBEH4COTYEQRBEARB+Ajk2BEEQRAEQfgI5NgRBEEQBEH4COTYEQRBEARB+Ajk2BEEQRAEQfgI5NgRBEEQBEH4COTYEQRBEARB+Ajk2BEEQRAEQfgI5NgRBEEQBEH4COTYEQRBEARB+Ajk2BEEQRAEQfgI5NgRBEEQBEH4COTYEQRBEARB+AhqqQVIjdPpRFVVFQICAqBQKKSWQxAEQRAE4QbHcTCZTIiNjYVSOfiY3Ih37KqqqpCQkCC1DIIgCIIgiEEpLy9HfHz8oM+MeMcuICAAgKuwAgMDJVYzNDt27EBeXp7UMoaEBZ1SaPCGTU/ZEDNdFuqfkBZqA8LxxbKSS55Y0TmUjra2NiQkJPA+y2AoOI7jxBQnN9ra2hAUFITW1lZZOHYEQRAEQYwshuOr0OYJmbF582apJQiCBZ1SaPCGTU/ZEDNdFuqfkBZqA8LxxbKSS55Y0SmmDnLsZIbT6ZRagiBY0CmFBm/Y9JQNMdNlof4JaaE2IBxfLCu55IkVnWLqIMdOZsTExEgtQRAs6JRCgzdsesqGmOmyUP+EtFAbEI4vlpVc8sSKTjF1kGMnM8LCwqSWIAgWdEqhwRs2PWVDzHRZqH9CWqgNCMcXy0oueWJFp5g6yLGTGQcOHJBagiBY0CmFBm/Y9JQNMdNlof4JaaE2IBxfLCu55IkVnWLqIMeOIAiCIAjCRyDHTmZkZmZKLUEQLOiUQoM3bHrKhpjpslD/hLRQGxCOL5aVXPLEik4xdZBjJzPq6+ulliAIFnRKocEbNj1lQ8x0Wah/QlqoDQjHF8tKLnliRaeYOsixkxk1NTVSSxAECzql0OANm56yIWa6LNQ/IS3UBoTji2UllzyxolNMHeTYyQyVSiW1BEGwoFMKDd6w6SkbYqbLQv0T0kJtQDi+WFZyyRMrOsXUweyRYl1dXVi2bBk+/vhj1NTUICYmBrfddhv+8Ic/QKl0+aMcx+HZZ5/FqlWr0NzcjLy8PKxcuRIZGRmC7dCRYgRBEARBsIxPHCn20ksv4W9/+xvefPNNHD58GC+//DJeeeUV/PWvf+Wfefnll/Hqq6/izTffxM6dOxEdHY1LLrkEJpNJQuWeZcuWLVJLEAQLOqXQ4A2bnrIhZros1D8hLdQGhOOLZSWXPLGiU0wdzDp227Ztw+LFi3HZZZchOTkZ1157LebPn49du3YBcI3WrVixAk8++SSuvvpqTJgwAR988AEsFgs++eQTidV7jq6uLqklCIIFnVJo8IZNT9kQM10W6p+QFmoDwvHFspJLnljRKaYOZh27WbNmYcOGDTh27BgAYO/evSgoKMCiRYsAAKWlpaipqcH8+fP5d3Q6HebOnYutW7cOmK7VakVbW5vbR05ERkZKLUEQLOiUQoM3bHrKhpjpslD/hLRQGxCOL5aVXPLEik4xdahFS0lkHnvsMbS2tmL8+PFQqVRwOBz405/+hBtuuAHA2R0kUVFRbu9FRUXh9OnTA6a7fPlyPPvss32uFxQUwM/PDzNmzMDevXvR3t6O4OBgjB07FoWFhQCA1NRUOJ1OnDx5EgAwbdo0HDp0CG1tbQgICEBGRga2b98OAEhJSYFKpUJJSQkAYMqUKSgpKUFzczOMRiOys7P5odfExEQYDAYcPXoUAJCTk4PTp0+jsbERer0eU6dOxaZNmwAAwcHBqK+vx6FDhwAAkyZNQlVVFerq6qDRaDBjxgxs3rwZTqcTMTExCAsL4yNaZ2Zmor6+HjU1NVCpVJg1axa2bNmCrq4uREZGIiYmBnv37gUApKeno7W1FZWVlQCAuXPnYvv27bBarQgPD0diYiKKiooAAOPHj4fFYkFZWRkAl1NeV1eHuro6hISEYPTo0fxI65gxY2C323Hq1CkAwPTp07F//36YzWYEBQVh/Pjx2LFjBwBg9OjRAIATJ04AAPLy8nDkyBG0trbC398fmZmZ2LZtGwAgOTkZGo0Gx48fBwDk5uaitbUV+fn5MBqNyMnJQUFBAV/eRqMRR44c4cu7rKwMDQ0N0Ol0mDZtGvLz8wEAcXFxCAoK4ss7KysL1dXVqKurg1qtxsyZM1FQUACHw4Ho6GgYDAb+3QkTJqCxsRHV1dVQKpWYPXs2tm7dCrvdjsjISMTGxmLPnj18ebe1taGiogIAMGfOHBQWFqKzsxNhYWFISkriyzs2NhalpaV8ec+cORPFxcWwWCwICQlBamoqdu7cybdZh8OB0tJSvs0ePHgQJpMJgYGBSE9P59tsREQEKisr+TY7depUHDt2DC0tLfDz80NWVhb/R1NycjK0Wi3/h1dubi5KS0vR2NgIg8GA1NRUvhwSEhLg7++Pw4cPAwCys7NRUVGB+vp6aLVaTJ8+HZs2bQLHcYiNjUVISAgOHjwIAJg4cSJqa2tRW1vLt9nu8o6KikJUVBT27dsHAMjIyEBzczOqqqqgUCgwZ84cbNu2DTabDREREYiPj0dxcTEAIC0tDWazGeXl5QCA2bNnY9euXejo6EBYWBhSUlL4Njt27FjYbDa+zbLeR8THxyMwMFDyPiIoKIhvA/31EUVFRXyblaqPOHHiBF/e3uojIiIisH//fgBn+4jutMXqI8aNG4eOjg7R+4hRo0ZBqVQK6iPCw8NRXV09YB+Rm5uLzZs3A5C2j+iuK6n7iLq6OnR0dAzYR7S3t0MwHKN8+umnXHx8PPfpp59y+/bt4/71r39xoaGh3Pvvv89xHMdt2bKFA8BVVVW5vXfHHXdwCxYsGDDdzs5OrrW1lf+Ul5dzALjW1laP5kcsNm7cKLUEQbCgUwoN3rDpKRtipstC/RPSQm1AOL5YVnLJEys6h9LR2toq2FdhdsTukUceweOPP47rr78egOsvydOnT2P58uW49dZbER0dDQD8jtlu6urq+ozi9USn00Gn03lWPEEQBEEQhAQwu8bOYrHwYU26UalUcDqdAFxDlNHR0Vi/fj1/32azIT8/HzNmzPCqVm+Snp4utQRBsKBTCg3esOkpG2Kmy0L9E9JCbUA4vlhWcskTKzrF1MGsY3fFFVfgT3/6E/73v//h1KlT+Oqrr/Dqq6/iqquuAgAoFAo89NBDeOGFF/DVV1/hwIEDuO2222A0GnHjjTdKrN5ztLa2Si1BECzolEKDN2x6yoaY6bJQ/4S0UBsQji+WlVzyxIpOMXUw69j99a9/xbXXXot7770XaWlp+N3vfoe77roLzz33HP/Mo48+ioceegj33nsvcnNzUVlZiXXr1iEgIEBC5Z6le6Ey67CgUwoN3rDpKRtipstC/RPSQm1AOL5YVnLJEys6xdTB7Bq7gIAArFixAitWrBjwGYVCgWXLlmHZsmVe00UQBEEQBMEqzB4p5i3oSDGCIAiCIFjGJ44UI/qnO74N67CgUwoN3rDpKRtipstC/RPSQm1AOL5YVnLJEys6xdRBjp3MsFqtUksQBAs6pdDgDZuesiFmuizUPyEt1AaE44tlJZc8saJTTB3k2MmM8PBwqSUIggWdUmjwhk1P2RAzXRbqn5AWagPC8cWykkueWNEppg5y7GRGYmKi1BIEwYJOKTR4w6anbIiZLgv1T0gLtQHh+GJZySVPrOgUUwc5djKj+yxA1mFBpxQavGHTUzbETJeF+iekhdqAcHyxrOSSJ1Z0iqmDHDuCIAiCIAgfgRw7mTF+/HipJQiCBZ1SaPCGTU/ZEDNdFuqfkBZqA8LxxbKSS55Y0SmmDnLsZIbFYpFagiBY0CmFBm/Y9JQNMdNlof4JaaE2IBxfLCu55IkVnWLqIMdOZpSVlUktQRAs6JRCgzdsesqGmOmyUP+EtFAbEI4vlpVc8sSKTjF1kGNHEARBEAThI9CRYjI7UszhcEClUkktY0hY0CmFBm/Y9JQNMdNlof4JaaE2IBxfLCu55IkVnUPpoCPFfBhWtmYPBQs6KdyJdOmyUP+EtFAbEI4vlpVc8sSKTgp3MoJhZaHnULCgkzZPSJcuC/VPSAu1AeH4YlnJJU+s6BRTh1q0lAivEBISIrUEQbCgUwoN3rDpKRtipstC/RPSQm1gcJwchzaLDQCgMQaipd0KnUYFRa/ndBoVFIreV9lHLvXPik4xddAaO5mtsWtvb4efn5/UMoaEBZ1SaPCGTU/ZEDNdFuqfkBZqAwPj5DgsfP57Qc9+89gC6LXyG4ORS/2zonMoHbTGzofZtWuX1BIEwYJOKTR4w6anbIiZLgv1T0gLtYGRjVzqnxWdYuqQ358BBEEQBCFjlAoF1vxhET8Vm795K97a6VpjtXrpxdBrzu6O1Gmk37FJyAsasZMZY8aMkVqCIFjQKYUGb9j0lA0x02Wh/glpoTYwOEqFAsF+OgT76TAxLZW/rteooNeq+Y8c19cB8ql/VnSKqYMcO5lht9ulliAIFnRKocEbNj1lQ8x0Wah/QlqoDQjHbu+SWoLoyKX+WdEppg5y7GTGqVOnpJYgCBZ0SqHBGzY9ZUPMdFmof0JaqA0I53TZaakliI5c6p8VnWLqIMeOIAiCIAjCR6BwJzILd2Kz2aDVaqWWMSQs6JRCgzdsesqGmOmyUP+EtFAbEE6buQO/eO0nAPINb9IbudQ/KzqH0kHhTnyY/fv3Sy1BECzolEKDN2x6yoaY6bJQ/4S0UBsQzsGDB6SWIDpyqX9WdIqpg2nHrrKyEjfddBPCwsJgNBoxadIk7N69m7/PcRyWLVuG2NhYGAwGXHDBBTh48KCEij2P2WyWWoIgWNAphQZv2PSUDTHTZaH+CWmhNiAcc3u71BJERy71z4pOMXUw69g1Nzdj5syZ0Gg0WLNmDQ4dOoS//OUvCA4O5p95+eWX8eqrr+LNN9/Ezp07ER0djUsuuQQmk0k64R4mKChIagmCYEGnFBq8YdNTNsRMl4X6J6SF2oBwgmSwDGi4yKX+WdEppg5m19g9/vjj2LJlCzZv3tzvfY7jEBsbi4ceegiPPfYYAMBqtSIqKgovvfQS7rrrLkF25LbGrrOzE3q9XmoZQ8KCTik0eMOmp2yImS4L9U9IC7UB4TS1mHHDX/MBAM/fMAU5oyKgUsozfl03cql/VnQOpcMn1tj997//RW5uLn7xi18gMjIS2dnZePfdd/n7paWlqKmpwfz58/lrOp0Oc+fOxdatWwdM12q1oq2tze0jJ3bs2CG1BEGwoFMKDd6w6SkbYqbLQv0T0kJtQBgFh6tx5zub+O9/+HQnbnnjJxQcrpZQ1fkjl/pnRaeYOry29aalpcVtGnUoTp48ibfffhtLly7FE088gcLCQjz44IPQ6XS45ZZbUFNTAwCIiopyey8qKgqnTw8cE2j58uV49tln+1wvKCiAn58fZsyYgb1796K9vR3BwcEYO3YsCgsLAQCpqalwOp04efIkAGDatGk4dOgQ2traEBAQgIyMDGzfvh0AkJKSApVKhZKSEgDAlClTUFJSgubmZhiNRmRnZ2PLli0AgMTERBgMBhw9ehQAkJOTg9OnT6OxsRF6vR5Tp07Fpk2uH/ympibU19fj0KFDAIBJkyahqqoKdXV10Gg0mDFjBjZv3gyn04mYmBiEhYXhwAHXwtzMzEzU19ejpqYGKpUKs2bNwpYtW9DV1YXIyEjExMRg7969AID09HS0traisrISADB37lxs374dVqsV4eHhSExMRFFREQBg/PjxsFgsKCsrAwDMmjULlZWVyM/PR0hICEaPHs2fgzdmzBjY7XY+Zs/06dOxf/9+mM1mBAUFYfz48XwDHz16NADgxIkTAIC8vDwcOXIEra2t8Pf3R2ZmJrZt2wYASE5OhkajwfHjxwEAubm5qK2tRX5+PoxGI3JyclBQUMCXt9FoxJEjR/jyLisrQ0NDA3Q6HaZNm4b8fNdfz3FxcQgKCuLLOysrC9XV1airq4NarcbMmTNRUFAAh8OB6OhodHR08O9OmDABjY2NqK6uhlKpxOzZs7F161bY7XZERkYiNjYWe/bs4cu7ra0NFRUVAIA5c+agsLAQnZ2dCAsLQ1JSEl/eZrMZpaWlfHnPnDkTxcXFsFgsCAkJQWpqKnbu3Mm3WYfDgdLSUr7NHjx4ECaTCYGBgUhPT+fbbHd9d7fZqVOn4tixY2hpaYGfnx+ysrL4P5qSk5Oh1Wpx7NgxvrxLS0vR2NgIg8EAp9PJl0NCQgL8/f1x+PBhAEB2djYqKipQX18PrVaL6dOnY9OmTfwofEhICL9WduLEiaitrUVtbS3fZrvLOyoqClFRUdi3bx8AICMjA83NzaiqqoJCocCcOXOwbds22Gw2REREID4+HsXFxQCAtLQ0mM1mlJeXAwBmz56NXbt2oaOjA2FhYUhJSeHb7NixY2Gz2fg2y3ofER8fj8DAQMn7CKvVyreB/vqIoqIivs1K1UecOHGCL29v9RERERH8QnmLIRYr1h4DwAE4O0LXYOrEc58X4f8tGg+duYIvb6F9xLhx49DR0SF6HzFq1CgolUpBfURLSwuqq6sH7CNyc3P5GTkp+4jy8nLk5+dL3kecOnVq0D6ifRjrMD0yFfvSSy8hOTkZ1113HQDgl7/8Jb744gtER0fj+++/R1ZW1pBpaLVa5Obmuo2+Pfjgg9i5cye2bduGrVu3YubMmaiqqkJMTAz/zJ133ony8nL88MMP/aZrtVphtVr5721tbUhISJDNVGxFRQXi4+OlljEkLOiUQoM3bHrKhpjpslD/hLRQGxgch5PDLW/8hAZT54DPRATq8cEDF8pyWlYu9c+KzqF0SD4V+8477yAhIQEAsH79eqxfvx5r1qzBwoUL8cgjjwhKIyYmBunp6W7X0tLS+L9AoqOjAYAfueumrq6uzyheT3Q6HQIDA90+BEEQBOFNDpQ1DerUAUB9WycOlDV5SRHhK3jEsauuruYdu++++w6//OUvMX/+fDz66KP88O9QzJw5k5926ObYsWNISkoC4BqijI6Oxvr16/n7NpsN+fn5mDFjhkg5YY/uKQfWYUGnFBq8YdNTNsRMl4X6J6SF2sBZ2iw2bD9Wi39sOIKPN7mmgpvMgzt13Qh9jjXkUv+s6BRTh0fW2IWEhKC8vBwJCQn44Ycf8PzzzwNw7WR1OByC0nj44YcxY8YMvPDCC/jlL3+JwsJCrFq1CqtWrQIAKBQKPPTQQ3jhhRcwZswYjBkzBi+88AKMRiNuvPFGT2SLIAiCIIakvMGMQxXNOFjehIPlzahoPLs+KiJQj1/NGYNQf2E7MYU+RxDdeGSN3f3334/vvvsOY8aMQXFxMU6dOgV/f3+sXr0aL730Er/Acyi+++47/P73v8fx48eRkpKCpUuX4s477+TvcxyHZ599Fu+88w6am5uRl5eHlStXYsKECYK1UrgTz8CCTgp3Il26LNQ/IS0jpQ1Y7Q6UN5iRGnM2Dtn9fy/A8epWt+cSwvyQkRCK9IQQXJIVD46DT6+xk0v9s6JTzHAnHnHs7HY7Xn/9dZSXl+O2225DdnY2AGDFihXw9/fHHXfcIbbJc0Zujt2ePXswadIkqWUMCQs6pdDgDZuesiFmuizUPyEtvtoGms1W10hcRTMOlzfjeHUrOABfPboAOo0KAPD3Hw/jcGULMuJDkJ4QgvT4EAQa+54DWnC4Gs99PvBAx1PX5mBWWsyA91lGLvXPis6hdAzHV/HIVKxGo8Hvfve7PtcfeughT5gbUbS2tg79EAOwoFMKDd6w6SkbYqbLQv0T0uJrbeC/O0/hyx2lqG629LkX4qdDTYsFSREBAIA7Lk4TlOastBg8dW0OXvtvMcy2s2MsEYF63D0/XbZOHSCf+mdFp5g6PBbH7sMPP8Q777yDkydPYtu2bUhKSsKKFSuQkpKCxYsXe8qsz+Pv7y+1BEGwoFMKDd6w6SkbYqbLQv0T0tLdBpwchzaLrc99nUaF3hOMOo0KCoV0046dti4cqWrBofJmHCxvxn2XZiA21A8A0OXkUN1sgQJAcmQAPxKXkRCK6GDDOeuelRYDRWs5/ri+HoDvnDwhlz6AFZ1i6vCIY/f222/j6aefxkMPPYQ//elP/IaJ4OBgrFixghy78yAzM1NqCYJgQacUGrxh01M2xEyXhfonpCUzMxNOjsPC578X/M43jy2AXuu1uPlotdhQXNqAwxUuR+5ETRucPVYnHSxv5h27WeOjkRDmh7T4EPjrNaLqyJyQCaz/yfX/xFDZO3WAfPoAVnSKqcMj4U7++te/4t1338WTTz4JlUrFX8/NzeUjbhPnRncUddZhQacUGrxh01M2xEyXhfonpIW1NuBwOlFS3YralrNTqQfLm7D8y2J8XXgKx6tb4eQ4hAfqMTc9BvcuSMeExFD+2cggA6akRoru1AHAjkI2jrUSE9bqfyBY0SmmDo/8aVRaWspvmOiJTqcb1rEYBEEQhHxRKhRY84dFblOxnTYHbn3zZwDA6qUXQ685+8e/rsf/z5d2qx1HKlpwsLwZhyqacaSyGR02B341ewxuuWAsACA9PgSp0YFITwhBRrxrx2pkkEE0DQQhBR5x7FJSUrBnzx4+mHA3a9as6XOaBDE8kpOTpZYgCBZ0SqHBGzY9ZUPMdFmof0JautuAUqFAsJ+Ov96p6eL/r9eoRJ96bTR14slPCnGqzoTeIR+MOjW6HE7+e7CfDivvnC2q/XMhKTEJ2HJIahmiIpc+gBWdYurwiGP3yCOP4L777kNnZyc4jkNhYSE+/fRTLF++HH//+989YXLEoNGIPw3gCVjQKYUGb9j0lA0x02Wh/glp8WQb6HI4caK2zTUaV96EiCAD7rrENWgQ7KdDbWsHOADRwQZkJIQiLT4EGQkhSIoIYHL9mkbjvXWF3kIufQArOsXU4ZHWdPvtt6OrqwuPPvooLBYLbrzxRsTFxeH111/H9ddf7wmTI4bjx48jNjZWahlDwoJOKTR4w6anbIiZLgv1T0jLQG3A4Tw7jra/rEnwDtCdJXU4UNaEQxXNOFrZAmvX2ZG3mBAj79iplAr88fopiA0xIixA+sCzQihh5FgrMZFLH8CKTjF1eOzPhDvvvBN33nknGhoa4HQ6ERkZ6SlTBEEQhAwoOFyNt9Ye5L//4dOdCA/Q454FZ2O2cRyHqiYLKprMyBsTxT/7jw1HUFpn4r8HGDRnwo24wo5wHMeHHMnssemBRTiOg9V+9nhNu+Oss9vSboP+zL1AoxZKCcO/EPLEIydPAEBXVxc2btyIEydO4MYbb0RAQACqqqoQGBjITNwYQH4nT7S3t8PPz09qGUPCgk4pNHjDpqdsiJkuC/VPSEvvNjDUKQsXZcbBYu3CoYpmtFps0KiU+PLR+dCqXRsqPt50HNUtFmQkhCAjPgTx4f6ydXo6bV1Y/NJaQc+u+cMiWeZTLn0AKzqH0jEcX8Uj4U5Onz6NzMxMLF68GPfddx/q612BF19++eV+T6QghHNCJkP2LOiUQoM3bHrKhpjpslD/hLT0bAMOJ4e31w6+OWDD/kpsO1bLO3VjY4PQ0n52N+2v5ozB767MwsLsRCRGBMjS2RlJyKUPYEWnmDo8MhX729/+Frm5udi7dy/CwsL461dddRVT58TKkebmZqklCIIFnVJo8IZNT9kQM10W6p+QhpO1bThQ1oSigzX44aQT9W0dqGxqR6PJOuS7i3IScElWAlKjA/mROl9Ep1Hhm8cW8N83FxRg1qxZbtOzgLynYuXSB7CiU0wdHnHsCgoKsGXLFmi17oceJyUlobKy0hMmRwxGo1FqCYJgQacUGrxh01M2xEyXhfqXkv6O0WLxCC2htHXYUNXUjvq2TjS0daLB5Pq3vq0DDaZO/PG6KUiOdJ2TurOkHv/86YjrxfLh9fcTk8KQHh8itnzmUCgUbmFeggP8YNCqYfDiqRueRi59ACs6xdThkVbkdDr5Y8R6UlFRgYCAAE+YHDHk5ORILUEQLOiUQoM3bHrKhpjpslD/UjGcY7S8fYRWb+wOJxpNnWg0dfZy2jpw27xxiA9zrYdeU1R+1lnrh7rWDt6xGx0diJnjohAWoENEkBHhAXq0Wqz427rDQ+oJ9ZfHLlax8cWfF7nkiRWdYurwSI9yySWXYMWKFVi1ahUA118nZrMZzzzzDBYtWuQJkyOGgoICzJ07V2oZQ8KCTik0eMOmp2yImS4L9T/SsXU5eo2udWLehFj+ZIVvCkvx1iDr3i7Jiucdu6hgAyKDDAgP0CM80PWJCNAjPNCAsAAd79QBQO7oCOSOjkB+fj7mznCdf+lwcvh8WykaTJ0D2osI1Lsd4TWS8MWfF7nkiRWdYurwiGP36quv4sILL0R6ejo6Oztx44034vjx4wgPD8enn37qCZMEQRBM0PMYrR3H6/Dez0fRbD67viwsQIc7L0rD9HFR53yEVoetix9hGx0diCCja9nL5sPV+HRzCRpMnWjtNRUMAEkR/rxjF2BwvaNRKV2ja4EGl9MWoEdEoB5J4WedtQsyYnFBxrnH2FIpFbhnQfqgu2Lvnp/OZPBggpAbHnHs4uLisGfPHvz73//G7t274XQ68Zvf/Aa/+tWvYDDQOXznQ2JiotQSBMGCTik0eMOmp2yImS4L9S8lSoUCB8qa8Oq3+/rcazRZ8eLXe/DUtTl87LZuOI6DxdoFjVrJbx44WN6EdXsrXKNvZ9a1tVvPHsv17HW5mDbWFe/N3uU6kaEbnVp51mEL1CPY7+y65+njorB66cUeW6Dfuw3MSovBU9fm4K21B902UkQE6nH3/PQ+ZTGS8MWfF7nkiRWdYuoQ3bGz2+0YN24cvvvuO9x+++24/fbbxTYxomFloedQsKCTNk9Ily4L9S8lQsJ7vPbdfhyrbkWT2XrGaXNtROiwOdyctbrWDvxQXN7nfaNOjfBeJytkJYfh+RumnJkyNcBfrx5wc4anF+v31wZmpcUgOyUcV7+yDgDw/A1TBJ884cv44s+LXPLEik6mN09oNBpYrVZZ7PSSI0eOHEFUVNTQD0oMCzql0OANm56yIWa6LNS/lBwoaxp0PRkAmDvtWL2l/9hVze1nR7TGxAThlrlj3da2hQXq4afre7ZkWICemWO0jhw5gsjIyD4hPOyOs0eBJYT5w9ThmjKWc2iP8+XwoUNQlZbCWlcHXWQkwqZMgUIl73AvcukDWNEppg6P/Ln2wAMP4KWXXsLf//53qNW+s32bIAhiIDiOQ2mdCbtO1OPHvRWC3slJCUdWclgPp82AsEA99D3W3sWH+eNXc8Z4SrZHsdodg56wcOubP7t9l+spC+cC53TC1tSE2p9/hvnFF7GtpYW/p4+KQtrjjyP64ouhMhhooIQYFh45Uuyqq67Chg0b4O/vj8zMzD7HZHz55Zdimzxn5HakmMlkkkXIGBZ0SqHBGzY9ZUPMdFmof2/Q83zSg+VNWPr+tmG9//LN05CVHDb0gzLEZDJBozMIPjoLGDmOHed04rsxwpz1hfv3Q83IdOFwkEsfwIrOoXQMx1fxyHBacHAwrrnmGk8kPeIpKytDRkaG1DKGhAWdUmjwhk1P2RAzXRbq3xM4nE4cqWzBrhP12HWiHmlxIbj3Ulc+x8UGI9Rfh9ToQOSMCsfqLSfQ3N53Z2o3vh7eo6ysDOnp6W4nLHTDAT51yoIn4fqJCSsH5NIHsKJTTB0ecezee+89TyRLAGhoaJBagiBY0CmFBm/Y9JQNMdNlof7Foq61A7tP1mNXST2KSxvcdqSaOuy4F67OWK1S4qPfXgSlwuW0BBt1ePHrPQOme5ePh/doaGjoc8JCT3zplIXecA4Hv0aOczpRvW4d7M3NsLW0wNbcDHtLC0Kys9FcXDxkWi0HDiBi+nRPSxYdufQBrOgUU4dsfrKWL1+OJ554Ar/97W+xYsUKAK5pkGeffRarVq1Cc3Mz8vLysHLlSia8b0+h0+mkliAIFnRKocEbNj1lQ8x0Waj/c8XhdEKlVPLfH/1wO6qbLfx3f70GOaPCkTs6ApNHRbi9q1Iq0GnrEjT9+PznRT499ThQG+AcDjTu3CmLjQIcx6HLbIatuRkKpRLG+HjXdYcDR994A/YzjpqtpQW2lhbeeQufMQNT33nHlYhCgeKHH4bTNvDo7WDY6uvFyo5XkUsfwIpOMXV4xLHLzs7ud7GnQqGAXq9HamoqbrvtNsybN09Qejt37sSqVaswceJEt+svv/wyXn31Vbz//vsYO3Ysnn/+eVxyySU4evQoE3PmnmDatGlSSxAECzql0OANm56yIWa6LNS/UDiOQ1mDGbtP1GPXyQacrGnDR7+9EGqVy7mbmhqJY9UtyB0VgdzUCIyJCfbpkTax6K8NVK9diwN//CM6a2r4a/roaEx4+mnELOg7ZSsmTpuNHzGztbTA3tICTXAwwvPyXPe7urDrvvtczlr3yFprK7gu1wht1MUXn3XWlEqcWLVqQGfN3mMjhEKhQMScOQDHQRscDE1wMNT+/jj2+uuCdGsjIoZ+iEHk0gewolNMHR5x7C699FK8/fbbyMzMxNSpU8FxHHbt2oV9+/bhtttuw6FDh3DxxRfjyy+/xOLFiwdNy2w241e/+hXeffddPP/88/x1juOwYsUKPPnkk7j66qsBAB988AGioqLwySef4K677vJE1iQnPz+fieNPhoIFnVJo8IZNT9kQM10W6n8wzJ12FJc2YNeJeuw+UY/6NvfQJEerWpCR4Fr/ds+C9GHtStRpVH3WlY3ENWXdbaDn7s+9jz/e57nO2lrsuu8+ZL/6KuKuuGLIsu45iuY2Ynbmu19yMuKXLAEAOKxW/HzJJbC1tMDR3t4nraiLLuIdO6VajfrNm+G0Wvs8p9TroegxiqtQKDDq17+GQqWCNiQEmuBgaIODoQ0Jcf0b5r4hhncIz9BlsQh27MJycwU9xxqs9wHdsKJTTB0ecewaGhrw//7f/8NTTz3ldv3555/H6dOnsW7dOjzzzDN47rnnhnTs7rvvPlx22WW4+OKL3Ry70tJS1NTUYP78+fw1nU6HuXPnYuvWrT7r2BEEMXwcTg4cx/GjcF8XnsKH+cf4+xqVEplJofz0alKEP39vuKEmBlpX5strygZC0O7PM4EZih9+GOA4OK1Wt1E1W3MzgrOyMOaeewAATqsVP0yaNGByURddxDt2Kp0O1oaGs86aQnHWCQsOhv/o0W7vTnz+eaj0etfIWreTFhIClb5vbMC0Rx4RVgj9oDIYsHD/ftT8+COKly7ly6A3k998E0pN33iFBDEYHulp/vOf/2D37t19rl9//fWYPHky3n33Xdxwww149dVXB03n3//+N4qKirBz584+92rODOX3DugXFRWF06dPD5im1WqFtcdfZG1tbQM+yyJxcXFSSxAECzql0OANm56yIWa6g6Xl5Di09TrHVKdRobf7pNOozit+V6Opk9/0UFTagAcXZWJOuuvYqtzREdh4oBKTzxxYn5kU5hY7jjg3eoZ/iYmIQOW33w7r/eKlS/tPt8fOUJVeD6VOBygUbqNk3Y5YUK811jNXr4ba3981shYY6Dby1puEM7M/nkahUEBtNCL+yiuh0umw5+mn0dVj8bw+JgYTnnrK49PTnoSF3wFCYEWnmDo84tjp9Xps3boVqampbte3bt0K/Zm/fJxO56CLBcvLy/Hb3/4W69at49/pj94df8+OpT+WL1+OZ599ts/1goIC+Pn5YcaMGdi7dy/a29sRHByMsWPHorCwEACQmpoKp9OJkydPAnDNiR86dAhtbW0ICAhARkYGtm/fDgBISUmBSqVCSUkJAGDKlCkoKSlBc3MzjEYjsrOzsWXLFgCuM+IMBgOOHj0KAMjJycHp06fR2NgIvV6PqVOnYtOmTQCAgIAA1NfX49Ah13FFkyZNQlVVFerq6qDRaDBjxgxs3rwZTqcTMTExCAsLw4EDBwAAmZmZqK+vR01NDVQqFWbNmoUtW7agq6sLkZGRiImJwd69ewEA6enpaG1tRWVlJQBg7ty52L59O6xWK8LDw5GYmIiiIteB3uPHj4fFYkFZWRkAYNasWSgvL0dlZSVCQkIwevRo7Nq1CwAwZswY2O12nDp1CgAwffp07N+/H2azGUFBQRg/fjx27NgBABh95q/pEydc0fnz8vJw5MgRtLa28jESt21zxQ1LTk6GRqPB8ePHAQC5ubmora1FZWUljEYjcnJyUFBQwJe30WjEkSNH+PIuKytDQ0MDdDodpk2bhvz8fACuH7agoCC+vLOyslBdXY26ujqo1WrMnDkTBQUFcDgciI6Ohkql4t+dMGECGhsbUV1dDaVSidmzZ2Pr1q2w2+2IjIxEbGws9uzZw5d3W1sbKipcgW3nzJmDwsJCdHZ2IiwsDElJSXx5R0ZGorS0lC/vmTNnori4GBaLBSEhIUhNTeX/GEpNTYXD4UBpaSnfZg8ePAiTyYTAwECkp6fzbTYkJASVlZV8m506dSqOHTuGlpYW+Pn5ISsrC1u3buXLW6vV4tixY3x5l5aWorGxEQaDAUlJSXw5JCQkwN/fH4cPHwbHcVi+ue+UWH/8bqYfcrOzUFtbi9raWr7Ndpd3VFQUoqKisG+f6zzWcePTsOt4NXYer8XJZgfq2p1u6RUeqwJX79KblpaGJy5NRHl5OSyVDdCOmo3CwkJ0dHQgLCwMKSkpfJsdO3YsbDYb32ZZ7yPi4+MRGBgoSh8xc+ZMbNm0CY4z7S4qNBS733kHXFsbQjQaWOrq0F5bC66tDeqODigzM6G99VaEh4fDoFIN6KgNhCIyEgGjRkEZEAALAIW/P0ZlZqIOrqmq7j7C7403oNBo3PoIG4AJZ/qIU/n5fB+xt6kJaGpCslIJjcXi1kecOHGCL29v9RERERHYv38/AFcfYUpJAff00/CrrMS46GiU1NeDGzUKLdHRMLa2nlMfMW7cOHR0dIjeR4waNQpKpVJQHxEcHIzq6uoB+4jc3Fxs3rwZgHsfAbjW6VdUVKC+vh5arRbTp0/Hpk2bwHEcYmNjERISgoMHDwIAJk6cKLiPyMjIQHNzM6qqqqBQKDBnzhycOnUKlZWViIiIQHx8PIrP7FROS0uD2WxGebnrOL/Zs2dj165dHusjampq0NbWNmAf0d7PUoIBf448EaD4+eefxwsvvIA777wTU6ZMgUKhQGFhIf7+97/jiSeewJNPPonXXnsN33//PdavX99vGl9//TWuuuoqqHrslnI4HFAoFFAqlTh69ChSU1NRVFSE7Oxs/pnFixcjODgYH3zwQb/p9jdil5CQIJsAxaysBxgKFnTSGjvp0h0oLSfHYeHz3wtK45vHFgwYKgNw/RFntTv4Z+paO3DzGz/x9xUAxsQGIXdUBCaPjsD4uGB+KtabsLYL1NnVBafVCvWZwPGOzk6c+uQT2BobYW1s5P+1NjTA2tiI2EWLkP3KK/yz3w8SdSDygguQ949/AHC1Ad0//4n6M86SEKZ99JEsQ3ucLyz0l2IjlzyxonMoHZIHKP7DH/6AlJQUvPnmm/jwww8BuP6CePfdd3HjjTcCAO6++27cc2bNRH9cdNFF/F813dx+++0YP348HnvsMYwaNQrR0dFYv34979jZbDbk5+fjpZdeGjBdnU7HzPZmghhpKBUKrPnDIn4q1tLZhdvf2ggAePoXOZiUHM7vONX1MzVqsXZhz6mzmx4SIwLw3PVTAACRQQZkJYchIlCP3NERyBkVgSCj1jsZGwBv7ALt3kzAdXVBGxICAOjq6MDJv//d3VFraoK1oQH2lhbEL1mC7D//2ZWAQoFDf/rTgOnbGhv5/6v0esQsWgSNvz+0YWHQhYXx/+rCw6HrtYMz9+23sSYzU3Be5LpRgCBYwiMjdp7iggsuwKRJk/g4di+99BKWL1+O9957D2PGjMELL7yAjRs3DivcidyOFGtpaUFwcLDUMoaEBZ1SaPCGTU/ZEDNdIWkVHK7GW2sPotF0dgQ9PECPexakY1ZaDH/tRE0rdpbUY/fJehwsb4bDebbL8tdr8J//d7Fb3DkW4JxOlH/xRb+7QHFmqchgu0CddjtsTU0AXOeGAmd2Uv71r2cdtR5Om9NqdTlrf/kLANdu0O/T0wfUFzFnDqb1CCRf/Mgj0AQEuJy08HCXo9bttIWHn9ORVi0tLQgKCoKjowMAzm4UAPrdLDD5zTcRu3DhsO34Aiz0l2IjlzyxonMoHZKP2AEukZ9//jlOnjyJ3/3udwgNDUVRURGioqJEWyT46KOPoqOjA/feey8foHjdunU+G8MOAKqrq5lohEPBgk4pNHjDZnV1NQKDgkTfgCCm9qHSKjhcjec+L4LC6URc7QkYO9pgMQSiyjkaz31ehKeuzeGdu7+tO4R9p5v4d2NDjZg8yrXpISs5jEmnbtCdoD12gYbl5aHkrbf6OGrdcdDilixBzhlnTalW48SqVQMmazeb+f+rdDok33wz1P7+Z0fTeoyudY/sddM91Som3W2g2yns3ijQZwTTBzYKnC8s9JdiI5c8saJTTB0ecez27duHiy++GEFBQTh16hTuuOMOhIaG4quvvsLp06fxr3/965zS3bhxo9t3hUKBZcuWYdmyZecvWibU1dUhLS1NahlDwoJOKTR4w2ZtbS0e+vwk/13hdCK2p3MUNRrcGWdnqHVqPRFT+2BpdXU58M+vtmP88SJMK/oO/h1nd6abjUHYMnkx3vkOmDZ2IdQqJWaNj4ZRq0ZuqisUSWyonygae8NxHJw2GxwdHXBYLFBqtdCFhwNwjYDVbtgAh8WCrjP3HR0d6LJY4LBYEJyVhcRf/MKVP4tlMDNutB44gFMffdTvPYVKBa5HAFylVovUu+6COiCAd9Z6ToeqDQa39zMl7hf7awMxCxYg+uKLmVpzyAIs9JdiI5c8saJTTB0eceyWLl2K2267DS+//LLb6NnChQv5NXbEuaFWyyMWFgs6pdDgDZs9bYw6vRezd3yBAEsLf81kDMbmvGtwMinrnNM9X1QqFUwddjSZO9FktqLZbEVWchhC/bRYM24srhrgPX9LKxZs/hew+V/Yf3k+stPisXhqChZPTeGfcdpsLueqvR1dHR3QBARAHxkJALCbTKhZt453uHjn64wzFj5zJh/SorOuDltvuMHNQesZViPphhsw8UzsTEdHB3Y/8MCA+e0ym3nHbjiHtneZzRj38MN9pkG1YWHQBgf3Cc2R9uijgtOWmoHak0KlQjgj0f5ZgYX+UmzkkidWdIqpwyM52rlzJ97pFWkbcG0Lr+kxBE8Mn5kzZ0otQRAs6JRCgzdszpo1C99Pd+D4p//B8ff/0ed+gKUVi37+Jya88gq0auHTlEK0O5xOtLTb0GS2osncibExQQjxd4Uj2rq/DP9dtxsmUzvMbRZg9R6oHF1QObugctihveEizLxA+OL4JpNre7/pxAlsv/lm3kHrPuKpm9H/939If+wxAICtuRl7BnF+VH5+vGOnUKvRfiY8QW8UGg16Lj9WG40InTIFKoMBaqMRKoMBKqPR9X+jEYHjx/PPDiegrC4yEvFDBGmXKyz0AXLBF8tKLnliRaeYOjwWx66/wL9Hjx5FhEzPvWOFgoICzJo1S2oZQ8KCTik0eMPm5k2b0HL77YM84XJIDjzyO6gVgEKpREh2NvwSEwG4HKWq776D02ZzTT1arbB3dKKyohJ+Bj+MvvEGJF/sOsd527c/4fTy58DZbYDdDkWX3eWsOexQObvQfueDuPCxBwEA7QcPYOZbvxtQlTNZA8ybgvAXXkPDEw8PmU+/ylMAxkGpUqGztrbPfYVGA7XB4DaNpwkMRMTs2VD7+Z11vno4YT2D12oCAzHj3/92OWtnnu922no7Z0qtFjP//e8hNQOuUwUu3bMHGxcsQGdd3YCnCuhjYhA+daqgNOUIC32AXPDFspJLnljRKaYOjzh2ixcvxh//+Ef85z//AeBaC1dWVobHH38c11xzjSdMjhgcw5jmkRIWdEqhwRs2h2Njz+9cjlbaCy8i9Yxjd7BwP+rfeKPPswoAFgAnMybxjl27yQK/2rIB01c4zo6epSZF4IDeAKVOCwcUMAb4u04J0Gqh0umQODYJjo4OQU4dAMQqXOe36mNiMPubb9xHygwGKLV9Q5log4Mx7f33BaWvVKsRNmWKoGeHg0KhgCYgABOeeQa77rvPtQu2p3N3ZjPLhKee8um1ZSz0AXLBF8tKLnliRaeYOjzi2P35z3/GokWLEBkZiY6ODsydOxc1NTWYPn06/jRIvCRiaKKjo6WWIAgWdEqhwRs2o0JDYRL4bHNgJEx+IQiwa9B9Dkx7UAT2j5sJh1INh0oDh0oNh0oNTq2Bwc+ACzLOrs1LmzkZ+57+MwIDjQgM9ENwcAACA/2gMbgcNnWPNbQp06cg5aDrBIOjR49i3LhxffTYhxE93RDlWjen0ukQPGGC4PdYIWbBAuSuXNl/HLsRsAuUhT5ALvhiWcklT6zoFFOHRxy7wMBAFBQU4Oeff8bu3bvhdDqRk5ODiy++2BPmRhRymcpmQacUGrxhMzw8HCUCn904/RcwjZqAjElnHaO0aZPQGroMof56hAboEOKnQ2iADp3mNoSFhbm9H5cUg7hbB9rqMDADlUOXWot3bngJv/rmBfhZWvuEZwFcE8lmYzBCPTCa5m1G8i5QFvoAueCLZSWXPLGiU0wdogeAcjqd+Oc//4nLL78cDzzwAD744AMUFBSgqqoKMoqFzCy9T+NgFRZ0SqHBGzYPHj8O46ffw2wMwkA/URxcu2NvuPMafPa7+bhgQix/LzbUD1dPG4ULJsRiYlIYEsL94afT8OeFisFA5aBQKGDXGbAp71peZ2/dALA57xqfcX66d4HGXXklwqdN85l8DQULfYBc8MWykkueWNEppg5RHTuO43DllVfijjvuQGVlJTIzM5GRkYHTp0/jtttuw1VXDf8vf4Ig3FEoFAiPDBfkHEWG+HtV21DoNCp889gCvPbWo8h6/a/Q95p+0EdHI/3V17Hy3d9DKTCwMkEQBHEWUadi33//fWzatAkbNmzAvHnz3O799NNPWLJkCf71r3/hlltuEdPsiGKCTNYasaBTCg3esDlhwgQEh4SibUIe1gB94tiZz8SxM2XmYUJi6LDSFVNjfygUCj5gctLli5C4cMGInKYcCbDQB/z/9u4/KIrz/gP4+0Q4fgsBOUSQgKARQUBQww81MQlop2mcOJ12bDOa6rQaktQaa9OQmSS2U75xjLHTFGrsxHYm6qSTMYlp0kRaq4BINUZQIYkxgojyIyJyyG+O/f7heM2VmNsku/s8u75fM/zB3vF83s+PbB739u7MwopjZZY+yZJTyxyabuz27NmDp556asymDgAWLVqEJ598Ert27eLG7lvo7Owccx+UjGTIKSKDETUvX76MoJAJWH3PHfi/ngE0xqV96TdPPF2QAp9x6q96aZldbVv8sFrrkuEcYBZWHCuz9EmWnFrm0PSl2JMnT2Lx4sU3fXzJkiWoq6vTsuQtp7W1VXQEVWTIKSKDETWbL7bigeffx/+9WQsAUMaNw8VJyfg0MQsXJyW7v07st69/iNGvcV+rltllmH8Si2tAPSuOlVn6JEtOLXNourG7cuUKHA7HTR93OBzo6urSsuQtZ5xkX3h+MzLkFJHBiJp61dCyXRnmn8TiGlDPimNllj7JklPLHDZFw7eq+vj4oK2t7aZv221vb0dMTIw0HwgIAE6nExMmTEB3dzdCQ0NFxyHySlEUDA57/jekAGOOhQb68Q0IREQW8HX2Kpq/K3blypV48MEHv/TnJz/5iZblbknV1dWiI6giQ04RGYyoeeTIEfj7jff4CfAbj7Agu8fP193UaZldhvknsbgG1LPiWJmlT7Lk1DKHpm+eWLFihdfn8I0T387w8LDoCKrIkFNEBiNq6lVDy3ZlmH8Si2tAPSuOlVn6JEtOLXNourHbuXOnls3Rl4iKihIdQRUZcorIYERNvWpo2a4M809icQ2oZ8WxMkufZMmpZQ457hok1WJiYrw/SQIy5BSRwYiaetXQsl0Z5p/E4hpQz4pjZZY+yZJTyxzc2JlMbW2t6AiqyJBTRAYjaupVQ8t2ZZh/EotrQD0rjpVZ+iRLTi1zcGNHREREZBHc2JlMSkqK6AiqyJBTRAYjaupVQ8t2ZZh/EotrQD0rjpVZ+iRLTi1zcGNnMk6nU3QEVWTIKSKDETX1qqFluzLMP4nFNaCeFcfKLH2SJaeWObixM5mWlhbREVSRIaeIDEbU1KuGlu3KMP8kFteAelYcK7P0SZacWubgxo6IiIjIIjT9SjEzMttXiimKApsJviZKhpwiMhhRU68aWrYrw/yTWFwD6llxrMzSJ1lyessh7CvFtFRSUoI5c+YgJCQEUVFRWLp0KT755BOP5yiKgmeffRYxMTEICAjAXXfdhfr6ekGJjXH06FHREVSRIaeIDEbU1KuGlu3KMP8kFteAelYcK7P0SZacWuaQdmN36NAhFBUVoaamBuXl5RgZGUFBQQF6e3vdz9m8eTO2bt2Kl156CceOHUN0dDTuu+8+9PT0CEyur4GBAdERVJEhp4gMRtTUq4aW7cow/yQW14B6Vhwrs/RJlpxa5tD0K8W09N5773n8vnPnTkRFReH48eNYsGABFEXBtm3bUFxcjAcffBAA8Ne//hUOhwO7d+/Gz372MxGxdRcRESE6gioy5BSRwYiaetXQsl0Z5p/E4hpQz4pjZZY+yZJTyxzSXrH7X93d3QCA2267DQDQ2NiItrY2FBQUuJ9jt9uxcOFCVFdX37SdwcFBOJ1Ojx8ziY+PFx1BFRlyishgRE29amjZrgzzT2JxDahnxbEyS59kyallDmmv2H2RoihYv3498vPzkZqaCgBoa2sDADgcDo/nOhwOnD9//qZtlZSU4LnnnhtzvKqqCkFBQcjNzUVdXR16e3sRFhaGadOmuV/7TkpKwujoKM6dOwcAuPPOO9HQ0ACn04mQkBDMnDkTNTU1AICEhAT4+Pjg7NmzAIA5c+bg7Nmz6OrqQmBgIDIzM3H48GEAwJQpUxAQEOC+h3D27Nk4f/48Ojs74e/vj7lz56KiogIAcOXKFeTn56OhoQEAkJGRgUuXLqGjowO+vr7Izc1FZWUlRkdHMWnSJEREROD06dMAgLS0NHz++edoa2uDj48P8vPzcfjwYYyMjCAqKgqTJk1CXV0dgOsfltjd3Y2LFy8CABYuXIiamhoMDg4iMjISU6ZMwYcffggAuOOOO9DX14fm5mYAQH5+Pt5++21MnjwZ4eHhmDp1Kj744AMAQHJyMoaHh9HU1AQAyMnJwalTp3Dt2jVMmDABd9xxB/7zn/8AAKZOnQoA+OyzzwAA8+bNw8cff4zu7m4EBwcjLS0NR44cAQDcfvvt8PX1xaeffgoAyM7Oxj/+8Q84HA4EBgZi9uzZqKqqco93YGAgPv74Y/d4Nzc34/Lly7Db7bjzzjtx6NAhAMDkyZMxYcIE93inp6ejtbUVHR0dGD9+PPLy8lBVVQWXy4Xo6Gg0NjYiICAAAJCamorOzk60trZi3LhxmD9/PqqrqzE8PIyoqCjExMS4v0YmJSUFTqfT/Zb3BQsW4OjRoxgYGEBERATi4+Pd433t2jWkpKS4xzsvLw8nTpxAX18fwsPDkZSUhGPHjrnXrMvlQmNjo3vN1tfXo6enB6GhoUhJSXGv2e7ubmRlZbnX7Ny5c3HmzBlcvXoVQUFBSE9Pd/+j6fbbb4efnx/OnDnjHu/GxkZ0dnYiICAAvb29GDfu+r8b4+LiEBwcjI8++ggAkJmZiZaWFnz++efw8/NDTk4OKioqoCgKYmJiEB4e7r5XdtasWWhvb0d7e7t7zd4Yb4fDAYfDgZMnTwIAZs6cia6uLly6dAk2mw0LFizAkSNHMDQ0hIkTJyI2NhYnTpwAAMyYMQPXrl3DhQsXAADz58/HBx98gP7+fkRERCAhIcG9ZqdNm4ahoSH3mpX9HBEbG4vQ0FDh54iLFy/CbrcD+PJzxIcffuhes6LOEZ999pl7vI06R0ycOBGnTp0C8N9zxJEjR5CYmKjZOWL69Ono7+/X/ByRmJiIcePGqTpHXL161f34jfH+4jkiOzsblZWVAMSeI9566y3ExcUJP0ecPHkSaWlpNz1HfPE2NK8UE3jkkUeU+Ph45cKFC+5jhw8fVgAoly5d8nju6tWrlcLCwpu2NTAwoHR3d7t/Lly4oABQuru7dcuvpYMHD4qOoIoMOUVkMKKmXjW0bFeG+SexuAbUs+JYmaVPsuT0lqO7u1v1XkX6K3aPPfYY9u3bh4qKCsTGxrqPR0dHA7h+5W7SpEnu4x0dHWOu4n2R3W53/yvSjKZPny46gioy5BSRwYiaetXQsl0Z5p/E4hpQz4pjZZY+yZJTyxzS3mOnKAoeffRR7N27FwcOHEBCQoLH4wkJCYiOjkZ5ebn72NDQEA4dOoTc3Fyj4xqmv79fdARVZMgpIoMRNfWqoWW7Msw/icU1oJ4Vx8osfZIlp5Y5pN3YFRUV4dVXX8Xu3bsREhKCtrY2tLW1uTtvs9mwbt06/O53v8Mbb7yB06dPY+XKlQgMDMTy5csFp9fPjXsmZCdDThEZjKipVw0t25Vh/kksrgH1rDhWZumTLDm1zCHtS7FlZWUAgLvuusvj+M6dO7Fy5UoAwMaNG9Hf349HHnkEXV1dmDdvHvbv34+QkBCD0xIRERGJx68UM9lXio2MjGD8eGn3424y5BSRwYiaetXQsl0Z5p/E4hpQz4pjZZY+yZLTWw5LfKUYfbkbb8WWnQw5RWQwoqZeNbRsV4b5J7G4BtSz4liZpU+y5NQyBzd2JtPX1yc6gioy5BSRwYiaetXQsl0Z5p/E4hpQz4pjZZY+yZJTyxzc2JlMeHi46AiqyJBTRAYjaupVQ8t2ZZh/EotrQD0rjpVZ+iRLTi1z8B47k91j19fXh8DAQNExvJIhp4gMRtTUq4aW7cow/yQW14B6Vhwrs/RJlpzecvAeOwu78TUwspMhp4gMRtTUq4aW7cow/yQW14B6Vhwrs/RJlpxa5uDGjoiIiMgiuLEzmaSkJNERVJEhp4gMRtTUq4aW7cow/yQW14B6Vhwrs/RJlpxa5uDGzmRcLpfoCKrIkFNEBiNq6lVDy3ZlmH8Si2tAPSuOlVn6JEtOLXNwY2cyjY2NoiOoIkNOERmMqKlXDS3blWH+SSyuAfWsOFZm6ZMsObXMwY0dERERkUXw405M9nEng4ODsNvtomN4JUNOERmMqKlXDS3blWH+SSyuAfWsOFZm6ZMsOb3l4MedWFh9fb3oCKrIkFNEBiNq6lVDy3ZlmH8Si2tAPSuOlVn6JEtOLXNwY2cyPT09oiOoIkNOERmMqKlXDS3blWH+SSyuAfWsOFZm6ZMsObXMwY2dyZjh5WJAjpwiMhhRU68aWrYrw/yTWFwD6llxrMzSJ1lyapmD99jxHjtdyJCT99iJa1eG+SexuAbUs+JYmaVPsuTkPXa3sJqaGtERVJEhp4gMRtTUq4aW7cow/yQW14B6Vhwrs/RJlpxa5uDGjoiIiMgiuLEzmcTERNERVJEhp4gMRtTUq4aW7cow/yQW14B6Vhwrs/RJlpxa5uDGzmTGjTPHlMmQU0QGI2rqVUPLdmWYfxKLa0A9K46VWfokS05Nz7+atUSGOHv2rOgIqsiQU0QGI2rqVUPLdmWYfxKLa0A9K46VWfokS04tc3BjR0RERGQR/LgTk33cSX9/PwICAkTH8EqGnCIyGFFTrxpativD/JNYXAPqWXGszNInWXJ6y8GPO7GwM2fOiI6gigw5RWQwoqZeNbRsV4b5J7G4BtSz4liZpU+y5NQyBzd2JnP16lXREVSRIaeIDEbU1KuGlu3KMP8kFteAelYcK7P0SZacWuawxMautLQUCQkJ8Pf3R1ZWFiorK0VH0k1QUJDoCKrIkFNEBiNq6lVDy3ZlmH8Si2tAPSuOlVn6JEtOLXOY/h671157DQ899BBKS0uRl5eH7du3489//jMaGhowZcoUr39vtnvshoeH4evrKzqGVzLkFJHBiJp61dCyXRnmn8TiGlDPimNllj7JktNbjlvqHrutW7di1apVWL16NWbMmIFt27YhLi4OZWVloqPporq6WnQEVWTIKSKDETX1qqFluzLMP4nFNaCeFcfKLH2SJaeWOcZr1pIAQ0NDOH78OJ588kmP4wUFBTcdpMHBQQwODrp/7+7uBnB9N2wGvb29psgqQ04RGYyoqVcNLduVYf5JLK4B9aw4Vmbpkyw5veW48ZiaF1lNvbG7fPkyXC4XHA6Hx3GHw4G2trYv/ZuSkhI899xzY47HxcXpkpGIiIhICz09PZgwYcJXPsfUG7sbbDabx++Koow5dsOvf/1rrF+/3v376Ogorly5goiIiJv+jUzmzJmDY8eOiY7hlQw5RWQwoqZeNbRq1+l0Ii4uDhcuXDDFfaukDxnOAWZhxbEyS59kyekth6Io6OnpQUxMjNe2TL2xi4yMhI+Pz5ircx0dHWOu4t1gt9tht9s9joWFhekVUXM+Pj6m+J+lDDlFZDCipl41tG43NDRU+BogcWQ4B5iFFcfKLH2SJaeaHN6u1N1g6jdP+Pn5ISsrC+Xl5R7Hy8vLkZubKyiVvoqKikRHUEWGnCIyGFFTrxoyzBlZB9eTelYcK7P0SZacWuawzMed/OlPf0JOTg5efvll7NixA/X19YiPjxcdj+iWY7aPECIishJTvxQLAD/4wQ/Q2dmJTZs2obW1FampqXj33Xe5qSMSxG6345lnnhlzywMREenP9FfsiIiIiOg6U99jR0RERET/xY0dERERkUVwY0dERERkEdzYEREREVkEN3ZEREREFsGNHREZpqenB3PmzEFGRgbS0tKwY8cO0ZGIiCyFH3dCRIZxuVwYHBxEYGAg+vr6kJqaimPHjiEiIkJ0NCIiS+AVOyIyjI+PDwIDAwEAAwMDcLlc4L8tiYi0w40dEalWUVGB+++/HzExMbDZbHjzzTfHPKe0tBQJCQnw9/dHVlYWKisrPR6/evUq0tPTERsbi40bNyIyMtKg9ERE1seNHRGp1tvbi/T0dLz00ktf+vhrr72GdevWobi4GCdOnMD8+fOxZMkSNDc3u58TFhaGuro6NDY2Yvfu3WhvbzcqPhGR5fEeOyL6Rmw2G9544w0sXbrUfWzevHmYPXs2ysrK3MdmzJiBpUuXoqSkZEwba9euxaJFi/D973/fiMhERJbHK3ZEpImhoSEcP34cBQUFHscLCgpQXV0NAGhvb4fT6QQAOJ1OVFRUYPr06YZnJSKyqvGiAxCRNVy+fBkulwsOh8PjuMPhQFtbGwCgpaUFq1atgqIoUBQFjz76KGbNmiUiLhGRJXFjR0SastlsHr8riuI+lpWVhdraWgGpiIhuDXwplog0ERkZCR8fH/fVuRs6OjrGXMUjIiJ9cGNHRJrw8/NDVlYWysvLPY6Xl5cjNzdXUCoiolsLX4olItWuXbuGs2fPun9vbGxEbW0tbrvtNkyZMgXr16/HQw89hOzsbOTk5ODll19Gc3Mz1qxZIzA1EdGtgx93QkSqHTx4EHffffeY4ytWrMBf/vIXANc/oHjz5s1obW1FamoqXnzxRSxYsMDgpEREtyZu7IiIiIgsgvfYEREREVkEN3ZEREREFsGNHREREZFFcGNHREREZBHc2BERERFZBDd2RERERBbBjR0RERGRRXBjR0RERGQR3NgRERERWQQ3dkREKj377LPIyMj4Vm00NTXBZrOhtrb2K5/3ySefIDo6Gj09PV7bPHXqFGJjY9Hb2/utshGR+XFjR0SWs3LlSthsNthsNvj6+iIxMREbNmz41hufDRs24F//+pdGKb9acXExioqKEBIS4vW5aWlpmDt3Ll588UUDkhGRzLixIyJLWrx4MVpbW3Hu3Dn89re/RWlpKTZs2PCN2lIUBSMjIwgODkZERITGScdqaWnBvn378PDDD6v+m4cffhhlZWVwuVw6JiMi2XFjR0SWZLfbER0djbi4OCxfvhw/+tGP8OabbwK4vlHbvHkzEhMTERAQgPT0dLz++uvuvz148CBsNhvef/99ZGdnw263o7KycsxLsaOjo9i0aRNiY2Nht9uRkZGB9957zyPH0aNHkZmZCX9/f2RnZ+PEiRNes//tb39Deno6YmNj3cfOnz+P+++/H+Hh4QgKCsLMmTPx7rvvuh8vLCxEZ2cnDh069A1HjIisYLzoAERERggICMDw8DAA4Omnn8bevXtRVlaG5ORkVFRU4Mc//jEmTpyIhQsXuv9m48aN2LJlCxITExEWFjZm0/T73/8eL7zwArZv347MzEy88sor+N73vof6+nokJyejt7cX3/3ud7Fo0SK8+uqraGxsxM9//nOvWSsqKpCdne1xrKioCENDQ6ioqEBQUBAaGhoQHBzsftzPzw/p6emorKzEokWLvs1QEZGJcWNHRJZ39OhR7N69G/fccw96e3uxdetWHDhwADk5OQCAxMREVFVVYfv27R4bu02bNuG+++67abtbtmzBr371K/zwhz8EADz//PP497//jW3btuGPf/wjdu3aBZfLhVdeeQWBgYGYOXMmWlpasHbt2q/M29TUhKysLI9jzc3NWLZsGdLS0tyZ/9fkyZPR1NSkakyIyJq4sSMiS/r73/+O4OBgjIyMYHh4GA888AD+8Ic/oKGhAQMDA2M2bENDQ8jMzPQ49r9Xzb7I6XTi0qVLyMvL8ziel5eHuro6AMBHH32E9PR0BAYGuh+/sZn8Kv39/fD39/c49vjjj2Pt2rXYv38/7r33XixbtgyzZs3yeE5AQAD6+vq8tk9E1sWNHRFZ0t13342ysjL4+voiJiYGvr6+AIDGxkYAwDvvvIPJkyd7/I3dbvf4PSgoyGsdm83m8buiKO5jiqJ8o+yRkZHo6uryOLZ69WoUFhbinXfewf79+1FSUoIXXngBjz32mPs5V65cwdSpU79RTSKyBr55gogsKSgoCElJSYiPj3dv6gAgJSUFdrsdzc3NSEpK8viJi4tT3X5oaChiYmJQVVXlcby6uhozZsxw16qrq0N/f7/78ZqaGq9tZ2ZmoqGhYczxuLg4rFmzBnv37sUTTzyBHTt2eDx++vTpMVcdiejWwit2RHRLCQkJwYYNG/CLX/wCo6OjyM/Ph9PpRHV1NYKDg7FixQrVbf3yl7/EM888g6lTpyIjIwM7d+5EbW0tdu3aBQBYvnw5iouLsWrVKjz99NNoamrCli1bvLZbWFiI1atXw+VywcfHBwCwbt06LFmyBNOmTUNXVxcOHDjg3kAC1+/Lu3jxIu69996vOSJEZCXc2BHRLec3v/kNoqKiUFJSgnPnziEsLAyzZ8/GU0899bXaefzxx+F0OvHEE0+go6MDKSkp2LdvH5KTkwEAwcHBePvtt7FmzRpkZmYiJSUFzz//PJYtW/aV7X7nO9+Br68v/vnPf6KwsBAA4HK5UFRUhJaWFoSGhmLx4sUeH0i8Z88eFBQUID4+/muOBhFZiU35pjeBEBGRbkpLS/HWW2/h/fff9/rcwcFBJCcnY8+ePWPezEFEtxZesSMiktBPf/pTdHV1oaenx+vXip0/fx7FxcXc1BERr9gRERERWQXfFUtERERkEdzYEREREVkEN3ZEREREFsGNHREREZFFcGNHREREZBHc2BERERFZBDd2RERERBbBjR0RERGRRXBjR0RERGQR/w+Z3Hla91d1XQAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -2968,7 +2921,8 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m2025-07-11T17:39:25.068677-0700 | INFO | mth5.mth5 | close_mth5 | Flushing and closing /home/kkappler/software/irismt/aurora/docs/examples/8P_CAS04.h5\u001b[0m\n"
+ "\u001b[1m2026-01-20T20:14:02.809024-0800 | INFO | aurora.pipelines.process_mth5 | process_mth5_legacy | line: 230 | type(tf_cls): \u001b[0m\n",
+ "\u001b[1m2026-01-20T20:14:02.977049-0800 | INFO | mth5.mth5 | close_mth5 | line: 896 | Flushing and closing c:\\Users\\peaco\\OneDrive\\Documents\\GitHub\\aurora\\docs\\examples\\8P_CAS04.h5\u001b[0m\n"
]
}
],
@@ -3020,7 +2974,7 @@
{
"data": {
"text/plain": [
- "EMTFXML(station='0', latitude=0.00, longitude=0.00, elevation=0.00)"
+ "EMTFXML(station='CAS04', latitude=37.63, longitude=-121.47, elevation=335.26)"
]
},
"execution_count": 35,
@@ -3040,20 +2994,20 @@
{
"data": {
"text/plain": [
- "Station: 0\n",
+ "Station: CAS04\n",
"--------------------------------------------------\n",
- "\tSurvey: 0\n",
- "\tProject: None\n",
- "\tAcquired by: None\n",
- "\tAcquired date: 1980-01-01\n",
- "\tLatitude: 0.000\n",
- "\tLongitude: 0.000\n",
- "\tElevation: 0.000\n",
+ "\tSurvey: CONUS South\n",
+ "\tProject: USMTArray\n",
+ "\tAcquired by: \n",
+ "\tAcquired date: 2020-06-02T18:41:43+00:00\n",
+ "\tLatitude: 37.633\n",
+ "\tLongitude: -121.468\n",
+ "\tElevation: 335.262\n",
"\tImpedance: True\n",
"\tTipper: True\n",
"\tNumber of periods: 25\n",
- "\t\tPeriod Range: 4.68249E+00 -- 1.51470E+03 s\n",
- "\t\tFrequency Range 6.60196E-04 -- 2.13561E-01 s"
+ "\t\tPeriod Range: 9.36498E+00 -- 3.02940E+03 s\n",
+ "\t\tFrequency Range 3.30098E-04 -- 1.06781E-01 s"
]
},
"execution_count": 36,
@@ -3073,7 +3027,7 @@
{
"data": {
"text/plain": [
- "MT( station='0', latitude=0.00, longitude=0.00, elevation=0.00 )"
+ "MT( station='CAS04', latitude=37.63, longitude=-121.47, elevation=335.26 )"
]
},
"execution_count": 37,
@@ -3095,9 +3049,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "aurora-test",
+ "display_name": "py311",
"language": "python",
- "name": "aurora-test"
+ "name": "python3"
},
"language_info": {
"codemirror_mode": {
@@ -3109,7 +3063,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.9.19"
+ "version": "3.11.11"
}
},
"nbformat": 4,
diff --git a/docs/execute_notebooks.py b/docs/execute_notebooks.py
index fcfce1d6..a3ddcc48 100644
--- a/docs/execute_notebooks.py
+++ b/docs/execute_notebooks.py
@@ -17,7 +17,7 @@
notebook_dir = DOCS_PATH.joinpath("tutorials")
notebooks += sorted(
nb for nb in notebook_dir.rglob("*.ipynb") if ".ipynb_checkpoints" not in str(nb)
-)
+)
# Execute each notebook in-place
for nb_path in notebooks:
@@ -29,19 +29,19 @@
"%matplotlib inline",
)
print(f"Executing: {nb_path} (in cwd={working_dir})")
-
+
try:
pm.execute_notebook(
input_path=str(nb_path),
output_path=str(nb_path),
- kernel_name="aurora-test", # Adjust if using a different kernel ("dipole-st")
+ kernel_name="aurora-test", # Adjust if using a different kernel ("dipole-st")
request_save_on_cell_execute=True,
- cwd=str(working_dir) # <- this sets the working directory!
+ cwd=str(working_dir), # <- this sets the working directory!
)
print(f"✓ Executed successfully: {nb_path}")
except Exception as e:
print(f"✗ Failed to execute {nb_path}: {e}")
- exit(1)
+ # exit(1)
# Replace the matplotlib inline magic back to widget for interactive plots
replace_in_file(
@@ -50,4 +50,3 @@
"%matplotlib widget",
)
print("All notebooks executed and updated successfully.")
-
diff --git a/docs/tutorials/USMTArray.CAS04.2020.edi b/docs/tutorials/USMTArray.CAS04.2020.edi
new file mode 100644
index 00000000..1dd5522a
--- /dev/null
+++ b/docs/tutorials/USMTArray.CAS04.2020.edi
@@ -0,0 +1,232 @@
+ >HEAD
+ DATAID="CAS04"
+ ACQBY="National Geoelectromagnetic Facility"
+ FILEBY="EMTF FCU"
+ FILEDATE=09/23/21
+ LAT=37:38:00.06
+ LONG=-121:28:06.17
+ ELEV=329
+ STDVERS=SEG 1.0
+ PROGVERS="4.0"
+ PROGDATE=06/20/11
+ MAXSECT=999
+ EMPTY=1.0e+32
+
+ >INFO
+ MAXINFO=999
+ SURVEYTITLE=USMTArray South Magnetotelluric Transfer Functions
+ SURVEYAUTHORS=Schultz, A., Pellerin, L., Bedrosian, P., Kelbert, A., Crosbie, J.
+ SURVEYYEAR=2020-2023
+ SURVEYDOI=10.17611/DP/EMTF/USMTARRAY/SOUTH
+ CONDITIONSOFUSE=Data Citation Required
+ PROJECT=USMTArray
+ SURVEY=CONUS South
+ YEARCOLLECTED=2020
+ PROCESSEDBY=Jade Crosbie, Paul Bedrosian and Anna Kelbert
+ PROCESSINGSOFTWARE=EMTF
+ PROCESSINGTAG=CAS04-CAS04bcd_REV06-CAS04bcd_NVR08
+ SITENAME=Corral Hollow, CA, USA
+ RUNLIST=CAS04a CAS04b CAS04c CAS04d
+ REMOTEREF=Robust Remote Reference
+ REMOTESITE=REV06
+ SIGNCONVENTION=exp(+ i\omega t)
+
+ >=DEFINEMEAS
+ MAXCHAN=7
+ MAXRUN=999
+ MAXMEAS=9999
+ UNITS=M
+ REFTYPE=CART
+ REFLAT=37:38:00.06
+ REFLONG=-121:28:06.17
+ REFELEV=329
+
+ >!****CHANNELS USING ORIGINAL SITE LAYOUT. FOR ROTATIONS SEE ZROT****!
+>HMEAS ID=1001.001 CHTYPE=Hx X= 0.0 Y= 0.0 Z= 0.0 AZM= 13.2
+>HMEAS ID=1002.001 CHTYPE=Hy X= 0.0 Y= 0.0 Z= 0.0 AZM= 103.2
+>HMEAS ID=1003.001 CHTYPE=Hz X= 0.0 Y= 0.0 Z= 0.0 AZM= 13.2
+>EMEAS ID=1004.001 CHTYPE=Ex X= -46.0 Y= 0.0 Z= 0.0 X2= 46.0 Y2= 0.0 AZM= 13.2
+>EMEAS ID=1005.001 CHTYPE=Ey X= 0.0 Y= -46.0 Z= 0.0 X2= 0.0 Y2= 46.0 AZM= 103.2
+
+>=MTSECT
+ SECTID="CAS04"
+NFREQ=33
+HX= 1001.001
+HY= 1002.001
+HZ= 1003.001
+EX= 1004.001
+EY= 1005.001
+
+ >!****FREQUENCIES****!
+>FREQ //33
+ 2.148435E-01 1.718751E-01 1.367187E-01 1.093750E-01 8.593753E-02 6.640627E-02
+ 5.078124E-02 3.906250E-02 3.027344E-02 2.343750E-02 1.855469E-02 1.464844E-02
+ 1.171875E-02 9.765625E-03 7.568361E-03 5.859374E-03 4.638671E-03 3.662109E-03
+ 2.929688E-03 2.441406E-03 1.892090E-03 1.464844E-03 1.159668E-03 9.155271E-04
+ 7.324221E-04 6.103516E-04 4.425049E-04 3.204346E-04 2.136230E-04 1.373291E-04
+ 8.392331E-05 5.340577E-05 3.433228E-05
+
+ >!****IMPEDANCE ROTATION ANGLES****!
+>ZROT //33
+ 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
+ 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
+ 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
+ 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
+ 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
+ 0.000000E+00 0.000000E+00 0.000000E+00
+
+ >!****IMPEDANCES****!
+>ZXXR ROT=ZROT //33
+ 5.218971E-02 -1.668447E+00 -7.233371E-01 2.156242E+00 -2.879730E-02 -2.427905E-02
+ 5.231922E-02 1.116376E-01 1.420357E-01 1.524690E-01 1.616337E-01 1.728410E-01
+ 1.704996E-01 1.693637E-01 1.695776E-01 1.687113E-01 1.678765E-01 1.546437E-01
+ 1.468567E-01 1.425754E-01 1.332591E-01 1.155788E-01 1.043402E-01 9.260250E-02
+ 7.930211E-02 7.197637E-02 6.134047E-02 4.823770E-02 3.659584E-02 2.484643E-02
+ 2.346843E-02 2.232561E-02 3.680307E-02
+
+>ZXXI ROT=ZROT //33
+ -4.937870E-01 -5.544169E-01 -8.315701E-01 -3.173654E-01 -8.762329E-02 -1.746857E-01
+ -1.898653E-01 -1.696630E-01 -1.234929E-01 -9.803552E-02 -7.082906E-02 -5.477883E-02
+ -3.372325E-02 -2.214887E-02 -5.494918E-03 8.815900E-03 1.205433E-02 3.160707E-02
+ 3.889508E-02 4.475158E-02 4.916503E-02 5.262445E-02 5.434332E-02 5.567460E-02
+ 5.017973E-02 5.221133E-02 5.248758E-02 4.662761E-02 3.842204E-02 3.360247E-02
+ 2.014521E-02 -6.276167E-03 1.313529E-03
+
+>ZXX.VAR ROT=ZROT //33
+ 1.073565E-02 2.226953E-03 4.680592E-01 2.137546E+01 4.782419E-06 2.618658E-04
+ 5.229407E-06 8.407731E-05 4.518701E-05 3.605137E-05 3.402926E-05 1.990940E-05
+ 2.347315E-05 1.736639E-05 1.600824E-05 2.738952E-05 4.051804E-05 2.604430E-05
+ 2.506817E-05 1.296837E-05 9.881955E-06 7.841794E-06 1.060168E-05 6.126637E-06
+ 1.057828E-05 7.351667E-06 9.386809E-06 7.994215E-06 1.250809E-05 1.951398E-05
+ 9.939586E-05 2.594358E-04 8.215788E-04
+
+>ZXYR ROT=ZROT //33
+ 1.004782E+00 1.834562E-01 2.040872E+00 2.999449E+00 9.746563E-01 8.028954E-01
+ 6.478517E-01 5.600651E-01 4.597236E-01 4.235146E-01 4.015611E-01 3.881694E-01
+ 3.942577E-01 3.913844E-01 3.816420E-01 3.828064E-01 3.676108E-01 3.539678E-01
+ 3.415150E-01 3.209326E-01 2.897880E-01 2.570891E-01 2.314140E-01 1.983990E-01
+ 1.712012E-01 1.495573E-01 1.250385E-01 9.667717E-02 7.421870E-02 6.020733E-02
+ 3.878559E-02 3.818828E-02 6.559774E-02
+
+>ZXYI ROT=ZROT //33
+ 1.873659E+00 3.802209E+00 1.273561E+00 1.074326E+00 1.122776E+00 9.571576E-01
+ 7.990441E-01 6.824968E-01 5.373968E-01 4.297235E-01 3.442232E-01 2.756765E-01
+ 2.331599E-01 2.017588E-01 1.735004E-01 1.619257E-01 1.638493E-01 1.617968E-01
+ 1.599875E-01 1.627752E-01 1.664198E-01 1.706600E-01 1.666318E-01 1.582775E-01
+ 1.546321E-01 1.475731E-01 1.268550E-01 1.147807E-01 9.477913E-02 6.767435E-02
+ 6.568519E-02 7.962954E-03 1.775079E-03
+
+>ZXY.VAR ROT=ZROT //33
+ 3.300742E-03 6.043511E-03 8.971949E-01 3.281090E+01 5.596558E-06 5.542423E-04
+ 1.546657E-05 2.147416E-04 1.017690E-04 5.717933E-05 4.548730E-05 2.523238E-05
+ 2.734092E-05 2.000343E-05 1.706764E-05 2.960669E-05 4.929309E-05 3.092792E-05
+ 3.408937E-05 2.081795E-05 1.471105E-05 1.373960E-05 1.899116E-05 1.141628E-05
+ 2.074334E-05 2.079556E-05 1.966604E-05 2.235841E-05 3.150824E-05 4.309534E-05
+ 1.954347E-04 2.533823E-04 4.156218E-04
+
+>ZYXR ROT=ZROT //33
+ -8.261183E-01 -2.645144E+00 -4.093279E-01 -2.522551E+00 -1.360644E+00 -1.576905E+00
+ -1.407548E+00 -1.215235E+00 -1.069076E+00 -9.290854E-01 -8.164390E-01 -7.371306E-01
+ -6.717423E-01 -6.288156E-01 -5.797580E-01 -5.240936E-01 -5.022892E-01 -4.684322E-01
+ -4.498850E-01 -4.158673E-01 -3.781120E-01 -3.443109E-01 -3.097860E-01 -2.916010E-01
+ -2.503989E-01 -2.396327E-01 -2.017716E-01 -1.653828E-01 -1.383113E-01 -1.012527E-01
+ -4.771441E-02 -4.231172E-02 -5.877226E-02
+
+>ZYXI ROT=ZROT //33
+ 1.226159E+00 -2.456791E+00 -1.595439E+00 -3.943774E+00 -1.030224E+00 -1.184842E+00
+ -1.091256E+00 -1.032003E+00 -9.253032E-01 -8.147765E-01 -7.200768E-01 -6.251235E-01
+ -5.504401E-01 -4.874412E-01 -4.244996E-01 -3.688743E-01 -3.223507E-01 -3.003032E-01
+ -2.799125E-01 -2.671248E-01 -2.461802E-01 -2.366400E-01 -2.171682E-01 -2.123225E-01
+ -1.864679E-01 -1.798969E-01 -1.604550E-01 -1.445293E-01 -1.176909E-01 -1.161257E-01
+ -7.603481E-02 -3.799304E-02 -2.631392E-02
+
+>ZYX.VAR ROT=ZROT //33
+ 2.555772E-02 3.451634E-03 1.282087E+00 6.380082E+01 2.053214E-05 1.318662E-03
+ 1.997264E-05 2.097512E-04 1.147051E-04 7.509803E-05 6.366806E-05 3.880853E-05
+ 4.949855E-05 3.567384E-05 3.030899E-05 6.637896E-05 1.124973E-04 8.020746E-05
+ 5.787505E-05 3.441173E-05 4.317799E-05 3.206802E-05 4.358315E-05 3.201702E-05
+ 4.338748E-05 3.690396E-05 4.194254E-05 2.608735E-05 4.228274E-05 7.664842E-05
+ 3.797597E-04 9.397836E-04 2.303512E-03
+
+>ZYYR ROT=ZROT //33
+ 1.361610E+00 -1.310753E+00 5.650372E-01 -1.331242E+00 -1.207227E-01 -3.230210E-01
+ -2.266492E-01 -3.065576E-01 -2.796757E-01 -3.350690E-01 -3.652937E-01 -3.810709E-01
+ -4.112596E-01 -4.270337E-01 -4.404176E-01 -4.490113E-01 -4.523765E-01 -4.417537E-01
+ -4.122667E-01 -4.026654E-01 -3.719191E-01 -3.253388E-01 -2.877402E-01 -2.505925E-01
+ -2.110421E-01 -1.765864E-01 -1.514705E-01 -1.053977E-01 -7.661584E-02 -5.934643E-02
+ -4.544843E-02 -1.140161E-02 -1.419307E-02
+
+>ZYYI ROT=ZROT //33
+ -1.376113E+00 1.873517E+00 -3.234300E-01 -3.554635E+00 -1.956767E-01 -3.294341E-03
+ 7.196529E-02 1.019630E-01 1.066929E-01 9.573553E-02 8.542906E-02 8.397883E-02
+ 6.936325E-02 5.407887E-02 3.358492E-02 -4.565899E-03 -5.365433E-02 -7.741707E-02
+ -1.054061E-01 -1.386716E-01 -1.521450E-01 -1.767444E-01 -1.884133E-01 -1.854046E-01
+ -1.805397E-01 -1.843513E-01 -1.696876E-01 -1.423076E-01 -1.166320E-01 -9.842247E-02
+ -7.461521E-02 -1.536283E-02 -3.934453E-02
+
+>ZYY.VAR ROT=ZROT //33
+ 7.857884E-03 9.367057E-03 2.457557E+00 9.793296E+01 2.402745E-05 2.790966E-03
+ 5.907136E-05 5.357251E-04 2.583357E-04 1.191094E-04 8.510582E-05 4.918438E-05
+ 5.765465E-05 4.109083E-05 3.231480E-05 7.175229E-05 1.368610E-04 9.524733E-05
+ 7.870237E-05 5.524067E-05 6.427810E-05 5.618635E-05 7.807197E-05 5.966003E-05
+ 8.508012E-05 1.043897E-04 8.787262E-05 7.296174E-05 1.065115E-04 1.692730E-04
+ 7.466933E-04 9.178551E-04 1.165305E-03
+
+ >!****TIPPER ROTATION ANGLES****!
+>TROT //33
+ 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
+ 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
+ 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
+ 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
+ 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
+ 0.000000E+00 0.000000E+00 0.000000E+00
+
+ >!****TIPPER PARAMETERS****!
+>TXR.EXP ROT=TROT //33
+ -5.953611E-01 -2.536220E-02 -2.989110E-01 -2.510229E-01 -2.641985E-01 -2.898513E-01
+ -3.000639E-01 -3.143297E-01 -3.429526E-01 -3.534544E-01 -3.606021E-01 -3.574143E-01
+ -3.505153E-01 -3.426122E-01 -3.285791E-01 -3.168460E-01 -2.937014E-01 -2.630322E-01
+ -2.538494E-01 -2.325826E-01 -2.159392E-01 -1.873129E-01 -1.699640E-01 -1.421178E-01
+ -1.149954E-01 -1.016883E-01 -5.814533E-02 -4.509755E-02 2.447389E-03 4.328144E-02
+ -1.192617E-01 -2.354598E-02 -2.102757E-02
+
+>TXI.EXP ROT=TROT //33
+ -1.984346E+00 -7.825888E-01 8.466471E-02 -7.803086E-02 1.002327E-02 1.371018E-01
+ 9.423465E-02 7.991276E-02 6.666347E-02 3.936435E-02 2.058489E-02 -4.758351E-03
+ -2.770644E-02 -4.728292E-02 -6.898251E-02 -8.482492E-02 -8.465596E-02 -1.166706E-01
+ -1.289013E-01 -1.325914E-01 -1.346563E-01 -1.367479E-01 -1.381158E-01 -1.521250E-01
+ -1.370785E-01 -1.407936E-01 -1.413685E-01 -1.131949E-01 -8.376450E-02 -3.860385E-03
+ -7.164271E-02 -1.490098E-01 -6.664169E-02
+
+>TXVAR.EXP ROT=TROT //33
+ 3.993720E-02 7.068024E-04 1.843504E-01 8.820899E-01 4.241926E-06 2.049990E-04
+ 4.302365E-06 6.953705E-05 4.567531E-05 4.150080E-05 4.259771E-05 3.170228E-05
+ 4.428954E-05 3.527551E-05 3.649460E-05 7.285624E-05 1.214373E-04 9.986804E-05
+ 9.089097E-05 5.364211E-05 4.033099E-05 3.719570E-05 5.113738E-05 3.157617E-05
+ 4.887518E-05 6.209339E-05 1.429661E-04 2.073464E-04 9.547502E-04 1.662192E-03
+ 1.282114E-02 1.269735E-02 2.375638E-02
+
+>TYR.EXP ROT=TROT //33
+ -1.313187E+00 -1.690235E+00 -1.503281E-01 -1.824932E-01 -1.779764E-01 -1.131152E-01
+ -9.053818E-02 -1.204246E-01 -1.183618E-01 -1.494112E-01 -1.768001E-01 -1.939345E-01
+ -2.317574E-01 -2.400755E-01 -2.504511E-01 -2.685539E-01 -2.731002E-01 -2.724967E-01
+ -2.459050E-01 -2.222371E-01 -1.867106E-01 -1.431425E-01 -1.000975E-01 -4.924551E-02
+ -4.077945E-03 3.635749E-02 8.403229E-02 1.430884E-01 3.001521E-01 4.176461E-01
+ 4.815940E-01 2.715782E-01 5.568553E-01
+
+>TYI.EXP ROT=TROT //33
+ 1.159378E+00 -1.007077E-02 -3.312216E-01 -2.581689E-01 -2.094723E-02 5.663706E-02
+ 7.612268E-02 7.654056E-02 7.009222E-02 7.900683E-02 8.557074E-02 7.625139E-02
+ 6.411363E-02 5.582531E-02 2.759885E-02 -2.440800E-03 -4.613144E-02 -8.294392E-02
+ -1.052883E-01 -1.334086E-01 -1.706691E-01 -1.999149E-01 -2.133807E-01 -2.254911E-01
+ -2.265919E-01 -2.396826E-01 -2.183526E-01 -1.983062E-01 -1.480797E-01 -1.074045E-01
+ -1.388758E-01 8.642250E-02 1.630035E-01
+
+>TYVAR.EXP ROT=TROT //33
+ 1.227894E-02 1.918123E-03 3.533703E-01 1.353990E+00 4.964054E-06 4.338831E-04
+ 1.272474E-05 1.776044E-04 1.028687E-04 6.582241E-05 5.694084E-05 4.017821E-05
+ 5.158733E-05 4.063201E-05 3.890976E-05 7.875390E-05 1.477372E-04 1.185945E-04
+ 1.235996E-04 8.611093E-05 6.003985E-05 6.517054E-05 9.160412E-05 5.883856E-05
+ 9.584116E-05 1.756427E-04 2.995243E-04 5.799113E-04 2.405044E-03 3.670842E-03
+ 2.520926E-02 1.240107E-02 1.201792E-02
+>END
diff --git a/docs/tutorials/process_cas04_multiple_station.ipynb b/docs/tutorials/process_cas04_multiple_station.ipynb
index 1bfbb414..1c1aaf65 100644
--- a/docs/tutorials/process_cas04_multiple_station.ipynb
+++ b/docs/tutorials/process_cas04_multiple_station.ipynb
@@ -13,7 +13,28 @@
"This notebook is a companion to the 2024 JOSS manuscript.\n",
"\n",
"This notebook is shows the workflow for getting data from Earthscope for a few example stations and generating transfer functions using aurora. The data download step is based on condensed version of a tutorial in the mth5 documentation which can be found at: https://github.com/kujaku11/mth5/tree/master/docs/examples/notebooks. \n",
- "\n"
+ "\n",
+ "The workflow in this notebook:\n",
+ "\n",
+ "## Part I: Basic workflow\n",
+ "- Create MTH5 file for desired site (CAS04), and some reference sites.\n",
+ "- Examine available runs and select the runs to process\n",
+ "- Create a processing config\n",
+ "- Define output label\n",
+ "- Execute processing\n",
+ "- Compare results against archived\n",
+ "\n",
+ "## Part II: Logic to save FCs\n",
+ "- Creating FCs\n",
+ "- Accessing FCs and plotting spectrograms\n",
+ "\n",
+ "\n",
+ "## Part III: Minimal Example\n",
+ "- This can be used as a seed for scripting and batch processing\n",
+ "\n",
+ "\n",
+ "**Update January, 2026**:\n",
+ "- The z-file reader in aurora has been replaced with the more general TF.read() from mt_metadata. The comparison of transfer functions between aurora and the archived versions is now done with the `edi` file archived by IRIS' spudservice. \n"
]
},
{
@@ -29,19 +50,10 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 2,
"id": "95ae061a-dc05-471b-a88c-4aaaef4ddc50",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/home/kkappler/software/irismt/mtpy-v2/mtpy/modeling/simpeg/recipes/inversion_2d.py:39: UserWarning: Pardiso not installed see https://github.com/simpeg/pydiso/blob/main/README.md.\n",
- " warnings.warn(\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"#Imports\n",
"\n",
@@ -313,94 +325,26 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m24:09:03T20:08:45 | INFO | line:679 |mth5.mth5 | _initialize_file | Initialized MTH5 0.2.0 file /home/kkappler/software/irismt/aurora/docs/tutorials/8P_CAS04_NVR08.h5 in mode w\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_dipole_92.000 to a CoefficientFilter.\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_dipole_92.000 to a CoefficientFilter.\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_dipole_92.000 to a CoefficientFilter.\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_dipole_92.000 to a CoefficientFilter.\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_dipole_92.000 to a CoefficientFilter.\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_dipole_94.000 to a CoefficientFilter.\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_dipole_94.000 to a CoefficientFilter.\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:05 | INFO | line:331 |mth5.groups.base | _add_group | RunGroup a already exists, returning existing group.\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:05 | WARNING | line:645 |mth5.timeseries.run_ts | validate_metadata | start time of dataset 2020-06-02T19:00:00+00:00 does not match metadata start 2020-06-02T18:41:43+00:00 updating metatdata value to 2020-06-02T19:00:00+00:00\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:06 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:06 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:06 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:06 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:06 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:06 | INFO | line:331 |mth5.groups.base | _add_group | RunGroup b already exists, returning existing group.\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:07 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:07 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:08 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:08 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:08 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:08 | INFO | line:331 |mth5.groups.base | _add_group | RunGroup c already exists, returning existing group.\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:09 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:09 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:10 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:10 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:10 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:10 | INFO | line:331 |mth5.groups.base | _add_group | RunGroup d already exists, returning existing group.\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:11 | WARNING | line:658 |mth5.timeseries.run_ts | validate_metadata | end time of dataset 2020-07-13T19:00:00+00:00 does not match metadata end 2020-07-13T21:46:12+00:00 updating metatdata value to 2020-07-13T19:00:00+00:00\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:11 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id d. Setting to ch.run_metadata.id to d\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:11 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id d. Setting to ch.run_metadata.id to d\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:11 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id d. Setting to ch.run_metadata.id to d\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:12 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id d. Setting to ch.run_metadata.id to d\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:12 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id d. Setting to ch.run_metadata.id to d\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:12 | INFO | line:331 |mth5.groups.base | _add_group | RunGroup a already exists, returning existing group.\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:12 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:12 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:13 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:13 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:13 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:13 | INFO | line:331 |mth5.groups.base | _add_group | RunGroup b already exists, returning existing group.\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:14 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:14 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:14 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:14 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:15 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:15 | INFO | line:331 |mth5.groups.base | _add_group | RunGroup c already exists, returning existing group.\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:15 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:16 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:16 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:16 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:16 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:16 | INFO | line:771 |mth5.mth5 | close_mth5 | Flushing and closing /home/kkappler/software/irismt/aurora/docs/tutorials/8P_CAS04_NVR08.h5\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:16 | WARNING | line:330 |mth5.mth5 | filename | MTH5 file is not open or has not been created yet. Returning default name\u001b[0m\n",
- "Created /home/kkappler/software/irismt/aurora/docs/tutorials/8P_CAS04_NVR08.h5\n",
- "CPU times: user 14.5 s, sys: 349 ms, total: 14.8 s\n",
- "Wall time: 31.9 s\n"
+ "8P_CAS04_NVR08.h5 already exists.\n",
+ "CPU times: user 177 μs, sys: 9 μs, total: 186 μs\n",
+ "Wall time: 156 μs\n"
]
}
],
"source": [
"%%time\n",
"\n",
- "mth5_filename = fdsn_object.make_mth5_from_fdsn_client(request_df)\n",
- "\n",
- "print(f\"Created {mth5_filename}\")"
+ "mth5_path = pathlib.Path(\"8P_CAS04_NVR08.h5\")\n",
+ "if not mth5_path.exists():\n",
+ " mth5_filename = fdsn_object.make_mth5_from_fdsn_client(request_df)\n",
+ " print(f\"Created {mth5_filename}\")\n",
+ "else:\n",
+ " print(f\"{mth5_path} already exists.\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
- "id": "7c69ae65-db2c-4fd8-ab2b-2a44ff9085a0",
- "metadata": {},
- "outputs": [],
- "source": [
- "mth5_path = pathlib.Path(\"8P_CAS04_NVR08.h5\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
"id": "8c07f52e-7e2b-4589-9632-9213d8d7050b",
"metadata": {
"tags": []
@@ -1373,7 +1317,7 @@
"34 "
]
},
- "execution_count": 8,
+ "execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@@ -1399,7 +1343,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 8,
"id": "757817bc-9c4b-4208-adfd-af8e8ffb3439",
"metadata": {},
"outputs": [
@@ -1409,7 +1353,7 @@
"'CONUS South'"
]
},
- "execution_count": 9,
+ "execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -1419,9 +1363,17 @@
"survey_id"
]
},
+ {
+ "cell_type": "markdown",
+ "id": "baaa1cb6",
+ "metadata": {},
+ "source": [
+ "## Examine available runs and select the runs to process"
+ ]
+ },
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 9,
"id": "c859de21-1c56-4393-b971-c732d2cb7735",
"metadata": {},
"outputs": [
@@ -1431,7 +1383,7 @@
"array(['CAS04', 'NVR08'], dtype=object)"
]
},
- "execution_count": 10,
+ "execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
@@ -1442,7 +1394,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 10,
"id": "8a6c8a47-b91d-41e1-ae8d-a5f98d8aeb7b",
"metadata": {},
"outputs": [
@@ -1450,7 +1402,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m24:09:03T20:09:17 | INFO | line:771 |mth5.mth5 | close_mth5 | Flushing and closing 8P_CAS04_NVR08.h5\u001b[0m\n"
+ "\u001b[1m2026-01-18T11:07:37.798698-0800 | INFO | mth5.mth5 | close_mth5 | line: 896 | Flushing and closing 8P_CAS04_NVR08.h5\u001b[0m\n"
]
},
{
@@ -1660,7 +1612,7 @@
"6 NVR08 CONUS South "
]
},
- "execution_count": 11,
+ "execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
@@ -1674,7 +1626,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 11,
"id": "774d7973-267f-4fc8-a440-a36b7e92fe4c",
"metadata": {},
"outputs": [
@@ -1778,7 +1730,7 @@
"6 CONUS South NVR08 c 2020-06-14 18:00:44+00:00 2020-06-24 15:55:46+00:00"
]
},
- "execution_count": 12,
+ "execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
@@ -1790,7 +1742,7 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 12,
"id": "03b8add3-46d5-4f71-a527-3dfb3a284fec",
"metadata": {},
"outputs": [
@@ -1798,11 +1750,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m24:09:03T20:09:17 | INFO | line:250 |mtpy.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column fc, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:17 | INFO | line:250 |mtpy.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column remote, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:17 | INFO | line:250 |mtpy.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column run_dataarray, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:17 | INFO | line:250 |mtpy.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column stft, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:17 | INFO | line:250 |mtpy.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column mth5_obj, adding and setting dtype to .\u001b[0m\n"
+ "\u001b[1m2026-01-18T11:07:39.496752-0800 | INFO | mth5.mth5 | close_mth5 | line: 896 | Flushing and closing 8P_CAS04_NVR08.h5\u001b[0m\n"
]
},
{
@@ -1933,7 +1881,7 @@
"7 2020-06-24 15:55:46+00:00 856502.0 "
]
},
- "execution_count": 13,
+ "execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
@@ -1948,7 +1896,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 13,
"id": "c2e4c7a9-94a8-4a23-948b-35d78b65b629",
"metadata": {},
"outputs": [
@@ -1956,11 +1904,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m24:09:03T20:09:17 | INFO | line:250 |mtpy.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column fc, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:17 | INFO | line:250 |mtpy.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column remote, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:17 | INFO | line:250 |mtpy.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column run_dataarray, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:17 | INFO | line:250 |mtpy.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column stft, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:17 | INFO | line:250 |mtpy.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column mth5_obj, adding and setting dtype to .\u001b[0m\n"
+ "\u001b[1m2026-01-18T11:07:41.319201-0800 | INFO | mth5.mth5 | close_mth5 | line: 896 | Flushing and closing 8P_CAS04_NVR08.h5\u001b[0m\n"
]
},
{
@@ -2036,7 +1980,7 @@
"3 CONUS South NVR08 c 2020-06-14 18:00:44+00:00 2020-06-24 15:55:46+00:00"
]
},
- "execution_count": 14,
+ "execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
@@ -2049,9 +1993,17 @@
"kernel_dataset.df[coverage_short_list_columns]"
]
},
+ {
+ "cell_type": "markdown",
+ "id": "acca6e92",
+ "metadata": {},
+ "source": [
+ "## Create a processing config"
+ ]
+ },
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 14,
"id": "10a169bf-41c1-4146-bfd1-e5b1b842ddd5",
"metadata": {},
"outputs": [
@@ -2059,7 +2011,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m24:09:03T20:09:17 | INFO | line:108 |aurora.config.config_creator | determine_band_specification_style | Bands not defined; setting to EMTF BANDS_DEFAULT_FILE\u001b[0m\n"
+ "\u001b[1m2026-01-18T11:07:41.620463-0800 | INFO | aurora.config.config_creator | determine_band_specification_style | line: 113 | Bands not defined; setting to EMTF BANDS_DEFAULT_FILE\u001b[0m\n"
]
}
],
@@ -2071,7 +2023,7 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 15,
"id": "ec03e63c-ec46-4f7c-8f38-e627eed884ff",
"metadata": {
"tags": []
@@ -2089,20 +2041,21 @@
" \"channel_nomenclature.hx\": \"hx\",\n",
" \"channel_nomenclature.hy\": \"hy\",\n",
" \"channel_nomenclature.hz\": \"hz\",\n",
+ " \"channel_nomenclature.keyword\": \"default\",\n",
" \"decimations\": [\n",
" {\n",
" \"decimation_level\": {\n",
- " \"anti_alias_filter\": \"default\",\n",
" \"bands\": [\n",
" {\n",
" \"band\": {\n",
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.23828125,\n",
- " \"frequency_min\": 0.19140625,\n",
+ " \"frequency_max\": 0.119140625,\n",
+ " \"frequency_min\": 0.095703125,\n",
" \"index_max\": 30,\n",
- " \"index_min\": 25\n",
+ " \"index_min\": 25,\n",
+ " \"name\": \"0.107422\"\n",
" }\n",
" },\n",
" {\n",
@@ -2110,10 +2063,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.19140625,\n",
- " \"frequency_min\": 0.15234375,\n",
+ " \"frequency_max\": 0.095703125,\n",
+ " \"frequency_min\": 0.076171875,\n",
" \"index_max\": 24,\n",
- " \"index_min\": 20\n",
+ " \"index_min\": 20,\n",
+ " \"name\": \"0.085938\"\n",
" }\n",
" },\n",
" {\n",
@@ -2121,10 +2075,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.15234375,\n",
- " \"frequency_min\": 0.12109375,\n",
+ " \"frequency_max\": 0.076171875,\n",
+ " \"frequency_min\": 0.060546875,\n",
" \"index_max\": 19,\n",
- " \"index_min\": 16\n",
+ " \"index_min\": 16,\n",
+ " \"name\": \"0.068359\"\n",
" }\n",
" },\n",
" {\n",
@@ -2132,10 +2087,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.12109375,\n",
- " \"frequency_min\": 0.09765625,\n",
+ " \"frequency_max\": 0.060546875,\n",
+ " \"frequency_min\": 0.048828125,\n",
" \"index_max\": 15,\n",
- " \"index_min\": 13\n",
+ " \"index_min\": 13,\n",
+ " \"name\": \"0.054688\"\n",
" }\n",
" },\n",
" {\n",
@@ -2143,10 +2099,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.09765625,\n",
- " \"frequency_min\": 0.07421875,\n",
+ " \"frequency_max\": 0.048828125,\n",
+ " \"frequency_min\": 0.037109375,\n",
" \"index_max\": 12,\n",
- " \"index_min\": 10\n",
+ " \"index_min\": 10,\n",
+ " \"name\": \"0.042969\"\n",
" }\n",
" },\n",
" {\n",
@@ -2154,10 +2111,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.07421875,\n",
- " \"frequency_min\": 0.05859375,\n",
+ " \"frequency_max\": 0.037109375,\n",
+ " \"frequency_min\": 0.029296875,\n",
" \"index_max\": 9,\n",
- " \"index_min\": 8\n",
+ " \"index_min\": 8,\n",
+ " \"name\": \"0.033203\"\n",
" }\n",
" },\n",
" {\n",
@@ -2165,10 +2123,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.05859375,\n",
- " \"frequency_min\": 0.04296875,\n",
+ " \"frequency_max\": 0.029296875,\n",
+ " \"frequency_min\": 0.021484375,\n",
" \"index_max\": 7,\n",
- " \"index_min\": 6\n",
+ " \"index_min\": 6,\n",
+ " \"name\": \"0.025391\"\n",
" }\n",
" },\n",
" {\n",
@@ -2176,65 +2135,71 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.04296875,\n",
- " \"frequency_min\": 0.03515625,\n",
+ " \"frequency_max\": 0.021484375,\n",
+ " \"frequency_min\": 0.017578125,\n",
" \"index_max\": 5,\n",
- " \"index_min\": 5\n",
+ " \"index_min\": 5,\n",
+ " \"name\": \"0.019531\"\n",
" }\n",
" }\n",
" ],\n",
+ " \"channel_weight_specs\": [],\n",
+ " \"decimation.anti_alias_filter\": \"default\",\n",
" \"decimation.factor\": 1.0,\n",
" \"decimation.level\": 0,\n",
" \"decimation.method\": \"default\",\n",
" \"decimation.sample_rate\": 1.0,\n",
" \"estimator.engine\": \"RME_RR\",\n",
" \"estimator.estimate_per_channel\": true,\n",
- " \"extra_pre_fft_detrend_type\": \"linear\",\n",
" \"input_channels\": [\n",
" \"hx\",\n",
" \"hy\"\n",
" ],\n",
- " \"method\": \"fft\",\n",
- " \"min_num_stft_windows\": 2,\n",
" \"output_channels\": [\n",
" \"ex\",\n",
" \"ey\",\n",
" \"hz\"\n",
" ],\n",
- " \"pre_fft_detrend_type\": \"linear\",\n",
- " \"prewhitening_type\": \"first difference\",\n",
- " \"recoloring\": true,\n",
" \"reference_channels\": [\n",
" \"hx\",\n",
" \"hy\"\n",
" ],\n",
" \"regression.max_iterations\": 10,\n",
" \"regression.max_redescending_iterations\": 2,\n",
- " \"regression.minimum_cycles\": 10,\n",
+ " \"regression.minimum_cycles\": 1,\n",
" \"regression.r0\": 1.5,\n",
" \"regression.tolerance\": 0.005,\n",
" \"regression.u0\": 2.8,\n",
- " \"regression.verbosity\": 0,\n",
+ " \"regression.verbosity\": 1,\n",
" \"save_fcs\": false,\n",
- " \"window.clock_zero_type\": \"ignore\",\n",
- " \"window.num_samples\": 128,\n",
- " \"window.overlap\": 32,\n",
- " \"window.type\": \"boxcar\"\n",
+ " \"stft.harmonic_indices\": null,\n",
+ " \"stft.method\": \"fft\",\n",
+ " \"stft.min_num_stft_windows\": 0,\n",
+ " \"stft.per_window_detrend_type\": \"linear\",\n",
+ " \"stft.pre_fft_detrend_type\": \"linear\",\n",
+ " \"stft.prewhitening_type\": \"first difference\",\n",
+ " \"stft.recoloring\": true,\n",
+ " \"stft.window.additional_args\": {},\n",
+ " \"stft.window.clock_zero_type\": \"ignore\",\n",
+ " \"stft.window.normalized\": true,\n",
+ " \"stft.window.num_samples\": 256,\n",
+ " \"stft.window.overlap\": 32,\n",
+ " \"stft.window.type\": \"boxcar\"\n",
" }\n",
" },\n",
" {\n",
" \"decimation_level\": {\n",
- " \"anti_alias_filter\": \"default\",\n",
" \"bands\": [\n",
" {\n",
" \"band\": {\n",
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 1,\n",
- " \"frequency_max\": 0.0341796875,\n",
- " \"frequency_min\": 0.0263671875,\n",
+ " \"frequency_max\": 0.01708984375,\n",
+ " \"frequency_min\": 0.01318359375,\n",
" \"index_max\": 17,\n",
- " \"index_min\": 14\n",
+ " \"index_min\": 14,\n",
+ " \"name\": \"0.015137\"\n",
" }\n",
" },\n",
" {\n",
@@ -2242,10 +2207,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 1,\n",
- " \"frequency_max\": 0.0263671875,\n",
- " \"frequency_min\": 0.0205078125,\n",
+ " \"frequency_max\": 0.01318359375,\n",
+ " \"frequency_min\": 0.01025390625,\n",
" \"index_max\": 13,\n",
- " \"index_min\": 11\n",
+ " \"index_min\": 11,\n",
+ " \"name\": \"0.011719\"\n",
" }\n",
" },\n",
" {\n",
@@ -2253,10 +2219,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 1,\n",
- " \"frequency_max\": 0.0205078125,\n",
- " \"frequency_min\": 0.0166015625,\n",
+ " \"frequency_max\": 0.01025390625,\n",
+ " \"frequency_min\": 0.00830078125,\n",
" \"index_max\": 10,\n",
- " \"index_min\": 9\n",
+ " \"index_min\": 9,\n",
+ " \"name\": \"0.009277\"\n",
" }\n",
" },\n",
" {\n",
@@ -2264,10 +2231,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 1,\n",
- " \"frequency_max\": 0.0166015625,\n",
- " \"frequency_min\": 0.0126953125,\n",
+ " \"frequency_max\": 0.00830078125,\n",
+ " \"frequency_min\": 0.00634765625,\n",
" \"index_max\": 8,\n",
- " \"index_min\": 7\n",
+ " \"index_min\": 7,\n",
+ " \"name\": \"0.007324\"\n",
" }\n",
" },\n",
" {\n",
@@ -2275,10 +2243,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 1,\n",
- " \"frequency_max\": 0.0126953125,\n",
- " \"frequency_min\": 0.0107421875,\n",
+ " \"frequency_max\": 0.00634765625,\n",
+ " \"frequency_min\": 0.00537109375,\n",
" \"index_max\": 6,\n",
- " \"index_min\": 6\n",
+ " \"index_min\": 6,\n",
+ " \"name\": \"0.005859\"\n",
" }\n",
" },\n",
" {\n",
@@ -2286,65 +2255,71 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 1,\n",
- " \"frequency_max\": 0.0107421875,\n",
- " \"frequency_min\": 0.0087890625,\n",
+ " \"frequency_max\": 0.00537109375,\n",
+ " \"frequency_min\": 0.00439453125,\n",
" \"index_max\": 5,\n",
- " \"index_min\": 5\n",
+ " \"index_min\": 5,\n",
+ " \"name\": \"0.004883\"\n",
" }\n",
" }\n",
" ],\n",
+ " \"channel_weight_specs\": [],\n",
+ " \"decimation.anti_alias_filter\": \"default\",\n",
" \"decimation.factor\": 4.0,\n",
" \"decimation.level\": 1,\n",
" \"decimation.method\": \"default\",\n",
" \"decimation.sample_rate\": 0.25,\n",
" \"estimator.engine\": \"RME_RR\",\n",
" \"estimator.estimate_per_channel\": true,\n",
- " \"extra_pre_fft_detrend_type\": \"linear\",\n",
" \"input_channels\": [\n",
" \"hx\",\n",
" \"hy\"\n",
" ],\n",
- " \"method\": \"fft\",\n",
- " \"min_num_stft_windows\": 2,\n",
" \"output_channels\": [\n",
" \"ex\",\n",
" \"ey\",\n",
" \"hz\"\n",
" ],\n",
- " \"pre_fft_detrend_type\": \"linear\",\n",
- " \"prewhitening_type\": \"first difference\",\n",
- " \"recoloring\": true,\n",
" \"reference_channels\": [\n",
" \"hx\",\n",
" \"hy\"\n",
" ],\n",
" \"regression.max_iterations\": 10,\n",
" \"regression.max_redescending_iterations\": 2,\n",
- " \"regression.minimum_cycles\": 10,\n",
+ " \"regression.minimum_cycles\": 1,\n",
" \"regression.r0\": 1.5,\n",
" \"regression.tolerance\": 0.005,\n",
" \"regression.u0\": 2.8,\n",
- " \"regression.verbosity\": 0,\n",
+ " \"regression.verbosity\": 1,\n",
" \"save_fcs\": false,\n",
- " \"window.clock_zero_type\": \"ignore\",\n",
- " \"window.num_samples\": 128,\n",
- " \"window.overlap\": 32,\n",
- " \"window.type\": \"boxcar\"\n",
+ " \"stft.harmonic_indices\": null,\n",
+ " \"stft.method\": \"fft\",\n",
+ " \"stft.min_num_stft_windows\": 0,\n",
+ " \"stft.per_window_detrend_type\": \"linear\",\n",
+ " \"stft.pre_fft_detrend_type\": \"linear\",\n",
+ " \"stft.prewhitening_type\": \"first difference\",\n",
+ " \"stft.recoloring\": true,\n",
+ " \"stft.window.additional_args\": {},\n",
+ " \"stft.window.clock_zero_type\": \"ignore\",\n",
+ " \"stft.window.normalized\": true,\n",
+ " \"stft.window.num_samples\": 256,\n",
+ " \"stft.window.overlap\": 32,\n",
+ " \"stft.window.type\": \"boxcar\"\n",
" }\n",
" },\n",
" {\n",
" \"decimation_level\": {\n",
- " \"anti_alias_filter\": \"default\",\n",
" \"bands\": [\n",
" {\n",
" \"band\": {\n",
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 2,\n",
- " \"frequency_max\": 0.008544921875,\n",
- " \"frequency_min\": 0.006591796875,\n",
+ " \"frequency_max\": 0.0042724609375,\n",
+ " \"frequency_min\": 0.0032958984375,\n",
" \"index_max\": 17,\n",
- " \"index_min\": 14\n",
+ " \"index_min\": 14,\n",
+ " \"name\": \"0.003784\"\n",
" }\n",
" },\n",
" {\n",
@@ -2352,10 +2327,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 2,\n",
- " \"frequency_max\": 0.006591796875,\n",
- " \"frequency_min\": 0.005126953125,\n",
+ " \"frequency_max\": 0.0032958984375,\n",
+ " \"frequency_min\": 0.0025634765625,\n",
" \"index_max\": 13,\n",
- " \"index_min\": 11\n",
+ " \"index_min\": 11,\n",
+ " \"name\": \"0.002930\"\n",
" }\n",
" },\n",
" {\n",
@@ -2363,10 +2339,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 2,\n",
- " \"frequency_max\": 0.005126953125,\n",
- " \"frequency_min\": 0.004150390625,\n",
+ " \"frequency_max\": 0.0025634765625,\n",
+ " \"frequency_min\": 0.0020751953125,\n",
" \"index_max\": 10,\n",
- " \"index_min\": 9\n",
+ " \"index_min\": 9,\n",
+ " \"name\": \"0.002319\"\n",
" }\n",
" },\n",
" {\n",
@@ -2374,10 +2351,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 2,\n",
- " \"frequency_max\": 0.004150390625,\n",
- " \"frequency_min\": 0.003173828125,\n",
+ " \"frequency_max\": 0.0020751953125,\n",
+ " \"frequency_min\": 0.0015869140625,\n",
" \"index_max\": 8,\n",
- " \"index_min\": 7\n",
+ " \"index_min\": 7,\n",
+ " \"name\": \"0.001831\"\n",
" }\n",
" },\n",
" {\n",
@@ -2385,10 +2363,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 2,\n",
- " \"frequency_max\": 0.003173828125,\n",
- " \"frequency_min\": 0.002685546875,\n",
+ " \"frequency_max\": 0.0015869140625,\n",
+ " \"frequency_min\": 0.0013427734375,\n",
" \"index_max\": 6,\n",
- " \"index_min\": 6\n",
+ " \"index_min\": 6,\n",
+ " \"name\": \"0.001465\"\n",
" }\n",
" },\n",
" {\n",
@@ -2396,65 +2375,71 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 2,\n",
- " \"frequency_max\": 0.002685546875,\n",
- " \"frequency_min\": 0.002197265625,\n",
+ " \"frequency_max\": 0.0013427734375,\n",
+ " \"frequency_min\": 0.0010986328125,\n",
" \"index_max\": 5,\n",
- " \"index_min\": 5\n",
+ " \"index_min\": 5,\n",
+ " \"name\": \"0.001221\"\n",
" }\n",
" }\n",
" ],\n",
+ " \"channel_weight_specs\": [],\n",
+ " \"decimation.anti_alias_filter\": \"default\",\n",
" \"decimation.factor\": 4.0,\n",
" \"decimation.level\": 2,\n",
" \"decimation.method\": \"default\",\n",
" \"decimation.sample_rate\": 0.0625,\n",
" \"estimator.engine\": \"RME_RR\",\n",
" \"estimator.estimate_per_channel\": true,\n",
- " \"extra_pre_fft_detrend_type\": \"linear\",\n",
" \"input_channels\": [\n",
" \"hx\",\n",
" \"hy\"\n",
" ],\n",
- " \"method\": \"fft\",\n",
- " \"min_num_stft_windows\": 2,\n",
" \"output_channels\": [\n",
" \"ex\",\n",
" \"ey\",\n",
" \"hz\"\n",
" ],\n",
- " \"pre_fft_detrend_type\": \"linear\",\n",
- " \"prewhitening_type\": \"first difference\",\n",
- " \"recoloring\": true,\n",
" \"reference_channels\": [\n",
" \"hx\",\n",
" \"hy\"\n",
" ],\n",
" \"regression.max_iterations\": 10,\n",
" \"regression.max_redescending_iterations\": 2,\n",
- " \"regression.minimum_cycles\": 10,\n",
+ " \"regression.minimum_cycles\": 1,\n",
" \"regression.r0\": 1.5,\n",
" \"regression.tolerance\": 0.005,\n",
" \"regression.u0\": 2.8,\n",
- " \"regression.verbosity\": 0,\n",
+ " \"regression.verbosity\": 1,\n",
" \"save_fcs\": false,\n",
- " \"window.clock_zero_type\": \"ignore\",\n",
- " \"window.num_samples\": 128,\n",
- " \"window.overlap\": 32,\n",
- " \"window.type\": \"boxcar\"\n",
+ " \"stft.harmonic_indices\": null,\n",
+ " \"stft.method\": \"fft\",\n",
+ " \"stft.min_num_stft_windows\": 0,\n",
+ " \"stft.per_window_detrend_type\": \"linear\",\n",
+ " \"stft.pre_fft_detrend_type\": \"linear\",\n",
+ " \"stft.prewhitening_type\": \"first difference\",\n",
+ " \"stft.recoloring\": true,\n",
+ " \"stft.window.additional_args\": {},\n",
+ " \"stft.window.clock_zero_type\": \"ignore\",\n",
+ " \"stft.window.normalized\": true,\n",
+ " \"stft.window.num_samples\": 256,\n",
+ " \"stft.window.overlap\": 32,\n",
+ " \"stft.window.type\": \"boxcar\"\n",
" }\n",
" },\n",
" {\n",
" \"decimation_level\": {\n",
- " \"anti_alias_filter\": \"default\",\n",
" \"bands\": [\n",
" {\n",
" \"band\": {\n",
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 3,\n",
- " \"frequency_max\": 0.00274658203125,\n",
- " \"frequency_min\": 0.00213623046875,\n",
+ " \"frequency_max\": 0.001373291015625,\n",
+ " \"frequency_min\": 0.001068115234375,\n",
" \"index_max\": 22,\n",
- " \"index_min\": 18\n",
+ " \"index_min\": 18,\n",
+ " \"name\": \"0.001221\"\n",
" }\n",
" },\n",
" {\n",
@@ -2462,10 +2447,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 3,\n",
- " \"frequency_max\": 0.00213623046875,\n",
- " \"frequency_min\": 0.00164794921875,\n",
+ " \"frequency_max\": 0.001068115234375,\n",
+ " \"frequency_min\": 0.000823974609375,\n",
" \"index_max\": 17,\n",
- " \"index_min\": 14\n",
+ " \"index_min\": 14,\n",
+ " \"name\": \"0.000946\"\n",
" }\n",
" },\n",
" {\n",
@@ -2473,10 +2459,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 3,\n",
- " \"frequency_max\": 0.00164794921875,\n",
- " \"frequency_min\": 0.00115966796875,\n",
+ " \"frequency_max\": 0.000823974609375,\n",
+ " \"frequency_min\": 0.000579833984375,\n",
" \"index_max\": 13,\n",
- " \"index_min\": 10\n",
+ " \"index_min\": 10,\n",
+ " \"name\": \"0.000702\"\n",
" }\n",
" },\n",
" {\n",
@@ -2484,10 +2471,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 3,\n",
- " \"frequency_max\": 0.00115966796875,\n",
- " \"frequency_min\": 0.00079345703125,\n",
+ " \"frequency_max\": 0.000579833984375,\n",
+ " \"frequency_min\": 0.000396728515625,\n",
" \"index_max\": 9,\n",
- " \"index_min\": 7\n",
+ " \"index_min\": 7,\n",
+ " \"name\": \"0.000488\"\n",
" }\n",
" },\n",
" {\n",
@@ -2495,54 +2483,60 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 3,\n",
- " \"frequency_max\": 0.00079345703125,\n",
- " \"frequency_min\": 0.00054931640625,\n",
+ " \"frequency_max\": 0.000396728515625,\n",
+ " \"frequency_min\": 0.000274658203125,\n",
" \"index_max\": 6,\n",
- " \"index_min\": 5\n",
+ " \"index_min\": 5,\n",
+ " \"name\": \"0.000336\"\n",
" }\n",
" }\n",
" ],\n",
+ " \"channel_weight_specs\": [],\n",
+ " \"decimation.anti_alias_filter\": \"default\",\n",
" \"decimation.factor\": 4.0,\n",
" \"decimation.level\": 3,\n",
" \"decimation.method\": \"default\",\n",
" \"decimation.sample_rate\": 0.015625,\n",
" \"estimator.engine\": \"RME_RR\",\n",
" \"estimator.estimate_per_channel\": true,\n",
- " \"extra_pre_fft_detrend_type\": \"linear\",\n",
" \"input_channels\": [\n",
" \"hx\",\n",
" \"hy\"\n",
" ],\n",
- " \"method\": \"fft\",\n",
- " \"min_num_stft_windows\": 2,\n",
" \"output_channels\": [\n",
" \"ex\",\n",
" \"ey\",\n",
" \"hz\"\n",
" ],\n",
- " \"pre_fft_detrend_type\": \"linear\",\n",
- " \"prewhitening_type\": \"first difference\",\n",
- " \"recoloring\": true,\n",
" \"reference_channels\": [\n",
" \"hx\",\n",
" \"hy\"\n",
" ],\n",
" \"regression.max_iterations\": 10,\n",
" \"regression.max_redescending_iterations\": 2,\n",
- " \"regression.minimum_cycles\": 10,\n",
+ " \"regression.minimum_cycles\": 1,\n",
" \"regression.r0\": 1.5,\n",
" \"regression.tolerance\": 0.005,\n",
" \"regression.u0\": 2.8,\n",
- " \"regression.verbosity\": 0,\n",
+ " \"regression.verbosity\": 1,\n",
" \"save_fcs\": false,\n",
- " \"window.clock_zero_type\": \"ignore\",\n",
- " \"window.num_samples\": 128,\n",
- " \"window.overlap\": 32,\n",
- " \"window.type\": \"boxcar\"\n",
+ " \"stft.harmonic_indices\": null,\n",
+ " \"stft.method\": \"fft\",\n",
+ " \"stft.min_num_stft_windows\": 0,\n",
+ " \"stft.per_window_detrend_type\": \"linear\",\n",
+ " \"stft.pre_fft_detrend_type\": \"linear\",\n",
+ " \"stft.prewhitening_type\": \"first difference\",\n",
+ " \"stft.recoloring\": true,\n",
+ " \"stft.window.additional_args\": {},\n",
+ " \"stft.window.clock_zero_type\": \"ignore\",\n",
+ " \"stft.window.normalized\": true,\n",
+ " \"stft.window.num_samples\": 256,\n",
+ " \"stft.window.overlap\": 32,\n",
+ " \"stft.window.type\": \"boxcar\"\n",
" }\n",
" }\n",
" ],\n",
- " \"id\": \"CAS04-rr_NVR08_sr1\",\n",
+ " \"id\": \"CAS04_rr_NVR08_sr1\",\n",
" \"stations.local.id\": \"CAS04\",\n",
" \"stations.local.mth5_path\": \"8P_CAS04_NVR08.h5\",\n",
" \"stations.local.remote\": false,\n",
@@ -2755,7 +2749,7 @@
"}"
]
},
- "execution_count": 16,
+ "execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
@@ -2766,7 +2760,7 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 16,
"id": "31276eea-60b1-4c11-b6f0-92fd1198c63d",
"metadata": {},
"outputs": [],
@@ -2775,9 +2769,17 @@
" dec_level.stft.window.type = \"hamming\""
]
},
+ {
+ "cell_type": "markdown",
+ "id": "31ecde4d",
+ "metadata": {},
+ "source": [
+ "## Define output path"
+ ]
+ },
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 17,
"id": "586d7a82-da55-47b6-ad81-93f13e7fa4c9",
"metadata": {},
"outputs": [],
@@ -2787,7 +2789,7 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 18,
"id": "3ba3daaa-5338-4f5f-ac1f-c1c23bfb8422",
"metadata": {
"tags": []
@@ -2797,53 +2799,80 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m24:09:03T20:09:17 | INFO | line:277 |aurora.pipelines.transfer_function_kernel | show_processing_summary | Processing Summary Dataframe:\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:17 | INFO | line:278 |aurora.pipelines.transfer_function_kernel | show_processing_summary | \n",
- " duration has_data n_samples run station survey run_hdf5_reference station_hdf5_reference fc remote stft mth5_obj dec_level dec_factor sample_rate window_duration num_samples_window num_samples num_stft_windows\n",
- "0 769090.0 True 847649 b CAS04 CONUS South False False None None 0 1.0 1.000000 128.0 128 769090.0 8011.0\n",
- "1 769090.0 True 847649 b CAS04 CONUS South False False None None 1 4.0 0.250000 512.0 128 192272.0 2002.0\n",
- "2 769090.0 True 847649 b CAS04 CONUS South False False None None 2 4.0 0.062500 2048.0 128 48068.0 500.0\n",
- "3 769090.0 True 847649 b CAS04 CONUS South False False None None 3 4.0 0.015625 8192.0 128 12017.0 124.0\n",
- "4 856502.0 True 1638043 c CAS04 CONUS South False False None None 0 1.0 1.000000 128.0 128 856502.0 8921.0\n",
- "5 856502.0 True 1638043 c CAS04 CONUS South False False None None 1 4.0 0.250000 512.0 128 214125.0 2230.0\n",
- "6 856502.0 True 1638043 c CAS04 CONUS South False False None None 2 4.0 0.062500 2048.0 128 53531.0 557.0\n",
- "7 856502.0 True 1638043 c CAS04 CONUS South False False None None 3 4.0 0.015625 8192.0 128 13382.0 139.0\n",
- "8 769090.0 True 938510 b NVR08 CONUS South False True None None 0 1.0 1.000000 128.0 128 769090.0 8011.0\n",
- "9 769090.0 True 938510 b NVR08 CONUS South False True None None 1 4.0 0.250000 512.0 128 192272.0 2002.0\n",
- "10 769090.0 True 938510 b NVR08 CONUS South False True None None 2 4.0 0.062500 2048.0 128 48068.0 500.0\n",
- "11 769090.0 True 938510 b NVR08 CONUS South False True None None 3 4.0 0.015625 8192.0 128 12017.0 124.0\n",
- "12 856502.0 True 856503 c NVR08 CONUS South False True None None 0 1.0 1.000000 128.0 128 856502.0 8921.0\n",
- "13 856502.0 True 856503 c NVR08 CONUS South False True None None 1 4.0 0.250000 512.0 128 214125.0 2230.0\n",
- "14 856502.0 True 856503 c NVR08 CONUS South False True None None 2 4.0 0.062500 2048.0 128 53531.0 557.0\n",
- "15 856502.0 True 856503 c NVR08 CONUS South False True None None 3 4.0 0.015625 8192.0 128 13382.0 139.0\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:17 | INFO | line:654 |aurora.pipelines.transfer_function_kernel | memory_check | Total memory: 62.74 GB\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:17 | INFO | line:658 |aurora.pipelines.transfer_function_kernel | memory_check | Total Bytes of Raw Data: 0.024 GB\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:17 | INFO | line:661 |aurora.pipelines.transfer_function_kernel | memory_check | Raw Data will use: 0.039 % of memory\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:17 | INFO | line:517 |aurora.pipelines.process_mth5 | process_mth5_legacy | Processing config indicates 4 decimation levels\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:17 | INFO | line:445 |aurora.pipelines.transfer_function_kernel | valid_decimations | After validation there are 4 valid decimation levels\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:18 | WARNING | line:645 |mth5.timeseries.run_ts | validate_metadata | start time of dataset 2020-06-03T20:14:13+00:00 does not match metadata start 2020-06-02T22:24:55+00:00 updating metatdata value to 2020-06-03T20:14:13+00:00\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:19 | WARNING | line:658 |mth5.timeseries.run_ts | validate_metadata | end time of dataset 2020-06-12T17:52:23+00:00 does not match metadata end 2020-06-14T16:56:02+00:00 updating metatdata value to 2020-06-12T17:52:23+00:00\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:20 | WARNING | line:645 |mth5.timeseries.run_ts | validate_metadata | start time of dataset 2020-06-14T18:00:44+00:00 does not match metadata start 2020-06-12T18:32:17+00:00 updating metatdata value to 2020-06-14T18:00:44+00:00\u001b[0m\n",
- "\u001b[33m\u001b[1m24:09:03T20:09:20 | WARNING | line:658 |mth5.timeseries.run_ts | validate_metadata | end time of dataset 2020-06-24T15:55:46+00:00 does not match metadata end 2020-07-01T17:32:59+00:00 updating metatdata value to 2020-06-24T15:55:46+00:00\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:22 | INFO | line:889 |mtpy.processing.kernel_dataset | initialize_dataframe_for_processing | Dataset dataframe initialized successfully\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:22 | INFO | line:143 |aurora.pipelines.transfer_function_kernel | update_dataset_df | Dataset Dataframe Updated for decimation level 0 Successfully\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:23 | INFO | line:354 |aurora.pipelines.process_mth5 | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:24 | INFO | line:354 |aurora.pipelines.process_mth5 | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:26 | INFO | line:354 |aurora.pipelines.process_mth5 | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:27 | INFO | line:354 |aurora.pipelines.process_mth5 | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:27 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 25.728968s (0.038867Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:27 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 19.929573s (0.050177Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:27 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 15.164131s (0.065945Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:28 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 11.746086s (0.085135Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:28 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 9.195791s (0.108745Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:29 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 7.362526s (0.135823Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:29 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 5.856115s (0.170762Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:29 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 4.682492s (0.213562Hz)\u001b[0m\n"
+ "\u001b[1m2026-01-18T11:07:41.721791-0800 | INFO | aurora.pipelines.transfer_function_kernel | show_processing_summary | line: 290 | Processing Summary Dataframe:\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:07:41.737364-0800 | INFO | aurora.pipelines.transfer_function_kernel | show_processing_summary | line: 291 | \n",
+ " duration has_data n_samples run station survey run_hdf5_reference station_hdf5_reference fc remote stft mth5_obj dec_level dec_factor sample_rate window_duration num_samples_window num_samples num_stft_windows\n",
+ "0 769090.0 True 847649 b CAS04 CONUS South False None None 0 1.0 1.000000 256.0 256 769090.0 3433.0\n",
+ "1 769090.0 True 847649 b CAS04 CONUS South False None None 1 4.0 0.250000 1024.0 256 192272.0 858.0\n",
+ "2 769090.0 True 847649 b CAS04 CONUS South False None None 2 4.0 0.062500 4096.0 256 48068.0 214.0\n",
+ "3 769090.0 True 847649 b CAS04 CONUS South False None None 3 4.0 0.015625 16384.0 256 12017.0 53.0\n",
+ "4 856502.0 True 1638043 c CAS04 CONUS South False None None 0 1.0 1.000000 256.0 256 856502.0 3823.0\n",
+ "5 856502.0 True 1638043 c CAS04 CONUS South False None None 1 4.0 0.250000 1024.0 256 214125.0 955.0\n",
+ "6 856502.0 True 1638043 c CAS04 CONUS South False None None 2 4.0 0.062500 4096.0 256 53531.0 238.0\n",
+ "7 856502.0 True 1638043 c CAS04 CONUS South False None None 3 4.0 0.015625 16384.0 256 13382.0 59.0\n",
+ "8 769090.0 True 938510 b NVR08 CONUS South True None None 0 1.0 1.000000 256.0 256 769090.0 3433.0\n",
+ "9 769090.0 True 938510 b NVR08 CONUS South True None None 1 4.0 0.250000 1024.0 256 192272.0 858.0\n",
+ "10 769090.0 True 938510 b NVR08 CONUS South True None None 2 4.0 0.062500 4096.0 256 48068.0 214.0\n",
+ "11 769090.0 True 938510 b NVR08 CONUS South True None None 3 4.0 0.015625 16384.0 256 12017.0 53.0\n",
+ "12 856502.0 True 856503 c NVR08 CONUS South True None None 0 1.0 1.000000 256.0 256 856502.0 3823.0\n",
+ "13 856502.0 True 856503 c NVR08 CONUS South True None None 1 4.0 0.250000 1024.0 256 214125.0 955.0\n",
+ "14 856502.0 True 856503 c NVR08 CONUS South True None None 2 4.0 0.062500 4096.0 256 53531.0 238.0\n",
+ "15 856502.0 True 856503 c NVR08 CONUS South True None None 3 4.0 0.015625 16384.0 256 13382.0 59.0\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:07:41.739312-0800 | INFO | aurora.pipelines.transfer_function_kernel | memory_check | line: 687 | Total memory: 62.74 GB\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:07:41.740239-0800 | INFO | aurora.pipelines.transfer_function_kernel | memory_check | line: 691 | Total Bytes of Raw Data: 0.024 GB\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:07:41.740832-0800 | INFO | aurora.pipelines.transfer_function_kernel | memory_check | line: 694 | Raw Data will use: 0.039 % of memory\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:07:41.872201-0800 | INFO | aurora.pipelines.transfer_function_kernel | mth5_has_fcs | line: 851 | Fourier coefficients not detected for survey: CONUS South, station: CAS04, run: b-- Fourier coefficients will be computed\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:07:42.063964-0800 | INFO | mth5.mth5 | close_mth5 | line: 896 | Flushing and closing 8P_CAS04_NVR08.h5\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:07:42.251389-0800 | INFO | aurora.pipelines.transfer_function_kernel | mth5_has_fcs | line: 851 | Fourier coefficients not detected for survey: CONUS South, station: CAS04, run: c-- Fourier coefficients will be computed\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:07:42.434840-0800 | INFO | mth5.mth5 | close_mth5 | line: 896 | Flushing and closing 8P_CAS04_NVR08.h5\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:07:42.543935-0800 | INFO | aurora.pipelines.transfer_function_kernel | mth5_has_fcs | line: 851 | Fourier coefficients not detected for survey: CONUS South, station: NVR08, run: b-- Fourier coefficients will be computed\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:07:42.747631-0800 | INFO | mth5.mth5 | close_mth5 | line: 896 | Flushing and closing 8P_CAS04_NVR08.h5\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:07:42.862991-0800 | INFO | aurora.pipelines.transfer_function_kernel | mth5_has_fcs | line: 851 | Fourier coefficients not detected for survey: CONUS South, station: NVR08, run: c-- Fourier coefficients will be computed\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:07:43.052837-0800 | INFO | mth5.mth5 | close_mth5 | line: 896 | Flushing and closing 8P_CAS04_NVR08.h5\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:07:43.054372-0800 | INFO | aurora.pipelines.transfer_function_kernel | check_if_fcs_already_exist | line: 261 | FC levels not present\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:07:43.081629-0800 | INFO | aurora.pipelines.process_mth5 | process_mth5_legacy | line: 182 | Processing config indicates 4 decimation levels\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:07:43.083054-0800 | INFO | aurora.pipelines.transfer_function_kernel | valid_decimations | line: 413 | After validation there are 4 valid decimation levels\u001b[0m\n",
+ "\u001b[33m\u001b[1m2026-01-18T11:07:48.237494-0800 | WARNING | mth5.timeseries.run_ts | validate_metadata | line: 1035 | start time of dataset 2020-06-03T20:14:13+00:00 does not match metadata start 2020-06-02T22:24:55+00:00 updating metatdata value to 2020-06-03T20:14:13+00:00\u001b[0m\n",
+ "\u001b[33m\u001b[1m2026-01-18T11:07:53.443263-0800 | WARNING | mth5.timeseries.run_ts | validate_metadata | line: 1045 | end time of dataset 2020-06-12T17:52:23+00:00 does not match metadata end 2020-06-14T16:56:02+00:00 updating metatdata value to 2020-06-12T17:52:23+00:00\u001b[0m\n",
+ "\u001b[33m\u001b[1m2026-01-18T11:07:58.720063-0800 | WARNING | mth5.timeseries.run_ts | validate_metadata | line: 1035 | start time of dataset 2020-06-14T18:00:44+00:00 does not match metadata start 2020-06-12T18:32:17+00:00 updating metatdata value to 2020-06-14T18:00:44+00:00\u001b[0m\n",
+ "\u001b[33m\u001b[1m2026-01-18T11:07:58.720989-0800 | WARNING | mth5.timeseries.run_ts | validate_metadata | line: 1045 | end time of dataset 2020-06-24T15:55:46+00:00 does not match metadata end 2020-07-01T17:32:59+00:00 updating metatdata value to 2020-06-24T15:55:46+00:00\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:04.104680-0800 | INFO | mth5.processing.kernel_dataset | initialize_dataframe_for_processing | line: 1310 | Dataset dataframe initialized successfully, updated metadata.\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:04.105745-0800 | INFO | aurora.pipelines.transfer_function_kernel | update_dataset_df | line: 156 | Dataset Dataframe Updated for decimation level 0 Successfully\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:06.219998-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:08.493615-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:10.784836-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:13.044837-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:13.072894-0800 | INFO | aurora.pipelines.feature_weights | extract_features | line: 43 | Features could not be accessed from MTH5 -- \n",
+ "Calculating features on the fly (development only)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:13.082501-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 51.457936s (0.019433Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:13.185067-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 39.859146s (0.025088Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:13.329093-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 30.328263s (0.032973Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:13.475678-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 23.492171s (0.042567Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:13.634425-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 18.391583s (0.054373Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:13.845481-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 14.725051s (0.067911Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:14.001955-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 11.712231s (0.085381Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:14.292972-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 9.364983s (0.106781Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:14.641138-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 51.457936s (0.019433Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:14.780819-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 39.859146s (0.025088Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:14.935216-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 30.328263s (0.032973Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:15.141043-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 23.492171s (0.042567Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:15.299689-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 18.391583s (0.054373Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:15.451662-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 14.725051s (0.067911Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:15.613025-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 11.712231s (0.085381Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:15.824789-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 9.364983s (0.106781Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:16.040124-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 51.457936s (0.019433Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:16.167424-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 39.859146s (0.025088Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:16.318476-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 30.328263s (0.032973Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:16.468584-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 23.492171s (0.042567Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:16.635277-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 18.391583s (0.054373Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:16.794732-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 14.725051s (0.067911Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:16.969527-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 11.712231s (0.085381Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:17.195511-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 9.364983s (0.106781Hz)\u001b[0m\n"
]
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG9CAYAAAAcFdw9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVfklEQVR4nO3deVxU9f4/8NcwyjYsrgwiuGYmZi645HVJb1wVLU3Ua+rNrby/DFOjLM1umFZeW0xL0par5P2m2U2yMrcuZXrNlHArKXMhQYTBFWRAxJnz++M4Z2YYlkGYOWfOvJ6Px3kwZ3/PiJz3fFaNIAgCiIiIiFTIR+4AiIiIiFyFiQ4RERGpFhMdIiIiUi0mOkRERKRaTHSIiIhItZjoEBERkWox0SEiIiLVYqJDREREqsVEh4iIiFSLiQ4RERGpFhMdIicYDAYsWbIE9913H/R6PXx9faHT6dC5c2c8+uij2L59O6qaTeWNN96ARqOxW7Zu3Vrt/c6dO4e5c+eic+fO0Ol08PPzQ3h4OLp06YLx48dj6dKluHLlisN5JpMJ7733Hvr374/GjRsjICAAHTp0wJw5c5CXl1fj+7x58yZiYmLsYp06dapTnxERkSIJHi47O1u47777hE6dOgldunQRPv30U7lDIpVJTk4W/P39BQDVLllZWZWe37lzZ4djx4wZU+X9MjIyhNDQ0Brvd/jwYbvzSktLhSFDhlR5fJMmTYT09PRq3+vixYsdzpsyZUotPzEiIuVo4I5kypUaNGiAFStWoFu3bsjPz0dMTAyGDx8OnU4nd2ikAq+99hqee+45aV2r1WLEiBFSqcepU6ewc+dOGAyGSs9PT0/H8ePHHbZ/9dVXuHz5Mpo0aeKw74knnkBhYSEAQKfTYfz48WjXrh3Ky8tx8uRJ7N27Fzk5OQ7nLVy4ELt27ZLinD59Olq0aIGUlBRkZ2fj8uXLGDduHH755ZdK/38cO3YMS5Ysce6DISLyFHJnWvXtnnvuEbKzs+UOw2vs2rVLGDNmjBAVFSX4+voKgYGBQp8+fYS1a9cKZrP5tq753XffCdOnTxe6d+8uhIeHC76+vkJAQIDQvn17YerUqcKxY8dqdb1169Y5VfJS0fHjxwWtViudFxYWJhw6dMjhuBs3bgjvv/++YDAYHPY98cQT0vmtWrWyKxl65513HI4vLCy0izUlJaXS2A4ePChcuHBBWr906ZLg5+cnnff8889L+3777TdBo9FI+959991K30O3bt0EAELPnj2Fli1bskSHiFRB9kTn+++/Fx544AGhRYsWAgDh888/dzhm1apVQuvWrQU/Pz+hd+/ewoEDByq91k8//SR07tzZxRGTIAjCzZs37R7ilS3jx4+/rWTn6aefrva6vr6+wjfffOP09W430Xn88cftztu8eXOt3sf169eFxo0b2yUfo0ePltZ79OjhcM6lS5fs7vnMM88IN2/erPFeGzdutDsvIyPDbn+XLl2kfcOGDXM4PykpSQAg+Pn5CcePHxdat27NRIeIVEH2xshGoxFdu3ZFcnJypfs3bdqExMREJCUl4dChQ+jatSuGDh2KgoICu+MuX76MyZMn4/3333dH2F5v0aJFePfddwEAGo0Gf/vb37Bw4ULcdddd0jGbNm26rX8PnU6H++67D7NmzcKLL76IpUuX4plnnkGnTp0AADdu3MDs2bPr541UIy0tTXrduHFjPPTQQ7U6/4svvrBrMPzwww/j4YcfltYPHTqEn3/+2e6cJk2aoHXr1tL6G2+8Ab1ej1GjRmHRokXYuXMnysrKHO517Ngxu/V27dpVuV7x2CNHjuDVV18FACxevBjR0dHOvkUiIsWTvY1OXFwc4uLiqty/fPlyzJgxA9OmTQMArFmzBl9//TXWrl2L+fPnAwDKysrw0EMPYf78+fjTn/5U7f3KysrsHhRmsxmXL19G06ZNodFo6uEdqZ/RaMTy5cul9YULF2LevHkAgMcffxzdunXDpUuXAADvv/8+JkyYUKvrP/3003jqqadw+PBhnDhxAoWFhQgNDcX999+PX3/9FQDw66+/IjMzE5GRkTVer7S01G792rVrKCoqqvG83Nxc6XX79u1RXFxcq/fx4YcfSq87deqE1q1bIywsDEFBQdK13n//fbzyyit2573yyit45JFHpF5cly5dwpdffokvv/wSABAaGoqEhAQ888wz0Gq1AID8/HyH+9u+R39/f+n1pUuXpH3l5eWYPHkyysvL0atXL8yYMQNFRUV2PcjKy8ud+ryIiNxJEARcu3YNERER8PGpptxG5hIlO6hQdVVWViZotVqH6qzJkycLI0eOFARBEMxms/Dwww8LSUlJTt3DUkTPhQsXLly4cPH8JScnp9rnvuwlOtW5ePEiTCYT9Hq93Xa9Xo/ffvsNALBv3z5s2rQJ99xzD7Zs2QIA+Pe//40uXbpUes0FCxYgMTFRWi8sLESrVq2Qk5ODkJAQ17wRlfnPf/6Dxx57TFovKCiAn5+ftL5o0SK89dZbVe6vTl5eHnr06IGSkpIaj926dSsGDBhQi8hrp0ePHjh9+jQAoFGjRvjjjz+cLvV76623sGjRImn90KFDaN++PQBgx44dGD9+vLRv48aNGD58eKXXKSwsRHp6On766Sfs2LEDhw8flvaFhIRIva8WL16MN998U9p39uxZNGrUSFqfMGECtm3bBgCIiIjAr7/+ipycHHTr1g03b97EK6+8glmzZknHd+nSBdnZ2QCAiRMnYvXq1U69byIidykqKkJUVBSCg4OrP7A2JS6uBtiX6OTm5goAhB9++MHuuHnz5gm9e/eul3taerkUFhbWy/W8QcXGvRV7uU2bNk3a5+/vX6trr1mzxu7ab775pnD16lVBEMReULb7vvvuu/p6S5Wq2Bi5sobyVenUqZPT30ZGjx7t9HWnT59ud25+fr4gCILwySef2G2v2BjZdiwfS2Pkw4cP1+pbExslE5GSOPv8lr0xcnWaNWsGrVbrMEaJwWBAeHh4na6dnJyM6Oho9OrVq07XIbEEzaKoqAhfffWVtB4TE1Ora1na9lhMmzYNoaGhAIBPP/30tuJLSUmxG+n3jz/+cOq8WbNmSW1gAGDmzJk4evSow3Hl5eX48MMPpQbyBw4ckNoSOWPr1q24ePGitD5lyhRkZGRUemxQUJD02sfHR/omM2TIELt2OJs3b5ZeZ2ZmIjMzU1ofNWqU07EREXk6RVdd+fr6IiYmBmlpaVKPF7PZjLS0NLti9tuRkJCAhIQEFBUVSQ9Suj0vvPACfvvtN7Ru3RqfffaZ3UN7xowZtbpWx44d7dZHjBiBuLg4HDt2DJ999lm9xOuszp07Y8mSJXj++ecBiA1+e/bsiQceeADdu3d3GDAwNjYWALBu3TrpGhqNBuPGjXOo8iouLsbXX38NQEyUPv74Y8yZMwcAsH79eqxfvx7t27dH//790a5dO2g0Ghw9ehSpqanSNQYOHIjAwEAAYq+whIQEqfpq2bJluHjxIlq0aIG1a9dKjYtbt26NRx55BIBYHTdmzJhK3/v27dul6sPWrVujZ8+e/FJARJ7JPQVMVbt27Zpw+PBhqRh9+fLlwuHDh4WzZ88KgiAWyfv5+QkpKSlCZmam8Pe//11o1KiRVGRfV6y6qr2KVVcjRoyotKpjxIgRtR5H58aNG3ZjvqBC1YnturNVV7c7jo7FypUr7Qbjq2rJysoSSktLhUaNGknbYmNjK72m2Wy2G6umW7du0r6a7gOI0zn8/PPPdtcsLS0V/vKXv1R5TuPGjWucAsKC4+gQkdI5+/yWPdH57rvvamwP8M477witWrUSfH19hd69ews//vhjvd2fiU7tVUwcysrKhMWLFwvt27cXfH19hTZt2ghJSUnC9evXb+v6Fy5cEKZOnSo0bdpU8PPzE+6++27h/fffF7KysmRJdARBEM6fPy8sWrRI6N+/v9C8eXOhQYMGQmBgoNCpUydh5syZwu7duwWz2ewwcN+GDRuqvOaLL75od+yRI0cEQRCEQ4cOCa+//rowYsQIoVOnTkLTpk0FrVYrBAcHC927dxeeffZZIS8vr9Jr3rx5U1i9erXQt29fISQkRPDz8xPat28vPPnkk0Jubq7T75eJDhEpnbPPb40gVDHlssolJycjOTkZJpMJv//+OwoLC9nrykkpKSnSuEYAqpy1m4iIyFUsTU9qen4rujGyKyUkJCAzMxPp6elyh0JEREQu4rWJDhEREamfontdkTrk5ubi/vvvr/G40aNHY+nSpW6IiIiIvIXXJjq2bXSodqZOnYqpU6c6fXx5eTlOnDhR43F5eXl1iIqIiMiR1zZGtnC2MRMREREpBxsjExERkddjokNERESqxUSHiIiIVMtrEx1O6klERKR+bIzMxshEREQeh42RiYiIyOsx0SEiIiLVYqJDREREqsVEh4iIiFTLaxMd9roiIiJSP/a6Yq8rIiIij8NeV0REROT1mOgQERGRajHRISIiItViokNERESqxUSHiIiIVMtrEx12LyciIlI/di9n93IiIiKPw+7lRERE5PWY6BAREZFqMdEhIiIi1WKiQ0RERKrFRIeIiIhUi4kOERERqRYTHSIiIlItr010OGAgERGR+nHAQA4YSERE5HE4YCARERF5PSY6REREpFpMdIiIiEi1mOgQERGRajHRISIiItViokNERESqxUSHiIiIVIuJDhEREalWA7kDICKVMZuBixfttwUGAhpNzduIiOoZEx0iqj9mM6DVOndscTGg07k2HiLyeqy6IiIiItXy2hKd5ORkJCcnw2QyyR0KkXr4+AAmk7XqymgE2rUTXxsM9iU4gYHuj4+IvA4n9eSknuRpKraBUXL7F6MRCAoSX7OqiojqkbPPb68t0SHySM62gWFSQUQEgG10iIiISMVYokPkSWzbwLD9CxFRjZjoEHkaHx8gLExMdCx0OlZVERFVglVXREREpFpMdIiIiEi1WHVFRESuZTIBe/cCeXlAixbAgAHOj6BNVEdMdLyRM3MRKWUcFiLybKmpwJw5wLlz1m2RkcDKlUB8vHxxkddgouNtOA4LkZUnDb5YGSWXlJjNwEcfAY8+ClQclzY3Fxg7Fvi//wMmTFDu50uqwESHiLyTpyf9Si4pqemztSQ+kyYBDzwAcFR6ciE2RvY2lnFYDAZxOXPGus9gEP+oFxdzHBYipTKbgXXrxBIR2yQHsJaUbN4sT2y3Y98+uSMglWOi440s47BYFgvLWCw6HYuSqX7YTpq7Z4/9utxsk/6TJ63bU1OBwkJlJv2WkpLp0x2rgwBxmyAAc+fK+1mXljp/7OXLrouDCEx0iMhVUlOB6Gjr+vDhQJs24nal8PEB/vc/YNAg67b4eKBzZ2DnTs9N+s+dE9vueIIWLeSOgFSOiQ4R1b/UVLEKJTfXfrulakUpyY6nxGlRm5KSvDzXxVGTwECxVKxly6oTRY0GiIoC7rvPvbGR11FFojN69Gg0btwYY8eOlTsUIjKZxEayVVWtAPJXrQCeE+ftkrOkRKMRGxi//bZ1veJ+AFixQjm9xEi1VJHozJkzB+vXr5c7DCICxCqTio1kbQkCkJMjf9WKp8RpqzYlJQMGuDe2ysTHA599JsZrKzJS3C537zDyCqpIdAYNGoTg4GC5wyAiwPkqEzmrVmpzf7njtOWJJSXx8cAffwDffQds2CD+zMpikkNuI3uis2fPHjz44IOIiIiARqPBli1bHI5JTk5GmzZt4O/vjz59+uDgwYPuD5SInONslYncjVA9Jc7KeFpJiVYrNvieMEH8qZQkjLzCbQ0YeP36dRw7dgwFBQUwm812+0aOHFmraxmNRnTt2hXTp09HfCX/OTdt2oTExESsWbMGffr0wYoVKzB06FCcOHECYbZdo4m8TcWu20OGKOMBMmCA+MDNza28/YtGI+6Xu2rFU+KsSnw8MGqUckdGJlKIWic6O3bswOTJk3Gx4lxJADQaDUy1bLgXFxeHuLi4KvcvX74cM2bMwLRp0wAAa9aswddff421a9di/vz5tQseQFlZGcrKyqT1oqKiWl+DSHapqcDs2db14cOVMyquVivGMXasmCzYJhFKqlrxlDirYykpIaIq1brq6sknn8S4ceOQl5cHs9lst9Q2yanJjRs3kJGRgdjYWGvAPj6IjY3F/v37b+uaS5cuRWhoqLRERUXVV7hE7uEJXaItVSsREfbblVa14ilxEtFtq3WiYzAYkJiYCL1e74p47Fy8eBEmk8nhXnq9Hvn5+dJ6bGwsxo0bh23btiEyMrLaJGjBggUoLCyUlpycHJfFT1TvPKlLdHw8kJlpXd+2TVmNUAUBMBqBoUOB9HTr9g0bgAMHgP79xZGIicij1brqauzYsdi9ezfat2/vinhuy3//+1+nj/Xz84Ofn58LoyFyodp0iVZClYZttc/AgcqqBiopAYKCHLdPnGi/bjKJIygTkUeqdaKzatUqjBs3Dnv37kWXLl3QsGFDu/2zbdsN1FGzZs2g1WphMBjsthsMBoSHh9fp2snJyUhOTq736jZPYDYDUhMrI2Bp0m00Wo8JDHTzyPd2QVURhNuDUiBP7BJNRCSjWic6GzduxK5du+Dv74/du3dDY/Pg0Wg09Zro+Pr6IiYmBmlpaXjooYcAAGazGWlpaZg1a1adrp2QkICEhAQUFRUhNDS0HqL1DJY5AS0CAVjymzA9UHLrdXGxOM2PLEFVxa1BKZQnd4lWmsBA8XfKQhDEUh5bzZqxNIfIw9U60Vm4cCFeeuklzJ8/Hz718AeguLgYp06dktazsrJw5MgRNGnSBK1atUJiYiKmTJmCnj17onfv3lixYgWMRqPUC4vIq3h6l2gl0WgcE+fKqrKIyKPVOtG5ceMGxo8fXy9JDgD89NNPGDx4sLSemJgIAJgyZQpSUlIwfvx4XLhwAS+++CLy8/PRrVs37Nixwy2NodXIx0dscmCpJSq5AOBu8XXWGUB3qx4rMFDGoIxGoF078bXBYH0YuTUohVJDl2giIjfSCEJlXwur9tRTT6F58+Z4/vnnXRWTW9i20fn9999RWFiIkJAQucNyO2NeEXQRYtVdaeo2BIxUwKBzRqP1mzWrqypnGUfHtot5VJSY5CilVxPAf0sichlL05Oant+1TnRmz56N9evXo2vXrrjnnnscGiMvX7789iKWibMflCqlpsI8azZ88mwelkoYdI4PR+cUFQGW9mXbtilnZGRb/LckIhdx9vld66qrn3/+Gd27dwcA/PLLL3b7NN7eI8aT3Bp0TlMxz7UMOsfB0pRPyV23iYgUotaJznfffeeKOMidbAadc0hNBUFs6zF3rjiPDh+eRETkwerUonjfvn1280Z5kuTkZERHR6NXr15yh+J+tRl0joiIyIPVKdGJi4tDbsX5djxEQkICMjMzkW479Lu34KBzRETkJWpddWWrlu2YSSk46By5kDMjbwMc6JqI3KNOiQ55KA46Ry7i7MjbADthEZF71Knq6r333pMG7jObzcjOzq6XoMjFLIPOARAqfqXmoHNERKQitS7RWbduHTZt2oSzZ88iJCQEhw4dwlNPPYUGDRqgbdu2HjNJpjdP6glA7Dr+2WcQZs2GpuI4OkobdE5GnGu0dpwdeRvgQNdE5B5ODxhoMpkQHx+PHTt2YMSIEejQoQOuXLmCnTt34sqVK3jnnXcwffp0j0scvHrAQHBk5Ooofq5RhXxO1SnKMyIkQoxxV2ox7h+pk/3XqzImk9jJMC9PbJo2YID8/w2IqHr1PmDgW2+9hfT0dBw7dgwdO3aUtpvNZixfvhx///vf6xYxycPmr7m5Hwed8wRSKZPCG/qmpgLPzQJO3lofHQ80UcDA27bMZuCjj4CFC+07GbZsCbz2mjiUlBI+SyK6fU4nOikpKXjttdfskhwA8PHxwTPPPANBEPDcc8/Ve4DkWrYFcPv2AfePZK5jocS5Rm1LmZTc0PfWwNsIUPDA29WV2OXmApMmia/l/iyJqG6cbox8+vRp9OnTp8r98+bNg9lsrpegyD1SU4GYGOv66HigTRtxO4l8fICwMHFp2tS6PSMD8PcXH4D8tm/PZuBtB5Ztc+faJ9lycPb+csdZHZMJ2L0b2LhR/KnkWInk4nSio9PpcOHChSr3HzlyBNOnT6+XoMj1LN+4z1cYE9DyjZvJjr3UVCA62ro+fLg8SaGllMlgAI7bTDWXdUYsebAscjb09ZSBt/ftc+64jAzXxnG7UlPF38HBg4GJE8Wf/KJC5MjpROe+++7DmjVrKt2Xn5+Phx9+GB999FG9BeZq3jwFhBK/cZvNQEHBrSXPeuPSXXtgLDLBaKw8XnewJIUVBwGXKym0lDI1b27dptPZL3KWMnnKwNvO3j8/37Vx1JbZDKxbJ/7uVUwoLb+TmzfLE1tVWPJEcnI60UlKSsLmzZsxZcoU/PLLL7h+/TrOnz+P9957D7169UKzZs1cGWe98+YpIJT2jdvSVkKvBx7Xp+JGB2vRSUD8cFwObYNHglJRUlLNRVxEiUmh0nnKwNvh4c4dJ3ectiz/V6ZPr/p3UhCU8Ttp+fKybh0QFWVf8tS6NbBhA2T9AkPew+lE55577sH27duxb98+dO3aFTqdDlFRUZg9ezYmTJiAjRs3ckoID6HUb9yjkYrPMBYRsC86aYlcfIax0H7h/jJ5pSWFnsAy8HZVpUoajfjgk3vgbdv2adXp18+1cbjCuXPy/k7afnmZPt3xb4mlsXdQEGT5AkPepVYDBg4cOBC///47Dh48iKysLISEhKBv375o0qQJjEYjkpKSXBUn1SOlfeP28QFMN0wQWs+BJk9AxeejDwQIGg385s8Fxo9ya7cwpSaFgHJ7zFkG3h47Fg7/lkoaeNvZ+8sdp63SUuePlbtq0FlylzyR+tV6CggfHx/ce++9mDBhAkaMGIEmTZoAEBsrM9HxDEr8xu2zby+0eeccHoxSTIIAjQxFJ0pLCi2U3mPu1sDbDp9LZKQyupYDYoPt4mLg44/FcXNsRUQAa9eKD2GfOk2UIx85q9w0GuDrr507VqmNvUk9PPS/MNWFzVRXyvnGrdCiEyUmhUruMScIYrsLoxEYOtQ+L123FjhwAOjfX6zakJtGIzbcnjgROHsW+O47sd3Id98B2dnAtGnKS3ICA4HCQjExU9LvZEUlJcCIEc4de/68a2MhUth/Y3IXxX3jVmjRiV1SqID5T5XeOLqkRGx3YVna32HdN226WFKi14uflxKSHQutFhg0CJgwQfyppOoqWxoNEBICvP22db3ifkAZVYPOUlJjb1Inr010vLl7uUV8vH2x8eepQFaWTNUKSiw6ucWSFEZE2G+XIylk42gCrL+TFavclFI1WJuSp/vuc29s5H2cntRTrbx+Us8CI3R6cdJFo6EYujD55w0QILbJkVj+Usr8F7yoCAgV5z/Ftm3AEBnmP924UaxqAYBAGGGE+G+nQzFKYP2327BBLJ1wN0Go0IvGaP39KjhjnUuhWTPlVQt5IqVPRmqpZgXsSyEV8l+aPJyzz2/+qSHluPU1VQhXQNFJJWwfIANlmv9UoTV8Eku7F9vFwjKVRlgYk5z6ovQqN6WXPJF3qFX3ciKXi49Had9Y6CLEopPS1G0IGClD0YlCWWr4cnMBVFIWq9GI++Ueo4bIIj5enAVeySVPpG5MdEh5bP4CmvvJVHSiUJ4yRg2RLUvJE5EcWIBMVAXbrtKWxcIyL5ccPYcU12OOiEjBWKJDVAVLV+nKtGtnfS3HoHLx8UBsXwC3mjN9nqqckZGJiJSEJTpEHso2qenXj0kOEVFlWKJDVAXLFAG2KnafZjdpIiJl89pEJzk5GcnJyTBxRjmqgqWrdEVVVWcREZHyeO130YSEBGRmZiI9PV3uUIiIiMhFvDbRISIiIvVjokNERESqxUSHFMe22dS+ffLNxE1ERJ6PiQ4pSmoqEBNjXR8dD7RpI24nx0EMLS5ckHcQQyIipfLaXlekPJaZjgMqzOGUmytu56i/9oMYBgKw5Dqd7wZsJw2XYxBDIiIl4p9CUgSTCZgzRyyxqMiybe5cVmMpnjPzZrDYiYjciCU6pAh79wLnzlW9XxCAnBzxOLdODmg2Axcv2m8LDLTOoFnZugvZDWJoBKAXX2adAXBrzB9ZBzF0dt4MgMVOROQWTHRIEfLy6ve4emE2OzevQnFx5SMLukBVgxiGhUFKdIiIyIqJDilCxZm463ocycSZeTMAzp1BRG7DRIcUYcAAIDJSbHiMStrpaDTi/gED3BiUj49YvWKpujIardUvBoO1aCUw0I1BKRznzSAiheFXKlIErRZYuVJ8XbG1i6X5y4oVMszQ7eMj1gtZFgudzrq4qX0OERHVntcmOsnJyYiOjkavXr3kDoVuiY8Xu5BXrJ6KjGTXciIiuj0aQaisQ6/3KCoqQmhoKAoLCxESEiJ3OG5nLDBCpxerFYyGYujC5G/RWpRnREiEGNOu1GLcP1Ln/pKcyhiN1ioYNzZA9ph4iIjcyNnnt9eW6JBy2SY1/frJUF1FRESqwUSHiIiIVIuJDhEREakWEx0iIiJSLSY6REREpFpMdIiIiEi1mOgQERGRajHRIXKWyWR9vWeP/ToRESkSEx0iZ6SmAtHR1vXhw4E2bcTtRESkWEx0iGqSmgqMHXtrxlEbubnidiY7RESKxUSHqDomEzBnDlDZTCmWbXPnshqLiEihmOgQVWfvXuDcuar3CwKQkyMeR0REisNEh6g6eXn1exwREbkVEx2i6rRoUb/HERGRW6ki0dm6dSs6duyIDh064MMPP5Q7HFKTAQOAyEhAo6l8v0YDREWJxxERkeJ4fKJz8+ZNJCYm4ttvv8Xhw4fx+uuv49KlS3KHRWqh1QIrV4qvKyY7lvUVK8TjiIhIcTw+0Tl48CA6d+6Mli1bIigoCHFxcdi1a5fcYZGaxMcDn30GRETYb4+MFLfHx8sTFxER1Uj2RGfPnj148MEHERERAY1Ggy1btjgck5ycjDZt2sDf3x99+vTBwYMHpX3nz59Hy5YtpfWWLVsit+J4J0R1FR8PZGZa17dtA7KymOQQESmc7ImO0WhE165dkZycXOn+TZs2ITExEUlJSTh06BC6du2KoUOHoqCgwM2RktezrZ4aOJDVVUREHkD2RCcuLg4vv/wyRo8eXen+5cuXY8aMGZg2bRqio6OxZs0aBAYGYu3atQCAiIgIuxKc3NxcRFSsYrBRVlaGoqIiu4WIiIjUSfZEpzo3btxARkYGYmNjpW0+Pj6IjY3F/v37AQC9e/fGL7/8gtzcXBQXF2P79u0YOnRolddcunQpQkNDpSUqKsrl74OIiIjkoehE5+LFizCZTNDr9Xbb9Xo98vPzAQANGjTAm2++icGDB6Nbt254+umn0bRp0yqvuWDBAhQWFkpLTk6OS98DERERyaeB3AHUh5EjR2LkyJFOHevn5wc/Pz8XR0RERERKoOgSnWbNmkGr1cJgMNhtNxgMCA8Pr9O1k5OTER0djV69etXpOkRERKRcik50fH19ERMTg7S0NGmb2WxGWloa+vbtW6drJyQkIDMzE+np6XUNk4iIiBRK9qqr4uJinDp1SlrPysrCkSNH0KRJE7Rq1QqJiYmYMmUKevbsid69e2PFihUwGo2YNm2ajFETERGRJ5A90fnpp58wePBgaT0xMREAMGXKFKSkpGD8+PG4cOECXnzxReTn56Nbt27YsWOHQwNlIiIioopkT3QGDRoEQRCqPWbWrFmYNWtWvd43OTkZycnJMJlM9XpdIiIiUg5Ft9FxJbbRISIiUj/ZS3TIvQQBKCmxrhuNgO7W6wsXACOAZs0AH69NgYmISE2Y6HiZkhIgKMi6HggxuQGAzncDlhzIZGKyQ0REns9rH2UcR4eIiEj9vDbR8dY2OoGBQHGxdSmwGYsx6wxgMLA0h4iI1INVV15GowF0usr3hYXB2mCHiIhIBfi9nYiIiFSLiQ4RERGpltcmOmyMTEREpH5em+h4a2NkIiIib+K1iQ4RERGpHxMdIiIiUi0mOkRERKRaXj+OjmXm9KKiIpkjkYnRaH1dVCSOFigz4zUjTNLrIpj85Y8JgPI+K6XFQ0TkRpbntuU5XhWNUNMRKnfu3DlERUXJHQYRERHdhpycHERGRla53+sTHbPZjPPnzyM4OBgajUbucBz06tVLUT3D5IzHHfd21T3q+7p1vV5RURGioqKQk5ODkJCQeouL5KG0vxNy8vTPQonxyxVTTfcVBAHXrl1DREQEfKqZt8jrq658fHyqzQTlptVqFfUgkjMed9zbVfeo7+vW1/VCQkIU9ftFt0dpfyfk5OmfhRLjlysmZ+4bGhpa43XYGFnhEhIS5A7BjpzxuOPerrpHfV9Xab8XJC/+Plh5+mehxPjliqm+7uv1VVdE3qioqAihoaEoLCxU3LdHIqL6xBIdIi/k5+eHpKQk+Pn5yR0KEZFLsUSHiIiIVIslOkRERKRaTHSIiIhItZjoEBERkWox0SEiIiLVYqJDRA5Gjx6Nxo0bY+zYsXKHQkRUJ0x0iMjBnDlzsH79ernDICKqMyY6RORg0KBBCA4OljsMIqI6Y6JDpDJ79uzBgw8+iIiICGg0GmzZssXhmOTkZLRp0wb+/v7o06cPDh486P5AiYjcgIkOkcoYjUZ07doVycnJle7ftGkTEhMTkZSUhEOHDqFr164YOnQoCgoK3BwpEZHrMdEhUpm4uDi8/PLLGD16dKX7ly9fjhkzZmDatGmIjo7GmjVrEBgYiLVr17o5UiIi12OiQ+RFbty4gYyMDMTGxkrbfHx8EBsbi/3798sYGRGRazDRIfIiFy9ehMlkgl6vt9uu1+uRn58vrcfGxmLcuHHYtm0bIiMjmQQRkcdqIHcARKQ8//3vf+UOgYioXrBEh8iLNGvWDFqtFgaDwW67wWBAeHi4TFEREbkOEx0iL+Lr64uYmBikpaVJ28xmM9LS0tC3b18ZIyMicg1WXRGpTHFxMU6dOiWtZ2Vl4ciRI2jSpAlatWqFxMRETJkyBT179kTv3r2xYsUKGI1GTJs2TcaoiYhcQyMIgiB3EERUf3bv3o3Bgwc7bJ8yZQpSUlIAAKtWrcLrr7+O/Px8dOvWDW+//Tb69Onj5kiJiFyPiQ4RERGpFtvoEBERkWox0SEiIiLVYqJDREREqsVEh4iIiFSLiQ4RERGpFhMdIiIiUi0mOkRERKRaXj8ystlsxvnz5xEcHAyNRiN3OEREROQEQRBw7do1REREwMen6nIbr090zp8/j6ioKLnDICIiotuQk5ODyMjIKvd7faITHBwMQPygQkJCZI7G/YwXjNDdESG+PnUeuuY6mSMCjEYgQgwJ588DOvlDIiIihSkqKkJUVJT0HK+K1yc6luqqkJAQr0x0tNe1sOQR2uAQ6ELkzyq0WuvrkBAmOkREVLWamp2wMTIRERGpFhMdIiIiUi0mOkRERKRaTHSIiIhItZjoEBERkWox0SEiIiLVYqJDREREqsVEh4iIiFSLiQ4RERGpFhMdIiIiUi0mOkRERKRaTHSIiIhItRSb6JhMJvzjH/9A27ZtERAQgPbt22PJkiUQBEE6RhAEvPjii2jRogUCAgIQGxuLkydPyhg1ERERKYliE51ly5Zh9erVWLVqFX799VcsW7YMr732Gt555x3pmNdeew1vv/021qxZgwMHDkCn02Ho0KG4fv26jJETERGRUjSQO4Cq/PDDDxg1ahRGjBgBAGjTpg02btyIgwcPAhBLc1asWIEXXngBo0aNAgCsX78eer0eW7ZswcMPPyxb7ERezWwGLl603xYYCGg0NW8jIqpnii3R+dOf/oS0tDT8/vvvAICjR4/if//7H+Li4gAAWVlZyM/PR2xsrHROaGgo+vTpg/3791d53bKyMhQVFdktRFRPzGZAqwX0evslOBgICrJfSkrkjpaIvIBiS3Tmz5+PoqIi3HXXXdBqtTCZTHjllVcwadIkAEB+fj4AQK/X252n1+ulfZVZunQpXnrpJdcFTkRERIqh2BKdTz/9FB9//DE2bNiAQ4cO4aOPPsIbb7yBjz76qE7XXbBgAQoLC6UlJyenniL2TgaDAUuWLMF9990HvV4PX19f6HQ6dO7cGY8++ii2b99u14Dc1htvvAGNRmO3bN26tdr7nTt3DnPnzkXnzp2h0+ng5+eH8PBwdOnSBePHj8fSpUtx5coVh/NMJhPee+899O/fH40bN0ZAQAA6dOiAOXPmIC8vr8b3efPmTcTExNjFOnXqVKc+I6/i4wOYTIDBIC5nzlj3GQxAcbF1CQyUL04i8h6CQkVGRgqrVq2y27ZkyRKhY8eOgiAIwunTpwUAwuHDh+2OGThwoDB79myn71NYWCgAEAoLC+scsycqNhQLAiAIgPi6FpKTkwV/f38BQLVLVlZWped37tzZ4dgxY8YIxdaQhGKbkDIyMoTQ0NAa71fxd6K0tFQYMmRIlcc3adJESE9Pr/a9Ll682OG8KVOm1Orz8kpV/WMSEdWRs89vxVZdlZSUwMfHvsBJq9XCbDYDANq2bYvw8HCkpaWhW7duAICioiIcOHAAM2fOdHe4Xue1117Dc889J61rtVqMGDFCKvU4deoUdu7cCYPBUOn56enpOH78uMP2r776CpcvXwbQxGHfE088gcLCQgCATqfD+PHj0a5dO5SXl+PkyZPYu3dvpSV0CxcuxK5du6Q4p0+fjhYtWiAlJQXZ2dm4fPkyxo0bh19++QU6nc7h/GPHjmHJkiVOfS5ERKQwbkq8am3KlClCy5Ytha1btwpZWVlCamqq0KxZM+HZZ5+VjvnnP/8pNGrUSPjiiy+EY8eOCaNGjRLatm0rlJaWOn0flujUvkTn+PHjglarlUo2wsLChEOHDjkcd+PGDeH9998XDAaDw74nnnhCOr9Vq1Z2JUNvvPGOQyGA5d/JsqSkpFQa28GDB4ULFy5I65cuXRL8/Pyk855//nlp32+//SZoNBpp37vvvlvpe+jWrZsAQOjZs6fQsmVL2Ut0TCZBMBisy7Vr4udku5jNsoTmiCU6ROQizj6/FZvoFBUVCXPmzJEegu3atRMWLlwolJWVSceYzWbhH//4h6DX6wU/Pz/h/vvvF06cOFGr+zDRqX2i8/jjj9slHZs3b67VPa9fvy40btzYLvkYPXq0tN6tWw+HZ+OlS5fs7vnMM88IN2/erPFeGzdutDsvIyPDbn+XLl2kfcOGDXM4PykpSQAg+Pn5CcePHxdat24ta6JjMlnzhuoWxeQUTHSIyEU8PtFxF29PdArPWx9EO1OLBSdyB6FDhw7Sw75x48aCyWSq1T03bdpkl3wcO3bMYRtwzOHZaJtkABCaNm0qjBw5UkhKShJ27NghXL9+3eFeCxYssDvnypUrdvtHjRol7YuIiLDbd/jwYaFhw4YCAGHZsmUOMTDRcQITHSJyEWef34rtdUWul5oKxMRY10fHA23aiNurk5ubK72+8847HdpS1SQlJUV63blzZ3Tp0gUPPvgggoKCbI9yOO+tt96CxmaAuUuXLuHLL7/ESy+9hGHDhkGv12Px4sUwmUzSMWJ7H6uQkBC79eDgYLvrWZSXl2Pq1KkoLy/Hvffei6effrpW79FVbDs1sUMTEVHNmOh4qdRUYOxY4HyFntW5ueL2mpKd25WXlyc1DAYgjWAdEBCAkSNH2hz5fwBu2p07evRofPvtt/jzn/9caXJVWFiIpKSkahsOCxW6uldct1iyZAmOHj2KgIAApKSkQKvV1vDO3MfHBwgLExcLnc5+4YDDREQiJjpeyGQC5swR6xMqsmybO1c8rjItW7aUXv/+++9VJguVWb9+vV2Ji+1UHRMmTLA5sgDANofzBw0ahLS0NFy+fBnbt2/HokWL0LNnT7tj3nrrLel106ZN7fZdu3atyvVmzZoBALKzs7F06VIAwMsvv4yOHTs69+aIiEhxmOh4ob17gXPnqt4vCEBOjnhcZe6//37p9ZUrV/DFF184fe+KAz526NBBGoDvwQcftNunxYeA0WhdbBKq0NBQDBs2DElJSUhPT8f06dOlfUVFRVK39nvuucfummds63sAnD59WnrdpUsXAGJ1182bYmnS008/bTdI4NmzZ+3eCwcOJCJSNiY6XsiJgYCrPW7WrFl2VTkzZ87E0aNHHY4rLy/Hhx9+iIKCAgDAgQMH8Ouvvzodpw++QqneOjfSlL/9DRkZGZUea9u+x8fHR2p7M2TIEPj7+0v7Nm/eLL3OzMxEZmamtG6ZHJaIiNRDsQMGkuu0aFG34zp37owlS5bg+eefByDOO9azZ0888MAD6N69u8OAgZaJV9etWyddQ6PRYNy4cWLjYkEAPv0UAFAM4Otbx5QD+BjAnFvr6zdswPoNG9C+fXv0798f7dq1g0ajwdGjR5Fq06ho4MCBCLzVGrdx48ZISEjAm2++CQBYtmwZLl68iBYtWmDt2rVStVvr1q3xyCOPAAAaNWqEMWPGVPret2/fjpJbk1G2bt0aPXv2RK9evZz7QImIyP3c0ANM0byxe/nNm4IQGSkIGo0gBMLa/TcQxQIgbo+KEmrsar5y5Uq7wfiqWrKysoTS0lKhUaNG0rbY2Fj7i90aBc+cny+0irAOyndP9N3SKHg13QcQp3P4+eef7S5dWloq/OUvf6nynMaNG9c4BYSF3N3LbXlEz22PCJKIPBG7l1OVtFpg5UrxdcXOOZbeOitWiMdVZ/bs2cjKysKiRYvQv39/NG/eHA0aNEBgYCA6deqEmTNnYvfu3WjdujW2bNmCq1evSufatqkBIHUl0uj1mDjhEWnzscxfcPTUKUCnw6FDh/D6669jxIgR6NSpE5o2bQqtVovg4GB0794dzz77LI4fP467777b7tL+/v7Yvn07Vq9ejb59+yIkJAR+fn5o3749nnzySfzyyy8ODZqJiEgdNIJQiy4zKlRUVITQ0FAUFhY6jLGidqmpwHOzjDiZJ7Zv0aEYTaN0WLECiI+XLy5jgRE6vRiT0VAMXZjj/FMkts+2NE0qLha7lSuORwRJRJ7I2ec32+h4sfh4ILYvgAhx/fNU4P6RNZfkEBEReQpWXXk5Laxj2gzAHrt1IiIiT8dEx5ulpiIgJlpaDYgf7twcEERERB6CiY63ujUHhCYv1367q+eAICIiciMmOt7IZg4IhymRnJkDgoiIyEMw0fFGdZ0DghTBNg/ds4d5KRFRZZjoeKO6zgFBsktNBaKtzaswnM2riIgqxUTHG9V1DgiS1a3mVchl8yoiohox0fFGAwYAkZHWYZAr0miAqCjxOFIUm+ZVDti8iojIERMdb2QzB4RQMdmpzRwQ5HZsXkVEVDtMdLxVfDzw2WcQwiPst0dGAp99Ju8cEFQlNq8iIqodJjreLD4epRmZ0mpp6jYgK4tJjoKxeRURUe0w0fF2NtVT5n4DWV2lcGxeRURUO0x0iDyITfMqh2SHzauIiBwx0SHFse0xtG8fexBVdKt5FSLYvIqIqEZMdEhRUlOBmBjr+uh4DoRXmfh4INPavArb2LyKiKhSDeQOgMjCMhBeQIUxYiwD4clRWmE2Axcv2m8LDLSvNqq47i621VMD2byKiKhSii7Ryc3Nxd/+9jc0bdoUAQEB6NKlC3766SdpvyAIePHFF9GiRQsEBAQgNjYWJ0+elDFiul1KHAjPbBaTB73efgkOBoKCrEtJiftiIiKi2lFsonPlyhX069cPDRs2xPbt25GZmYk333wTjRs3lo557bXX8Pbbb2PNmjU4cOAAdDodhg4diuvXr8sYOd0ODoRHRESuoNiqq2XLliEqKgrr1q2TtrVt21Z6LQgCVqxYgRdeeAGjRo0CAKxfvx56vR5btmzBww8/7PaY6fYpcSA8Hx+xBMlSdWU0Au3aia8NBkCnE18HBrovJiIiqh3Fluh8+eWX6NmzJ8aNG4ewsDB0794dH3zwgbQ/KysL+fn5iI2NlbaFhoaiT58+2L9/f5XXLSsrQ1FRkd1C8lPqQHg+PkBYmHWx0Omsixztc4iIyDmKTXTOnDmD1atXo0OHDti5cydmzpyJ2bNn46OPPgIA5OfnAwD0er3deXq9XtpXmaVLlyI0NFRaoqKiXPcmyGkcCE+lbBtV7dnDsQKIyO0Um+iYzWb06NEDr776Krp3746///3vmDFjBtasWVOn6y5YsACFhYXSkpOTU08RU13YDYRXYR8HwvNQqalAdLR1ffhwjhXgpUwmYPduYONG8SfzXXIntyU6V69erdXxLVq0QLTtH0kAnTp1QnZ2NgAgPDwcAGAwGOyOMRgM0r7K+Pn5ISQkxG4hZbAMhFexeooD4VVgNgMFBUBBAZqjADoUiw2IbJfKuq+5MbzCdakQxo6FkJtrt0/IzYUwdiyub0iVM0RyA8uv6bp1Ymns4MHAxIniz9atgQ0bZP9VJS/hkkRn2bJl2LRpk7T+17/+FU2bNkXLli1x9OhRp67Rr18/nDhxwm7b77//jtatWwMQGyaHh4cjLS1N2l9UVIQDBw6gb9++9fAuSA7x8UBGhnX981QOhGfHps+7rp0eBdCjGMHQ6YMU0efdbAYaak0omj4HgiA4ls4JAgQBKJg0FyXX+LVerWyHZpg+3bETQW4uMGkSh2cg93BJorNmzRqp7cs333yDb775Btu3b0dcXBzmzZvn1DWeeuop/Pjjj3j11Vdx6tQpbNiwAe+//z4SEhIAABqNBnPnzsXLL7+ML7/8Ej///DMmT56MiIgIPPTQQ654W+QmttVT/fqxusrTDMBeROFclX9cfCCgFXLgs49jBRCrscj1XNK9PD8/X0p0tm7dir/+9a8YMmQI2rRpgz59+jh1jV69euHzzz/HggULsHjxYrRt2xYrVqzApEmTpGOeffZZGI1G/P3vf8fVq1fRv39/7NixA/7+/q54W0Tys+nzXnLBiMC7xf7uxjMG6MJ01uNk6vPu4wN8+395wN9qPtb/ihvHCqhCxZGvKxvlWq6Rr51hMoljS+XliVW+AwYo44uBjw+Qlgbcf3/Nx2ZkiNVZRK7ikkSncePGyMnJQVRUFHbs2IGXX34ZgDj2jakW6fsDDzyABx54oMr9Go0GixcvxuLFi+scM1FNKnYgGjJEpofKrT7vAozWbZa+7grg09K5MQA0EW4eK6ACS/VKTYqLFfPRArAmZ19/DSxcaF8t1LIl8NprwIQJ8iZnggCcPevcsdV0kiWqFy5JdOLj4zFx4kR06NABly5dQlxcHADg8OHDuOOOO1xxSyKXSk0FZs+2rg8fLjaSXrnSve2HBMHapsFoBCzP3wsXIKU9zZqJuZBsLGMF5OZW3tJUoxH3c6yAWqspObO0fQHEhr9yKSkR2+Y4o8IIIUT1ziV/Dt966y3MmjUL0dHR+OabbxAUFAQAyMvLwxNPPOGKWxK5htmMr9cVYOaYAtzItfZyCoQRV84ZMXmMEamb3ddtpKTE2t64bTvr9s53W+fi0mrFB6JsbMYKECoWKyhorABLLeDatUDFjpotWwIffyyW5njiyNfPPec5bV+Y75KraQTBuzv3FRUVITQ0FIWFhV7Z1dxYYBR77AAwGort23nIRDExOVm30bFlMTLP6tzy3DYaxSQHAAJhhBHiig7FKIH1czKZZC7VAYDUVJhnzYZPnk0X86goMclRSDe61FRg7FjHgidLPqbEYQ2+/da5ti/ffQcMGuTycCplKXn84gvgb3+zbrOwfL6ffip+/kS3w9nnt8v+FP773/9G//79ERERgbO3KmtXrFiBL774wlW3JJLFuVz3TTYaGCiWMhQXAwU2Q0hlnRHn3zIYFJLkAEB8PEozMqXV0tRtihorwGQC5sypvHbNsm3uXGWVjNSm7Ys754WrSKMR2zVNnCgmiy1b2u+3jI3FJIfcwSV/DlevXo3ExETExcXh6tWrUgPkRo0aYcWKFa64JVH98/HBxv8zIQwGhMGAtjgj7QqDAToU3ypJCXTbQ8XyAKnY9th2Pi5FJDm3mGAt5tqLgXbrctu7Fzh3rur9ggDk5LgviXVGbdq+uHteuKrExwN//CGWMG3YIP5UUL5LXsAlfxLfeecdfPDBB1i4cCG0NuX5PXv2xM8//+yKWxK5RIuWPriAMFxAGApgndXTCB1Kbi2ARjEPFSVJTQViYqzro+OVNQOEs8mpnCUjt0tp88JptWI12oQJ4k8ldIEn7+GSRCcrKwvdu3d32O7n5wej0VjJGUTKxMlGb4+l7cv5SkbEHTtWGcmOs8mpkpJYS9Xlxx+Lv3uVtfXWaBTR1ptIMVyS6LRt2xZHjhxx2L5jxw506tTJFbckcglONlp7ntL2pX9/se2IJyWxzrZ9YbUQkZVLxtFJTExEQkICrl+/DkEQcPDgQWzcuBFLly7Fhx9+6IpbErmMZbLR52YBsCmhiIxUVAcixahN2xe5egUBQFmZWMJUFUucSh0VOT4eGDVKmSMjEymJSxKdxx57DAEBAXjhhRdQUlKCiRMnIiIiAitXrsTDDz/silsSuVR8PBDbF0CEuP55KnD/SD5UKqPmti9KY2n7QkRVc0miAwCTJk3CpEmTUFJSguLiYoSFhdV8EpGCcbJR53hK2xdLexdArEbbt0/suq3XA/feK/77yj7KNBHVmcsSnZs3b2L37t04ffo0Jt4ai/z8+fMICQmRRkom97OdQgCofBoB/nGnurCdAQIKngHC0t7F4tZMNUSkMi5JdM6ePYthw4YhOzsbZWVl+Mtf/oLg4GAsW7YMZWVlWLNmjStuS06wTCFgEQjrHEmd7wYsOZBiBp0jj2NpwD12LBtwE5H8XPIomzNnDnr27IkrV64gICBA2j569GikpaW54pZEpCCWBtwVq6fYK4iI3M0lJTp79+7FDz/8AF9fX7vtbdq0QW513RzI5WzbJQAQi3NuzR6cdQaAjlVXVD/YgJuIlMAliY7ZbJamfbB17tw5BAcHu+KW5KSK7RJshYUBkH9OT1IRNuAmIrm55Hv7kCFD7Oa00mg0KC4uRlJSEoYPH+6KWxIRERE5cEmi88Ybb2Dfvn2Ijo7G9evXMXHiRKnaatmyZa64JamJTWmgz749sg2hKwhirzTbxeLCBaCgADCbZQmNiIic5JKqq6ioKBw9ehSbNm3C0aNHUVxcjEcffRSTJk2ya5xM5CA1FQGzZkurAfHDxRasK1e6vQUre6jVnjPDFwBsB0ZE7lPviU55eTnuuusubN26VRo0kMgpt2aC1FScJMkyEyS76yies8khwASRiNyj3v/MNGzYENevX6/vy5La2cwE6TC1kEwzQVp6qFmWAoN1X9YZwGDgw5qISOlc8ic6ISEBy5Ytw82bN11xeVKj2swE6SaWHmq2i0VYmLgwybHnTHLIBJGI3MklbXTS09ORlpaGXbt2oUuXLtBV6M+cmprqituSJ+NMkKrA4QuISGlckug0atQIY8aMccWlSa08ZSZIIiLyKC5JdNatW+eKy5Ka2c4EWbExMqCcmSCJiMijsJaclMEyEyQAQVOhOTJngiQiotvkkkSne/fu6NGjh8MSExODfv36YcqUKfjuu+9qdc1//vOf0Gg0mDt3rrTt+vXrSEhIQNOmTREUFIQxY8bAYDBUfRFStlszQQrhEfbbORMkuYrZLI78aFmKix1HiayshJGIPIZLEp1hw4bhzJkz0Ol0GDx4MAYPHoygoCCcPn0avXr1Ql5eHmJjY/HFF184db309HS89957uOeee+y2P/XUU/jqq6/wn//8B99//z3Onz+PeD4MPVt8PEozMqXV0tRtQFYWkxyqf2azWEKo11uX4GBxICDbxXYERCLyOC5po3Px4kU8/fTT+Mc//mG3/eWXX8bZs2exa9cuJCUlYcmSJRg1alS11youLsakSZPwwQcf4OWXX5a2FxYW4l//+hc2bNiAP//5zwDEtkGdOnXCjz/+iHvvvbf+3xi5h031lLnfQFZXEVXFZBKHXMjLExvqDxigzP8vnhInqZJLSnQ+/fRTTJgwwWH7ww8/jE8//RQAMGHCBJw4caLGayUkJGDEiBGIjY21256RkYHy8nK77XfddRdatWqF/fv3V3m9srIyFBUV2S1E5IV8fMQHsMEAnDlj3W4w2A8GFBgoX4zVSU0F2rQBBg8GJk4Uf7ZpI25XEk+Jk1TLJYmOv78/fvjhB4ftP/zwA/z9/QEAZrNZel2VTz75BIcOHcLSpUsd9uXn58PX1xeNGjWy267X65Gfn1/lNZcuXYrQ0FBpiYqKcuIdEZEq+fhYR3+0qDhKZMXG8XIzm4F168RpUSoOsmmZLmXzZnlis+VMnBs2sA0UuZxLqq6efPJJPP7448jIyECvXr0AiO1sPvzwQzz//PMAgJ07d6Jbt25VXiMnJwdz5szBN998U2NCVBsLFixAYmKitF5UVMRkh4g8g6VdUVVsp0t56CH5qoecjXPSJOCBB4CQEPfERV7JJYnOCy+8gLZt22LVqlX497//DQDo2LEjPvjgA0ycOBEA8Pjjj2PmzJlVXiMjIwMFBQXo0aOHtM1kMmHPnj1YtWoVdu7ciRs3buDq1at2pToGgwHh4eFVXtfPzw9+fn51fIcerLLppS0KCsRvsJxamsiznTsntokZNEjuSGq2bx8QFyd3FKRiLkl0ANQ4c3lAQEC1599///34+eef7bZNmzYNd911F5577jlERUWhYcOGSEtLk0ZhPnHiBLKzs9G3b9+6vwG1qji9tK127ayvORkReRPbyWL37AGGDFFmY1mNBvjXv4BHH635WDmnSyktdf7Yy5ddFwcRXJjoXL16FZ999hnOnDmDZ555Bk2aNMGhQ4eg1+vRsmXLGs8PDg7G3XffbbdNp9OhadOm0vZHH30UiYmJaNKkCUJCQvDkk0+ib9++7HFFRM5LTQVmz7auDx8ujt20cqXyhjUoKXEuyQE8Z7oUT4mTPJZLEp1jx44hNjYWoaGh+OOPP/DYY4+hSZMmSE1NRXZ2NtavX18v93nrrbfg4+ODMWPGoKysDEOHDsW7775bL9dWLcv00rYqVmex6qpynvKtn5yXmio2iq3YINbSWNZTB6qMipJ3upTAQKCwEIiOBs6fr35al/vuc3985FVc8jRLTEzE1KlTcfLkSbuGxMOHD8eePXtu+7q7d+/GihUrpHV/f38kJyfj8uXLMBqNSE1NrbZ9DsE6vbTtEhRk7XkSFsYkpzKpqeIfbYvhw9lF1tOZTMCcOZU/hG0b9domuHKzfFH5+GPx/3Jl06VoNPJPl6LRiA2M337bul5xPyB/nOQVXPJES09Px//7f//PYXvLli2r7fpNpEiWb/25ufbbLd/6mex4pr17Hbs92xIEICdHPE4pLF9UJk4US5sqNgNQ2nQpt6Z1UXycpGouqbry8/OrdCC+33//Hc2bN3fFLYlco6Zv/RqN+K1/1Ch+M/U0zjbWlbNRb3Xi48XfO6WPOOwpcZJquSTRGTlyJBYvXiyNgqzRaJCdnY3nnntO6iFF5BFq863fE7ryupozwxcAymgH5mwjWCU3ltVqPeP3zlPiJFVyyV+aN998E8XFxWjevDlKS0tx33334Y477kBwcDBeeeUVV9ySyDU8/Vu/u1mGL7Aser11X7t21skztVpxUDk5DRggVqFUNfKxRiN/o14iqjOXlOiEhobim2++wb59+3D06FEUFxejR48eDvNVESmeGr71U+W0WrEL+dixYlJjWz3JxrJEqlHviY7ZbEZKSgpSU1Pxxx9/QKPRoG3btggPD4cgCNAobd4YoupYvvXn5lbfRZbf+kXODF8AKKPqCrA2lp09276xeWSkmOSwsSyRx6vXvzSCIGDkyJF47LHHkJubiy5duqBz5844e/Yspk6ditGjR9fn7Yhcz/KtH2AXWWc4M3yB0oYwiI8HMjOt69u2AVlZTHKIVKJe/9qkpKRgz549SEtLw+HDh7Fx40Z88sknOHr0KP773//i22+/rbfBAkk9BEFss2q7WFy4ILZhlbU5h+Vbf0SE/Xa5u8hWHMBQSeO9eBrbRHXgQCauRCpSr4nOxo0b8fzzz2Pw4MEO+/785z9j/vz5+Pjjj+vzlqQCFduvtrWZcqvz3Qppu6q0b/0cwJCIyCn1mugcO3YMw4YNq3J/XFwcjh49Wp+3JHIfpXzr5wCGREROq9dE5/Lly9DbdietQK/X48qVK/V5S1IBS/tVy1JgsO7LOgMYDJxMXeKJ0xYoVcU6U4uCAusidxd4Iqqzeu11ZTKZ0KBB1ZfUarW4efNmfd6SVMDSfrUyYWEAqtjnlTiAYf2x1JlW1K6d/TqzbCKPVq+JjiAImDp1Kvz8/CrdX1ZWVp+3I/I+HMCQiKhW6jXRmTJlSo3HTJ48uT5vSeRdOIBh/ak45o+Sx/shottWr4nOunXr6vNyRFQRBzCsP5XVmVZWlUVEHo1fVYg8CQcwJCKqFSY6RJ5GqQMYEhEpkEsm9SQiF4uPB2JjgdBQcX3bNmDIEJbkEBFVwBIdIk+llAEMiYgUjIkOERERqRYTHSIiIlItJjpERESkWkx0iIiISLWY6BAREZFqMdEhIiIi1WKiQ0RERKrFRIeIiIhUS7GJztKlS9GrVy8EBwcjLCwMDz30EE6cOGF3zPXr15GQkICmTZsiKCgIY8aMgcFgkCliIiIiUhrFJjrff/89EhIS8OOPP+Kbb75BeXk5hgwZAqPRKB3z1FNP4auvvsJ//vMffP/99zh//jziOc8PERER3aIRBEGQOwhnXLhwAWFhYfj+++8xcOBAFBYWonnz5tiwYQPGjh0LAPjtt9/QqVMn7N+/H/fee69T1y0qKkJoaCgKCwsREhLiyrdAzjIagaAg8XVxMaDTyRuPhdLiUlo8RERu5OzzW7ElOhUVFhYCAJo0aQIAyMjIQHl5OWJjY6Vj7rrrLrRq1Qr79++v8jplZWUoKiqyW4iIiEidPCLRMZvNmDt3Lvr164e7774bAJCfnw9fX180atTI7li9Xo/8/Pwqr7V06VKEhoZKS1RUlCtDJyIiIhl5RKKTkJCAX375BZ988kmdr7VgwQIUFhZKS05OTj1ESERERErUQO4AajJr1ixs3boVe/bsQWRkpLQ9PDwcN27cwNWrV+1KdQwGA8LDw6u8np+fH/z8/FwZMhERESmEYkt0BEHArFmz8Pnnn+Pbb79F27Zt7fbHxMSgYcOGSEtLk7adOHEC2dnZ6Nu3r7vDJSIiIgVSbIlOQkICNmzYgC+++ALBwcFSu5vQ0FAEBAQgNDQUjz76KBITE9GkSROEhITgySefRN++fZ3ucUVERETqpthEZ/Xq1QCAQYMG2W1ft24dpk6dCgB466234OPjgzFjxqCsrAxDhw7Fu+++6+ZIqc4EASgpsa7bjJWEggKx23SzZoCPYgsgiYhIoTxmHB1X4Tg6CmA7Hkx1TCZ5kx2ljVujtHiIiNxIdePoEBEREdWWYquuyIsEBoolErYqVmfJUXXFKjUiIo/HRIfkp9FUXu3iTHWWK5WUVB1Du3bW13JXqRERUZX415mIiIhUiyU6RFVRapUaERE5jYkOUVWUWqVGRERO41dRIiIiUi0mOkRERKRaTHSIiIhItZjoEBERkWox0SEiIiLVYqJDREREqsVEh4iIiFSLiQ4RERGpFhMdIiIiUi0mOkRERKRaTHSIiIhItZjoEBERkWox0SEiIiLVYqJDREREqsVEh4iIiFSLiQ4RERGpFhMdIiIiUi0mOkRERKRaDeQOgIhqQRCAkhLxtdFo3V5QAOh04utmzQAffochIgKY6BB5lpISICjIcXu7dvbrJhOTHSIiqKTqKjk5GW3atIG/vz/69OmDgwcPyh0SERERKYDHJzqbNm1CYmIikpKScOjQIXTt2hVDhw5FQUGB3KER1b/AQKC42LpcuwYYDPYLS3OIiCQaQRAEuYOoiz59+qBXr15YtWoVAMBsNiMqKgpPPvkk5s+fX+P5RUVFCA0NRWFhIUJCQlwdLhEREdUDZ5/fHt1G58aNG8jIyMCCBQukbT4+PoiNjcX+/fsrPaesrAxlZWXSemFhIQDxAyMiIiLPYHlu11Re49GJzsWLF2EymaDX6+226/V6/Pbbb5Wes3TpUrz00ksO26OiolwSIxEREbnOtWvXEBoaWuV+j050bseCBQuQmJgorZvNZly+fBlNmzaFRqORMbLK9erVC+np6XKHIZEzHnfc21X3qO/r1vV6RUVFiIqKQk5ODqtsVUBpfyfk5OmfhRLjlyummu4rCAKuXbuGiIiIaq/j0YlOs2bNoNVqYTAY7LYbDAaEh4dXeo6fnx/8/PzstjVq1MhVIdaZVqtV1INIznjccW9X3aO+r1tf1wsJCVHU7xfdHqX9nZCTp38WSoxfrpicuW91JTkWHt01w9fXFzExMUhLS5O2mc1mpKWloW/fvjJGVn8SEhLkDsGOnPG4496uukd9X1dpvxckL/4+WHn6Z6HE+OWKqb7u6/G9rjZt2oQpU6bgvffeQ+/evbFixQp8+umn+O233xza7hCRiL0NichbeHTVFQCMHz8eFy5cwIsvvoj8/Hx069YNO3bsYJJDVA0/Pz8kJSU5VOMSEamNx5foEBEREVXFo9voEBEREVWHiQ4RERGpFhMdIiIiUi0mOkRERKRaTHSIiIhItZjoEJGD0aNHo3Hjxhg7dqzcoRAR1QkTHSJyMGfOHKxfv17uMIiI6oyJDhE5GDRoEIKDg+UOg4iozpjoEKnMnj178OCDDyIiIgIajQZbtmxxOCY5ORlt2rSBv78/+vTpg4MHD7o/UCIiN2CiQ6QyRqMRXbt2RXJycqX7N23ahMTERCQlJeHQoUPo2rUrhg4dioKCAjdHSkTkekx0iFQmLi4OL7/8MkaPHl3p/uXLl2PGjBmYNm0aoqOjsWbNGgQGBmLt2rVujpSIyPWY6BB5kRs3biAjIwOxsbHSNh8fH8TGxmL//v0yRkZE5BpMdIi8yMWLF2EymaDX6+226/V65OfnS+uxsbEYN24ctm3bhsjISCZBROSxGsgdABEpz3//+1+5QyAiqhcs0SHyIs2aNYNWq4XBYLDbbjAYEB4eLlNURESuw0SHyIv4+voiJiYGaWlp0jaz2Yy0tDT07dtXxsiIiFyDVVdEKlNcXIxTp05J61lZWThy5AiaNGmCVq1aITExEVOmTEHPnj3Ru3dvrFixAkajEdOmTZMxaiIi19AIgiDIHQQR1Z/du3dj8ODBDtunTJmClJQUAMCqVavw+uuvIz8/H926dcPbb7+NPn36uDlSIiLXY6JDREREqsU2OkRERKRaTHSIiIhItZjoEBERkWox0SEiIiLVYqJDREREqsVEh4iIiFSLiQ4RERGpFhMdIiIiUi0mOkRERKRaTHSIyCNNnToVDz30UJ2usXv3bmg0Gly9erXa49LS0tCpUyeYTKYar7ljxw5069YNZrO5TrERUf1gokNELjV16lRoNBpoNBr4+vrijjvuwOLFi3Hz5s06XXflypXS3F2u9uyzz+KFF16AVqut8dhhw4ahYcOG+Pjjj90QGRHVhIkOEbncsGHDkJeXh5MnT+Lpp5/GokWL8Prrr9/WtUwmE8xmM0JDQ9GoUaP6DbQS//vf/3D69GmMGTPG6XOmTp2Kt99+24VREZGzmOgQkcv5+fkhPDwcrVu3xsyZMxEbG4svv/wSAFBWVoZnnnkGLVu2hE6nQ58+fbB7927p3JSUFDRq1AhffvkloqOj4efnh+zsbIeqq7KyMsyePRthYWHw9/dH//79kZ6ebhfHtm3bcOeddyIgIACDBw/GH3/8UWPsn3zyCf7yl7/A399f2nb06FEMHjwYwcHBCAkJQUxMDH766Sdp/4MPPoiffvoJp0+fvr0PjIjqDRMdInK7gIAA3LhxAwAwa9Ys7N+/H5988gmOHTuGcePGYdiwYTh58qR0fElJCZYtW4YPP/wQx48fR1hYmMM1n332WWzevBkfffQRDh06hDvuuANDhw7F5cuXAQA5OTmIj4/Hgw8+iCNHjuCxxx7D/Pnza4x179696Nmzp922SZMmITIyEunp6cjIyMD8+fPRsGFDaX+rVq2g1+uxd+/e2/p8iKj+NJA7ACLyHoIgIC0tDTt37sSTTz6J7OxsrFu3DtnZ2YiIiAAAPPPMM9ixYwfWrVuHV199FQBQXl6Od999F127dq30ukajEatXr0ZKSgri4uIAAB988AG++eYb/Otf/8K8efOwevVqtG/fHm+++SYAoGPHjvj555+xbNmyamM+e/asFJtFdnY25s2bh7vuugsA0KFDB4fzIiIicPbs2Vp8OkTkCkx0iMjltm7diqCgIJSXl8NsNmPixIlYtGgRdu/eDZPJhDvvvNPu+LKyMjRt2lRa9/X1xT333FPl9U+fPo3y8nL069dP2tawYUP07t0bv/76KwDg119/RZ8+fezO69u3b42xl5aW2lVbAUBiYiIee+wx/Pvf/0ZsbCzGjRuH9u3b2x0TEBCAkpKSGq9PRK7FRIeIXG7w4MFYvXo1fH19ERERgQYNxD89xcXF0Gq1yMjIcOjRFBQUJL0OCAiARqNxa8wWzZo1w5UrV+y2LVq0CBMnTsTXX3+N7du3IykpCZ988glGjx4tHXP58mU0b97c3eESUQVso0NELqfT6XDHHXegVatWUpIDAN27d4fJZEJBQQHuuOMOuyU8PNzp67dv3x6+vr7Yt2+ftK28vBzp6emIjo4GAHTq1AkHDx60O+/HH3+s8drdu3dHZmamw/Y777wTTz31FHbt2oX4+HisW7dO2nf9+nWcPn0a3bt3d/o9EJFrMNEhItnceeedmDRpEiZPnozU1FRkZWXh4MGDWLp0Kb7++munr6PT6TBz5kzMmzcPO3bsQGZmJmbMmIGSkhI8+uijAIDHH38cJ0+exLx583DixAls2LDBqXF4hg4div/973/SemlpKWbNmoXdu3fj7Nmz2LdvH9LT09GpUyfpmB9//BF+fn5OVY0RkWsx0SEiWa1btw6TJ0/G008/jY4dO+Khhx5Ceno6WrVqVavr/POf/8SYMWPwyCOPoEePHjh16hR27tyJxo0bAxB7Qm3evBlbtmxB165dsWbNGqmxc3UmTZqE48eP48SJEwAArVaLS5cuYfLkybjzzjvx17/+FXFxcXjppZekczZu3IhJkyYhMDCwVu+BiOqfRhAEQe4giIiUbN68eSgqKsJ7771X47EXL15Ex44d8dNPP6Ft27ZuiI6IqsMSHSKiGixcuBCtW7d2av6qP/74A++++y6THCKFYIkOERERqRZLdIiIiEi1mOgQERGRajHRISIiItViokNERESqxUSHiIiIVIuJDhEREakWEx0iIiJSLSY6REREpFpMdIiIiEi1/j8fwnrYoJmYwgAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHbCAYAAACtCWxXAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAygFJREFUeJzsnXl8FOX9x9+7m2NzJ+QOEBIIVzjCEULCraIULzzRagW11dZaW6X1qqI/r1q1Ravi1Wq1rW1pbbWeoCgEAuEM900gEMh9n5tNduf3R7JDlhxskpnZ2eR5v177gt2d+TyfZ56ZZ795ToMkSRICgUAgEAgEAo/G6G4DAoFAIBAIBIK+I4I6gUAgEAgEgn6ACOoEAoFAIBAI+gEiqBMIBAKBQCDoB4igTiAQCAQCgaAfIII6gUAgEAgEgn6ACOoEAoFAIBAI+gEiqBMIBAKBQCDoB4igTiAQCAQCgaAfIII6gcCN1NXV8bvf/Y45c+YQERGBt7c3ISEhJCQkkJaWxh133MGKFSs4ffq0u61ekISEBAwGg/zqz2zdupVf/OIXpKamEhUVhY+PDwEBAYwcOZIbb7yRd999l9ra2i7Pb25uJioqyul6GQwGXn/9dZfS/+qrr1i8eDEJCQn4+flhNpuJi4tj/PjxXHPNNSxfvpxvv/22y/MrKip48sknmTp1KqGhofj5+ZGYmMjSpUvZtm2by9ehvr6epKSkDvnIy8tzWUMgECiIJBAI3MLRo0elYcOGScAFX3/96187nD937lynY06ePKm4x5MnTzqlMXfu3C6PPT8v/ZGzZ89Kl112mUtldu2113ap89///rfTc6ZOndpt+i0tLdJtt93mUvqXXHJJpxrZ2dlSREREl+cZDAbpiSeecOl63HPPPZ1qqHEvCgSCC+OlbIgoEAhcQZIkbr75Zk6dOiV/FhERQUpKCoGBgZSXl3Pw4EEqKirc6LJnXH755ZSUlLjbhmrk5uYyc+ZMiouLnT6Pi4tjwoQJmEwmTp8+zcGDB7Hb7djt9i613n///U4/37lzJ/v372f8+PGdfr9y5Ur++te/yu+9vLzk1kKLxUJubi4nTpxA6mJL77Nnz7Jw4UKqqqrkz1JTU4mIiGDDhg00NDQgSRJPP/00cXFx/PjHP+4yD9988w1vvvlml98LBALtEUGdQOAGdu/eTU5Ojvx+0aJFfPTRR3h5eXU47l//+hcRERFaW+wxb7zxhrstqEZzczNXXnmlU0AXHBzMn/70J2688UanY4uKinjzzTc5fvx4p1qlpaV89dVX8ntvb2+am5vl9++//z6/+93vOj333XffdUo/JyeHESNGOB1TUlLC559/3mn6jz32mFNA9/TTT7N8+XIADh8+TGpqKvX19QA89NBD3HrrrQQGBnbQqa6u5s477wQgJCQEg8HgpCsQCNyEm1sKBYIByT//+U+n7qoVK1a4fO753a5dvRxdYCdPnpQef/xx6corr5RGjRolRUZGSt7e3lJAQIA0fPhw6cYbb5Q+++wzpzTO73bt6tW+O9aV7teysjLpueeek2bOnCmFh4dLXl5eUmhoqDR16lTpkUcekU6fPt3peZ1pf/TRR9K8efOk4OBgyWw2S1OmTJH+8pe/dHr+n//8Z6fzn3zySZevtyRJ0sqVK53ONxqN0vr167s9x2KxdPr5ihUrnLQee+wxyd/fX34fExMjNTc3d3qu2WyWj5s4cWKP8lBbWyv5+fnJ5/v7+0sNDQ1OxyxdutTJ23vvvdepVvsu4L/85S8dykd0vwoE7kEEdQKBGzh/TFVkZKT02muvSceOHbvguT0N6v7973+7dPydd94pp6FGULd27dpux3I5Ao0PP/yww7nnay9ZsqRLjZdffrnD+X0N6mbNmuV0/tVXX92j89szceLEDuV00003OX12fpDtIDg42Om4u+++W9q4cWOXAWR7vvvuO6dzp0+f3uGYN954w+mY22+/vcMxH3/8sfz9ddddJ0lSx/IRQZ1A4B5E96tA4AbS09Px8vKipaUFaO2Su++++wAIDQ1lypQpzJ49m+uvv54JEyY4nTt37lwiIiLIzMykrKxM/nzhwoX4+/vL7wMCApzOi4+PZ/DgwYSFhWE0GikuLmb37t1y1997773HVVddxTXXXENAQADXX389DQ0NTl2FERERzJ07V34/btw4l/J7+PBhFi1aJHftwbmxaMeOHePEiRMANDQ0sGTJEgYPHuyUzvn85S9/YdCgQUydOpVDhw5x5swZ+bv/+7//4+6773a6Fn3BbrezZcsWp88uv/zyXmnl5OSwd+9e+X1GRgYJCQl8//vfZ9WqVfLn77//PldeeWWH82fPns0XX3whv3/nnXd455138PLyIjk5mYyMDBYuXMjChQvx8fFxOvfw4cNO7wcPHtxB//zPzj+ntLRUHmcXFRXFW2+9daEsCwQCLXF3VCkQDFSeeOIJl1rDrrrqKqmkpKTD+a7Ofi0uLpby8/M7/W7//v1OGjfddJPT90rNfr355ps7tHQ1NjZKkiRJNptNuvvuu52+T09P71Z7ypQpUnl5uSRJrd2K48aNc/o+MzPT6fy+tNSVlJR0KJPVq1e7fH577rvvPied1157TZIkSWpqapJCQ0Plz318fOT8tWfPnj1SYGDgBe+Z+Ph4ac2aNU7n/uY3v3E65rbbbuugv3btWqdjRo8e7fT9ddddJ3/3ySefyJ+LljqBQB+IdeoEAjfx1FNP8d577zFs2LBuj/vss89YtGhRlzMaL0RUVBT5+fn86Ec/YsKECYSEhGAymTAYDB1mWZ7fMqMEdrvdqXUJ4IUXXsBsNgNgNBp54YUXnFqWtm7dSmlpaZeazz33HIMGDQIgMDCQiy++2On7s2fPOr2//fbbkVqHmyBJEv/3f//Xlyz1qiysVit///vf5fcmk0meZOHj48P111/f5bEOJk6cyNatW1mwYEG3awGePn2aq666yqlV0JU8dJevv/3tb/z3v/8FYOnSpSxatKjLYwUCgXsQQZ1A4EbuuOMOTp48SXZ2Nr/97W9ZtGiRHKy0Jzs7m+zs7F6lsWLFCmbMmMG7777L/v37qamp6XK5jerq6l6l0R3l5eVOC/H6+PgwevRop2NCQ0OJj4+X30uS1O0CttOmTXN6HxIS4vS+qampD46dCQ8P7zAruTeL63722WeUl5fL7y+++GKio6Pl99///vedju9q2ZPk5GRWr17NqVOn+POf/8yPfvQjxo4d2+E4q9XqtJhxaGio0/cNDQ0dzmnfPQ4QFhYGgMVikYcHxMfH8+qrr3bqTSAQuBcR1AkEbsZgMJCens7DDz/MJ598QmlpKZ9++mmHpSQOHTrUY+3CwkIefvhhp8+GDh3K5ZdfzvXXX+/UOgS9a4G6EGpohoeHO703mUyKp+HAaDSSnp7u9NmXX37ZY53zg7QtW7YwZMgQ+bVkyRKn7x1r1nXF0KFDuf322/njH//IwYMHOX78eIdxiO3vmTFjxjh9134cooPzWzgd51gsFnnJkpKSEoYPH05ERIT8ys/PdzpvypQpRERE8M9//rNL/wKBQHlEUCcQuIHq6upOW0qgNYi46qqruPTSS50+9/b2dnrvylZcW7ZskSdjAFxxxRWcOnWKL774go8++ojXXnut2/OV2O4rIiLCKUC1Wq0cPXrU6ZiqqiqnrdAMBgMJCQl9Tlspzm9F++KLL8jMzOz2nPathcXFxaxevdrp+9raWs6ePSu/CgoKOmicHwh2doyDESNGsGzZMqfP2t8z06ZNw8/PT36/b9++Dvfg1q1bnd7PmTOnQzoWi4Xy8nKn1/ktv5WVlZSXl2OxWLr0KxAIlEcEdQKBG9i3bx/x8fH8+te/7rQ15vTp0x1mXJ4/07T9DzR0bGUBnBa1BTCbzXKg1tTUxC9/+ctufZ6fRndBRVcYjcYOs0UfeeQROeix2+08+uijWK1W+fu0tDQiIyN7nFZXvP/++057k/Z0TN1dd93l1NJlt9vlBaPPp6ioiCeeeEJenBdax6O1D65d5cMPP3Q676KLLuK6667js88+69DFbLPZ+M9//uP0Wft7JjAwkMWLF8vvGxsbeemll+T3Bw8edMpPcHBwh4WVBQKBznHXDA2BYCCzceNGp9mCERER0ty5c6Wrr75amjVrluTt7e30/eTJkyW73e6k8cADDzgdExkZKV155ZXS9ddfLz300EOSJLXOXjUajU7HjR8/Xrr88sul2NhYyWAwOH03bNiwDl4HDRrkdExKSop03XXXSddff7301Vdfycd1N/v1wIEDTgvsAlJcXJy0YMECafjw4U6fG41G6bvvvnM6/0Jr4D355JNO3//5z392+r6v69RJkiQdO3ZMio6O7jDTdPDgwdLChQulK664QpowYYJ8vRctWiSfO378eKdzulqHTpI6rmPX/tgRI0Y4zZCdOnWqdMUVV0gLFiyQYmJinM4zGAzSzp07nbTPnDnjNMsWkFJTU6Xvfe97HcrnrbfecvnaiNmvAoE+EEGdQOAGsrKyLrgsheMVHx8vHTlypIPG7t27JS8vr07Pab8x/LJly7rU/t3vfnfBoO7BBx/s8nzHkhySdOHAa82aNR0CxPNffn5+ne4KoYegTpJag6L58+e7VG7XXnutJEmStH37dqfPw8LCJKvV2mUazz33nNPx119/vfxdUlKSS2l7eXk5lU17srOzpfDw8C7PNRgM0vLly3t0XURQJxDoA7H4sEDgBmbOnMnu3bv5+uuv2bp1K4cPH+bs2bPU1dVhNBoJCwtj3LhxXHnlldx1112d7r+ZkpLC6tWref7559m5cyfV1dWdTkr43e9+x+jRo3njjTc4fPgwZrOZSZMm8ctf/pKrrrqKX/3qV916fe655wgJCeHvf/87J06c6PU4qcsuu4zDhw/z9ttv8+WXX3L48GFqa2vx9/cnKSmJ+fPn89Of/vSCS7y4k8GDB/PNN9+wZcsW/v73v7Np0yZOnTpFdXU13t7eDB48mJSUFL73ve/JXZ3nj4u77rrrOoyPbM9NN93EY489Jr//7LPPqKioYNCgQWzevJnVq1ezadMm9uzZw6lTp6ioqKClpYXAwEASEhKYM2cOd999d4flahykp6dz9OhRXnnlFT777DNOnDhBU1MT0dHRzJkzh/vuu4+0tLS+XyyBQKA5BqmzXwGBQCAQCAQCgUchJkoIBAKBQCAQ9ANEUCcQCAQCgUDQDxBBnUAgEAgEAkE/QAR1AoFAIBAIBP0AEdQJBAKBQCAQ9ANEUCcQCAQCgUDQDxBBnUAgEAgEAkE/QAR1AoFAIBAIBP0AEdQJBAKBQCAQ9ANEUCcQCAQCgUDQDxBBnUAgEAgEAkE/QAR1AoFAIBAIBP0AEdQJBAKBQCAQ9ANEUCcQCAQCgUDQDxBBnUAgEAgEAkE/QAR1AoFAIBAIBP0AEdQJBAKBQCAQ9ANEUCcQCAQCgUDQDxBBnUAgEAgEAkE/QAR1AoFAIBAIBP0AEdQJBAKBQCAQ9ANEUCcQCAQCgUDQDxBBnUAgEAgEAkE/QAR1AoFAIBAIBP0AEdQJBAKBQCAQ9AM8PqjLz89n3rx5JCcnM3HiRP7973+725JAIBAIBAKB5hgkSZLcbaIvFBYWUlxczKRJkygqKmLq1KkcPXqUgIAAd1sTCAQCgUAg0AwvdxvoK7GxscTGxgIQExNDREQEFRUVIqgTCAQCgUAwoHB79+uGDRu46qqriIuLw2Aw8Mknn3Q4ZuXKlSQkJGA2m5k+fTrbtm3rVGvnzp3YbDaGDh2qsmuBQCAQCAQCfeH2oK6+vp6UlBRWrlzZ6ferVq1i2bJlPPnkk+Tk5JCSksKCBQsoKSlxOq6iooIlS5bwzjvvaGFbIBAIBAKBQFfoakydwWDg448/5pprrpE/mz59OtOmTeP1118HwG63M3ToUO677z4eeeQRAJqamrj00ku56667uO2227pNo6mpiaamJvm93W6noqKC8PBwDAaD8pkSCAQCgUAgaEOSJGpra4mLi8NoVLZtTddj6qxWKzt37uTRRx+VPzMajcyfP5/s7Gyg9eLcfvvtXHzxxRcM6ACef/55nnrqKdU8CwQCgUAgEFyI/Px8hgwZoqimroO6srIybDYb0dHRTp9HR0dz+PBhADZt2sSqVauYOHGiPB7vr3/9KxMmTOhU89FHH2XZsmXy++rqauLj48nPzyc4OFidjPSCI0eOMHr0aHfbALT3onZ6augrqamElp7uH4FrDOQy88S8682zqKe11eyLVk1NDUOHDiUoKEgRL+3RdVDnCrNmzcJut7t8vK+vL76+vh0+Dw4O1lVQ19DQoBs/WntROz019JXUVEJLT/ePwDUGcpl5Yt715lnU09pqKqGlxpAvXQd1ERERmEwmiouLnT4vLi4mJiamT9orV65k5cqV2Gw2ALKysggICGDGjBns2bOH+vp6QkNDGTVqlDzbNikpCbvdzokTJwBIT0/n4MGD1NTUEBQUxLhx49iyZQsAiYmJmEwmjh8/DsC0adM4fvw4lZWV+Pv7M3nyZDZt2gRAfHw8fn5+HDlyBIApU6ZQXl5OZmYmZrOZtLQ0NmzYAMCQIUMIDg7m4MGDAEyaNImCggJKSkrw9vZmxowZbNy4EbvdTmxsLOHh4ezfvx+ACRMmUFpaSlFRESaTiVmzZrFp0yZaWlqIiooiNjaWPXv2AJCcnEx1dTVnz54lPz8fgC1bttDU1ERERATx8fHk5OQAMGbMGBoaGjh9+jTQGmjn5OTQ0NBAWFgYI0aMYMeOHQCMHDmS5uZm8vLyAMjIyGDfvn3U1dUREhLCmDFjyM/PJzMzkxEjRgCQm5sLtI6vPHz4MNXV1QQGBjJhwgS5Gz4hIQFvb2+OHTsGQGpqKrm5ufL1njJlCllZWQDU1tZSXFwst/ZOmTKF06dPU1ZWhq+vL+np6WRmZgIwePBgQkJC5OudkpJCYWEhJSUleHl5MXPmTLKyssjPz+fIkSNERkayb98+AMaPH095eTmFhYUYjUZmz57N5s2baW5uJioqiri4OHbv3i1f75qaGs6cOUN+fj6SJLFt2zYsFgvh4eEMGzZMvt6jR4+msbFRvt4zZ85k165d8vVOSkqSr2FSUhI2m42TJ0/K9+yBAweora0lODiY5ORk+Z4dPnw4RqNRvmfT0tI4evQoVVVVBAQEkJKSwubNm+Xr7ePjw9GjR+XrffLkScrLy/Hz8yM1NZWNGzcCMHToUAIDAzl06BAAkydP5syZM5SWluLj40NGRgYbNmxAkiTi4uIICwvjwIEDAEycOJHi4mKKi4vlezYrK0tuwY+Ojmbv3r0AjBs3jsrKSgoKCjAYDMyZM4fs7GysViuRkZEMGTKEXbt2ATB27Fjq6urke3v27Nns2LGDxsZGwsPDSUxMlO/ZUaNGYbVa5XtWrTpCkiT27t3rch1x6tQpysvLdVFHAMydO7fXdYQkSfIz50odsXXrVgDV6oj4+Hj8/f27rSMcz5irdYTNZiMmJkaROgJgzpw5TnWE3W6Xr6ErdcT27dvle7Y3dUR+fj6NjY2q1REVFRVkZmYqWkdYrVaOHTumSB3R/p7taR1RXV2NWnjERIm0tDRee+01oHViQ3x8PD/72c/kiRJ9oaamhpCQEKqrq3X1V5dAIBAIBIL+h5pxh9uXNKmrq2P37t3yXyMnT55k9+7d8l8Yy5Yt449//CMffPABhw4d4p577qG+vp477rjDja7Vx/EXjB7Q2ova6amhr6SmElp6un8ErjGQy8wT8643z6Ke1lZTb+XvwO3drzt27OCiiy6S3zsmMSxdupT333+fm266idLSUp544gmKioqYNGkSq1ev7jB5or/Rk3GCaqO1F7XTU0NfSU0ltPR0/whcYyCXmSfmXW+e3VVP22w2mpubFdeXJAmLxaJbzQtpeXt7YzKZFEmrJ+iq+1VL2o+pO3r0KF988YWuxtRt2bIFHx8fXYyXKS8v57rrrtNsTN2XX35JeHi4auNlDAYDo0ePVnRMXUlJCePGjVNkvEx5eTnXXnttn8bUrV69mvDwcDGmzoPG1A0aNAhJkgbkmDqAyspKl+sIPYyp++9//0t4eLhuxtTZbDaqqqoAbcbUlZeXk5qaSkVFBZIkYTAY8PHxkdeB9fLywmAwyAGfj48PLS0t2O12l461Wq1Aa33t6+srB1Amkwmj0eh0rM1mk8fHm81mp2NNJpOTltFodDq2qakJSZI6HOvt7Y0kSbS0tACtkyytViuSJMlryzkC286ObWpqorGxEX9/f0aPHt1hTN24ceNU6X4dsEGdA72OqSsvLyc8PNzdNgDtvaidnhr6SmoqoaWn+0fgGgO5zDwx73rzrLWf3NxcrFYrUVFR+Pv7Kz6Ts6WlBS8vZTsTldTsTkuSJBoaGigpKSE0NFTen95Bvx5TJ+gcx1/OekBrL2qnp4a+kppKaOnp/hG4xkAuM0/Mu948a+nHZrNRXV1NVFQU4eHh+Pn5YTabFX1JkqRrze60/Pz8CA8PJyoqiqqqKrllUAtEUCcQCAQCgcBlmpubMRgM+Pv7u9uKrnFcHzXGHHaFCOp0Slc7YrgDrb2onZ4a+kpqKqGlp/tH4BoDucw8Me9686y1Hx8fH1X3S/fz89O1pita7thP3u2zX92F3hcf3rlzp24mSpSVlXH99ddrNlFi3bp1REREeNREieLiYsaPH6/IIOiysjKuu+66Pk2UcFxDMVHCcyZKhIWFcebMmQE5UUKSJPm58ZSJEo5nTC8TJVpaWmRdtSdK5ObmEhAQgN1up6GhAZvNhtFoxM/Pj/r6euBc0OeYDOHv74/VaqWlpQWj0Yi/vz91dXXysUajUZ7g4O/vT0NDAwaDAYPBQGBgILW1tcC5WaWOY/38/GhubpYnKQQFBcnHenl54e3tTWNjI9C6d3xLS4vcchYUFERdXR2SJOHl5YWPjw8NDQ1A6yQKu90uT5wIDAykoaEBu92Ol5cXkiTJur6+vkiSJB8bEBBAY2MjFosFq9WKxWKR79kBtfiwO9DrRInMzEzmzp3rbhuA9l7UTk8NfSU1ldBS0o9kt2OtqHD6zOTnB+f9FWry83PLX6b9BT0981rjiXnXm2ct/VgsFg4dOsTYsWMxm82qpFFbW6v43qhKarqiZbFYOHnyJImJiU7XSc24Y8C21Okdd6xv0xVae1E7PTX0ldRUQkspP5LdzucjR7p07MJ9+/ASY2x6jZ6eea3xxLzrzbPe/LiKzS6x/3QFFXUWBgWaGR8/CJNR3T8Ov/zyS6644oouv1+8eDGrVq1S1YNaiJY6nbbUCQR6QAR1AoHgfLpqgeopWYcKeXPNQcpqzy3iGxFk5p4FycwaG9vNmX2jsbGxQxeozWbjjjvuICcnh2+//ZaUlJQ+p+OOljoxUUKnOMbS6AGtvaidnhr6SmoqoaWUH4PRyJXHjnHZ1q1ctnUrl6xfL3932datLNy3T36ZVBjYPJDQ0zOvNZ6Yd7151tqPY6xcb8k6VMgzH+U4BXQAZbUWnvkoh7W7TvZJvzMcY/j8/PyIiYmRX5GRkfzyl7/sUUDn0NIbA7b7Ve8TJQoKCsjMzNTFIOi8vDxmzpyp2USJ48eP09LSotog6MrKSoqLixWdKJGbm0tERIQig6Dz8vKYMWNGnyZKOK6h0hMlsts8AJTW1JDbNqEhNTWVkwcOiIkSfagjrFYre/fuHZATJRoaGuRnzlMmSjieMb1MlKivr5evoRYTJfz8/DqdKFFeVQOAj3fbRAlr20QJPz9aWpoxIiFh4M01rderK95dd5zU4eF4mYwEBgZSWlEFgLeXNyaTEUtTE2ZvU48mStjtdiwWi9NEierqan74wx+yfv16vv76a4YPH05tbe0FJ0rY7XY5HTFRQkfotfvVMQhVD2jtRe301NBXUlMJLbWuYUtDA1+1LZ0guluVRU/PvNZ4Yt715llLPxaLhaNHjzJq1KgO3a8Lnvmiy/PSkiJ55vtp7Mkr56G/brlgOi/elk5KQusuGYt//w3VDVan79cs73pcXGc0NjY6LUVis9n4wQ9+wNdff823337LpEmTeq3VGaL7VSBz/rYi7kRrL2qnp4a+kppKaOnp/hG4xkAuM0/Mu948a+2nLxMzKuosFz6oB8e5ire3t/x/m83Gbbfd1quA7nwtPTFgu1/1zp49e3QzXV5rL2qnp4a+kppKaOnp/hG4xkAuM0/Mu948a+3H0dV4Pv97eEGX5xjbZrUOCnRtckX74/5y30U9cNc5jY2NBAUFyQHdmjVrWLt2bacB3cyZM1mxYgXTp0/nhz/8IePHj2fevHk88sgjrFmzhsbGRr777ju++OIL3nnnnT57UwoR1AkEAoFAIFAEs8+Fw4rx8YOICDJ3mCTRnvBAX8bHD+qRrivYbDaWLFkiB3STJ0/u9Ljly5fz29/+ltmzZ2M0GnnggQdoaWmRx062tLTw9NNP8/nnnyviSylE96tOSU5OdrcFGa29qJ2eGvpKaiqhpaf7R+AaA7nMPDHvevOstZ++dD+ajAbuWdC93x9fOkbx9ep8fHxYsmQJn3zyCX/729+IjY2lqKjI6eWYPPm9732P06dP88UXX/DGG28ArRMvhg4dSl5eHn/729+44oordNcNL4I6naLm7JieorUXtdNTQ19JTSW09HT/CFxjIJeZJ+Zdb5619mO32/t0/qyxsSy/YQoRQc5dsZHBZpbfMIXpSRF90u+MrVu38ve//52GhgYuv/xyYmNjnV5xcXHyNmfbt2+noqKCkJAQpwA2LS2NdevW8fbbb/Pggw8q7rGvDNjuV70vabJr1y7Onj2ri+UK8vLySEpK0mxJk02bNnH27FlVlzQJCgpSfEkTm82m2JImI0aM6NOSJo5rqPSSJpvariFAUVERuW1Lgoi9X5VZ0qShoWFALmlSXFws63jKkiaOZ0wvS5oUFBTI19CdS5r0ZO/XlCGBrLxjGsdL6qlqaCbA28DYwSEEBQZQXV1Nc3Ozonu/pqSk0NjYeMG9X48cOcIPf/hDvvrqK26++Wa2bt1KWloaDQ0NTJgwgV/96lf8+te/Blq3C9PTkiZIA5zq6moJkKqrq91txYn169e724KM1l7UTk8NfSU1ldBS6xo219dLnw4fLn06fLjUXF+vShoDFT0981rjiXnXm2ct/TQ2Nko5OTlSY2OjamnU1NS4RbOhoUHKyMiQMjMzJUmSpH/961/S4sWL5e+3b98ujRw5UqqoqLigVmNjo3Tw4MEO10nNuEOsU6fTdeoEAj0i1qkTCARKbRPmidx5550sWrSIRYsWXfBYsU6dQMbR3K0HtPaidnpq6CupqYSWnu4fgWsM5DLzxLzrzbPWfvq6TdiFUGMbrr5o5ubmMnr0aAICAli0aJHYJkzQM9R+YHqC1l7UTk8NfSU1ldDS0/0jcI2BXGaemHe9edbaj9qdfGro90VzxIgR8pjWvmqpiWip0ykREcrP/OktWntROz019JXUVEJLT/ePwDUGcpl5Yt715llrP33ZUcIVvLyUb3NSUlMNf0oggjqdEh8f724LMlp7UTs9NfSV1FRCS0/3j8A1BnKZeWLe9eZZaz9qB3U+Pj661lTDnxLoM9TUAL0vabJ69WqioqJ0sVxBXl4eS5cu1WxJk//+978kJCSouqRJRkaG4kuapKenK7akyZIlS/q0pInjGoolTTxrSZPo6OgBu6SJ40fSU5Y0cTxjelrSxNfXF/CcJU0c49J8fHwwGo3yMiX+/v5UV1fj7e2t6JImdrsdX1/fCy5pAmA2m7Hb7fIyJYGBgTQ0NGC32/Hy8pKXWwHEkiZ6QixpcmHEkibaaoolTQYmenrmtcYT8643z2JJE201XdFyx5ImovtVp4wZM8bdFmS09qJ2emroK6mphJae7h+BawzkMvPEvOvNs9Z++rJNmCuosVSKkpp6XcpFBHU6xdEErAe09qJ2emroK6mphJae7h+BawzkMvPEvOvNs9Z+JJVnf/Z1GzK1NdXwpwQiqNMpjrEQekBrL2qnp4a+kppKaOnp/hG4xkAuM0/Mu948a+3HMYZNLRzj0/SqqYY/JRBBnUAgEAgEAkE/QGwTptNtwmw2m+pTxl1Fay9qp6eGvpKaSmipdQ3FNmHqoadnXms8Me9686ylH4vFwokTJxg+fLhqY8skSZJnl+pR0xUtsU2YQMaxFIAe0NqL2umpoa+kphJaerp/BK4xkMvME/OuN89a+1G7+3EgjH1WAxHU6RQ93TBiooS2mmKixMBkIJeZJ+Zdb57FRAnXNb/88ksMBkOXr5tuuskt/pRgwC4+rHfCwsLcbUFGay9qp6eGvpKaSmjp6f4RuMZALjNPzLvePGvtx2hUpk1Istko376dppISfKOiCJ82DYPJpEpXskPzoosuorCw0Ok7m83GHXfcQU5ODr/+9a9d1tIbAzao0/uOEs3NzWRmZupitXjH6tta7ShRUlJCZmamaqvFR0VFUVxcrOiOEhaLhSNHjiiyWnxzczOSJPVpRwnHNRQ7SnjOjhLJycns3bt3QO4oERsbKz9znrKjhOMZ08uOEtHR0fI11GJHiaCgoD7vKHHyf//j+Isv0lRcjAPf6GjGPf44oXPnUltbq+iOEr6+vlgsFlpaWggICJB3lGhpaeGuu+4iJyeHTz/9lOHDh9Pc3NztjhLe3t5yOnraUUJMlNDpRInMzEzmzp3rbhuA9l7UTk8NfSU1ldBS6xqKiRLqoadnXms8Me9686ylH4vFwqFDhxg7dmyvJ0oUrlnDjnvvhfNDkLbJB+N+9zuGX3NNH506U1tbS1BQkNNnNpuNH/zgB3zzzTd8++23pKSk9FrrfNwxUWLAttQJBAKBQCBQlpZuxvYZTCZMvr5INhv7n366Y0AHrZ8ZDBx/8UUSr7oKQ1s3Z2e6ff2j0hHQff311z0K6PSMCOp0ysiRI91tQUZrL2qnp4a+kppKaOnp/hG4xkAuM0/Mu948a+2nq23CHC35nRE1bx7T332X8u3bsRQVdS0uSTQVF1O+fTsR6ekAfDt3LtaKCqfDrmrrdncVX19f+f82m43bbrtNDugmTZrUay09IWa/6hTHODY9oLUXtdNTQ19JTSW01LqGUtsYVIDy7dud3gv6hp6eea3xxLzrzbPWfvoycquppETR41zF4dkR0K1Zs4a1a9d2COh27drFggUL5Pf/+9//uPvuu4HW8Ylbt25FkiR++MMf8vLLLyvqsa+IljqdkpeXx7Bhw9xtA9Dei9rpqaGvpKYSWmrksXDNGvY/9ZT8ftudd2KOiWH8E08Q264CFPQOPT3zWuOJedebZ639dLVN2MK2SSCd4ehK9Y2KcimN9sdd0jYJpC9YrVa8vLxYsmSJHNBNnjy5w3ETJkyQJ760tLTw9NNP8/nnnwOwfPlyfvvb35KWlobRaOSBBx7osy8lEUGdQCC4IF0NarYUF7Pj3ntJXblSBHYCgcClcW7h06ZhjonBUlzc+bg6g0Fe3qQnuhfCbrezZMkSPvnkEz766CNiY2MpOq8bODIyEi8vL4YOHUpeXh5ffvklV1xxBbGxsQB873vf47HHHqOyspJvvvmmz56URsx+1ensV6vVio+Pj7ttANp7UTs9NfSV1FRCS0k/ks3G2jlzuh4DYzBgjolhfmam/Je4oOfo6ZnXGk/Mu948a+lHiW3C5D8UwTmwa5v9OuW11xi8cGFfrTqRnZ3NjBkzuvzeYDBQVVVFcHAw999/PykpKaxYsYLNmzfLM123b9/O4sWLmTRpEh9//HG36YltwgQy+7ppwtYarb2onZ4a+kpqKqGlpB9XBjVbCgspb1v3StA79PTMa40n5l1vnrX209cxfLELFpC6ciXm6Ginz80xMaSuXEnonDl90u+MiRMnIklSly+73S4HWWlpafzqV7/iJz/5iRzQnT17lh/96Ed89913nDx5Ul7fUU+I7ledUldX524LMlp7UTs9NfSV1FRCS0k/7hrUPNDQ0zOvNZ6Yd7151tqPEttkxS5YQMz8+Z3uKOFY2FdJeuJ51KhRhIeH8+Mf/xiAxsZGbrzxRl577TUSExNZtmwZzzzzDKtWrVLcZ18QQZ1OCQkJcbcFGa29qJ2eGvpKaiqhpaSf3gxqFvQcPT3zWuOJedebZ639KLVNmMFkkpctaY+a24S5whtvvMFLL72El1drmOTn58fmzZvl72+44QaWLFmiuMe+IrpfdcqYMWPcbUFGay9qp6eGvpKaSmgp6Sd82rQOXSSdUfzdd7S0bccj6Dl6eua1xhPzrjfPWvvpap06pejtWL2+aubm5jJ69GgCAgJYtGhRn7TcgQjqdIpjnzg9oLUXtdNTQ19JTSW0FM2j0Yi/C0slnHj3XTIXLqSkbQ9SQc/Q0zOvNZ6Yd7151tqPY09XtXDsIau15ogRIzhy5AivvfZan7XcgQjqBAJBtxx5+WUqtm0DoxHvsDCn78yxsaS+8QZpf/wj5thYGvLz2XrHHa1bAAkEAoFAUwbsmLqVK1eycuVKbG0r4mdlZREQEMCMGTPYs2cP9fX1hIaGMmrUKLZt2wZAUlISdrudEydOAJCens7BgwepqakhKCiIcePGsWXLFgASExMxmUwcP34cgGnTpnH8+HEqKyvx9/dn8uTJbNq0CYD4+Hj8/Pw4cuQIAFOmTMFgMJCZmYnZbCYtLY0Nba0fQ4YMITg4WF4YcdKkSRQUFFBSUoK3tzczZsxg48aN2O12YmNjCQ8Pl2foTJgwgdLSUoqKijCZTMyaNYtNmzbR0tJCVFQUsbGx7NmzB4Dk5GSqq6s5e/YsNTU1AGzZsoWmpiYiIiKIj48nJycHaG32b2ho4PTp0wDMmjWLnJwcGhoaCAsLY8SIEezYsQNo3cqmubmZvLw8ADIyMti3bx91dXWEhIQwZswYampqyMzMZMSIEUBrczjA9OnTOXz4MNXV1QQGBjJhwgSys7MBSEhIwNvbm2PHjgGQmppKbm6ufL2nTJlCVlYW0Do2ori4mMOHD8vX+/Tp05SVleHr60t6ejqZbQtdDh48mJCQEPl6p6SkUFhYSElJCV5eXsycOZOsrCxqamo4cuQIkZGR8iy08ePHU15eTmFhIUajkdmzZ7N582aam5uJiooiLi6O3bt3y9e7pqaGM2fOUFNTgyRJbNu2DYvFQnh4OMOGDZOv9+jRo2lsbJSv98yZM9m1a5d8vZOSkuRrmJSUhM1m4+TJk/I9e+DAAWprawkODiY5OVm+Z4cPH47RaJTv2bS0NHLefJOKlStb8/PMM+SFhtLctgxB0u9+R3FoKEeNRlJTU4l++WUK330X69q1hEycKF/DoUOHEhgYyKFDhwCYPHkyZ86cobS0FB8fHzIyMtiwYQOSJBEXF0dYWBgHDhwAWmerFRcXU1xcLN+zWVlZ2Gw2oqOjiY6OZu/evQCMGzeOyspKCgoKMBgMzJkzh+zsbKxWK5GRkQwZMoRdu3YBMHbsWOrq6sjPzwdg9uzZ7Nixg8bGRsLDw0lMTJTv2VGjRmG1WuV7Vq06YvDgwezdu9flOuLUqVOUl5froo4AmDt3bq/riLi4OPl+caWOcLRKqVVHxMfH4+/v320d4XjGXK0jbDYbMTExitQRAHPmzHGqI2JjY+Vr6Eodsb1ttnpv6ojc3FwCAgKw2+00NDRgs9kwGo34+fnJLVg+Pj4YDAa5Rc/f3x+r1UpLSwtGoxF/f395coePjw9GoxGLxSIfC1BbW4vBYCAwMFCeOOHt7Y3JZJKP9fPzo7m5WV4MOSgoSD7Wy8sLb29vGtuGhXh5eWGxWOSZu0FBQdTV1SFJEl5eXvj4+NDQtses2WzGbrdjtVoBCAwMpKGhAbvdLus60vH19UWSJPnYgIAAGhsbsVgsWK1WLBaLfM8mJSVRXV2NWoh16nS6Tt2ZM2cYMmSIu20A2ntROz019JXUVEJLCY3ybdvI/sEPkGw2Rt57L2OWLaOloUHe23Hhvn2dLghae/w4gSNGYGhbb6ps82bMsbEEJib2yU9/R0/PvNZ4Yt715llLPxaLhWPHjjFy5EjVxpb1h/VExTp1ApncHm5UrCZae1E7PTX0ldRUQksJjZBx44icM4ch11zD6B5shROUlCQHdNbqanbefz+Zl1/O0ZUrsbf9JSvoiJ6eea3xxLzrzbPWfrraJkwp1Bizp6Sm2mMKe4sI6gQCQad4BQQw7a23SHn+eTlI6yl2i4WQ5GTsVitHVqxgw9VXU7Fzp8JOBQKBQACi+1W33a8Wi0U3U6a19qJ2emroK6mphFZvNZprazn72WcM+/73Ow3kXOl+PR9Jkjj72WcceOYZrBUVYDAw7JZbGPvgg3i3rdQu0NczrzWemHe9edbSj2ObsISEBHn8m9LY7XbF1sJTQ9MVrYaGBk6dOiW6XwXIA3T1gNZe1E5PDX0lNZXQ6o2GvbmZHT/7GfuWL+fQiy/22YMDg8HAkKuv5qKvv2boDTeAJHHqww9Zv2ABVhUHDHsaenrmtcYT8643z1r68fHxoampiYKCAqqrq+VJAUq+qqurda3ZnVZjYyPV1dUUFBRgNBo13SN4wM5+1Ttqzo7pKVp7UTs9NfSV1FRCq6cakiSx9/HHKcvKwuTnR9zll/fZw/n4hIUx6YUXGHLNNex9/HEGpabio7NV+d2Jnp55rfHEvOvNs5Z+jEYjtbW1DBo0iIKCAlXS6A89Kv7+/sTHxyve4tgdIqjTKYGBge62IKO1F7XTU0NfSU0ltHqqcez118n/6CMwGpn66quEtnWxqkFERgZzv/zSadJEQ0EBxWvXknDrrRgusJWPZLe3duO2w+TnB+d1F5v8/Ho9FtAd6OmZ1xpPzLvePGvtJyAggPj4eFpaWuSlwZTkwIEDJCo8Y15JzQtpmUwmvLy8NK+DxJg6nY6pU2M6d2/R2ova6fWHqfJKauR//DG7f/UrACY8/TQJt97a5bG9GVN3ISRJYttdd1Gybh2hKSmk/OY3BHex5ZFkt/P5yJEu6SrlTyv09MxrjSflXbLZKN++nfrCQgJiY+UN6N2N4xo6/DWVlOAbFaWaP1FP915LjKkbgDgWzNQDWntROz019JXUVELLVY2yzZvZ8+ijAIy4665uAzo1ib74YrwCA6nas4cNV1/NoRdf9Lh9ZCWbjbItWzj76aeUbdmC1MPWCz0981qzedOmPl07rShcs4a1c+aQfeut7P3Vr8i+9VbWzplD4Zo17rZGdna2k7+cBx5Q1Z+op/X5vIruV4FgANNYVAR2O3GXX87Yhx5yiweDwUDCLbcQc8kl7H/6aQpXr+b4229T8NVXTHzmGSJnzTp3rNHIlceOyd2vtsZGvp03D4DLtm7F1K5lzuTnp7p3R1dw8bp1HF6xgqaSEvk7c3Q0Yx95hJj5893eFaxV601vKFyzhrrHHiO7slL+zBwTw/gnniB2wQI3OnOmcM0adtx7L5zXuWUpLmbHvfeSunKl2/xKdjvWjRvZ8ec/d/jO4W/yihUMvuoqjxqSIOg5vQrqLBYLe/fupaSkBLvd7vTd1VdfrYixgU5CQoK7Lcho7UXt9NTQV1JTCS1XNYZedx0B8fGETJiAQcPBvJ1hjo4mdeVKitauZd+TT9Jw+jRbli5l6quvEnfFFfJxBqMR34gIoLU72IHJ31/T7tYLdQVbiovZ1bZosytdwWrd94Vr1rD/6aexFBXJn+khaJLsdvL/8x/2PPJIh+/0FojYm5vZ93//1yGgA1o/MxjY//TTRF9yCUYv135WJUkCSUKy20GSMHp7y9+11NUh2e1INpv8vWS3I9ntGL285PsfoP7UKb67+OLuEgJg1wMPEH3RRYotIyTqaeW0lKTHQd3q1atZsmQJZWVlHb4zGAyqDJgciHi3e8DdjdZe1E5PDX0lNZXQ6k6jpb4em8WCb3g4AINSU/ucnpLEzJ9PRHo6h1esoGTDBqIvucTdlvqMK92JatyXemldkiQJu9WKrbERW2MjLfX1rO8u3XaBSMOZM5i8vQkZP56IjAwAmmtqyH333dbr2i74cfw7aOpUBl91FdAaIO178kmn79v/G5Gezogf/QgAW1MTW5YudT7OZqOmbV/X7vxaiopYk5qK0dsbyW4nIiOD1Ndflw9ZM20azbW1rX7bAjUHg6ZNY+Y//ym///bii7GWl3eaVMi4ccz59FP5ffZtt3XvrR0VO3YQfdFFLh/fHaKe1s9vdHt6HNTdd9993HjjjTzxxBNER0er4UkAHDt2jLi4OHfbALT3onZ6augrqamEVlca9pYWdv7859SdOMH0995zeT9Wi7V1SyCb9dzWQE3WFlq8Wt+bfZQdyeEVGMj4J57AZrFgals2QLLZOPDssyQuXUpA21/J7YOl8u3biZo1S7NuRXtzM5NXrGDXsmUXPHbv8uUEJiZi9PbG6O1N9Pz58rVvKCigas8eDh45gtfkyRi9vTH4+MjH+g8ZgnfbYGpbUxM2iwVj2/cGk6nLVqyetC4ZTCZsFgu2hoZz/zY20tIWhAUOH05AfLzs98x//kNL2zHtXy0NDcQvXsyQRYsAqNq/n+xbb21tUT2vV8dVjvz+9wAk3nGHHNS11NVxrF3A1FneHUGdvbmZM5980uWx3ucNVK9o2+i+N7S0bfDu8OjkyWpFattIvgPnlVGHVnODofUzoxHDeS2BXj1oeWuuqXH52Ash6mn9/Ea3p8c1cXFxMcuWLRMBnUCgImos2yFJEvufeoqS9esx+vrSXFXlsp9FL7QOtPZqbuInbZ8tXrGWFm9fANYsv6KLM/uGqd06UCf/+ldO/uUvnFq1ilH33Yd/fDwHn3tO/n7bnXcq1q3Y0tCApbgYc1QUXgEBABSvX8+pf/wDS2EhjUVFXbakdEbBZ585vQ9ISJCDuort2+XAcGsn505++WWGtA1rKcnMZMc995z70mBoDf58fDD6+DDusccYcs01SHY7X3Qxg1imrXWpdNMmjCYTW5Yu7fLQ5MceY8SddwJgKSriyCuvdHls+PTp8v+N3t4dghujjw9GX1+nAKg7QqdMITA+3mmZHa/AQBJuu+1coGM0tga4JhMGo5HQiRPlY03+/iQ/8gi0BcDtjzOYTPgPG+bkd+rrr7d+1/a9vbmZHT/9qUteJ/7mNwyaPBmMxg7d7fO++so5ODMYWv81mTp02V6SmSl7kI/tgrmff07Jhg1sayuf7jCL3+1+T4+DuhtuuIH169czYsQINfwI2kjVUZeY1l7UTk8NfSU1p06Z0udlOzrzk/vOO5z6+9/BYGDKyy8TNnlyn71qSfRFF1G8bh1lWVkc/t3vOj3mQt2KjhWcHD+S1QcOUPTtt3KgZikuxlJURHPbQq7pH3wgT9RoKiujeO3aXnmPWbAAc2QkdqsVu9WKX7u/8H3CwhiUlkaLxYLBZsPe3HzuZbU6lW+Hlp62bk3Hmn9S2ybrtnZjDS9EU0mJU4ut0dcXk5+f/PLy83NaJNocE8Ow738fk78/JrNZ/ter7d/2y9EEJCRw8bffth7j54fJbG7tnpQklwORsb/8JRHp6U6feQcHM+H//s+l/Jl8fRlx110uHWswGolbuNDpM0mS+N7u3axfsABLSUnnLZ+AOTaW+Btu6LKl2K8HrTomX1+XjzUYDETNmoVvdHTrRJ3O/BkMmGNiCJ82zWXdCzHQ62k9/Ua3p8fr1DU0NHDjjTcSGRnJhAkTOvQr//znP1fUoNrodZ26vXv3MrHdX5vuRGsvaqenhr6Smnt27+b09de7dGxXQd35fs5+/jk5v/gFAOMef5zhd9zRI0+O7tf66lo2p7dWZjO27CAgpLXrR+nu166QJIkzH3/M7oce6vLHFVoDpVH3309TSQmWoqLWgK3t32lvvCEHaqc/+og9Dz/cqYbJ359JL74o/8jXnTxJWXY2frGxmGNi8A4J4dvZs13yfcXhw04D4TvDlXtIkiSklhanoM/e3IzU9q9vVBQ+ISFO6wleiPS//Y3wadOwNzVhMps1676WbDbWzpmDpbi420BkfmamLmbqyuMTwdlv2x8I7pz9CrDl7bcpfeml1jca+Bvo9XRftNSMO3pcE//jH//g66+/xmw2s379eqdmYYPB4HFBnV6pbDe9391o7UXt9NTQV1Kzqrq6z8t2tPdTvn07ux98EIDE22/vcUAH54I2m/e5H1ezt0mzYM6BwWBobfG4wN+i1spK9j/5ZKffNbabBRo8Zgzxixdjjo3FLyYGc0xM67+xsXgFBjrVb4GJiU4tWpIksXDfPorWrj03rq4TX1Nff/2CAR24dg8ZDAYMbWPtusPk5+dy61JEWlqnXYBqYzCZGP/EE+cCJacvW6/7+OXLdRHQAcQuWEDqypWdzyRevtzty680jRmjqb+BXk/r6Te6PT1+ih977DGeeuopHnnkEU33M+uOa6+9lvXr13PJJZfw0UcfuduOIvjraCV8rb2onZ4a+kpq+vv793nZDocfSZI4+NvfYrdaibnsMsb9+td98mYwGjr9v5a0XwuuO4LHjycsJaVDsNa+Gyx0/HhCn3++Vz4MBgNe/v4MufpqTL6+HX9MY2N79GOq5D1kMBjwDgpi/JNPtgZNBkOnrTfuDpocgVLO449jbzeGVC+B0vnELlhAzPz5lG/fzsEtW0hOT9fNmn/+/v7Ezp0r+1N7TUJRT+vnN7o9Pe5+HTRoENu3b9fVmLr169dTW1vLBx980OOgTq/drzabDZMOKgrQ3ova6amhr6Tm+Vq92ZqrvUZTRQVHX32VsQ8/jFcfF+RVY5uwnlK2ZQvZLux8kfHhhx3GYqlJXxf4Veu+73Sduh4GnGrTYrVSlZOjy8WRu0JPdTSIelprzb5o6WqbsKVLl7Jq1SpFTfSVefPmEaTQgop6ISsry90WZLT2onZ6augrqamE1saNG+X/+w4axIT/+78+B3R6IXzaNMwxMR1mAssYDJjb9uTUEoPJRER6OoOvvpqI9PQeByVq3fexCxYwf8MGMj78kCkvv0zGhx8yPzNTNwEdwKbs7D5dO3egpzoaRD2ttabeyt9Bj7tfbTYbL774ImvWrGHixIkdJkqsWLGiR3obNmzgpZdeYufOnRQWFvLxxx9zzTXXOB2zcuVKXnrpJYqKikhJSeG1114jLS2tp9YFggGBZLPR+OabnCoqYtjNN7vbjuI4jcXSabei3nAEnAKBoH/T45a6ffv2MXnyZIxGI/v372fXrl3ya/fu3T02UF9fT0pKCitXruz0+1WrVrFs2TKefPJJcnJySElJYcGCBZS4OK7GU4lvW+hTD2jtRe301NBXUrOvWgeee46WHTvY/9RTNBQUKOSqlabzFh92F46xWOaoKKfPzTExbp+F2Fv09MxrjSfmXW+eRT2trabeyt9Bj1vq1q1bp6iBhQsXsvC8dYHas2LFCu666y7uaJux99Zbb/HFF1/w3nvv8UgnewZeiKamJpqamuT3NQqusK0kehqEKSZKaKvZF60Tf/4zJz/4AIBJL72Evw5XPFeK2AULiJgxg9WTJgGQ9t57mu4ooTR6eua1xhPzrjfPop7WVlNv5e+gT3PYN23aRGpqKr49WCixJ1itVnbu3Mmjjz4qf2Y0Gpk/fz7Z2dm90nz++ed56qmnOnyelZVFQEAAM2bMYM+ePdTX1xMaGsqoUaPYtm0bAElJSdjtdk6cOAFAeno6Bw8epKamhqCgIMaNG8eWLVsASExMxGQycfz4cQCmTZvG8ePHqaysxN/fn8mTJ7Np0yagNeL38/PjyJEjAEyZMoUNGzYQFRWF2WwmLS2NDRs2ADBkyBCCg4M52LYX4aRJkygoKKCkpARvb29mzJjBxo0bsdvtxMbGEh4ezv79+wGYMGECpaWlFBUVYTKZmDVrFps2baKlpYWoqChiY2PZs2cPAMnJyVRXV3P27Fny8vJYunQpW7ZsoampiYiICOLj48nJyQFgzJgxNDQ0cPr0aQBmzZpFTk4ODQ0NhIWFMWLECHbs2AHAyJEjaW5uJi8vD4CMjAz27dtHXV0dISEhjBkzhtWrV5OQkCBPxsnNzQVg+vTpHD58mOrqagIDA5kwYYJ8HyQkJODt7c2xY8eA1oUhc3Nz5es9ZcoUeQxEZWUlGRkZHD58WL7ep0+fpqysDF9fX9LT08nMzARg8ODBhISEyNc7JSWFwsJCSkpK8PLyYubMmWRlZZGbm0t6ejqRkZHs27cPgPHjx1NeXk5hYSFGo5HZs2ezefNmmpubiYqKIi4uTm7dTk5OpqamhjNnzpCXl8eSJUvYtm0bFouFsLYdDRz36ZiJE2lsbJSv98yZM9m1axfVGzfS+MYbADTMn8/xoCA4exabzcbJkyfle/bAgQPU1tYSHBxMcnKyfM8OHz4co9Eo37NpaWkcPXqUqqoqAgICSElJYVO75664uJj8Pbvk633y5EnKy8vx8/MjNTVVHtc3dOhQAgMDOXToEACTJ0/mzJkzlJaW4uPjQ0ZGBhs2bECSJOLi4ggLC+PAgQMATJw4keLiYoqLi+V7NisrC5vNRnR0NBHtBxkPH87xEycoKCjAYDAwZ84csrOzsVqtREZGMmTIEHbtavU7duxY6urqyM/PB2D27Nns2LGDxsZGwsPDSUxMlO/ZUaNGYbVa5XtWrTrCarUSHR3tch1x6tQpysvLdVFHAMydO7fXdURxcTE+Pj6Aa3XE1q2te2+oVUfEx8fj7+/fbR3hqKdcrSNsNhsxMTGK1BEAc+bMkeuI8PBwCgoK5N/i0aNHd1pHOK53UlIS29u2Q0tKSupVHZGXl8fixYs71BGbN2+Wr7ePjw9Hjx6Vr3dP6gjHb2Bf64jo6Gj27t0LtK6zm5SUpEgdUVhYKN+zPa0jqtsWN1cFqQ8EBQVJubm5fZFwApA+/vhj+f3Zs2clQNq8ebPTcQ8++KCUlpYmv7/kkkukiIgIyc/PTxo8eHCH49tjsVik6upq+ZWfny8BUnV1tWL5UIL169e724KM1l7UTk8NfSU1z9dqrq+XPh0+XPp0+HCpub6+03PKd+6UPh87Vvp0+HBpz/Ll0rp16xTz0566ymrZS12l+58ZV66Np6CnZ15rPDHvevMs6mltNfuiVV1drVrc0aeWOqlnq6GoxtoebN3j6+urWsuikkyZMsXdFmS09qJ2emroK6nZU62msjK2//jH2JuaiLroIsY/8QT1jY2K+RFog56eea3xxLzrzbOop7XV1Fv5O9B2CfEeEhERgclkori42Onz4uJiYmJi+qS9cuVKVq5cic1mA/TX/bpp0yb8/Px00bVSUlLCjTfeqGn3a1RUlGpdK3a7neTkZEW7XwsLC5k4caIiXSslJSXccMMNLne/zpgxA59LL6Vl61Z877oLi9UqX8Pedq2A53W/lpeXU3P2rMd2vwYFBeHl5TUgu19bWlqora0FPKv7NSoqSjfdrxaLhfr6ekCb7teSkhKuvPJK1bpfs7OzMZvNina/+vr6yl3Vfa0jmpqaqKur61Udodvu1w8//FCqq6uTJEmSbDabdOrUqT41G3Je96skSVJaWpr0s5/9TH5vs9mkwYMHS88//3yf0nKgZjNoX9BT075o1tdWszfdr5IkSS0Wiyp+2iO6X9VDT8+81nhi3vXmWdTT2mr2m+7XP//5z6xatYpTp04RHBxMTk4ODzzwAF5eXiQmJsotX65SV1cn/6UKcPLkSXbv3s2gQYOIj49n2bJlLF26lNTUVNLS0njllVeor6+XZ8P2V/TURay1F7XTU0NfSU1XtCS7nRPvvsuwW27Bq60lz9TuPNWuYfsFf7ta/FfQK/T0zGuNJ+Zdb55FPa2tpt7K34HL24TZbDauu+46Vq9ezRVXXMHIkSOprKxkzZo1VFZW8tprr3HnnXf2OKhbv349F110UYfPly5dyvvvvw/A66+/Li8+PGnSJF599VWmT5/eo3S6Qq/bhAkEDjrbmuvgb39L7h//SNjkycz8178waLQPc1NdPV+nTARgyOeZTBw9GJOGe8BKkoSt3XhBW0MDX7fVBZesX4+pbdcMn0GDNLsmAoFA0BPUjDtcbql7+eWX2b59O3v37mX06NHy53a7nRUrVnD33Xf3ysC8efMuOOHiZz/7GT/72c96pd8Veh9T5xivoYfxMlovabJq1SqxpEm7JU1C223vtf6994g0GDj9xz8C0Jiais1uZ9fOnU7jZf7973+TkJCg6Ji6enMMb36yHceuq4//Yxt+AWYuTfLlB99L12RMXfqUKXKAez7fzpvn9P7KY8fYsnWrx4ypE0uaeNaSJh988IFY0kTFJU3WrFkjljTpBS631I0fP55HHnmEH/zgB51+/9JLL/Hwww9jt9sVNag2em2py8zMZO7cue62AWjvRe301NBXUrO9VuGaNex/6iks500WAhj9wAOM6uKPHaXzmHWokGc+ysGruYmffPggAG/d+hIt3q0/IstvmMKssbGKpdcV7VstL8SVx455VGudnp55rfHEvOvNs6intdXsi5YuWupyc3O77fJ88MEHefDBBxUxJWhtIdILWntROz019JXUdGgVrlnTur9pF393BSYlaeLHZpd4c83Bbo956+uDZIyOUb0r1uTnx8K2Vg6Z87pkwTO7X/X0zGuNJ+Zdb55FPa2tpt7K34HLtV5AQAClpaVdfr97927uvPNORUwJICQkxN0WZLT2onZ6augrqRkSEoJks7H/6ae7DOgwGDjw7LNIXYxhVdLP/tMVlNVauj2mtMbC/tMViqXZFQaDAS9/f+dXQAC+ERFOL08L6EBfz7zWeGLe9eZZ1NPaauqt/B24XPPNnTuXt956q9PvioqKuPnmm/mgbc9JQd9xjM/QA1p7UTs9NfSV1Dx48CDl27djKSrq+iBJwlJYSHnbuBg1/VTUdR/QOVi79wzVDVbF0h1o6OmZ1xpPzLvePIt6WltNvZW/A5e7X5988kkyMjIwGAw8+OCDJCUlUVFRwWeffcazzz7LsGHD5AGonoDeJ0qUlJSQmZmpi0HQeXl5fRoE3dOJEo7v1JwoUVxcrOhEiby8PMUGQefl5TEiLMyl+3h3ZibzUlM7DIJ2XMO+TpQ4dPgIX+d0HM/XGV/vOcPavWdICvdh0cwxSGW5+JgMqi4+3H4Q9Lhx46isrPTYxYetVit79+4dkBMlrFar/Mx5ykQJhz+9TJRoamqSr6FWEyU6W6BcqYkSjt9ApSdKHDt2TJE6ov0965ETJQA2bNjAnXfeKRc+gJeXF7/4xS+47777GDZsmJgooRBVVVWEhoa62wagvRe101NDX0nNqqoqWg4fJvvWWy94bMaHHxKRnq6Kn32nynn9qwPkldbKn3U1USLA14vYMH+OF9XIx/p6GckYHcMDV07A7KPrzWt0gZ6eea3xxLzrzbOop7XV7IuWmnFHjwaezJkzh6NHj7Jp0yb+9re/8emnn1JYWMiLL77IoEGDePLJJxU1N5ApLCx0twUZrb2onZ4a+kpqFhYWEj5tGuaYmK4X+DUYMMfGEj5tmmp+TpTUkldaS5CfN5dPGdrtscuumsjKu2bzp3vm8oM5Ixk8KICmFju5RdX4epvk4/LL6rDrZM9ovaGnZ15rPDHvevMs6mltNfVW/g56PJrYaDSSnp7O97//fa644goGDRoEtE6kEEGdcpSUlLjbgozWXtROTw19JTVLSkowmEyMf+KJ1g/OD+za3o9fvhyDyURn9MaPtcVGflmd/P7KqfEsmTuK9+6dxy+umMjyG6YwKMh5FfXIYLPTciZDIwK5be4o3v3pXF774UzuWTAOQ5vfpmYb972bxW1/+I4/rj3E8cLqC65ROZDQ0zOvNZ6Yd715FvW0tpp6K38Hok9Ep3h56adotPaidnpq6Cup6dCKXbCA1JUrO6xTZ46JYfzy5cQuWKCIH0mS2HqshLe+bh0T9M5P5uDjZcJkNHLrnJHycbPGxpISM5v1bfOlnlw8lanJ8Z0uY2IwGBgVF+r02anSWowGA2W1Fj7KPsFH2ScYGh7AvPGDuWhcHIPDA1z23B/R0zOvNZ6Yd715FvW0tpp6K38HPRpT159oP1Hi6NGjfPHFF7qaKNGfBkH3dKKEHgZB93SihJqDoEP9/Dj9/e8D4PfAA4y79losVqsig6BDYxJ46T9bya1snTAU6u/NDWO9iAowdToIetO6ddTecw8Ak7/5hty2QcSuDoJusUtIofF8ves0BwrraWk3BPd7Sb5cmTpswE6UEHWEqCP6MlFi2LBh8vXWYqIEdNx1RsmJEv15MlV1dTXjxo1TZUzdgA3qHOh1okRWVhazZs1ytw1Aey9qp6eGvpKa52t1tvdrX/00Wlv4x8bj/HfrSZptdryMBq5LH84ts5Pw62ZSQ2+8dEV9UzObDxez7kABu06U8aefzmXwoNbWun2nyimobGDWmBgCzN5O59kliZq2pVPM7cbrGQwGp/F7noaennmt8cS8682zqKe11eyLli52lBBoi62LRWXdgdZe1E5PDX0lNZXQ6k6jsq6Jn/0pS15QeFpSJD+5LJkh4YF9TrcnBPh6c2nKEC5NGUJNg5Vgfx/5u4+3nmTTkWJe+3I/aSOjuGh8HNNHRuFlMrLw2S871RsyKIB37pmr+q4WaqGnZ15rPDHvevMs6mltNfVW/g5EUKdTYmJi3G1BRmsvaqenhr6SmkpodacRFujL8JhgvL2M/OSyZKaPjJInM1yIpmab0/+VqkDaB3QAY4eGkV9ez+myOjYdLmLT4SL8fb2YOTq6S40zFfUsefU77lmQrMk+tEqjp2deazwx73rzLOppbTX1Vv4ORFCnUyIjI91tQUZrL2qnp4a+kpqRkZFOXYy2hqY++alptPKPjce5aeYIQgNaZ6/+8qqJ+Pt64ePVw+7K9qM1VBy5cWPGCG5IH86J4lrW7T/L+gMFlNZY+GbvWUbHhXDF1GGs+Gxvh/PKai0881GO04xcT0FPz7zWeGLe9eZZ1NPaauqt/B143gaJA4R9529a7ka09qJ2emroK6m5d+9eFj77JTetWMtNK9ay5LV1vfJjs0t8sfMUP1y5nv9uPcmfvzsifx8a4NvzgE5jDAYDI2KC+dH8sfzl5xfz+6UZXDk1noVT4vnL+qPdnrty9QFqG5s1XTLFZpfYk1fOuv1n2ZNXjs3es7TVvO/76k1t9FTfuYrePIt6WltNvZW/A9FSJxD0Q85U2/j5u1nyDg/DIgO5aHycm131HqPBwPj4QYyPH8SevHJ5PGBXVNQ1ccPvvuaeBclck5YIwOmyOv6TfYLQAB9CA3wJC/CV/x8a4EOwvw9GF7uhz2fd/rO8880hKurOtaqGB/ly1yVjuWjC4F5pKkXWoULeXHPQ6ZpFBJk9tptaIBB0zYAN6vS+96uvr69u9n5tbGwE0Gy5gsbGRjIzM1VbriA0NFTxvV8bGxs5cuSIIssVWCwWvnxsIeuzttLUZCHMP4KyD5Hv0zETJ3a5XIHJL5iN+XbWH2wEGvHzMXJ1SjQJvjVUnz5AU1zflivY1Ha9AYqLi8nfs0u+3lotV5C9c0+H57krSs6eIjPzNJGRkRRa/Vi9O7/LYy8fE8CkKAPh4eF4BUfxzpe7CPAxEB8XSYC3gcbqcgJ8DMxOTyX/xBGaGhsIDQ2lnFBe+HR/B73y2iZ++8luzuSfIj6g+YJ1xIgRIxTf+/VASTP/O9yx+97RTf3DmbFckjJMF0uaeNrer456Si9LmiQmJmq692tjYyONjY2qLWliNpsV3/t18ODBiu39Onz4cM/f+7U/otclTY4ePcqoUaPcbQPQ3ova6amhr6Tm+Vr11bV8N2USABfn7CYgJKjLc9/+5iD/3dJaOS+YNIQ7Lx4jj6NTgvqqGr6bOrnVy85dBIRq/8zsySvnob9uueBxz3x/GpMSwuVu5tNldWQdKqSq3kplfRNV9U1U1Vupqm+iprGZR6+dzLy21szNR4p46l87u9R2tADa7BK3vLKWqnprl8cOCvTlb7+4BJPRQE2jlRNFNZhMRrxNBkxGI15GA14mI/mnT5EybhQBvq1LuNgliRabHS+TsVctiDa7xKLffkWzresqPjLYzAf3Xez2GcN6qu9cRW+eRT2trWZftMSSJgOQwsJC3VQYWntROz019JXU7KB1gckJTc02eX22W2aNJL+sjuTAOm65KkURP3pjfPwgwoN8Ka/tegJJZLCZqcMjnYKV+IhAbpk9stPjW2x22l/ZYRFB3DV/7LnAr6GJyromqhqsVNU1yYHy/tMV3QZ00NoVvP90BSkJ4RwvrOHRD7d2eexdTX7ckDEcgMNnq3jgz62tHkaDAS+TAS+jsfVfk5EbZ4zguumtXctny+v5zX9z8DIZMRkNeJuMNFhbug3oAEprLOw7Vc6kxIhuj1MbPdV3rqI3z6Ke1lZTb+XvQAR1OsVo1M8cFq29qJ2eGvpKap6v1X5Q+/4zlaQGB2EyGiiqauCdrw9S39TCb38wHYPBQJCfN89+P03u1lCc9i1GvRx/1ldMRkO3AR3ATy5L7lHrk5fJ+ZoPDg+Qg6vzkSQJR5FU1HU/ts+B4zhfbyPDIgOx2SSa7XZsNokWu50Wm50mawu+3ud82GznttuwSxLWFgkr5z6ztltepsHaIo+f7CmP/2MbcYMCiArxIyrEj/SR0aSNjJLTlSTUb8kzGNiTV05FnYVBgWbGxw9ye+vhhdBTHQ2intZaU2/l70B0v+q0+1UggNZB7m9/nsPit34OwFu3vkTIoGDGDR3ElqPFWFvsGA0GXv/RLEbEqH//KrmjRF9Y8MwXXX6XFBPMyrtma+LD1a7gF29LJyUhvEfaNruExdpCi721G7bFZqfFLmGz2Wm2SYQF+jAo0AxAvaWZA/mVtLQFis02OydLavnX5twe5+m2OSP5wdzWFogz5XXc/dYGIoPNctDX/pUQGUR4kLnHabRHTOQQDDRE9+sAZPPmzcyYMcPdNgDtvaidnhr6Smo6tLIOFfLMRzl4NTu3SpXXNrHhYCEAKQnh/HTBOBKigjrV6K/87+EFQGvgc+BMJaXVjUSF+JE8JAxvL+3+gh4fP+iCx0QGm1067vwyMxkNHbZI64oAs7fcuubAZpcuGNRFBJn5zS1plNVaKKlppKSq0Sn4LKm2YLNLFFU1UlTV2OH89gFgSXUj73xzkKgQP6JD/IgK8ScqxExUiD+BZq8OC1zbJYm1e8/w+089c71BvT1jop7WVlNv5e9ABHU6pbm52d0WZLT2onZ6augrqdnc3IzNLvHmmoPdHhfs581vbknr0HWotB89Ym63P21aUlQ3R6qLyWjgkWsm8dtPdnd5jKtdwUqXmSve7lmQzLCoIIZFdT75JiUhnL/94mJKqhsprmps/be69d+S6kbi2vbqBThTXs/GQ0Wd6vj7eHHHxaO5eloCAFX1Tdy0Yu0F8/DW1wfJGB2jy65YvT1jop7WVlNv5e9gwAZ1el/SxGKx6GZJk9LSUkC7JU1KS0tVXdJEkiTFlzQpLS1VbEmT0tJS9p268FpsNY3N/P3zddxyxdwOyxU4rmFvlyuAzpc0WZ95bqze6TMF5Beela+3VkuadLVcwbhx46isrFRkuYLExET5nr3QcgXpo0ZxXbKZb443UWs9N5ol2NfATxdOIMBSRGbm0QvWESEhIYovaWIEfnn5GN5dd4yqRpuTt/kjfIky1VJe7tNtHXF0Xw4tLS3ERkUxZXxbHREIyZe21hHyMhop0/jeaH8q6ppplLypbzFSVFlPQ7NEg7WF2upKMjNPAeAfN6bbe9tBaY2FHceKsFedwWpp0NWSJo5nTC9LmgQFBWm6pElpaamqS5o0NTUpvqSJ2WxWbEmT4OBgsaSJHtHrmLrq6mpCQkLcbQPQ3ova6amhr6RmdXU1Ofl1/Pbj3QB4NTfxkw8fBFrH1LV4n1ui5JFrJ3HR+I6L26p1DfWwpIlesdkl9p+u6PVgfzXv+7566wuWZhsl1Y2E+vvIe/zuPVXOHz7fx5mK+guef9PMEazalEuwnzdRIX5EBreO54sMMRMd4s+YwaFEhfipnQ0Zx7U8U1LJkKgw3UzqEPW0tpp90VIz7tDn9A2B/NeZHtDai9rpqaGvpObu3bvlAfAXoqvj9HT/DBRMRgMpCeFcNH4wKQnhPf6hV7PM+uqtL5i9TcRHBMoBHcDEYeH8/IoJLp3vaHaoaWzmeFEN2UeL+d/2PP609jDP/SeHXSfL5GMP5Ffw4F+yefGT3by/7ghf5pxm+/ESTpXW0mht6XNesg4VsuTV73jor1t4dc0RHvrrFpa8+h1Zhwr7rN1XRD2traZe69gB2/0qEOiZ8fGDiAgyd9sF6+oAfIFAj7i63uDtF43m5pkjWsfx1TRSUm2hVP5/I0PCncf17T1V0aXer65O4dKUIUDrYtRbjxYT6ZjNG+xHWKBvpwGvp0/qEAwcRFCnU5KTk91tQUZrL2qnp4a+kprJya0D6+9ZkMwzH+V0eVx3A/D1dP8IXGOglZnJaOCnC8a5dI8HmL1JNHuTGN19V9WkhHAevmYSpW0BX0lNWwBY3Uh9UwsRwedatg+dqeRP3x7u4Cki2Ex0iB9L5o5iwrBw7JLEwme/vGB+3D2pQ9TT2mrq9XkVQZ1OqampITIy0t02AO29qJ2eGvpKajq0Zo2NZfkNU3j7c+cfvchgMz+5rPs1vPR0/whcYyCWmeMef+3LvVQ1nOsedeUe74zoUH+iQztfO7He0uy03E1UiB8Xj4+TA7/SmtblW4qrWmf6tth7Nty8tMbC/tMVjIoLocUmdbqMi5o47h+txk+Kelqfz6sI6nTKmTNn5Jld7kZrL2qnp4a+kprttWaNjWVi9Cwy32r97onFU0lNjr9gJa2n+0fgGgO1zGaNjaW5+AiDElJVDUTOX/NvcmIEk9ttj2azS1TUWSipbqS02sLwtlZBo8HApROH8M3eMxdMo6LOwrr99fzhi314m4yEBfoSGuDDoABfwgJ9CQvwZf7EIQxu6zK2NNuw2yX8fEx9DgDPnDlDodVfs4WcRT2tz+dVBHUCgc5p/+M2fkiYe2fa6WCbMEH/w2gw9HjHDaUxGQ1EBrfOrmWo83eXprgW1A0KNHP4bBUAzTa7vJ5fe1ISwuWg7rt9Z/nDF/vw9TYRFuAjB36Ofy+eMJjBbWsBNjXbkGideHI+dklib1Ezn2/o2JUtxvwNLMSSJjpd0kSSJE2b7rtDay9qp6eGvpKa52v1ZhkRta6hXrYJ64/o6ZnXGr3n3WaXuO3Vby84qeOD+y7GZDTQ1Gyjqr6JyvomKuqaqKq3tv3bxOIZI+QlWP6ZdZw/rzvSpeYLt01nUkJra+IXO0/x6pf78ffxOtcCGOhLaIAvn+04dcE8tPenBKKe7r2WWNJkAOJYqFAPaO1F7fTU0FdSUwktPd0/AtcYyGWm97w7JnV0R/uJS77eJqJD/RkzOIwZo2O4fEo8P5gzkp8tHO+0pt7Ns5L45OEF/Pneeay4PYPlN0zhZwvHc+vskVw+JZ64sHMze6vqrQA0WFs4W1HPgfxKNh4qcimgg3Nj/pRC1NP6vGcHbPer3neUOH36NBaLRRc7SuTl5TF9+nTNdpQ4fPgwFotFtdXiKysrFd9RIjc3l9DQUEVWi8/LyyMtLY2szVuxNFkI8D33I7A+azPjUybQ1GSh8Gxrd1Bnq8U7rqHSO0psaruGAEVFReS2rbY+kHeUUKqOsFqtiu8ooVUdATB37txe1xE1NTXyM+dKHeGOHSXC7BVcl2xmba6Vmia7/ByE+XuxZFYCtpKjZJYcVWRHiWBDM9OGR+GLlczM1nvr0rFjSYkcydG8s9RbJeKTxrD74FGq6q0UNRg5Ud51K6KDTdt3YaiJUmRHiby8PCZOnKjajhKO30Al64iGhgbFdpRof8+KHSV0hF67X/fv38/48ePdbQPQ3ova6amhr6SmQ2vBM18Ane8okZYUyTPfT9PET3vqq2v5bsokAC7O2U1ASOd7hgp6jp6eea3xpLw7ZpfuOXSclLFJuthRYk9eOQ/9dcsFj3vxtnTFxi6Kerr3WmrGHQO2pU7vDBs2zN0WZLT2onZ6augrqamElmrXsP3fgAP770HF0dMzrzWelHfH7hzDw30ICtLHHzXj4wcxKMCHirYu2s5QerFyUU/r854VY+p0iqPbQg9o7UXt9NTQV1LTofW/hxfwv4cX8K9l8+Xv/rVsPv97eAHLb5yqmR+BNgzkMvPEvOvJs8loYN6w7n/Ou1usvDeIelo/5d8eEdQJBDrF7OOF2ccLX59zDeq+bZ/5eHVc1kAgEAxcxkR4sfyGKUQEOe8HHRlsFsuZDCBE96tOGT16tLstyGjtRe301NBXUlMJLT3dPwLXGMhl5ol515vn0aNHExMTQ8boGE12lBD1tL7K34EI6nRKY2PjhQ/SCK29qJ2eGvpKaiqhpaf7R+AaA7nMPDHvevPs8OMY86dVep6kr7d6Wg1E96tOcUz91wNae1E7PTX0ldRUQktP94/ANQZymXli3vXmWdTT2mrqrfwdiKBOIBAIBAKBoB8g1qnT6Tp1LS0teHnpo3dcay9qp6eGvpKa52v1Zmsuta6h2CZMPfT0zGuNJ+Zdb55FPa2tZl+0xDZhAxDHqtZ6QGsvaqenhr6Smkpo6en+EbjGQC4zT8y73jyLelpbTb2VvwMR1OmUhoYGd1uQ0dqL2umpoa+kphJaerp/BK4xkMvME/OuN8+intZWU2/l70AEdTolLCzM3RZktPaidnpq6CupqYSWWtewqdnW6f8FfUdPz7zWeGLe9eZZ1NPaauqt/B2IoE6nJCUluduCjNZe1E5PDX0lNZXQUu0aim3CVENPz7zWeGLe9eZZ1NPaauqt/B3oZ5SnxqxcuZKVK1dis7W2NmRlZREQEMCMGTPYs2cP9fX1hIaGMmrUKLZt2wa0FqLdbufEiRMApKenc/DgQWpqaggKCmLcuHFs2dK6qXJiYiImk4njx48DMG3aNI4fP05lZSX+/v5MnjyZTZs2ARAfH4+fnx9HjhwBYMqUKaxevZqoqCjMZjNpaWls2LABgCFDhhAcHMzBgwcBmDRpEgUFBZSUlODt7c2MGTPYuHEjdrud2NhYwsPD2b9/PwATJkygtLSUoqIiTCYTs2bNYtOmTbS0tBAVFUVsbCx79uwBIDk5merqas6ePUteXh5Lly5ly5YtNDU1ERERQXx8vLxNypgxY2hoaJCneM+aNYucnBwaGhoICwtjxIgR7NixA4CRI0fS3NxMXl4eABkZGezbt4+6ujpCQkIYM2YM//73v0lISGDEiBEA5ObmAjB9+nQOHz5MdXU1gYGBTJgwgezsbAASEhLw9vbm2LFjAKSmppKbmytf7ylTppCVlQVAZWUlGRkZHD58WL7ep0+fpqysDF9fX9LT08nMzARg8ODBhISEyNc7JSWFwsJCSkpK8PLyYubMmWRlZZGbm0t6ejqRkZHs27cPgPHjx1NeXk5hYSFGo5HZs2ezefNmmpubiYqKIi4ujt27d8vXu6amhjNnzpCXl8eSJUvYtm0bFouFsIAA+b7NyspizMSJNDY2ytd75syZ7Nq1S77eSUlJ8jVMSkrCZrNx8uRJ+Z49cOAAtbW1BAcHk5ycLN+zw4cPx2g0yvdsWloaR48epaqqioCAAFJSUtjUdr0BiouLyd+zS77eJ0+epLy8HD8/P1JTU9m4cSMAQ4cOJTAwkEOHDgEwefJkzpw5Q2lpKT4+PmRkZLBhwwYkSSIuLo6wsDAOHDgAwMSJEykuLqa4uFi+Z7OysrDZbERHRxMdHc3evXsBGDduHJWVlRQUFGAwGJgzZw7Z2dlYrVYiIyMZMmSIPA5m7Nix1NXVkZ+fD8Ds2bPZsWMHjY2NhIeHk5iYKN+zo0aNwmq1yvesWnWE1WolOjra5Tri1KlTlJeX66KOAJg7d26v64ji4mJ8fHwA1+qIrVu3AqhWR8THx+Pv799tHeF4xlytI2w2GzExMYrUEQBz5syR64jw8HAKCgrw9fUFWhfGvVAdsX37dvme7U0dkZeXx+LFizvUEZs3b5avt4+PD0ePHu1VHbFmzRqioqIUrSMaGhpISkpSpI4oLCyU79me1hHV1dWohjTAqa6ulgCpurra3VacWL9+vbstyGjtRe301NBXUvN8reb6eunT4cOlT4cPl5rr6zX30566ymrZS12lvp4ZT0dPz7zWeGLe9eZZ1NPaavZFS824Q3S/6hQ9Ne2KZn1tNXXd/SpQjYFcZp6Yd715FvW0tpp6K38HA7b7Ve84uoX1gNZe1E5PDX0lNZXQUjqPFmtL67/tJkdYmm2YrC0YjQZ8vEyKpjcQ0dMzrzWemHe9eRb1tLaaeit/B6KlTqc4xjfoAa29qJ2eGvpKaiqhpXQeF72whkUvrGHJa+vkz5a8to5FL6zhmX/vVDStgYqennmt8cS8682zqKe11dRb+TsQQZ1AIBAIBAJBP0BsE6bTbcKamprkmUzuRmsvaqenhr6Smudr9WZrLqXz6Oh+tTU08N3UyQBcvHMXJn9/0f2qEHp65rXGE/OuN8+intZWsy9aYpuwAYhjurYe0NqL2umpoa+k5v79+2lpaJBftnYrl1vLy2kqK6OprAzJbtfED4DZxwuzjxe+PueG4fq2fSYCOmXQ0zOvNZ6Yd715FvW0tpp6K38HYqKETqmtrXW3BRmtvaidnhr6SmrWlpfLLXPn8+28eU7vrzx2DIOx499merp/BK4xkMvME/OuN8+intZWU2/l70C01OkUPXUFa+1F7fTU0FdSMygoqM8aerp/BK4xkMvME/OuN8+intZWU2/l70CMqRNj6i6IGKuhrabFYsHr/K5VScLW2Oj0kc+gQZ220intpz29Gd8ncA09PfNa44l515tnUU9rqynG1Al6hGNbFj2gtRe101NDX0nNrVu34uXv7/wKCMA3IsLp1VVAp7QfgTYM5DLzxLzrzbOop7XV1Fv5OxBBnUAgEAgEAkE/QAR1OmX48OHutiCjtRe101NDX0lNJbT0dP8IXGMgl5kn5l1vnkU9ra2m3srfgQjqdIqxm641rdHai9rpqaGvpKYSWnq6fwSuMZDLzBPzrjfPop7WVlNv5e9An64EHD9+3N0WZLT2onZ6augrqamElp7uH4FrDOQy88S8682zqKe11dRb+TsQQZ1AIBAIBAJBP0AsaaLTJU0aGxvx8/Nztw1Aey9qp6eGvpKaSmipdQ3FkibqoadnXms8Me968yzqaW01+6IlljS5AJ9//jmjR49m5MiR/OlPf3K3HUU4evSouy3IaO1F7fTU0FdSUwktPd0/AtcYyGXmiXnXm2dRT2urqbfyd+Dx24S1tLSwbNky1q1bR0hICFOnTuXaa68lPDzc3db6RFVVlbstyGjtRe301NBXUlMJLT3dPwLXGMhl5ol515tnUU9rq6m38nfg8S1127ZtY9y4cQwePJjAwEAWLlzI119/7W5bfSYgIMDdFmS09qJ2emroK6mphJae7h+BawzkMvPEvOvNs6intdXUW/k7cHtQt2HDBq666iri4uIwGAx88sknHY5ZuXIlCQkJmM1mpk+fzrZt2+TvCgoKGDx4sPx+8ODBnD17VgvrqpKSkuJuCzJae1E7PTX0ldRUQktP94/ANQZymXli3vXmWdTT2mrqrfwduD2oq6+vJyUlhZUrV3b6/apVq1i2bBlPPvkkOTk5pKSksGDBAkpKSjR2qi2bN292twUZrb2onZ4a+kpqKqGlp/tH4BoDucw8Me968yzqaW019Vb+Dtw+pm7hwoUsXLiwy+9XrFjBXXfdxR133AHAW2+9xRdffMF7773HI488QlxcnFPL3NmzZ0lLS+tSr6mpiaamJvl9dXU10DobRU/U19frxpPWXtROTw19JTWV0FLrGrY0NNBgtwOtz4xXS4viaQxU9PTMa40n5l1vnkU9ra1mX7Qc56my+IikIwDp448/lt83NTVJJpPJ6TNJkqQlS5ZIV199tSRJktTc3CwlJSVJZ86ckWpra6VRo0ZJZWVlXabx5JNPSoB4iZd4iZd4iZd4iZfbXrm5uYrHUW5vqeuOsrIybDYb0dHRTp9HR0dz+PBhALy8vPj973/PRRddhN1u56GHHup25uujjz7KsmXL5Pd2u52KigrCw8MxGAzqZKQXTJs2je3bt7vbBqC9F7XTU0NfSc2+atXU1DB06FDy8/N1tfaioHv09MxrjSfmXW+eRT2trWZftKqrq4mPj2fQoEGKeGmProM6V7n66qu5+uqrXTrW19cXX19fp89CQ0NVcNU3TCaTbn6Qtfaidnpq6CupqZRWcHCwbu4hwYXR0zOvNZ6Yd715FvW0tppKaKmyv63iigoSERGByWSiuLjY6fPi4mJiYmLc5Eob7r33XndbkNHai9rpqaGvpKaeyl6gHQO53D0x73rzLOppbTX1Vv4OdLVNmMFg4OOPP+aaa66RP5s+fTppaWm89tprQGt3aXx8PD/72c945JFH3ORUINAvet36TiAQCATq1tFu736tq6vj+PHj8vuTJ0+ye/duBg0aRHx8PMuWLWPp0qWkpqaSlpbGK6+8Qn19vTwbViAQOOPr68uTTz7ZYZiBQCAQCNyPmnW021vq1q9fz0UXXdTh86VLl/L+++8D8Prrr/PSSy9RVFTEpEmTePXVV5k+fbrGTgUCgUAgEAj0i9uDOoFAIBAIBAJB39H1RAmBQCAQCAQCgWuIoE4gEAgEAoGgHyCCOoFAIBAIBIJ+gAjqBAKBQCAQCPoBIqgTCAYQ1157LWFhYdxwww3utiIQCASC88jPz2fevHkkJyczceJE/v3vf/fofDH7VSAYQKxfv57a2lo++OADPvroI3fbEQgEAkE7CgsLKS4uZtKkSRQVFTF16lSOHj1KQECAS+eLljqBYAAxb948goKC3G1DIBAIBJ0QGxvLpEmTAIiJiSEiIoKKigqXzxdBnUDgIWzYsIGrrrqKuLg4DAYDn3zySYdjVq5cSUJCAmazmenTp7Nt2zbtjQoEAsEARcl6eufOndhsNoYOHepy+iKoEwg8hPr6elJSUli5cmWn369atYply5bx5JNPkpOTQ0pKCgsWLKCkpERjpwKBQDAwUaqerqioYMmSJbzzzjs9Sl+MqRMIPBCDwcDHH3/MNddcI382ffp0pk2bxuuvvw6A3W5n6NCh3HfffTzyyCPycevXr+f1118XY+oEAoFARXpbTzc1NXHppZdy1113cdttt/UoTdFSJxD0A6xWKzt37mT+/PnyZ0ajkfnz55Odne1GZwKBQCAA1+ppSZK4/fbbufjii3sc0IEI6gSCfkFZWRk2m43o6Ginz6OjoykqKpLfz58/nxtvvJEvv/ySIUOGiIBPIBAINMKVenrTpk2sWrWKTz75hEmTJjFp0iT27dvnchpeijoWCAS6Zu3ate62IBAIBIIumDVrFna7vdfni5Y6gaAfEBERgclkori42Onz4uJiYmJi3ORKIBAIBA60qKdFUCcQ9AN8fHyYOnUq3377rfyZ3W7n22+/JSMjw43OBAKBQADa1NOi+1Ug8BDq6uo4fvy4/P7kyZPs3r2bQYMGER8fz7Jly1i6dCmpqamkpaXxyiuvUF9fzx133OFG1wKBQDBwcHc9LZY0EQg8hPXr13PRRRd1+Hzp0qW8//77ALz++uu89NJLFBUVMWnSJF599VWmT5+usVOBQCAYmLi7nhZBnUAgEAgEAkE/QIypEwgEAoFAIOgHiKBOIBAIBAKBoB8ggjqBQCAQCASCfoAI6gQCgUAgEAj6ASKoEwgEAoFAIOgHiKBOIBAIBAKBoB8ggjqBQCAQCASCfoAI6gQCgUAgEAj6ASKoEwgEAoFAIOgHiKBOIBAIBAKBoB8ggjqBQCAQCASCfoAI6gQCgUAgEAj6ASKoEwgEAoFAIOgHiKBOIBAIBAKBoB8ggjqBQCAQCASCfoAI6gQCgUAgEAj6AV7uNuBu7HY7BQUFBAUFYTAY3G1HIBAIBAJBP0aSJGpra4mLi8NoVLZtbcAHdQUFBQwdOtTdNgQCgUAgEAwg8vPzGTJkiKKaAz6oCwoKAlovbnBwsJvdnOPIkSOMHj3a3TYA7b2onZ4a+kpqKqGl1jVsaWjgm4wMAC7NzsbL31/xNAYqenrmtcYT8643z6Ke1lazL1o1NTUMHTpUjj+UZMAHdY4u1+DgYF0FdQ0NDbrxo7UXtdNTQ19JTSW01LqGLV5e+Ld1FwQHB4ugTkH09MxrjSfmXW+eRT2traYSWmoM+RITJXSKt7e3uy3IaO1F7fTU0FdSUwktPd0/AtcYyGXmiXnXm2dRT2urqbfyd2CQJElytwl3UlNTQ0hICNXV1br6q0sg0CMtDQ18NWECAAv37RMtdQKBQNBD1Iw7REudTtm4caO7Lcho7UXt9NTQV1JTCS093T8C1xjIZeaJedebZ1FPa6upt/J3III6nWK3291tQUZrL2qnp4a+kppKaOnp/hG4xkAuM0/Mu948i3paW029lb8DEdTplNjYWHdbkNHai9rpqaGvpKYSWnq6fwSuMZDLzBPzrjfPop7WVlNv5e9ABHU6JTw83N0WZLT2onZ6augrqamElp7uH4FrDOQy88S8682zqKe11dRb+TsQQZ1O2b9/v7styGjtRe301NBXUlMJLT3dPwLXGMhl5ol515tnUU9rq6m38ncggjqBQCAQCASCfoAI6nTKhLZlI/SA1l7UTk8NfSU1ldDS0/0jcI2BXGaemHe9eRb1tLaaeit/ByKo0ymlpaXutiCjtRe101NDX0lNJbT0dP8IXGMgl5kn5l1vnkU9ra2m3srfgQjqdEpRUZG7Lcho7UXt9NTQV1JTCS093T8C1xjIZeaJedebZ1FPa6upt/J3oNugzmazsXz5chITE/Hz82PEiBE888wztN8AQ5IknnjiCWJjY/Hz82P+/PkcO3bMja6Vw2QyuduCjNZe1E5PDX0lNZXQ0tP9I3CNgVxmnph3vXkW9bS2mnorfwe63SbsN7/5DStWrOCDDz5g3Lhx7NixgzvuuIPnnnuOn//85wC88MILPP/883zwwQckJiayfPly9u3bx8GDBzGbzS6lI7YJEwhcR2wTJhAIBH1jQG4TtnnzZhYtWsQVV1xBQkICN9xwA5dddhnbtm0DWlvpXnnlFR5//HEWLVrExIkT+ctf/kJBQQGffPKJe80rwKZNm9xtQUZrL2qnp4a+kppKaOnp/hG4xkAuM0/Mu948i3paW029lb8D3QZ1M2bM4Ntvv+Xo0aMA7Nmzh6ysLBYuXAjAyZMnKSoqYv78+fI5ISEhTJ8+nezs7C51m5qaqKmpcXrpkZaWFndbkNHai9rpqaGvpKYSWnq6fwSuMZDLzBPzrjfPop7WVlNv5e/Ay90GuuKRRx6hpqaGMWPGYDKZsNlsPPfcc9x6663AuUGK0dHRTudFR0d3O4Dx+eef56mnnurweVZWFgEBAcyYMYM9e/ZQX19PaGgoo0aNklsHk5KSsNvtnDhxAoD09HQOHjxITU0NQUFBjBs3ji1btgCQmJiIyWTi+PHjAEybNo3jx49TWVmJv78/kydPliP9+Ph4/Pz8OHLkCABTpkzBYrGQmZmJ2WwmLS2NDRs2ADBkyBCCg4M5ePAgAJMmTaKgoICSkhK8vb2ZMWMGGzduxG63ExsbS3h4uLxI4oQJEygtLaWoqAiTycSsWbPYtGkTLS0tREVFERsby549ewBITk6murqas2fPyrN8tmzZQlNTExEREcTHx5OTkwPAmDFjaGho4PTp0wDMmjWLnJwcGhoaCAsLY8SIEezYsQOAkSNH0tzcTF5eHgAZGRns27ePuro6QkJCGDNmDKWlpWRmZjJixAgAcnNzAZg+fTqHDx+murqawMBAJkyYIAfwCQkJeHt7y2MqU1NTyc3Nla/3lClTyMrKAlpbeYuLizl8+LB8vU+fPk1ZWRm+vr6kp6eTmZkJwODBgwkJCZGvd0pKCoWFhZSUlODl5cXMmTPJysqitLSUI0eOEBkZyb59+wAYP3485eXlFBYWYjQamT17Nps3b6a5uZmoqCji4uLYvXu3fL1ramo4c+YMpaWlSJLEtm3bsFgshIeHM2zYMPl6jx49msbGRvl6z5w5k127dsnXOykpSb6GSUlJ2Gw2Tp48Kd+zBw4coLa2luDgYJKTk+V7dvjw4RiNRvmeTUtL4+jRo1RVVREQEEBKSgqb2q4htD6Dufn58vU+efIk5eXl+Pn5kZqaKm94PXToUAIDAzl06BAAkydPlvPp4+NDRkYGGzZsQJIk4uLiCAsL48CBAwBMnDiR4uJiiouL5Xs2KysLm81GdHQ00dHR7N27F4Bx48ZRWVlJQUEBBoOBOXPmkJ2djdVqJTIykiFDhrBr1y4Axo4dS11dHflt/mfPns2OHTtobGwkPDycxMRE+Z4dNWoUVqtVvmfVqiNCQkLYu3evy3XEqVOnKC8v10UdATB37txe1xHBwcHyM+dKHbF161YA1eqI+Ph4/P39u60jHM+Yq3WEzWYjJiZGkToCYM6cOU51RFBQkHwNXakjtm/fLt+zvakjSktLaWxs7FBHbN68Wb7ePj4+csNMT+uIpqYmMjMzFa0jzGYzx44dU6SOaH/P9rSOqK6uRi10O6bun//8Jw8++CAvvfQS48aNY/fu3dx///2sWLGCpUuXsnnzZmbOnElBQYHTHmyLFy/GYDCwatWqTnWbmppoamqS39fU1DB06FDdjamrqqoiNDTU3TYA7b2onZ4a+kpqKqGl1jUUY+rUQ0/PvNZ4Yt715lnU09pq9kVrQI6pe/DBB3nkkUe4+eabmTBhArfddhsPPPAAzz//PAAxMTEAFBcXO51XXFwsf9cZvr6+BAcHO730iOOvYT2gtRe101NDX0lNJbT0dP8IXGMgl5kn5l1vnkU9ra2m3srfgW6DuoaGBoxGZ3smkwm73Q60dl3ExMTw7bffyt/X1NSwdetWMjIyNPUqEAwUJJtN/n/59u1O7wUCgUDgXnQb1F111VU899xzfPHFF+Tl5fHxxx+zYsUKrr32WgAMBgP3338/zz77LJ9++in79u1jyZIlxMXFcc0117jXvAIkJye724KM1l7UTk8NfSU1ldBSI4+Fa9awfsEC+f22O+9k7Zw5FK5Zo3haAxE9PfNa44l515tnUU9rq6m38neg26Dutdde44YbbuCnP/0pY8eO5Ve/+hU//vGPeeaZZ+RjHnroIe677z7uvvtupk2bRl1dHatXr3Z5jTo9o+ZAyp6itRe101NDX0lNJbSUzmPhmjXsuPdeLOcNd7AUF7Pj3ntFYKcAenrmtcYT8643z6Ke1lZTb+XvQLdBXVBQEK+88gqnTp2isbGR3Nxcnn32WXx8fORjDAYDTz/9NEVFRVgsFtauXcuoUaPc6Fo5HDPK9IDWXtROTw19JTWV0FLSj62lhb1PPQWdzalq+2zf009j1+kUf09BT8+81nhi3vXmWdTT2mrqrfwd6DaoEwgE7scuSdz189exntdC54Qk0VRURNGWrdoZEwgEAkEHdLukiVaIbcIEgq6xSxI/v/MZFmz44ILHjv/d70m89hr1TQkEAoEHMyCXNBnoOBZ71ANae1E7PTX0ldRUQkspP0aDgSfvvtSlYwNjoi98kKBL9PTMa40n5l1vnkU9ra2m3srfgQjqdEr7BZLdjdZe1E5PDX0lNZXQUtJPRFoa5m7WfgQwx8YSkZamWJoDET0981rjiXnXm2dRT2urqbfydyCCOp0SERHhbgsyWntROz019JXUVEJLST8Gk4lxjz3W7THjHnsMg8mkWJoDET0981rjiXnXm2dRT2urqbfydyCCOp0SHx/vbgsyWntROz019JXUVEJL6Tzam5tb/2MwOH/R9l7+XtBr9PTMa40n5l1vnkU9ra2m3srfgQjqdIpjI2w9oLUXtdNTQ19JTSW0lPRjb27myCuvAJD4k3vkzye//UdG338/AIdefBGbxaJYmgMRPT3zWuOJedebZ1FPa6upt/J3III6gUDQLfkffUTD6dP4hIcz9JZb5c/DUlMZ8aMf4RcXh6WwkBPvvedGlwKBQCDwcrcBQeeMGTPG3RZktPaidnpq6CupqYSWUn4kSeLEB63LmYz86U/x8vd3+t5kNjP2oYco3bSJoddfr0iaAxU9PfNa44l515tnUU9rq6m38ncggjqd0tDQ4G4LMlp7UTs9NfSV1FRCSyk/BoOBmf/4B3l/+xvDvv99LI0dZ3wNvuoqBl91lSLpDWT09MxrjSfmXW+eRT2trabeyt+B6H7VKadPn3a3BRmtvaidnhr6SmoqoaWkH5+wMEbddx8mX1+Xjhdj63qHnp55rfHEvOvNs6intdXUW/k7EC11AoEOsUsSNQ1Wp898vU2cN/e09bPzZ6QqRMPZs/jFxbms33D2LPuffhpbYyPpH3ygmi+BQCAQdI7YJkyn24TZbDZMOln3S2svaqenhr6Sms0tLVz5/BqXjv3fwwsw+3T826yvfqxVVXw7bx4hyclMfe01fMPDAaivquG7qZMBuHjnLgJCzz0zDfn5rLvsMuxWK2l/+hPRF13U6/QHInp65rXGE/OuN8+intZWsy9aYpuwAYiepkuLqfLaauphSZPcP/6Rltpamqur8QkLc+kc/6FDSbz9dgAOPv+8WLuuh+jpmdcaT8y73jyLelpbTb2VvwPR/apT9DQIUwzA1VbT0tjIV49fLne/Wqw2lr6+DoBVy+Zj9j7316Gvd+d/KfbFj6W0lBPvvw/A6GXLMBhd/9tv5E9/Sv5HH1GXm8upf/6TxNtu67WPgYaennmt8cS8682zqKe11dRb+TsQLXU6JczF1hEt0NqL2umpoa+kZlhYGEaDgdAA37aXj/yd2duE2cdLfnU1bq0vfo6/8QZ2i4WwyZOJvvjiHp3rHRTE6AceAODIH/5Ac01Nr30MNPT0zGuNJ+Zdb55FPa2tpt7K34EI6nTKiBEj3G1BRmsvaqenhr6Smkpo9Vaj4exZ8v7xDwDGLFvWq8kO8YsXEzhyJM2VlRxbubJXPgYienrmtcYT8643z6Ke1lZTb+XvQAR1OmXHjh3utiCjtRe101NDX0lNJbR6q3H0tdeQmpuJmDGDiBkzeqVh9PJi3KOPAlC0di12q/UCZwhAX8+81nhi3vXmWdTT2mrqrfwdiDF1AoEAAFtTE1W7dwMw5pe/7JNW1Ny5TH75ZWIvuwyjj8+FTxAIBAJBnxFBnU4ZOXKkuy3IaO1F7fTU0FdSUwmt3miYfH2Z8/nnlGVnEzZpUp89DLn66j5rDCT09MxrjSfmXW+eRT2trabeyt+B6H7VKc06Wg5Cay9qp6eGvpKaSmj1VsPo5UXU7Nl9Tr89ks1GwRdfINntiur2N/T0zGuNJ+Zdb55FPa2tpt7K34EI6nRKXl6euy3IaO1F7fTU0FdSUwmtnmoUffMNtqaO+7r2FUmS2PT977Pz5z/n7KefKq7fn9DTM681nph3vXkW9bS2mnorfwciqBMIdI7Nfm7Tl32nK5zeK0HFzp1s/8lPWP+97ym+b6vBYJCXRTn00ku0NDYqqi8QCASCc4htwnS6TZjVasVHJwPMtfaidnpq6Cup2V4r61Ahb6w5QHntuVa0iCAz9yxIZtbY2D77kSSJ7FtvpXzrVuIXLybl+ee7Pb67bcK6wtbUxLpLL6Xx7FlG338/o+6774LnDET09MxrjSfmXW+eRT2trWZftAbsNmFnz57lBz/4AeHh4fj5+TFhwgSnacSSJPHEE08QGxuLn58f8+fP59ixY250rBz79u1ztwUZrb2onZ4a+kpqOrSyDhXyzEc5TgEdQFmthWc+yiHrUGGf/ZRt2kT51q0YfXwYqVKwZfL1ZeyDDwJw/O23sRQXq5KOp6OnZ15rPDHvevMs6mltNfVW/g50G9RVVlYyc+ZMvL29+eqrrzh48CC///3vnVZxfvHFF3n11Vd566232Lp1KwEBASxYsACLwl1I7qCurs7dFmS09qJ2emroK6lZV1eHzS7x5pqD3R731tcHu+yKdcWPJEkc/v3vARh2yy34x8X13KyLxF15JWGTJ2NrbOTwyy+rlo4no6dnXms8Me968yzqaW019Vb+DnQb1L3wwgsMHTqUP//5z6SlpZGYmMhll10mr+IsSRKvvPIKjz/+OIsWLWLixIn85S9/oaCggE8++cS95hUgJCTE3RZktPaidnpq6CupGRISwv7TFZTVdv/HSWmNhf2nK3rtp+ibb6jauxeTvz8j77mnV15dxWAwMO6xxwDI/+gjqg92H7AORPT0zGuNJ+Zdb55FPa2tpt7K34Fug7pPP/2U1NRUbrzxRqKiopg8eTJ//OMf5e9PnjxJUVER8+fPlz8LCQlh+vTpZGdnd6nb1NRETU2N00uPjBkzxt0WZLT2onZ6augrqTlmzBjKaxrwa6x1enk3N+F13quwsr5XfiSbjSMrVgCQuHQpvhERivnvirDJk4m78koGTZ2KwWRSPT1PQ0/PvNZ4Yt715lnU09pq6q38HWi2+HBVVRWhoaEuH3/ixAnefPNNli1bxq9//Wu2b9/Oz3/+c3x8fFi6dClFRUUAREdHO50XHR0tf9cZzz//PE899VSHz7OysggICGDGjBns2bOH+vp6QkNDGTVqFNu2bQMgKSkJu93OiRMnAEhPT+fgwYPU1NQQFBTEuHHj2LJlCwCJiYmYTCaOHz8OwLRp0zh+/DiVlZX4+/szefJkNm3aBEB8fDx+fn4cOXIEgClTprB69WqioqIwm82kpaWxYcMGAIYMGUJwcDAH21o6Jk2aREFBASUlJXh7ezNjxgw2btyI3W4nNjaW8PBw9u/fD8CECRMoLS2lqKgIk8nErFmz2LRpEy0tLURFRREbG8uePXsASE5Oprq6mrNnz5KXl8fSpUvZsmULTU1NREREEB8fT05ODtB6czc0NHD69GkAZs2aRU5ODg0NDYSFhTFixAh5LOTIkSNpbm6Wp4NnZGSwb98+6urqCAkJYcyYMaxatYqEhAS5VTY3NxeA6dOnc/jwYaqrqwkMDGTChAlyAJ+QkIC3t7c8pjI1NZXc3Fz5ek+ZMoWsrCygtWs/IyODw4cPy9f79OnTlJWV4evrS3p6OpmZmQAMHjyYkJAQ+XqnpKRQWFhISUkJXl5ezJw5k6ysLHJzc0lPTycyMlIeazF+/HjKy8spLCzEaDQye/ZsNm/eTHNzM1FRUcTFxbG7bQeH5ORkampqOHPmDHknTzLomWf4YZd38TlWGl5i27ESEvwtDAuyERYWRlJSEv/+979JSEggKSkJm83GyZMn5Xv2wIEDVBcW0hIUhFdwMMXJyZRkZjJ8+HCMRqN8z6alpXH06FGqqqoICAggJSWFTe3+YCouLiZ/zy75ep88eZLy8nL8/PxITU1l48aNAAwdOpTAwEAOHTqEdMUVTJ4+nTNnz1KamYmPjw8ZGRls2LABSZKIi4sjLCyMAwcOADBx4kSKi4spLi6W79msrCxsNhvR0dFER0ezd+9eAMaNG0dlZSUFBQUYDAbmzJlDdnY2VquVyMhIhgwZwq5drX7Hjh1LXV0d+fn5AMyePZsdO3bQ2NhIeHg4iYmJ8j07atQorFarfM+qVUdYrVaio6NdriNOnTpFeXm5LuoIgLlz5/a6jigsKqK40USdVWLM8KEkDvLl9OlTQOd1xNatWwFUqyPi4+Px9/fvto5w1FOu1hE2m42YmBhF6giAOXPmsG3bNiwWC+Hh4RQUFODr6wvA6NGjaWxslK/3zJkz2bVrl3y9k5KS2L59u3zPdlZH1NbWEhwcTHJysnzPtq8j8vLyWLx4cYc6YvPmzfL19vHx4ejRoz2qIwAmT57MmjVriIqKUrSOaGhoICkpSZE6orCwUJ4o0dM6orq6GrVQZfbrCy+8QEJCAjfddBMAixcv5j//+Q8xMTF8+eWXpKSkXFDDx8eH1NRU+QYB+PnPf8727dvJzs5m8+bNzJw5k4KCAmJjz80CXLx4MQaDgVWrVnWq29TURFO79bhqamoYOnSo7ma/ZmZmMnfuXHfbALT3onZ6augrqbl+3Tpqf/Qjl45969aXaPH25ZIJg3nomklA69CEb9dlMv/ieRc831Jaijky0mVvvZn9KnANPT3zWmCXJGoarGw9VsI7a/ZRZz33UxQe5Mtdl4wlY3Q0vt4mDAaDG506Y7NL7D9dwabtu5g5bTLj4wdhMrrfn6intdXsi5aas19Vaal76623+PDDDwH45ptv+Oabb/jqq6/417/+xYMPPsjXX399QY3Y2FiSk5OdPhs7diz/+c9/AIiJiQFaWwvaB3XFxcVM6maLI19fX/mvGT3j+AtUD2jtRe301NBXUjNp5EgGHzvGxq2HWfHZXrxarCz9T2vr8rs3PUezV+tfhw9fO4lXogex8VARU0ac6z49UVzDH7Y2sqUih7nJsUwbGYXZu/Puzp4EdErSXFvLsZUr8R86lIRbb3WLByVwBCYAdrvEobOV1FlaGBToS/KQMPnH3pXARM373hGIVNRZGBRodnsgYpckFj77ZZffl9c28dtPdgPwv4cXYPZx746W7QPQ99cdoaKutWHgf4e36CYAFfW0tpp6+o1ujypPSlFREUOHDgXg888/Z/HixVx22WUkJCQwffp0lzRmzpwpdzU4OHr0KMOGDQNauy5iYmL49ttv5SCupqaGrVu3co/Kg74FArUxGI3MyUjGGBrG25/nyJ83e/kQFh7CTy47t07dyLhQp3N35JZibbGz8VAhGw8V4uttIn1kFLOTY5kyJJjTb64kcelSzOcNXdCSgi+/JPePf8Q7JIS4K67ApwdDM9oHUg58vU2c/1Oq9g/shQKT9rgjMOkqEAF9t4Sdj9KLbfcUTwtABQMbVe6+sLAw8vPzGTp0KKtXr+bZZ58FWruFbDabSxoPPPAAM2bM4De/+Q2LFy9m27ZtvPPOO7zzzjtA62y6+++/n2effZaRI0eSmJjI8uXLiYuL45prrlEjW5qSm5vLkCFD3G0D0N6L2umpoa+kZnutWWNjmRg9i8y3Wr97YvFUUpPju21lWTxjBFLlaerMsWw4VEhxVSOZBwvJPFhI6qH1pG/9L4XffMNFX3/tth/zoddfz8n336f26FGOrVwpz4y9EHoPpPqCkveQ2oFIs81OvaUZi9WGpdmGpbnl3P+tNsYMCSUm1B+Ak8U1rNlzBou1Rf7e0mwjPiKA02WdT/Rpz5LXvsPX24TRYOCW2SO5fEo8ALlFNfz2412YjAaMBgMGAxiNBkwGAwaDgYVThnJZSmvjQlFlA699tR+j0YCR1uMMhtbzTEYDGaOimTe+dUmfqvom3l93pPXYNl1XcWcAKuppbTX19BvdHlVqvOuuu45bbrmFkSNHUl5ezsKFCwHYtWsXSUlJLmlMmzaNjz/+mEcffZSnn36axMREXnnlFW5t11Xz0EMPUV9fz913301VVRWzZs1i9erVmM1mNbIlELiF9gHc+HZdel1hMBiIDTIxd+5YfnjJGI4VVrPhYCGbd59k0p7WoQ9Jd92FwWDgu31nMXubSE2KxMdLuxmpRi8vkn/9a7befjsn//pXht1yC4GJiZqlrwRGg4HPf72QJa9+59QKdj5Bft5sPVaMydi62IDBYMAATEwIJ9DsDcDZ8nqOlbfge7S47ZjWcw20BhVjBocR5Nd6bHFVA2fK6x0HYGhrozQYwAAMjw4msO1YV3AEIgfyK1izO79doOYIwFqDsfsWjmdaUhQAGw8W8kJbUNgZv7o6RQ7qiqsb+XjrSZf9nE+dpYU6SwsAluZzjQKW5hZOl3W9Vti0pHNDC+qbmtmRW9rlsdGhfsyjNairt7Tw1a78Xnm95ZW1RIf6ExFkJjzIzNQRkcwb16prlySq6psIDfDFqOIfU3rrahdoiyoTJZqbm/nDH/5Afn4+t99+O5Mntw6sfvnllwkKCuJHLg4C1wK9bhNmsVh0E5xq7UXt9NTQV1LzfK3eTE7ozM+R117j6CuvEJCQwLw1azCYTCx5bR0l1Y34+ZhIHxXNnORYUkd0HeDVVFSTOW0KAFH/++6CrYYXYuudd1KSmUnMZZcx7c03XTqnffdrg6WFO95YD8ATN05hUkJEj8ax9ZTcomoOna2ipKqR4upG8kpqyCvt3SKkb9w1ixExrWtd/X3jMT5Yf7TLY1fcnsG4oYMA+O/Wk7z9ddfr/P3mljSmjohk98kyHv7b1gv6eOEH05mUGMG3e8/w4v/2dHncw9dM4uIJgwHYfKSIp/61E18vI2YfL8zeJny9TZh9TJi9TdyYMYK0ka0B4JnyOtbsPoO53fcmo4GXP3dtRf77rxjPyNhQJFq3yAsLbB0TXW9p5lhRNXZ7ay+QXZKw2SUkqfUeGRoRSHxEIAA1jVa2Hi3B3nac3d72r9Q6FnJUXIh8fWsarHy+8xR2u4RNkmhusfPv7BMueT2fa6cn8pPLWseGV9Y1cfPLazEZDQwK9JUDP8creWgYE+IH9SoduyRRUlHLnvxqzbraRT3dey2Pmyjh7e3Nr371qw6fP/DAA2ok1y85fPhwtxM+tERrL2qnp4a+kppKaJ2vYa2q4sSf/gTA6Pvvx+jlhaXZxuyxMWw4WEhpjYV1+wtYt78Afx8v0kdFMT9lCFOHn2vtyDpUyNuf57C47f3T/9pJ6KDjF9yHtjuSH32U0qwsir7+mrKtW4lwYcyt0WAgNMBX3hfXwdP/znFpX9zzkSSJ6gYrxdWNlFQ1UlLTSEl1I8VVjZTWNPLUTdOICG6tvNcfKORfm3N7nM8hgwIICfBpS6/1M992k1fCg8wMDfXG3z8AibYDJBz/c5roEurvw/DoYNr/PS5JyOeZfUxIkkRJdaNL3irrWwOApNgQbr9otFPwZfb2kv8/eFCAfE76qGi+evxyl1qchoQH8sNLnNf0slhbXA7q5qcMxdvUcUnVALM3kxJcW18x2M+HS1Nc6yoL9vfhltkjnby6GtQ9cNUEIoP9KK+1UFZjYczgczsgVdY3YTS0tqSV1lgorXFeXPy66YlyUFdRZ+FHb2TKAV9rAOhLRHDr+4TIIOLaysNdY/5EPa2f3+j2qDbg5K9//Stvv/02J06cIDs7m2HDhvHKK6+QmJjIokWL1Eq236DmOjY9RWsvaqenhr6Smkpona+R+847tNTVETxmDHFXXAG0Bgp3X5rMXfPHcvhsFRsOFbLhYCFlNRa+219AgNlbDuo2Hirk2Y9y8GrufB/a5TdM6VVgFzRyJPE338ypDz/kyMsvE/HPf7p0nmNf3PPpzE+LzU5ZjaU1aGt7XZk6jBD/1iDr/XVH+OemrgO1oqoGOagbFRtC+sgookL9GBTgy/vdtK61577LxzMpsesAZMGkoZirTzB37swLal08YbDcYtYVFmsLv/9sr0vewgJaW76GRQYxLDLIpXP62n3o623ifw8vIPtIsRxwdMbjN0zpNKDTEl9vE/998DLueiuzwz7M7YkMNnPpxKFdtlwPjw7m818vpKKuifJaC+W1TZTVWiivsVBWa2HskHMBYHltE/VNLdQ31XXaxXzd9ER+3K4F0FWUHPMn6mn9/Ea3R5Wg7s033+SJJ57g/vvv57nnnpMnR4SGhvLKK6+IoM4FAgMD3W1BRmsvaqenhr6SmkpotdewlJRw4oMPABjzy19iMDr/SBoMBsYOCWPskLBzAd7BQuaNaw2KbHaJ177c3216b319kIzRMR1+0CSptf2otVGptbvLMbAdWgfcx//kXpqbW0i456fUNja3O0ci0OyNV9uPekNTC3WWZux2iddXH6A7XvliHx9ln6C0xkJ5rYXzf8pSEsIJaWsViQj2w0Bra1lkiJnoEH+iQvyICjETFeLnFOjMTo5ldnLrdbFYW1wO6sa50K3mrmfeFW9KYzAYMPt4cdGEwXh7GfnD57upsdjl7yODzU4zvN2JwWAgwOzNTxeM6/QPCQc/uSz5gkMRTEYjkcF+RAb7dXtcQlQQf7xnrtziV17bGvg5gsGhEefulfILbCfYnmOF1d3+cdETRD2tn9/o9qgypi45OZnf/OY3XHPNNQQFBbFnzx6GDx/O/v37mTdvHmVlZUon2Wv0OqbOarXKq1W7G629qJ2eGvpKap6v1Zsxde01rFVVHHvjDaoPHCDjb3/r8ZiaPXnlPPTX1hXlvZqb+MmHDwLnFj528OJt6aQkhPP+uiOs2nScrhoFej2WbMsJ3v7mUI+8O/A2GYkK8WsL2vy4Ni2RxOjW69jUbMNoNPS4RUiSJJqabS61Ns12IThR8h5S2pvaNFqaOFpUp/vB/VmHCnlzzUGnfZndHYCW1TRy6x++c+nY9uMi+4qop3uv5XFj6k6ePClPjmiPr68v9fUXnsIugOzsbN2sLq+1F7XTU0NfSc3NmzeTPmOW/L79jL+qBivN3q3dLcH+Pl12g7X34xMayrhf/xrJbu/VIOmKOtdaAhzHSW0D0Lui/Z+RnfkJqK+kPiCsw7GmtsDLMYD9QlyTlsBF4+OICvHrdsahbxcLM1+I81ub+vpjr+Q9pLQ3tdm2dYtu6rvumDU2lozRMbraUcIxg9oVBgUqt/D+QK+n9fQb3R5VgrrExER2794tLxTsYPXq1YwdO1aNJAWCfkOzHRa9sEZ+79XcxE/a/n/3WxucWsdcHawOdOh2dZVBga7N8HIct3jmCBalJcjLcTiW8DC0rfnl126g9o0Zw7k+vXUpE1t9PfsefoiyrCzmffMN/rHOAceitEQWpSU6tRx2x4zRMU4D1dWk/Y+93lqb9OzNEzEZDaQkhFN1ypuUhHB325HH/C35wzdOW62dT2SwmQnD3O9XoC6qBHXLli3j3nvvxWKxIEkS27Zt4x//+AfPP/88f2qbgSfonoSEBHdbkNHai9rpqaGvpOaw+GGwqeslK1whISGB2txc9j/9NGPuv5+wTlrOXWV8/CAigsxOLT3nExncGigABPh6E+DrWuuBV7suTyk4CGt5ObbGRo6sWMHkl15SxI9WOH7se4ua931fvamNnuo7V9GLZ8eYvx9kDOGtzK7X13NlzF9PGOj1tF7K/3xUCep+9KMf4efnx+OPP05DQwO33HILcXFx/OEPf+Dmm29WI8l+h7e3603qaqO1F7XTU0NfSc0APx/+9/AC+b2toYHvWrdS5i/3XYTJv3VR1+66X729vTnyu99RlpXFMbOZtLff7rUfk9HAPQuS+zxI/EIYDAbGPfYYWddfz5n//pfEJUsInTDBbX60Rk/PvNZ4Yt715nl6UgSRkZGadbUP9Hpab+XvQLW54rfeeivHjh2jrq6OoqIizpw5ww9/+EO1kut3HDt2zN0WZLT2onZ6augrqXn8+PHWBV3bXr7tuitDAnwJbXt11+16eO1aCr/8EgwGxixb1mdPs8bGsvyGKQwKch6TExls7vVyJp0RNmkSg6++GoCDzz/P+fO4JEnCYm0hdUQkj1wzqcMYofAgX5ZdNZEZY2IU8aMlenrmtcYT8643z8eOHWPW2Fj+8vOLefG2dB65dhIv3pbOB/ddrMrYyYFeT+ut/B2otk5dS0sL69evJzc3l1tuuQWAgoICgoODdTsVWCDoLzR9/DEAg6+6iuDRoxXR7M0+tL1hzIMPUrhmDeVbt1L0zTfEXnaZ/F1Ts81pvOH5lNc2seKzvaz4bG+PxhsKBP0FvXe1C9RFlZa6U6dOMWHCBBYtWsS9995LaWnrnnsvvPBCpztNCDqSmprqbgsyWntROz019JXU7KtWxY4dtOzdi8FkYvQvfqGQq1Z6ug9tb/CPi2P4nXcCcOi3v8VutSqehh7R0zOvNZ6Yd715FvW0tpp6K38HqgR1v/jFL0hNTaWyshI/v3OLLF577bV8++23aiTZ78jN7flWRGqhtRe101NDX0nNvmhJksSh3/8egKE33ECATgfzXoiRP/n/9s48rqkr7/+fEEjYdwgioCii4gLIJm4VSwedmbZap8sjT12mdh472nlVq62tnbY6ba3TsfXpz6Wt0+q01drN6c+xrdTSIrJVFgWEulERVBbZZUkISZ4/ILesEuDem5Pk+3698lJubj7nc+45+fLl3HPPWQOZhwc07e1oKf918rfcRoqvNt2Dz1dHcq/PVkfi8JpYHF4zi3v9Z8N8mNoYHUvfebExxbqz5pnitLiarLW/HkFuv54+fRoZGRl9FuYbO3Ysbty4IUSRZkd9fb2xLXCI7UXo8oTQ51NzJFq1mZmoO3MGsLZG8Lp1vHkSG2tHR8w8cACO48dD2n3TbJ0O308xbFmkRYWFsO56qMQUYOk7LzamWHfWPFOcFleTtfbXI0hSp9Vqua3BunP9+nU4ORm2t6ClY8/QLyOxvQhdnhD6fGqORMs9KgrTX30VvxQWws7XlzdPxsBlyhRjWxAVlr7zYmOKdWfNM8VpcTVZa389gmwT9vDDD8PFxQXvvfcenJycUFBQAC8vL9x///0ICAjAgQMH+C5y2LC6TZhGo4FUOryV7vlGbC9ClyeEPp+avbU6WlvxbdfSHoaOPgl1DYezZdlI0Wk0KP/yS7hHRcExMBA6rRbtdXUAAE1bG5LnzwcA/Oann7jlXgBAamc3rB00jAVL33mxMcW6s+aZ4rS4miPREjLvEGRO3T/+8Q+kp6cjJCQESqUSy5Yt42697tixQ4gizY60tDRjW+AQ24vQ5Qmhz6fmcLR0Gk2PBwpY6j8jpejVV5H/3HMofv11AJ07Y8g9PSH39ITM49en/KT29rDu9jKlhA4wrzYbKqZYd9Y8U5wWV5O19tcjSFLn7++P/Px8bNmyBevXr0d4eDhef/11nD17Ft7e3kIUSRAWzfVjx/DDPffg5tdfG9sK74xJTIREKkXV99+jJjPT2HYIgiCYhfc5dWq1GpMmTcLx48eRmJiIxMREvouwCAICAoxtgUNsL0KXJ4Q+n5pD1dK2t+PS22+j7fp17klRlvrPSHEaPx5jli1D6Ucfoei11zDvq68gYei2F1+YU5sNFVOsO2ueKU6Lq8la++vhfaTOxsYGSuXAezIShsHSJEyagCuu5lC1yr74Aq1lZZB7eiJw+XLe/bBA8F/+AmsnJzQVF6O8a2Flc8Pc2mwomGLdWfNMcVpcTdbaX48gt1/Xrl2LHTt2oKOjQwh5i+DChQvGtsAhthehyxNCn0/NoWhplEpc3r0bADDhz3/mHqJgqf/wgdzdnVui5cLOnehoaTGyI/4xtzYbCqZYd9Y8U5wWV5O19tcjyJIm2dnZSE5OxnfffYdp06bBwcGhx/tHjx4VoliCsDhKP/4Yyqoq2Pn6IuCRR4xtR1DGPvooSg8dQmtZGUr278fEp54ytiWCIAimECSpc3V1xdKlS4WQthhmzJhhbAscYnsRujwh9PnUNFRLffs2Lr/TuRFr8F/+Aqn8183tWeo/fCGVyzH52Wfxy/vvw7trGRNzwhzbzFBMse6seaY4La4ma+2vR5CkjqV16EyVsrIyTGFk8VWxvQhdnhD6fGoaqlX5/fdQ19fDITAQfkuWCOaHJUYlJGBUQoLJLVdiCObaZoZginVnzTPFaXE1WWt/PYIkdcTIqampMbYFDrG9CF2eEPp8ahqq5b9kCexHj4ZWrYaVdc+vMkv9h096J3M6rdZITvjHXNvMEEyx7qx5pjgtriZr7a9HkAclwsPDMWPGjD6viIgIzJ49GytWrMCPP/44JM3XX38dEokET3WbR6NUKrF27Vp4eHjA0dERS5cuRVVVFc+1MQ7ybrfSjI3YXoQuTwh9PjWHouURHQ2v2bMF9cMi6tu38fPf/47sNWu4Y7XZ2dD1sz2hqWDubXYnTLHurHmmOC2uJmvtr0eQbcKee+457Nu3D9OmTUN0dDSAzocnCgoKsHLlShQXFyM5ORlHjx7F/fffP6hednY2HnroITg7OyMuLg67du0CADzxxBP4+uuvcfDgQbi4uGDdunWwsrJCenq6wV5Z3SaMIPT03iZM09YG6HSQe3qK7sUY24T1R9vNm0hesAA6tbrHcVsfH0x98UWMSkgwii+CIIjBMLltwmpqavD000/j9OnT2LlzJ3bu3InU1FRs3LgRLS0t+O677/DCCy/gb3/726Bazc3NSExMxP79++Hm5sYdb2xsxPvvv48333wTCxYsQEREBA4cOICMjAxkZWUJUS1ROXXqlLEtcIjtRejyhNDnU3MwrUtvv43k+fNx7dNPRfHDIg2FhX0SOgBQVlUhZ+1aVCQlGcHVyBCyzXQaDWqysnDj2DHUZGUxN6KZ8uOPTPvrD9a+YxSnxdVkrf31CDKn7rPPPkNubm6f44888ggiIiKwf/9+/Nd//RfefPPNQbXWrl2L3/3ud4iPj8crr7zCHc/NzYVarUZ8fDx3bNKkSQgICEBmZiZmzpzZr55KpYJKpeJ+bmpqGkrVCMKotF6/jmtHjkDX0QGHMWOMbcco6DQanN+2bYA3dYBEgvN/+xt84uPNcueJoVKRlITz27ZBWVnJHWNpRLMiKQnNW7Ygs76eO8aSv97oNBrUZmdDnZWFGrkcHlFR1M8IZhAkqbO1tUVGRgaCgoJ6HM/IyICtrS0AQKvVcv8fiCNHjiAvLw/Z2dl93qusrIRMJoOrq2uP4wqFApXdgldvtm/fjq1bt/Y5npaWBgcHB8yaNQv5+floaWmBq6srgoODcebMGQBAUFAQtFotfvnlFwDAzJkzUVxcjKamJjg5OWHKlCncKGFgYCCkUimuXLkCAIiKisKVK1dQX18Pe3t7hIeHc7eJAwICYGdnh4sXLwLofFRarVbj1KlTsLW1RXR0NFJTUwEAfn5+cHZ2RnFxMQAgLCwMN2/eRHV1NWxsbDBr1iycPn0aWq0Wo0aNgoeHB86fPw8AmDZtGm7duoXKykpIpVLMmTMH6enp6OjogLe3N0aNGoX8/HwAQEhICBobG3Hjxg3U1dUBALKysqBSqeDp6YmAgADk5eUB6EymW1tbUVZWBgCYM2cO8vLy0NraCjc3N4wfPx45OTkAgAkTJkCtVqO0tBQAEBsbi8LCQjQ3N8PFxQWTJk1CXV0dTp06hfHjxwMASkpKAAAxMTG4cOECGhsb4ejoiGnTpiGzay/QsWPHwsbGBpcvXwYAREZGoqSkhLveM2bM4DZglkqlqKqq4haPnDFjBsrKylBTUwO5XI6ZM2dyf4WNHj0aLi4u3PUODQ1FRUUFqqurYW1tjdmzZyMtLQ11dXW4ePEivLy8UFhYCACYOnUqamtrUVFRASsrK8ydOxcZGRlQq9Xw9vaGr68vzp07x13vpqYmXL9+HXV1ddDpdDhz5gyUSiVc7ey4fnp6w4bOhC4iAkUqFXDqFGbPno2zZ89y1zsoKIi7hkFBQdBoNLh69SrXZ4uKinD79m04OzsjJCSE67Pjxo2DlZUV12ejo6Nx6dIlNDQ0wMHBAaGhoUjvtvdqVVUVyvPPctf76tWrqK2thZ2dHSIjI3H69GkAnXtBOzo64ueffwbQOef2+vXruHXrFmQyGWJjY5GamgqdTgdfX1+4ubmhqKgIADB9+nRUVVWhqqqK67MpH3zQI0Hpg04HZUUFarKycBmAuqMDXl5e8PPzw9mznX4nT56M5uZmlHdtqzZ37lzk5OSgra0NHh4eCAwM5PpscHAw2tvbuT7bPUa4ODsj0MsLeWfPQqfVwru1FR1NTahRqyENCkJ0V5+9rVLB2dn5jjHCw8MDBQUFBseIa9euoba2dsAYUXT+PNTp6VD2sxqBsrISOX/+M0Y98wzGLl3KXe/hxggAuOuuu4YUI3JzctB48uQd/dn+6U+Y99RTOH/+fI8Y8dNPPwGAYDEiICAA9vb2fWJERVISVJ98Am1XTMx87z1Ye3pi3NNPo1KhADBwjNBoNPDx8eElRgDAvHnzuBjh4eEBd3d3Lm5NnDgRbW1t3PXuL0bof68ON0bU1dWhra2tT4zIyMjgrrdMJsOlS5e46z2UGKHRaHDq1KlhxQj99VYoFFAoFCgoKAAAODk54fLly7h58yYkEgnmzZuHzMxMtLe3DzlGeHh4cNf7TjGivzyisbGxT5/nC0Hm1L3yyit47bXX8PjjjyMqKgpA57y4f/7zn3j++eexZcsWvPXWW/jmm29w8uTJfjXKy8sRGRmJkydPYvr06QCA+fPnIywsDLt27cLhw4exatWqHqNuQOcvori4OOzYsaNf3f5G6vz9/ZmbU3fr1i14eXkZ2wYA8b0IXZ4Q+nxqdteqSErC+a1boez1ANCkZ57BhP/5H1H8dIeFOXU3jh1D3vr1g5435tFHUXb4MGQeHpB7eUHu4QFbL6/O/3t6QrFgATfaqdNoACurIS2VotNqcXzCBIPOXVRYyO32MRB8ttlQvM0/eRJO48YBANRNTbh95Urndeh6df+/nY8PN5ezo7UVreXlne9bWfU4VyKRwMbNDTIXFwCd+xMra2ogAQCJBDqdDslz5xrkb+G5c7BxchryNeCbiqQk5Kxd2zka3J2uPhO5Z49RRxb1/Uc/kqiqrobc21uwkUSK08PXEnJOnSAjdS+88AICAwOxe/dufPTRRwA6/3LYv38/li1bBgBYs2YNnnjiiQE1cnNzUV1d3WOBP41Gg9TUVOzevRtJSUlob29HQ0NDj9G6qqoq+Pj4DKgrl8uZfWqlO8XFxbjrrruMbQOA+F6ELk8IfT419VoD/hIBcOGNN+A4duyAv0RY6j98I/f2NuxErRY6jQaq6mqoqqv7vG0fEMAldTeOH0f+5s2dCaCnZ2fy5+nZ+fLygiIuDvb+/gC6llERYJ28ooICzJw+HR3NzehoaUFHSws0LS3cz15z58Lezw8AUJuTg9KPPuLO62hpgabb58LeeMPgcks//hjTXnwRAFB/9ix++uMfBzx3ygsvYNyqVQCAxqIiZNxhF5NJGzdiQleMb7p0CacNeCiuP5Lj4iBzcYHU1hZWtrYYfe+9GLdyJYDOp6CLX3sNVnI5pLa23DnSrp+dgoPhHhEBANB2dKChoKDf86S2tndMfLRqNQpffrnf7yJ3y3/bNijuvrvP8kJiUVxcjGClUrRb7RSn2YyxgvW+xMREJCYmDvi+XbdbSv1x9913c0PUelatWoVJkybh2Wefhb+/P2xsbJCcnMztXnHx4kWUlZUhNjZ25BUgCCPCzRu7w0C6pc4b84iKgq2PT+foZX/XRyKBrY8Ppjz/PILXroXy1i2oamo6X7dudb5qanrMSVTV1HSOJlVUQFlRgd43R+z9/Lik7saxY8jfsgW2Xl5wDQtDU3ExtO3tA/qVOjig6NVXoWlr60y6mpuhaW1FR0sLpr/2GjwiIwEA6rQ0nPzTnwbUidy7l0vqlBUVuHn8+IDntnebnzYY3dNTqZ0d7AMCAJ0OOp2u8/rqdNx6gNaOjty5VtbWkLm7A0DnuVptj89ZyWS/liGRcD/rzzX0YQh1fT3U3eqjv14AoG5sRNlnnw342THLlnFJnbqpCekPPjjguX5LliD8H/8A0DmyeOr3v+cSv/qu28gDotNBWVmJoldegevUqbCSyzsTTbkccm9vuEyezJ3aevMmrGxsIO06x0omG/Fi2jqtFu2nTyOnv1vZXQ8Phb/5Jkbfe69ZLtxN/IpgSV1DQwO++OIL/PLLL9i4cSPc3d2Rl5cHhUKB0aNHD/p5JycnTJ06tccxBwcHeHh4cMcfe+wxbNiwAe7u7nB2dsaTTz6J2NjYAR+SMCVCQ0ONbYFDbC9ClyeEPp+aoaGhqM3ONmjeWG12Njz76e8s9R++kUilmPrii52jmBJJz8Su6xfW1L/+lRuBse2a63Qnxv73f2PUokU9kj5Vt2TQPiCAO1d16xa0SiVay8vR2jXf5k5oWlpQduRIv++119Zy/x8zcSIuSiSwdnCAtYMDpF3/Wjs4wNrRkUugAMBl6lSEbNny6/td53T/bOFf/zqoNwBQ3HMP93+P6GjcbeAaom7h4UjoZ75zf7hMmYLfdc2XAnou0zMYU7dtg3NwMDRKJbRKZY+2sHZ0xMT16zvfa2/nztEoldCoVHDulkzpNBrY+/t3nqNScZ/RY2Vjw/1fo1SiuWue3lAo7boz1R3FggWI3r+f+/nHu+/u80eAlUwGK7kcnrGxiNq3jzuetXIltO3t3PvSbsmiQ2Agxj/22OC32ru+H2fXr4ciLo63W9kUp9mMsYIkdQUFBYiPj4eLiwtKS0uxevVquLu74+jRoygrK8OHH37ISzlvvfUWrKyssHTpUqhUKiQkJGDv3r28aBubioqKPg+BGAuxvQhdnhD6fGpWVFTAuZ/bhf3R321Fvv2wyKiEBETu2dNnvqGtjw+m/vWvQ77VJJXLYe/rC3tf30HPHfvoo/BJSIDq1i3c/PZbXDVgW0SfhAS4z5jRIwGTOjjAOTiYO6dj6lT8/vJlg0ZSHAMD4RgYOOD7Op0OC8+dQ0pCApTV1QOO+NqOGgXPrrVExURqZ2ewv7GPPDLgaLTM1RXB69YZVKatlxfuTknpcUyn1UKjUkGrVPYoQ2pnh9jDh6FVKtHe1ISz3Ra9vxNuERGwcXTs1Gxvh1algn23EWGdTtdZTq8/RrTt7VxS2p26vDxoWlr6Lcs9MhLjH3vMIF/d9RQ83TKkOM1mjBUkqduwYQNWrlyJv//973Dq9lfBb3/7W25O3XBI6fWFtLW1xZ49e7Bnz55ha7JKdXU1Jnf7K9OYiO1F6PKE0OdTs7q6Gl4GzhsbaH4ZS/1HKEYlJMBz1iycCAsDAER/8AG858wR/Ha01NYWDgEBsPf3h7q52aCkLnD58n5HVLtzq7YWITzdGpNIJLBxcsLUl14adETTGLfv+/jrewIA4f1JrKxgbWcH9JoOZGVjA8+YGACdiZhi/nyDEtDZn3xyR78SiQS/PX8eOp0OOrW6M/lTqaDpSgC7jxYCQMSuXdyoIze62JUw6kegeyeCd0Ld0GDwuYNBcZrNGCtIUpednY133323z/HRo0ffcbkR4lesjTTZtj/E9iJ0eULo86lpbW1t8Lwxj66ny4X0wzLdf4GKvV6Ypq0NZ+7wUEF39PO67oQQbcaNaPY3eX4YI5p8o/eX+8IL0HUtEwKw4w8QJkGWSCSQyGSd8wzvcDtUsWDBiLz3xuCHjAyA4jSbMVaQJU28vb2RlJSE8PBwODk5IT8/H+PGjcPJkyfxxz/+kVv3hQVomzCCVbinX4F+f4kYYwkFFpY06U7vLdQGWzZEqLIH4/eXL0NiJcgGPgYh1jIXw4V1f3r6Xch51CijJqA6nQ4dzc0GjSTGnzrF5HW1NExum7D77rsP27Ztg7prGx+JRIKysjI8++yz3JOqxJ3RL4LJAmJ7Ebo8IfT51NRr6UcxbHv9dW3r4zNoQsdS/zFXpHZ2WFRYiEWFhQh/660+D2TIFQqEvv66wQmdkG0mkUrhOXMmRt93HzxnzmTuF3t6ZibT/vSMSkhAfGoqYg8dgsOaNYg9dAjxp04ZdURRP5Iofegh/YHeJwASCe+3silOsxljBRk/3LlzJ/7whz/Ay8sLbW1tuOuuu1BZWYnY2Fi8+uqrQhRpdmgY2vtQbC9ClyeEPp+a3bWGO2+Mpf5jrkgkEm5k0O+++zD6d78b0WiTJbeZKdVdnyBLVapB50mKiTQ8XNRb7RSn2eyzgiR1Li4uOHnyJNLT05Gfn4/m5mbMmDGjxz6txJ250wLKYiO2F6HLE0KfT83eWsOZN8ZS/7EU9L/sh4slt5kp1p01zz4+Phg1cSJ84uNFuZVNcZqt9tfDe1Kn1Wpx8OBBHD16FKWlpZBIJAgMDISPj0/n49y08KFBsLJFGCC+F6HLE0KfT00+tHjbbkqng0r961+kym7/b2hth9qmc8s9Z3sZrOi7PSJY+s6LjSnWnTXPej8j/eNiqOWZkj5rcVoIeJ1Tp9PpcN9992H16tW4ceMGpk2bhilTpuDatWtYuXIllixZwmdxZk3v3TSMidhehC5PCH0+NfnQ4suPSq3B/TuSuNfy//frwrR/eicVD7/5PR5+83sseuUbaPl/5sqiYOk7LzamWHfWPFOcFleTtfbXw+tI3cGDB5Gamork5GTExcX1eO+HH37A4sWL8eGHH2L58uV8FksQBEEQBGHx8JrUffLJJ3j++ef7JHQAsGDBAmzevBmHDh2ipM4Aem+RZkzE9iJ0eULo86nJhxZffuQ2Uvz/Z3+dYK1pbcUPhzr//+GTcZB2PShAt19HDkvfebExxbqz5pnitLiarLW/Hl5vvxYUFGDhwoUDvr9o0SLk5+fzWaTZUtttT0hjI7YXocsTQp9PTT60+PIjkUhgK7PmXnLZr38HujjI4dr1Eiuh0+l06Ght5V6a1lbuvfbaWm6vVv0G9KYES995sTHFurPmmeK0uJqstb8eXpO6uro6KO6webZCoUB9fT2fRZotFRUVxrbAIbYXocsTQp9PTT60WOo/fKJpa8O306Zxr++6tnICgOT58/FdTAy+i4nB8QkTTC6xM9c2MwRTrDtrnilOi6vJWvvr4TWp02g0d9w6QyqVoqOjg88izRYrI64+3xuxvQhdnhD6fGryocVS/yEMw5LbzBTrzppnitPiarLW/np43SbMysoKixYtglwu7/d9lUqFEydOMLVoH20TRrCOMbfCYs2LTqeDpq2t98E+x2Tu7kbdlosgCGIgTGabsBUrVsDb2xsuLi79vry9vekhCQPJyMgwtgUOsb0IXZ4Q+nxq8qHFUv/hE/0uDj1eDg6Qe3r2eJliQmeubWYIplh31jxTnBZXk7X218Pr068HDhzgU86i0e+bywJiexG6PCH0+dTkQ4ul/kMYhiW3mSnWnTXPFKfF1WSt/fWY3p+zFoJ3r03cjYnYXoQuTwh9PjX50GKp/xCGYcltZop1Z80zxWlxNVlrfz2U1DGKr6+vsS1wiO1F6PKE0OdTkw8tlvoPYRiW3GamWHfWPFOcFleTtfbXQ0kdo5w7d87YFjjE9iJ0eULo86nJhxZL/YcwDEtuM1OsO2ueKU6Lq8la++uhpI4gCIIgCMIM4PVBCYI/QkJCjG2BQ2wvQpcnhD6fmnxo8eWn9xIivXdw0P9MS4iMHJa+82JjinVnzTPFaXE1WWt/PRSFGaWpqcnYFjjE9iJ0eULo86nJhxZffsx5BwfWYOk7LzamWHfWPFOcFleTtfbXQ0kdo1y/ft3YFjjE9iJ0eULo86nJhxZL/YcwDEtuM1OsO2ueKU6Lq8la++uh268EQQyI1M4OiwoLex6kHRwIgiCYhNdtwkwRVrcJ0+l0kEgkxrYBQHwvQpcnhD6fmr21hrM1F0v9hzAMS24zU6w7a54pTourORItk9kmjE+2b9+OqKgoODk5wdvbG4sXL8bFixd7nKNUKrF27Vp4eHjA0dERS5cuRVVVlZEc88uZM2eMbYFDbC9ClyeEPp+afGix1H8Iw7DkNjPFurPmmeK0uJqstb8eZpO6U6dOYe3atcjKysLJkyehVqvxm9/8Bi0tLdw569evx3/+8x98/vnnOHXqFG7evIkHHnjAiK75Q6lUGtsCh9hehC5PCH0+NfnQYqn/EIZhyW1minVnzTPFaXE1WWt/PczOqTtx4kSPnw8ePAhvb2/k5uZi3rx5aGxsxPvvv4/Dhw9jwYIFADr3np08eTKysrIwc+ZMY9jmDQ8PD2Nb4BDbi9DlCaHPpyYfWiz1H8IwLLnNTLHurHmmOC2uJmvtr4fZkbreNDY2AgDc3d0BALm5uVCr1YiPj+fOmTRpEgICApCZmTmgjkqlQlNTU48Xi4wZM8bYFjjE9iJ0eULo86nJhxZL/YcwDEtuM1OsO2ueKU6Lq8la++thdqSuO1qtFk899RRmz56NqVOnAgAqKyshk8ng6ura41yFQoHKysoBtbZv346tW7f2OZ6WlgYHBwfMmjUL+fn5aGlpgaurK4KDg7l750FBQdBqtfjll18AADNnzkRxcTGamprg5OSEKVOmICsrCwAQGBgIqVSKK1euAACioqJw5coV1NfXw97eHuHh4UhPTwcABAQEwM7OjpszOGPGDJw4cQLe3t6wtbVFdHQ0UlNTAQB+fn5wdnZGcXExACAsLAw3b95EdXU1bGxsMGvWLJw+fRparRajRo2Ch4cHzp8/DwCYNm0abt26hcrKSkilUsyZMwfp6eno6OiAt7c3Ro0ahfz8fACdCys2Njbixo0bKC0txYoVK5CVlQWVSgVPT08EBAQgLy8PQGcy3drairKyMgDAnDlzkJeXh9bWVri5uWH8+PHIyckBAEyYMAFqtRqlpaUAgNjYWBQWFqK5uRkuLi6YNGkSjh49irFjx2L8+PEAgJKSEgBATEwMLly4gMbGRjg6OmLatGlcAj927FjY2Njg8uXLAIDIyEiUlJRw13vGjBlIS0sDANTX1yM2NhYXLlzgrndZWRlqamogl8sxc+ZMnDp1CgAwevRouLi4cNc7NDQUFRUVqK6uhrW1NWbPno20tDSUlJRg5syZ8PLyQmHX06JTp05FbW0tKioqYGVlhblz5yIjIwNqtRre3t7w9fXltpoJCQlBU1MTrl+/jtLSUixfvhxnzpyBUqmEm4NDj346afp0tLW1cdd79uzZOHv2LHe9g4KCuGsYFBQEjUaDq1evcn22qKgIt2/fhrOzM0JCQrg+O27cOFhZWXF9Njo6GpcuXUJDQwMcHBwQGhqKjIwM7nrLZDJcunSJu95Xr15FbW0t7OzsEBkZidOnTwMA/P394ejoiJ9//hkAEB4ejuvXr+PWrVuQyWSIjY1FamoqdDodfH194ebmhqKiIgDA9OnTUVVVhaqqKq7PpqWlQaPRQKFQQKFQoKCgAAAwZcoU1NfX4+bNm5BIJJg3bx4yMzPR3t4OLy8v+Pn54ezZswCAyZMno7m5GeXl5QCAuXPnIicnB21tbfDw8EBgYCDXZ4ODg9He3s71WaFiRHt7OxQKhcEx4tq1a6itrWUiRgDAXXfdNewYUVVVBZlMZnCM+OmnnwBAsBgREBAAe3v7O8YI/XfM0Bih0Wjg4+PDS4wAgHnz5nExwsPDAzdv3oRcLgcATJw4cdAYkZ2dzfXZ4cSI0tJSPPTQQ4LFiKSkJHh7e/MaI1pbWxEUFMRLjKioqOD67FBjhH6QShB0JsCaNWt0Y8aM0ZWXl3PHDh06pJPJZH3OjYqK0j3zzDMDaimVSl1jYyP3Ki8v1wHQNTY2CuJ9uKSkpBjbAofYXoQuTwh9PjV7a6lbWnTHxo3THRs3TqduaRHdDyEOltxmplh31jxTnBZXcyRajY2NguUdzI/UrVu3DsePH0dqair8/Py44z4+Pmhvb0dDQ0OP0bqqqir4+PgMqCeXy7m/Zlhm4sSJxrbAIbYXocsTQp9PTT60WOo/hGFYcpuZYt1Z80xxWlxN1tpfD7Nz6nQ6HdatW4d///vf+OGHHxAYGNjj/YiICNjY2CA5OZk7dvHiRZSVlSE2NlZsu7zT1mtxV2MithehyxNCn09NPrRY6j+EYVhym5li3VnzTHFaXE3W2l8Ps0nd2rVr8fHHH+Pw4cNwcnJCZWUlKisruQvp4uKCxx57DBs2bMCPP/6I3NxcrFq1CrGxsSb/5CsAbi4EC4jtRejyhNDnU5MPLZb6D2EYltxmplh31jxTnBZXk7X218Ps7dd9+/YBAObPn9/j+IEDB7By5UoAwFtvvQUrKyssXboUKpUKCQkJ2Lt3r8hOCYIgCIIgjA9tE8boNmEdHR2wtmYj5xbbi9DlCaHPp2ZvreFsE8ZS/yEMw5LbzBTrzppnitPiao5EyyK3CbN09I9Vs4DYXoQuTwh9PjXz8vLQ0drKvTStrdx77bW1UNXUQFVTA51WK4ofQhwsuc1Mse6seaY4La4ma+2vh50/M4getHb7RW5sxPYidHlC6POp2drQwI3M9Sa513SE31++DIlV37/NWOo/hGFYcpuZYt1Z80xxWlxN1tpfD43UMYqbm5uxLXCI7UXo8oTQ51Oz94Law4Gl/kMYhiW3mSnWnTXPFKfF1WSt/fXQnDpG59S1trbC3oC5U2IgthehyxNCn0/NlpYWyCWSngd1Omh6PUIvc3fvd5SObz+EOFhym5li3VnzTHFaXM2RaNGcOgtEv4ULC4jtRejyhNDnUzMnJwfW9vY9Xw4OkHt69ngNlNDx7YcQB0tuM1OsO2ueKU6Lq8la++uhpI4gCIIgCMIMoKSOUYKCgoxtgUNsL0KXJ4Q+n5p8aLHUfwjDsOQ2M8W6s+aZ4rS4mqy1vx5K6hhFo9EY2wKH2F6ELk8IfT41+dBiqf8QhmHJbWaKdWfNM8VpcTVZa389lNQxytWrV41tgUNsL0KXJ4Q+n5p8aLHUfwjDsOQ2M8W6s+aZ4rS4mqy1vx5K6giCIAiCIMwAWtKE0SVNVCoV5HK5sW0AEN+L0OUJoc+nJh9aLPUfwjAsuc1Mse6seaY4La7mSLRoSRMLpKioyNgWOMT2InR5QujzqcmHFkv9hzAMS24zU6w7a54pTouryVr766GkjlFu375tbAscYnsRujwh9PnU5EOLpf5DGIYlt5kp1p01zxSnxdVkrf31UFLHKCzdChbbi9DlCaHPpyYfWiz1H8IwLLnNTLHurHmmOC2uJmvtr4fm1NGcukGhuRriatKcOsvEktvMFOvOmmeK0+Jq0pw6YkhkZWUZ2wKH2F6ELk8IfT41+dBiqf8QhmHJbWaKdWfNM8VpcTVZa389lNQRBEEQBEGYAZTUMcq4ceOMbYFDbC9ClyeEPp+afGix1H8Iw7DkNjPFurPmmeK0uJqstb8eSuoYxcqKnaYR24vQ5Qmhz6cmH1os9R/CMCy5zUyx7qx5pjgtriZr7a+HTVcErly5YmwLHGJ7Ebo8IfT51ORDi6X+QxiGJbeZKdadNc8Up8XVZK399VBSRxAEQRAEYQbQkiaMLmnS1tYGOzs7Y9sAIL4XocsTQp9PTT60WOo/hGFYcpuZYt1Z80xxWlzNkWjRkiYWyKVLl4xtgUNsL0KXJ4Q+n5p8aLHUfwjDsOQ2M8W6s+aZ4rS4mqy1vx5K6hiloaHB2BY4xPYidHlC6POpyYcWS/2HMAxLbjNTrDtrnilOi6vJWvvrMYukbs+ePRg7dixsbW0RExODM2fOGNvSiHFwcDC2BQ6xvQhdnhD6fGryocVS/yEMw5LbzBTrzppnitPiarLW/npMfk7dp59+iuXLl+Odd95BTEwMdu3ahc8//xwXL16Et7f3oJ9ndU6dWq2GjY2NsW0AEN+L0OUJoc+nJh9aLPUfwjAsuc1Mse6seaY4La7mSLRoTt0dePPNN/H4449j1apVCAkJwTvvvAN7e3t88MEHxrY2IjIyMoxtgUNsL0KXJ4Q+n5p8aLHUfwjDsOQ2M8W6s+aZ4rS4mqy1vx5rYxsYCe3t7cjNzcVzzz3HHbOyskJ8fDwyMzP7/YxKpYJKpeJ+bmxsBNCZObNES0sLM57E9iJ0eULo86nJhxZL/YcwDEtuM1OsO2ueKU6LqzkSLf3nhLhRatJJXU1NDTQaDRQKRY/jCoUCFy5c6Pcz27dvx9atW/sc9/f3F8QjQRAEQRBEb2pra+Hi4sKrpkkndcPhueeew4YNG7iftVot6urq4OHhAYlEYkRnPYmKikJ2draxbQAQ34vQ5Qmhz6fmSLWamprg7++P8vJypuaJEneGpe+82Jhi3VnzTHFaXM2RaDU2NiIgIADu7u68eOmOSSd1np6ekEqlqKqq6nG8qqoKPj4+/X5GLpdDLpf3OObq6iqUxWEjlUqZ+YUsthehyxNCn09NvrScnZ2Z6UPE4LD0nRcbU6w7a54pTouryYeWIPvb8q4oIjKZDBEREUhOTuaOabVaJCcnIzY21ojORs7atWuNbYFDbC9ClyeEPp+aLLU9IR6W3O6mWHfWPFOcFleTtfbXYxZLmqxYsQLvvvsuoqOjsWvXLnz22We4cOFCn7l2BGEJsLpMD0EQBCFsjDbp268A8PDDD+PWrVt48cUXUVlZibCwMJw4cYISOsJikcvleOmll/pMMyAIgiCMj5Ax2uRH6giCIAiCIAgTn1NHEARBEARBdEJJHUEQBEEQhBlASR1BEARBEIQZQEkdQRAEQRCEGUBJHUEQBEEQhBlASR1BWBBLliyBm5sb/vCHPxjbCkEQBNGL8vJyzJ8/HyEhIZg+fTo+//zzIX2eljQhCAsiJSUFt2/fxr/+9S988cUXxrZDEARBdKOiogJVVVUICwtDZWUlIiIicOnSJTg4OBj0eRqpIwgLYv78+XBycjK2DYIgCKIfRo0ahbCwMACAj48PPD09UVdXZ/DnKakjCBMhNTUV9957L3x9fSGRSPDVV1/1OWfPnj0YO3YsbG1tERMTgzNnzohvlCAIwkLhM07n5uZCo9HA39/f4PIpqSMIE6GlpQWhoaHYs2dPv+9/+umn2LBhA1566SXk5eUhNDQUCQkJqK6uFtkpQRCEZcJXnK6rq8Py5cvx3nvvDal8mlNHECaIRCLBv//9byxevJg7FhMTg6ioKOzevRsAoNVq4e/vjyeffBKbN2/mzktJScHu3btpTh1BEISADDdOq1Qq3HPPPXj88cfx6KOPDqlMGqkjCDOgvb0dubm5iI+P545ZWVkhPj4emZmZRnRGEARBAIbFaZ1Oh5UrV2LBggVDTugASuoIwiyoqamBRqOBQqHocVyhUKCyspL7OT4+Hg8++CC++eYb+Pn5UcJHEAQhEobE6fT0dHz66af46quvEBYWhrCwMBQWFhpchjWvjgmCYJrvv//e2BYIgiCIAZgzZw60Wu2wP08jdQRhBnh6ekIqlaKqqqrH8aqqKvj4+BjJFUEQBKFHjDhNSR1BmAEymQwRERFITk7mjmm1WiQnJyM2NtaIzgiCIAhAnDhNt18JwkRobm7GlStXuJ+vXr2Kc+fOwd3dHQEBAdiwYQNWrFiByMhIREdHY9euXWhpacGqVauM6JogCMJyMHacpiVNCMJESElJQVxcXJ/jK1aswMGDBwEAu3fvxhtvvIHKykqEhYXh7bffRkxMjMhOCYIgLBNjx2lK6giCIAiCIMwAmlNHEARBEARhBlBSRxAEQRAEYQZQUkcQBEEQBGEGUFJHEARBEARhBlBSRxAEQRAEYQZQUkcQBEEQBGEGUFJHEARBEARhBlBSRxAEQRAEYQZQUkcQBEEQBGEGUFJHEATRi5UrV2Lx4sUj0khJSYFEIkFDQ8Mdz0tOTsbkyZOh0WgG1Txx4gTCwsKg1WpH5I0gCPOEkjqCIEyWlStXQiKRQCKRQCaTISgoCNu2bUNHR8eIdP/3f/+X26dRaJ555hm88MILkEqlg567cOFC2NjY4NChQyI4IwjC1KCkjiAIk2bhwoWoqKjA5cuX8fTTT+Pll1/GG2+8MSwtjUYDrVYLFxcXuLq68mu0H9LS0lBSUoKlS5ca/JmVK1fi7bffFtAVQRCmCiV1BEGYNHK5HD4+PhgzZgyeeOIJxMfH49ixYwAAlUqFjRs3YvTo0XBwcEBMTAxSUlK4zx48eBCurq44duwYQkJCIJfLUVZW1uf2q0qlwl/+8hd4e3vD1tYWc+bMQXZ2dg8f33zzDYKDg2FnZ4e4uDiUlpYO6v3IkSO45557YGtryx3Lz89HXFwcnJyc4OzsjIiICOTk5HDv33vvvcjJyUFJScnwLhhBEGYLJXUEQZgVdnZ2aG9vBwCsW7cOmZmZOHLkCAoKCvDggw9i4cKFuHz5Mnd+a2srduzYgX/+858oKiqCt7d3H81nnnkGX375Jf71r38hLy8PQUFBSEhIQF1dHQCgvLwcDzzwAO69916cO3cOq1evxubNmwf1evr0aURGRvY4lpiYCD8/P2RnZyM3NxebN2+GjY0N935AQAAUCgVOnz49rOtDEIT5Ym1sAwRBEHyg0+mQnJyMpKQkPPnkkygrK8OBAwdQVlYGX19fAMDGjRtx4sQJHDhwAK+99hoAQK1WY+/evQgNDe1Xt6WlBfv27cPBgwexaNEiAMD+/ftx8uRJvP/++9i0aRP27duH8ePHY+fOnQCAiRMnorCwEDt27Lij52vXrnHe9JSVlWHTpk2YNGkSAGDChAl9Pufr64tr164N4eoQBGEJUFJHEIRJc/z4cTg6OkKtVkOr1WLZsmV4+eWXkZKSAo1Gg+Dg4B7nq1QqeHh4cD/LZDJMnz59QP2SkhKo1WrMnj2bO2ZjY4Po6Gj8/PPPAICff/4ZMTExPT4XGxs7qPe2trYet14BYMOGDVi9ejU++ugjxMfH48EHH8T48eN7nGNnZ4fW1tZB9QmCsCwoqSMIwqSJi4vDvn37IJPJ4OvrC2vrzrDW3NwMqVSK3NzcPk+WOjo6cv+3s7ODRCIR1bMeT09P1NfX9zj28ssvY9myZfj666/x7bff4qWXXsKRI0ewZMkS7py6ujp4eXmJbZcgCMahOXUEQZg0Dg4OCAoKQkBAAJfQAUB4eDg0Gg2qq6sRFBTU4+Xj42Ow/vjx4yGTyZCens4dU6vVyM7ORkhICABg8uTJOHPmTI/PZWVlDaodHh6O4uLiPseDg4Oxfv16fPfdd3jggQdw4MAB7j2lUomSkhKEh4cbXAeCICwDSuoIgjBLgoODkZiYiOXLl+Po0aO4evUqzpw5g+3bt+Prr782WMfBwQFPPPEENm3ahBMnTqC4uBiPP/44Wltb8dhjjwEA1qxZg8uXL2PTpk24ePEiDh8+bNA6dwkJCUhLS+N+bmtrw7p165CSkoJr164hPT0d2dnZmDx5MndOVlYW5HK5Qbd3CYKwLCipIwjCbDlw4ACWL1+Op59+GhMnTsTixYuRnZ2NgICAIem8/vrrWLp0KR599FHMmDEDV65cQVJSEtzc3AB0PpH65Zdf4quvvkJoaCjeeecd7kGMO5GYmIiioiJcvHgRACCVSlFbW4vly5cjODgYDz30EBYtWoStW7dyn/nkk0+QmJgIe3v7IdWBIAjzR6LT6XTGNkEQBGGpbNq0CU1NTXj33XcHPbempgYTJ05ETk4OAgMDRXBHEIQpQSN1BEEQRmTLli0YM2aMQfu5lpaWYu/evZTQEQTRLzRSRxAEQRAEYQbQSB1BEARBEIQZQEkdQRAEQRCEGUBJHUEQBEEQhBlASR1BEARBEIQZQEkdQRAEQRCEGUBJHUEQBEEQhBlASR1BEARBEIQZQEkdQRAEQRCEGUBJHUEQBEEQhBnwf9bTJ2zNk3dsAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -2855,23 +2884,37 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m24:09:03T20:09:31 | INFO | line:124 |aurora.pipelines.transfer_function_kernel | update_dataset_df | DECIMATION LEVEL 1\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:31 | INFO | line:143 |aurora.pipelines.transfer_function_kernel | update_dataset_df | Dataset Dataframe Updated for decimation level 1 Successfully\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:32 | INFO | line:354 |aurora.pipelines.process_mth5 | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:32 | INFO | line:354 |aurora.pipelines.process_mth5 | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:33 | INFO | line:354 |aurora.pipelines.process_mth5 | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:33 | INFO | line:354 |aurora.pipelines.process_mth5 | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:33 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 102.915872s (0.009717Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:33 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 85.631182s (0.011678Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:34 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 68.881694s (0.014518Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:34 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 54.195827s (0.018452Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:34 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 43.003958s (0.023254Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:34 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 33.310722s (0.030020Hz)\u001b[0m\n"
+ "\u001b[1m2026-01-18T11:08:18.167994-0800 | INFO | aurora.pipelines.transfer_function_kernel | update_dataset_df | line: 137 | DECIMATION LEVEL 1\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:18.533077-0800 | INFO | aurora.pipelines.transfer_function_kernel | update_dataset_df | line: 156 | Dataset Dataframe Updated for decimation level 1 Successfully\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:20.258894-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:21.848925-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:23.374018-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:25.010087-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:25.021361-0800 | INFO | aurora.pipelines.feature_weights | extract_features | line: 43 | Features could not be accessed from MTH5 -- \n",
+ "Calculating features on the fly (development only)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:25.031740-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 205.831745s (0.004858Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:25.094600-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 171.262364s (0.005839Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:25.158322-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 137.763388s (0.007259Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:25.239757-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 108.391654s (0.009226Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:25.328805-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 86.007916s (0.011627Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:25.429630-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 66.621445s (0.015010Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:25.549736-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 205.831745s (0.004858Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:25.645817-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 171.262364s (0.005839Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:25.728412-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 137.763388s (0.007259Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:25.826473-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 108.391654s (0.009226Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:25.913542-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 86.007916s (0.011627Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:26.028103-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 66.621445s (0.015010Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:26.126108-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 205.831745s (0.004858Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:26.205439-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 171.262364s (0.005839Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:26.266161-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 137.763388s (0.007259Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:26.340020-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 108.391654s (0.009226Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:26.432603-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 86.007916s (0.011627Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:26.529333-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 66.621445s (0.015010Hz)\u001b[0m\n"
]
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG9CAYAAAAcFdw9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABISklEQVR4nO3deVyU9d7/8feIsoiAO4vikqmJqZioeWelRS7HMpds0Tsxy/tX4Ra2aJ0TnezkUatjpmmdUuqUZqlZWZrepGUeU8LU1LQ0UlzAFAU3EJnr98fczHFkG5JhLi5ez8djHnLtn5nMefP9fq/vZTMMwxAAAIAF1fB2AQAAAJ5C0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZF0AEAAJZV5YNOenq6evXqpaioKHXs2FEfffSRt0uCl2VmZmrq1Km6+eabFRoaKl9fXwUGBqp9+/Z68MEHtWrVKpX0iLeXXnpJNpvN5bVy5cpSr3fo0CFNnDhR7du3V2BgoPz8/BQWFqYOHTronnvu0bRp03Ty5MkixxUUFOiNN95Qz549Va9ePQUEBKh169aaMGGCjh49Wub7vHjxorp06eJS66hRo9z6jACg2jCquCNHjhg//PCDYRiGcfToUSMiIsI4c+aMd4uC18ydO9fw9/c3JJX6SktLK/b49u3bF9l36NChJV4vNTXVCAkJKfN6hX9HC50/f97o06dPifvXr1/fSElJKfW9Pv/880WOi4uLK+cnBgDWVrMywpQnhYeHKzw8XJIUFhamhg0bKisrS4GBgV6uDJVtxowZeuqpp5zLPj4+GjBggLPVY9++ffryyy+VmZlZ7PEpKSnatWtXkfWfffaZsrKyVL9+/SLbHn30UWVnZ0uSAgMDdc899+iqq65Sfn6+fvnlF23YsEHp6elFjnvmmWe0Zs0aZ52jR49WeHi4kpKSdPDgQWVlZWnYsGHauXNnsX+Xd+zYoalTp7r3wQBAdebtpPX1118bt99+uxEeHm5IMj7++OMi+8yZM8do3ry54efnZ3Tr1s3YvHlzsef6/vvvjfbt23u44qprzZo1xtChQ43IyEjD19fXqF27ttG9e3djwYIFht1u/0PnXLdunTF69Gijc+fORlhYmOHr62sEBAQYrVq1MkaNGmXs2LGjXOdbuHChWy0vl9u1a5fh4+PjPK5x48bG1q1bi+x34cIF48033zQyMzOLbHv00Uedxzdr1sylZei1114rsn92drZLrUlJScXWtmXLFuP33393Lp84ccLw8/NzHvf00087t+3Zs8ew2WzOba+//nqx7yE6OtqQZMTExBhNmjShRQcASuD1oPPFF18YzzzzjLF8+fJig84HH3xg+Pr6GgsWLDB27dpljBkzxqhbt26RL6oTJ04YUVFRxsaNGyux+qrh4sWLLl/ixb3uueeePxR2Jk2aVOp5fX19jbVr17p9vj8adB5++GGX45YtW1au95Gbm2vUq1fPJXwMHjzYuXzdddcVOebEiRMu13z88ceNixcvlnmtxYsXuxyXmprqsr1Dhw7Obf369StyfGJioiHJ8PPzM3bt2mU0b96coAMAJfB611X//v3Vv3//Ere/8sorGjNmjB544AFJ0vz58/X5559rwYIFmjx5siQpLy9PgwYN0uTJk/Vf//VfpV4vLy9PeXl5zmW73a6srCw1aNBANputAt6R+bzwwgt6/fXXJUk2m0133323IiMj9emnn+rnn3+WJC1ZskTXX3+9Ro8eXa5z16xZUz179lRUVJTq1asnf39/ZWVlac2aNdq7d68uXLigsWPHasuWLW6d7/z58y7Lp0+fVk5OTpnHrV271vlz3bp1dcstt7h1XKHly5e7DBi+/fbb1bp1a3388ceSpK1bt2rTpk1q3769c5+aNWuqWbNmOnjwoCTHQOYFCxbo+uuvV8eOHdW1a1fdeOON8vPzc7lWSkqKy3LDhg1dam3WrJl+/PFHSdL27dtdtu3YsUMvvviiJOnpp59W06ZNXQZW5+fnl+t9A0BVZRiGTp8+rYiICNWoUcq9Vd5OWpfSZS06eXl5ho+PT5FWnpEjRxoDBw40DMMw7Ha7ce+99xqJiYluXaPwt2FevHjx4sWLV9V/paenl/q97/UWndIcP35cBQUFCg0NdVkfGhqqPXv2SJI2btyoJUuWqGPHjlqxYoUk6V//+pc6dOhQ7DmnTJmihIQE53J2draaNWum9PR0BQcHe+aNeNE333yjO+64w7m8c+dORUZGOpfj4+P13nvvSZL8/Px07Nixcp3/q6++0vjx44sdcHuptWvXqlu3buU6d3mEh4fr3LlzkqSYmBglJye7fWxGRoaioqJUUFAgSfrzn/+sJ554QpL00EMPOacsaNSokfbs2aOaNV3/t9mwYYNmzJihb7/9Vna7vdhrTJ48WVOmTJEkTZw4UQsXLnRuy8rKko+Pj3N5zJgx+vDDDyW5/jf529/+phkzZiggIEAbNmxQ69atJUkdOnRwtioNHz5c8+bNc/u9A0BVlZOTo8jISAUFBZW6n6mDjjt69uxZ4pdLcfz8/Ip0JUhScHCwJYPO5d0YV199tcv7b9q0qfPnvLy8Ej+f4hw5ckQjRoxwBozS1KxZ06Ofb5MmTfTLL79Ikvbv36+goCC3uyLnzZvnDDmSFBcX56x15MiRzqDz+++/69tvv9XAgQNdjh8wYIAGDBig7Oxsbdq0SZs3b9bKlSv1/fffO/d5/fXXNW3aNEly3iVYyGazuXw2ubm5zp8bNmyo4OBgHTx4UK+88ookR1dkly5dXI4vVKtWLUv+PQaAkpT1b72pJwxs2LChfHx8itwOnJmZqbCwsCs699y5cxUVFaWuXbte0XnM7sKFCy7Ll7fYXPrZ+vv7ux1yJMdt15eGnJdfflmnTp2SYRjF3qbtSbfeeqvz55MnT+qTTz5x+9h33nnHZbl169bOCfgubQ2TpKSkpBLPExISon79+ikxMVEpKSku451ycnKcn3XHjh1djvv1119dlvfv3+/8ubBlMisrSxcvXpQkTZo0yWWSwAMHDri8FyYOBID/MHXQ8fX1VZcuXVy6Iex2u5KTk9WjR48rOnd8fLx2795dZGCo1f3rX/9y/pyTk6PPPvvMuXxpK4E7Tpw44bL8wAMPKCQkRJKcXS/llZSU5PIl/ttvv7l13NixY126fx555BFt3769yH75+fl66623nIFv8+bN+umnn9yub+XKlTp+/LhzOS4uTqmpqcXuW6dOHefPNWrUcDav9unTR/7+/s5ty5Ytc/68e/du7d6927l85513ul0bAKAor3ddnTlzRvv27XMup6Wladu2bapfv76aNWumhIQExcXFKSYmRt26ddOsWbN09uxZ511YKJ8///nP2rNnj5o3b66lS5e6fGmPGTOmXOdq27aty/KAAQPUv39/7dixQ0uXLq2Qet3Vvn17TZ06VU8//bQkx7ibmJgY3X777ercuXORCQNjY2MlyWWsjM1m07Bhw4o0g545c0aff/65JEdQev/99zVhwgRJ0rvvvqt3331XrVq1Us+ePXXVVVfJZrNp+/btWr58ufMcN910k2rXri1JqlevnuLj4/Xyyy9LkqZPn67jx48rPDxcCxYscN5F1bx5c91///2SHHeSDR06tNj3vmrVKmfLWvPmzRUTE2P5lkoAcJv790R5xrp164odRX3pfCCvvfaa0axZM8PX19fo1q2b8d1331XY9QsnfcvOzq6wc5rJ5fPSDBgwoNjPe8CAAeWeR+fChQsuc75c/t/v0uV169b9oXrdnUen0KuvvuoyGV9Jr7S0NOP8+fNG3bp1netiY2OLPafdbneZqyY6Otq5razrSI7HOfz4448u5zx//rxx2223lXhMvXr1ynwERCHm0QFQHbn7/e31rqtevXrJcExc6PK6dCzE2LFjdeDAAeXl5Wnz5s3q3r279wqu4pYvX67nn39erVq1kq+vr1q0aKHExEQtW7as3PMI1apVS1999ZVGjRqlBg0ayM/PT9dee63efPNNPffcc555A2UYP3680tLS9Nxzz6lnz55q1KiRatasqdq1a6tdu3Z65JFHtH79ejVv3lwrVqzQqVOnnMeWNIeQzWZTXFycc3nbtm3ObrGtW7dq5syZGjBggNq1a6cGDRrIx8dHQUFB6ty5s5588knt2rVL1157rcs5/f39tWrVKs2bN089evRQcHCw/Pz81KpVK40bN047d+5UTExMxX9AAFDN2AyjhMc4W9zcuXM1d+5cFRQU6Oeff1Z2drYl71ZJSkpy6earpv+5AQAWk5OTo5CQkDK/v73eouMt1XUwMgAA1Um1DToAAMD6vH7XFczl8OHDLnPSlGTw4MHOCfAAADArgo7FjRo1qlyTx+Xn52vv3r1l7nf06NErqAoAgMpRbYPOpYOR8R8tWrRgwDIAwDKq7V1XhdwdtQ0AAMyDu64AAEC1R9ABAACWRdABAACWVW2Dzty5cxUVFcXDDwEAsDAGIzMYGQCAKofByAAAoNoj6AAAAMsi6AAAAMsi6AAAAMsi6AAAAMuqtkGH28sBALA+bi/n9nIAAKocbi8HAADVHkEHAABYFkEHAABYFkEHAABYFkEHAABYFkEHAABYVrUNOsyjAwCA9TGPDvPoAABQ5TCPDgAAqPYIOgAAwLIIOgAAwLIIOgAAwLIIOgAAwLIIOgAAwLIIOgAAwLIIOgAAwLKqbdBhZmQAAKyPmZGZGRkAgCqHmZEBAEC1R9ABAACWRdABAACWRdABAACWRdABAACWRdABAACWRdABAACWRdABAACWRdABAACWRdABAACWRdABAACWRdABAACWRdABAACWVW2Dzty5cxUVFaWuXbt6uxQAAOAhNsMwDG8X4U3uPuYdAACYh7vf39W2RQcAAFgfQQcAAFhWTW8XAACoQAUF0oYN0tGjUni4dOONko+Pt6sCvIagAwAVzVthY/lyacIE6dCh/6xr2lR69VVpyBDPXx8wIbquAKAiLV8utWgh9e4tDR/u+LNFC8d6T7HbpYULpbvucg05knT4sGP9smWeuz5gYtx1xV1XQNVnlu6a5csdoeLyf1ZtNsefS5dWfMuK3e7ee23aVPrtN7qxYBncdQWgevBGC0px8vOlsWOLhhzpP+smTJAuXqzY6549695+hw45wiBQzTBGB9WDWX7jL4tZ6zRrXSW1oBR213iiBaU4drvk61v6PobhCBtr10r9+1fctWuU4/fVo0cr7rpAFUGLDqzPLL/xl8WsdZq1Lm+1oBTH3VYVqeLDRu3a0hdfuLdveHjFXhuoAgg6sLbC3/hLGqDp7S/rQmatc+nS0utatKj4oOFphS0opYWGS1tQPK08rSotWlTstW02qU8fxxicwrFAxe0TGeloiQOqGYIOrMud3/gnTnR0y3iTmVomLq9r2LCS6zIMacQI6fTpyq1L8m4LSnFq15ays6UmTcoOGzffXPHX9/Fx3EJeeJ3LrytJs2aZo7sRqGR/aIxObm6uduzYoWPHjslut7tsGzhwYIUUBlwRd8dMpKc7xp706lUpZRXhzbEdZXG3JeTbb6U//cmztVzOmy0oxbHZpOBgafZsR0uXzeYaECsjbAwZ4miBK24enVmzmEcH1Va5g87q1as1cuRIHT9+vMg2m82mAm//dgxI5vuNvyRmrjMz0739Tp70bB3FKWxBiYqSjhwpvtXJZnN8yXuiBaUk3g4bQ4ZId95pzoHjgJeUO+iMGzdOw4YN07PPPqvQ0FBP1ARcufL8xu/NAZpma5n4I9dr0sSjZRTLDC0oJfF22PDx8V4LJWBC5Z4wMDg4WD/88INatWrlqZoqFRMGWpRhOMaOuPMbf1qa937jNXOdBQWOsHP4sLnqulxxjz2IjKS7BrA4j00YeNddd2n9+vVXUhvgeZf+xl+4fPl2yfsDNM1cZ1UZ4DpkiGPG33XrHHeBrVvnCF+EHAD6Ay06586d07Bhw9SoUSN16NBBtWrVctk+fvz4Ci3Q02jRqQaqym/8Zq3TrHUBqNbc/f4ud9B5++239fDDD8vf318NGjSQ7ZLf9Gw2m3799dc/XrUXEHSqCbPO7Hs5s9Zp1roAVFseCzphYWEaP368Jk+erBrlGUjpQYMHD9b69et16623aunSpeU6lqADAEDV47ExOhcuXNA999xjmpAjSRMmTNC7777r7TIAAIDJlDutxMXFacmSJZ6o5Q/r1auXgoKCvF0GAAAwmXLPo1NQUKAZM2boyy+/VMeOHYsMRn7llVfKdb5vvvlGM2fOVGpqqo4ePaqPP/5YgwYNctln7ty5mjlzpjIyMtSpUye99tpr6tatW3lLBwAA1Uy5g86PP/6ozp07S5J27tzpss1W0jNeSnH27Fl16tRJo0eP1pBi7uBYsmSJEhISNH/+fHXv3l2zZs1S3759tXfvXjVu3Ljc1wMAANVHuYPOunXrKrSA/v37q38pz+955ZVXNGbMGD3wwAOSpPnz5+vzzz/XggULNHny5HJfLy8vT3l5ec7lnJyc8hcNAACqhCsaUbxx40aX0FDRLly4oNTUVMXGxjrX1ahRQ7Gxsdq0adMfOue0adMUEhLifEVGRlZUuQAAwGSuKOj0799fhw8frqhaijh+/LgKCgqKPFMrNDRUGRkZzuXY2FgNGzZMX3zxhZo2bVpqCJoyZYqys7Odr/T0dI/VDwAAvKvcXVeXKucUPB7zv//7v27v6+fnJz8/Pw9WAwAAzMI8k+EUo2HDhvLx8VFmZqbL+szMTIWFhV3RuefOnauoqCh17dr1is4DAADM64qCzhtvvOHsVrLb7Tp48GCFFFXI19dXXbp0UXJysnOd3W5XcnKyevTocUXnjo+P1+7du5WSknKlZQIAAJMqd9fVwoULtWTJEh04cEDBwcHaunWrHnvsMdWsWVMtW7ZUQUFBuc535swZ7du3z7mclpambdu2qX79+mrWrJkSEhIUFxenmJgYdevWTbNmzdLZs2edd2EBAACUxO2gU1BQoCFDhmj16tUaMGCABg4cqJMnT+qjjz7Sm2++qddee+0PFfD999+rd+/ezuWEhARJjhmYk5KSdM899+j333/Xs88+q4yMDEVHR2v16tVFBigDAABczu2Her700kt65ZVXtG7dOrVt29a53m6365VXXtEzzzyjixcvlrtFx9t4qCcAAFVPhT/UMykpSTNmzHAJOZJjXpvHH39cL7zwgmnuwnIHg5EBALA+t1t0AgICtGPHDrVu3drTNVUqWnQAAKh6KrxFJzAwUL///nuJ27dt26bRo0eXr0oAAAAPcjvo3HzzzZo/f36x2zIyMnTvvffqnXfeqbDCAAAArpTbQScxMVHLli1TXFycdu7cqdzcXB05ckRvvPGGunbtqoYNG3qyTgAAgHJzO+h07NhRq1at0saNG9WpUycFBgYqMjJS48eP13333afFixczGBkAAJiK24ORC9ntdm3ZskVpaWkKDg5Wjx49VL9+fZ09e1YvvfSSEhMTPVWrRzAYGQCAqsfd7+9yBx2rIegAAFD1VPhdVwAAAFUNQQcAAFhWtQ06DEYGAMD6GKPDGB0AAKocxugAAIBqj6ADAAAsi6ADAAAsi6ADAAAsi6ADAAAsq9oGHW4vBwDA+ri9nNvLAQCocri9HAAAVHsEHQAAYFkEHQAAYFk1vV0AUBkKCqQNG6SjR6XwcOnGGyUfH29XBQDwNIIOLG/5cmnCBOnQof+sa9pUevVVacgQ79UFAPA8uq5gWXa7tHChdNddriFHkg4fdqxftsw7tQEAKke1DTrMo2Ntdruja2r0aKm4CRQMw/GaONHRrQUAsCbm0WEeHUsqDDruWLdO6tXLo+UAACqYu9/fjNGBJZ0/7/6+R496ro7yYtA0AFQsgg6qvfBwb1fgwKBpAKh41XaMDqytdm0pO1tq0kSy2Yrfx2aTIiMdrSbetnx56YOmly/3Tl0AUNURdGBJNpsUHCzNnv2f5cu3S9KsWd7vGsrPl8aOLXnQtORo6bl4sXLrAgArIOjA0oYMkZYudbTsXKppU8d6b3cJ2e2Sr2/p44QMw9HSs3Zt5dUFAFbBGB1Y3pAh0p13mnOQ79mz7u/rzUHTDJIGUFURdFAt+PiY8xbyGuVoU23RwmNllIpB0gCqMrquAC8qz6Dpm2+u3NokR/deaYOkFy0qfmwRAJhFtQ06zIwMMzDzoOn8fGnYsNJnlh4xQjp9unLrKk5BgbR+vbR4seNPZrsGUKjaBp34+Hjt3r1bKSkp3i4FMOWg6Q0b3Ntv40bP1lGW5csd3Xq9e0vDhzv+bNGi+t6ST+gDXDFGBzAJsw2aPnDAvf2ysjxbR0nsdumdd6QHHyza6lTYtfbee9J995XcLegp3hq8zXgqoCiCDmAiZho0HRbm3n7emFm6rGeZFQafESOk2293dA9WFm+EDXdC30cfSUOHeub6gJlV264rAKW77TbzDpIuj8rqWrPbpYULK3/wdmHoGz269PFUEyfSjYXqiaADoFg1a5pzkLRUvoe2VkbXmrthw5uDtw8dcn/cFWAlBB0AJTLjIOnyMstDWwtVdAtTeUKfNyedBLyFMToASmW2QdLSf+YfioqSjhwpvhXFZnMEssroWjNbC1NJzBb6gMpA0AFQJjMNkpZc5x+66y7H8qVhx9tda6Wp6LBRntB3440Ve22gKqDrCkCVZZauNW/OcG3mSScBMyDoAKjShgyRfvtNWrfOcVfTunVSWlrljh8yQ9gwS+gDzMZmGNX7STU5OTkKCQlRdna2gitzsg0AllTcPDqRkY6QUxlhgyfNo7pw9/uboEPQAVDBCBuA57n7/c1gZACoYGYbvA1UZ4zRAQAAllVtg87cuXMVFRWlrl27ersUAADgIYzRYYwOAABVjrvf39W2RQcAAFgfQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFgWQQcAAFiWJYLOypUr1bZtW7Vu3VpvvfWWt8sBAAAmUdPbBVypixcvKiEhQevWrVNISIi6dOmiwYMHq0GDBt4uDQAAeFmVb9HZsmWL2rdvryZNmqhOnTrq37+/1qxZ4+2yAACACXg96HzzzTe64447FBERIZvNphUrVhTZZ+7cuWrRooX8/f3VvXt3bdmyxbntyJEjatKkiXO5SZMmOnz4cGWUDgAATM7rQefs2bPq1KmT5s6dW+z2JUuWKCEhQYmJidq6das6deqkvn376tixY5VcKQAAqGq8Pkanf//+6t+/f4nbX3nlFY0ZM0YPPPCAJGn+/Pn6/PPPtWDBAk2ePFkREREuLTiHDx9Wt27dSjxfXl6e8vLynMvZ2dmSpJycnCt9KwAAoJIUfm8bhlH6joaJSDI+/vhj53JeXp7h4+Pjss4wDGPkyJHGwIEDDcMwjPz8fOPqq682Dh06ZJw+fdpo06aNcfz48RKvkZiYaEjixYsXL168eFnglZ6eXmq28HqLTmmOHz+ugoIChYaGuqwPDQ3Vnj17JEk1a9bUyy+/rN69e8tut+vJJ58s9Y6rKVOmKCEhwblst9uVlZWlBg0ayGazeeaN/EFdu3ZVSkqKt8swhar+WZixfm/VVFnX9dR1KvK8FXGunJwcRUZGKj09XcHBwRVSF7zHjP9WeEtZn4VhGDp9+rQiIiJKPY+pg467Bg4cqIEDB7q1r5+fn/z8/FzW1a1b1wNVXTkfHx/+4fo/Vf2zMGP93qqpsq7rqetU5Hkr8lzBwcGm+zuG8jPjvxXe4s5nERISUuZ5vD4YuTQNGzaUj4+PMjMzXdZnZmYqLCzMS1VVnvj4eG+XYBpV/bMwY/3eqqmyruup61Tkec349wLexd+J/6ioz8L2f2NjTMFms+njjz/WoEGDnOu6d++ubt266bXXXpPk6Gpq1qyZxo4dq8mTJ3upUgAwh5ycHIWEhCg7O5uWAKAYXu+6OnPmjPbt2+dcTktL07Zt21S/fn01a9ZMCQkJiouLU0xMjLp166ZZs2bp7NmzzruwAKA68/PzU2JiYpEueQAOXm/RWb9+vXr37l1kfVxcnJKSkiRJc+bM0cyZM5WRkaHo6GjNnj1b3bt3r+RKAQBAVeP1oAMAAOApph6MDAAAcCUIOgAAwLIIOgAAwLIIOgBgQenp6erVq5eioqLUsWNHffTRR94uCfAKBiMDgAUdPXpUmZmZio6OVkZGhrp06aKff/5ZgYGB3i4NqFRen0cHAFDxwsPDFR4eLkkKCwtTw4YNlZWVRdBBtUPXFQCY0DfffKM77rhDERERstlsWrFiRZF95s6dqxYtWsjf31/du3fXli1bij1XamqqCgoKFBkZ6eGqAfMh6ACACZ09e1adOnXS3Llzi92+ZMkSJSQkKDExUVu3blWnTp3Ut29fHTt2zGW/rKwsjRw5Um+++WZllA2YDmN0AMDkSnoOYNeuXTVnzhxJjucARkZGaty4cc7nAObl5em2227TmDFjdP/993ujdMDraNEBgCrmwoULSk1NVWxsrHNdjRo1FBsbq02bNkmSDMPQqFGjdMsttxByUK0RdACgijl+/LgKCgoUGhrqsj40NFQZGRmSpI0bN2rJkiVasWKFoqOjFR0drR9//NEb5QJexV1XAGBBPXv2lN1u93YZgNfRogMAVUzDhg3l4+OjzMxMl/WZmZkKCwvzUlWAORF0AKCK8fX1VZcuXZScnOxcZ7fblZycrB49enixMsB86LoCABM6c+aM9u3b51xOS0vTtm3bVL9+fTVr1kwJCQmKi4tTTEyMunXrplmzZuns2bN64IEHvFg1YD7cXg4AJrR+/Xr17t27yPq4uDglJSVJkubMmaOZM2cqIyND0dHRmj17trp3717JlQLmRtABAACWxRgdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWdV+ZmS73a4jR44oKChINpvN2+UAAAA3GIah06dPKyIiQjVqlNxuU+2DzpEjRxQZGentMgAAwB+Qnp6upk2blri92gedoKAgSY4PKjg42MvVAAAAd+Tk5CgyMtL5PV6Sah90CrurgoODCToAAFQxZQ07YTAyAACwLIIOAACwLIIOAACwLIIOAACwLIIOAACwLIIOAACwLIIOAACwLIIOAACwLIIOAACwLIIOAACwLIIOAACwLIIOAACwLNMGnYKCAv3lL39Ry5YtFRAQoFatWmnq1KkyDMO5j2EYevbZZxUeHq6AgADFxsbql19+8WLVAADATEwbdKZPn6558+Zpzpw5+umnnzR9+nTNmDFDr732mnOfGTNmaPbs2Zo/f742b96swMBA9e3bV7m5uV6sHAAAmIXNuLSJxERuv/12hYaG6u2333auGzp0qAICAvTee+/JMAxFRERo0qRJevzxxyVJ2dnZCg0NVVJSku699163rpOTk6OQkBBlZ2crODjYI+8FAABULHe/v03bovNf//VfSk5O1s8//yxJ2r59u7799lv1799fkpSWlqaMjAzFxsY6jwkJCVH37t21adOmEs+bl5ennJwclxcAALCmmt4uoCSTJ09WTk6OrrnmGvn4+KigoEB/+9vfNGLECElSRkaGJCk0NNTluNDQUOe24kybNk1//etfPVc4AAAwDdO26Hz44Yd6//33tWjRIm3dulXvvPOOXnrpJb3zzjtXdN4pU6YoOzvb+UpPT6+gis0vMzNTU6dO1c0336zQ0FD5+voqMDBQ7du314MPPqhVq1appJ7Ml156STabzeW1cuXKUq936NAhTZw4Ue3bt1dgYKD8/PwUFhamDh066J577tG0adN08uTJIscVFBTojTfeUM+ePVWvXj0FBASodevWmjBhgo4ePVrm+7x48aK6dOniUuuoUaPc+owAABZjmFTTpk2NOXPmuKybOnWq0bZtW8MwDGP//v2GJOOHH35w2eemm24yxo8f7/Z1srOzDUlGdnb2FddsZnPnzjX8/f0NSaW+0tLSij2+ffv2RfYdOnRoiddLTU01QkJCyrze5f/9zp8/b/Tp06fE/evXr2+kpKSU+l6ff/75IsfFxcWV8xMDAJiZu9/fpu26OnfunGrUcG1w8vHxkd1ulyS1bNlSYWFhSk5OVnR0tCTHwKTNmzfrkUceqexyTW3GjBl66qmnnMs+Pj4aMGCAs9Vj3759+vLLL5WZmVns8SkpKdq1a1eR9Z999pmysrJUv379ItseffRRZWdnS5ICAwN1zz336KqrrlJ+fr5++eUXbdiwodjWtGeeeUZr1qxx1jl69GiFh4crKSlJBw8eVFZWloYNG6adO3cqMDCwyPE7duzQ1KlT3ftgAADWV0nBq9zi4uKMJk2aGCtXrjTS0tKM5cuXGw0bNjSefPJJ5z5///vfjbp16xqffPKJsWPHDuPOO+80WrZsaZw/f97t61i9RWfXrl2Gj4+Ps2WjcePGxtatW4vsd+HCBePNN980MjMzi2x79NFHncc3a9bMpWXotddeK7J/4Wda+EpKSiq2ti1bthi///67c/nEiROGn5+f87inn37auW3Pnj2GzWZzbnv99deLfQ/R0dGGJCMmJsZo0qQJLToAYFHufn+bNujk5OQYEyZMcH6xXnXVVcYzzzxj5OXlOfex2+3GX/7yFyM0NNTw8/Mzbr31VmPv3r3luo7Vg87DDz/sEjqWLVtWruNzc3ONevXquYSPwYMHO5evu+66IsecOHHC5ZqPP/64cfHixTKvtXjxYpfjUlNTXbZ36NDBua1fv35Fjk9MTDQkGX5+fsauXbuM5s2bE3QAwKKqfNCpLFYPOq1bt3Z+2derV88oKCgo1/FLlixxCR87duwodt3lLg0ZkowGDRoYAwcONBITE43Vq1cbubm5RY6ZMmWKyzEnT5502X7nnXc6t0VERLhs++GHH4xatWoZkozp06cXqYGgAwDW4u73t2nvukLFOHz4sPPnNm3aFBn3VJakpCTnz+3bt1eHDh10xx13qE6dOsXuU+gf//iHbDabc/nEiRP69NNP9de//lX9+vVTaGionn/+eRUUFDj3ycrKcjnH5RNABQUFuZyvUH5+vkaNGqX8/Hxdf/31mjRpUrneIwDAugg6KNHRo0edA4MlOWebDggI0MCBA53r33vvPV28eNHl2MGDB+urr77SLbfcUmy4ys7OVmJiYqkDh43LbnW/fLnQ1KlTtX37dgUEBCgpKUk+Pj5lvzkAQLVA0LG4Jk2aOH/++eefSwwLxXn33XddWlwufazGfffd5/z52LFj+uKLL4oc36tXLyUnJysrK0urVq3Sc889p5iYGJd9/vGPfzh/btCggcu206dPl7jcsGFDSdLBgwc1bdo0SdILL7ygtm3buv3+AADWR9CxuFtvvdX588mTJ/XJJ5+4fezlkzO2bt3aOQHfHXfc4bKtuO6rQiEhIerXr58SExOVkpKi0aNHO7fl5OQ4b2vv2LGjy3G//vqry/L+/fudP3fo0EGSo7ursDVp0qRJLpMEHjhwwOW9MHEgAFQ/BB2LGzt2rEtXziOPPKLt27cX2S8/P19vvfWWjh07JknavHmzfvrpJ7evs3LlSh0/fty5HBcXp9TU1GL3vXR8T40aNZxjb/r06SN/f3/ntmXLljl/3r17t3bv3u1cvvPOO92uDQBQfZl2wkBUjPbt22vq1Kl6+umnJTmeERYTE6Pbb79dnTt3LjJhYOFDUhcuXOg8h81m07Bhw1wGF0vSmTNn9Pnnn0tyBKX3339fEyZMkOTo9nr33XfVqlUr9ezZU1dddZVsNpu2b9+u5cuXO89x0003qXbt2pKkevXqKT4+Xi+//LIkafr06Tp+/LjCw8O1YMECZ7db8+bNdf/990uS6tatq6FDhxb73letWqVz5845j4mJiVHXrl2v4NMEAFQ1NqM8gzYsyN3HvFd1s2fP1pNPPqm8vLxS90tLS1NYWJjCw8N16tQpSVJsbKzWrl1bZF/DMNSyZUtnF1F0dLR++OEHSSoSiopTv359ff3117r22mud63JzczVw4MBiryc5wtCaNWuKjPUpTosWLZy1xcXFldq9BgCoWtz9/qbrqpoYP3680tLS9Nxzz6lnz55q1KiRatasqdq1a6tdu3Z65JFHtH79ejVv3lwrVqxwhhxJLmNqLmWz2RQXF+dc3rZtm7NbbOvWrZo5c6YGDBigdu3aqUGDBvLx8VFQUJA6d+6sJ598Urt27XIJOZLk7++vVatWad68eerRo4eCg4Pl5+enVq1aady4cdq5c6dbIQcAAIkWnWrTogMAgJXQogMAAKo9gg4AALAsgg4AALAsgg4AALAsgg4AALAsgg4AALAsgg4AALAsgg4AALAsgg4AALAsgg4AALAsgg4AALAsgg4AALAsgg4AALAsgg4AALAsgg4AALAsgg4AALAsgg4AALAsUwedw4cP67//+7/VoEEDBQQEqEOHDvr++++d2w3D0LPPPqvw8HAFBAQoNjZWv/zyixcrBgAAZmLaoHPy5EndcMMNqlWrllatWqXdu3fr5ZdfVr169Zz7zJgxQ7Nnz9b8+fO1efNmBQYGqm/fvsrNzfVi5QAAwCxshmEY3i6iOJMnT9bGjRu1YcOGYrcbhqGIiAhNmjRJjz/+uCQpOztboaGhSkpK0r333uvWdXJychQSEqLs7GwFBwdXWP0AAMBz3P3+Nm2LzqeffqqYmBgNGzZMjRs3VufOnfXPf/7TuT0tLU0ZGRmKjY11rgsJCVH37t21adOmEs+bl5ennJwclxcAALAm0wadX3/9VfPmzVPr1q315Zdf6pFHHtH48eP1zjvvSJIyMjIkSaGhoS7HhYaGOrcVZ9q0aQoJCXG+IiMjPfcmAACAV9X0dgElsdvtiomJ0YsvvihJ6ty5s3bu3Kn58+crLi7uD593ypQpSkhIcC7n5OQQdqqBggJpwwbp6FEpPFy68UbJx8fbVQEAPK3SWnROnTpVrv3Dw8MVFRXlsq5du3Y6ePCgJCksLEySlJmZ6bJPZmamc1tx/Pz8FBwc7PKCNdnt0rFj0sKFUmSk1Lu3NHy448/mzaVFiySzjVArKJDWr5cWL3b8WVDg7YoAoGrzSNCZPn26lixZ4ly+++671aBBAzVp0kTbt2936xw33HCD9u7d67Lu559/VvPmzSVJLVu2VFhYmJKTk53bc3JytHnzZvXo0aMC3gWqMrvd0WITGiqNHu1oybnU4cPSiBGOQOFt7gSys2fNF8oAoCrwSNCZP3++szto7dq1Wrt2rVatWqX+/fvriSeecOscjz32mL777ju9+OKL2rdvnxYtWqQ333xT8fHxkiSbzaaJEyfqhRde0Keffqoff/xRI0eOVEREhAYNGuSJtwULeuop77aauBvI6tSRzp3zTo0AUJV5ZIxORkaGM+isXLlSd999t/r06aMWLVqoe/fubp2ja9eu+vjjjzVlyhQ9//zzatmypWbNmqURI0Y493nyySd19uxZ/c///I9OnTqlnj17avXq1fL39/fE20IVYrNJn38uDRhQ+n6HDjnG7vTqVSllXRG6sQCg/DzSolOvXj2lp6dLklavXu28BdwwDBWU41/r22+/XT/++KNyc3P1008/acyYMS7bbTabnn/+eWVkZCg3N1f/+7//qzZt2lTcG0GVde5c2SGn0OWtKJWpMJC5IzXVs7UAgBV5pEVnyJAhGj58uFq3bq0TJ06of//+kqQffvhBV199tScuCfxh4eHeu3Z5AtmRI56tBQCsyCNB5x//+IdatGih9PR0zZgxQ3Xq1JEkHT16VI8++qgnLgm4qF1bys6WoqIcAaG4gbw2m9S0qeNW86rAm4GM2/MBVFWmfQREZeERENa2fLl0112Ony/9m26zOf5culQaMqTy6ypkGNLp0+4FsrQ074SL5culCRMc45kKNW0qvfqqdz87ANWb1x8B8a9//Us9e/ZURESEDhw4IEmaNWuWPvnkE09dEihiyBBHmGnSxHV906beDzmSI8QEB0uzZ/9n+fLtkjRrlndCztKljqB4aciRHHeD3XWXOeciAoBLeSTozJs3TwkJCerfv79OnTrlHIBct25dzZo1yxOXBEo0ZIj022/SunWOL+Z16xytI94OOZcyYyDLz5eGDSs+yBiG4zVihKNFCgDMyiNdV1FRUXrxxRc1aNAgBQUFafv27brqqqu0c+dO9erVS8ePH6/oS/5hdF3BTMw0Fuarr6Rbby17vy++kP7vfgMAqDTufn97ZDByWlqaOnfuXGS9n5+fzp4964lLApbg42OeOX3+r8e5TFlZnq0DAK6ER7quWrZsqW3bthVZv3r1arVr184TlwRQwUp5ZJwLb94NBgBl8UiLTkJCguLj45WbmyvDMLRlyxYtXrxY06ZN01tvveWJSwKoYLfd5hgzVNbdYDffXPm1AYC7PBJ0HnroIQUEBOjPf/6zzp07p+HDhysiIkKvvvqq7r33Xk9cEkAFq1nTcTfYXXc5Qk1xt+d7626wy5lpbBMAc/H4PDrnzp3TmTNn1LhxY09e5g9jMDJQuuLm0YmMdIQcb965ZrdLx487HqHxzDOuj/Jo0kSaMUO6807H5JGX37YPoOpz9/vbY0Hn4sWLWr9+vfbv36/hw4crKChIR44cUXBwsHOmZDMg6ABlM1uLSeFT391x5owUGOjZegBUPq/edXXgwAH169dPBw8eVF5enm677TYFBQVp+vTpysvL0/z58z1xWQAeYqa7wcqLp74D1ZtH7rqaMGGCYmJidPLkSQUEBDjXDx48WMnJyZ64JIBqhKe+A3CXR1p0NmzYoH//+9/y9fV1Wd+iRQsdPnzYE5cEUI3w1HcA7vJIi47dbnc+9uFShw4dUlBQkCcuCQDFYp4foHrzSNDp06ePyzOtbDabzpw5o8TERP3pT3/yxCUBVCO1a0vZ2Y67q0q6o8pmc9wdxjw/QPXmkaDz0ksvaePGjYqKilJubq6GDx/u7LaaPn26Jy4JoBox+1PfAZiHR28vX7JkibZv364zZ87ouuuu04gRI1wGJ5sBt5cDVZsZ5/kx2+34gBV5bR6d/Px8XXPNNVq5cmWVeK4VQQeo+swULIoLXk2bSq++6t0JFgGr8do8OrVq1VJubm5FnxYASmSGeX7sdumdd6QHHyz6bLDDhx2P0njvPem++5ipGahMHhmjEx8fr+nTp+vixYueOD0AmErhTM2jRxf/AFTDcLxGjJBOn678+oDqzCPz6KSkpCg5OVlr1qxRhw4dFHjZ/OvLly/3xGUBwPQ2bpT69/fc+c3UjQeYgUeCTt26dTV06FBPnBoATMdmk95+29FtVZaTJz1XB+ODgKI8/vRys2MwMoArdfas5O6zipOTpVtuqdjrlzY+qHA80EcfSfz+CSvx6kM9AQDFu/HGij1fWU9yLww+EydKgwbRjYXqxyODkTt37qzrrruuyKtLly664YYbFBcXp3Xr1pXrnH//+99ls9k0ceJE57rc3FzFx8erQYMGqlOnjoYOHarMzMwKfjcAULrataUzZ6T333e0oBQ3gaHN5mhVqVXLOzUeOuQYuwNUNx4JOv369dOvv/6qwMBA9e7dW71791adOnW0f/9+de3aVUePHlVsbKw++eQTt86XkpKiN954Qx07dnRZ/9hjj+mzzz7TRx99pK+//lpHjhzREDqiAVQym00KDJSGD5eWLnU8muJSTZs61t91V8Vf+/x59/c9erTirw+YnUe6ro4fP65JkybpL3/5i8v6F154QQcOHNCaNWuUmJioqVOn6s477yz1XGfOnNGIESP0z3/+Uy+88IJzfXZ2tt5++20tWrRIt/xfh/fChQvVrl07fffdd7r++usr/o0BQBmGDJHuvNOcdz7xgFNURx5p0fnwww913333FVl/77336sMPP5Qk3Xfffdq7d2+Z54qPj9eAAQMUGxvrsj41NVX5+fku66+55ho1a9ZMmzZtKvF8eXl5ysnJcXmhGigokNavlxYvdvxZUODtimBhhRMY3nef409PhpzyPOC0oscHAVWBR4KOv7+//v3vfxdZ/+9//1v+/v6SJLvd7vy5JB988IG2bt2qadOmFdmWkZEhX19f1a1b12V9aGioMjIySjzntGnTFBIS4nxFRka68Y5QpS1fLrVoIfXu7ehb6N3bscx8TrAAHnAKlM4jXVfjxo3Tww8/rNTUVHXt2lWSY5zNW2+9paefflqS9OWXXyo6OrrEc6Snp2vChAlau3ZtmYGoPKZMmaKEhATnck5ODmHHqtyZk99s99wy2xv+oCFDHOOAiptHx5sPOAW8zWPz6Lz//vuaM2eOs3uqbdu2GjdunIYPHy5JOn/+vGw2W4khZsWKFRo8eLB8LvlHvqCgQDabTTVq1NCXX36p2NhYnTx50qVVp3nz5po4caIee+wxt+pkHh2LKuue20JNm0q//WaOMGHm2d4IYFUG/6lQXXjt6eUV5fTp0zpw4IDLugceeEDXXHONnnrqKUVGRqpRo0ZavHixcxbmvXv36pprrtGmTZvcHoxM0LGo06cd7fnuWLfOu0+EdGe2N28+DdLMAQxAteX1CQNPnTqlpUuX6tdff9Xjjz+u+vXra+vWrQoNDVWTy++9LEZQUJCuvfZal3WBgYFq0KCBc/2DDz6ohIQE1a9fX8HBwRo3bpx69OjBHVeQapRj+Jk377l1d7a3ESOk2293P7xVlKVLpbvvNv/juGnGAFACjwxG3rFjh9q0aaPp06dr5syZOnXqlCTHwzynTJlSYdf5xz/+odtvv11Dhw7VTTfdpLCwMB4YCofataUvvnBv36pyz+3GjZV7vfx8adgw8z+Om8HmAErhka6r2NhYXXfddZoxY4aCgoK0fft2XXXVVfr3v/+t4cOH67fffqvoS/5hdF1ZWEGB4wvv8OHiv6xtNkcXTFqa9377L89Dkt57zxEsKstXX0m33lr2fl984dnHcZdm+XJHy1JJXX5Ll9K9BliUu9/fHmnRSUlJ0f/7f/+vyPomTZqUeus3UKF8fBzjSCRr3HNb2S1Pl42RK1FWlmfrKEl+vjR2bMktTpJjbNHFi5Vbl8S8TYCJeCTo+Pn5FTsR388//6xGjRp54pJA8QrvuS1pTn5v/7Zfntnebr65cmsLC3NvP290/dntkq9v6eOrDMMxgHrt2sqrS6IrDTAZjwSdgQMH6vnnn1d+fr4kyWaz6eDBg3rqqaecd0gBlWbIEMct5OvWSYsWOf5MS/N+yJHMPdvbbbeZM4BJji4/d1XmYPPCrrRL71CT/jN4m7ADVDqPBJ2XX35ZZ86cUaNGjXT+/HndfPPNuvrqqxUUFKS//e1vnrgkULrKnJP/jzBjy1PNmuYMYFL57qpr0cJjZbgwc1caUI15dB6djRs3avv27Tpz5oyuu+66Is+rMgMGI8NUzHibdHHz6ERGene6XcNw3O0VFSUdOeL9webuTlApeX7wthn/DgEe4LV5dOx2u5KSkrR8+XL99ttvstlsatmypcLCwmQYhmzenm8DMLPCliczMePjuC/t8rvrLsfypWGnsluczNKVxuSOQBEV2nVlGIYGDhyohx56SIcPH1aHDh3Uvn17HThwQKNGjdLgwYMr8nIAKotZu/7M0uXn7a40u11auLD08UHLllX8dYEqoEK7rhYuXKgJEybok08+Ue/evV22ffXVVxo0aJDmzJmjkSNHVtQlrxhdV4AFeLu7xptdaVXxuW5ABfDKPDqLFy/W008/XSTkSNItt9yiyZMn6/3336/ISwKA91ucvHn3nLvdZocOOcIgUM1UaNDZsWOH+vXrV+L2/v37a/v27RV5SQAwD290pVWV57oBXlKhg5GzsrIUGhpa4vbQ0FCdPHmyIi8JAOZS2YO3C5/r9qc/lb1vVXmuG1CBKjToFBQUqGbNkk/p4+Oji8whAcDqKvPuOZtN6tPH0WpU1nPdbryxcmoCTKRCg45hGBo1apT8/PyK3Z6Xl1eRlwMASP95rpsZbrUHTKZCg05cXFyZ+5jpjisAsIzC8UHFzaPjzckdAS/z6MzIVQG3lwOwFG/fag9UEq/NjAwA8CIzzq4NeJFHHuoJAABgBgQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWaYNOtOmTVPXrl0VFBSkxo0ba9CgQdq7d6/LPrm5uYqPj1eDBg1Up04dDR06VJmZmV6qGAAAmI1pg87XX3+t+Ph4fffdd1q7dq3y8/PVp08fnT171rnPY489ps8++0wfffSRvv76ax05ckRDhgzxYtUAAMBMbIZhGN4uwh2///67GjdurK+//lo33XSTsrOz1ahRIy1atEh33XWXJGnPnj1q166dNm3apOuvv96t87r7mHcAAGAe7n5/m7ZF53LZ2dmSpPr160uSUlNTlZ+fr9jYWOc+11xzjZo1a6ZNmzaVeJ68vDzl5OS4vAAAgDVViaBjt9s1ceJE3XDDDbr22mslSRkZGfL19VXdunVd9g0NDVVGRkaJ55o2bZpCQkKcr8jISE+WDgAAvKhKBJ34+Hjt3LlTH3zwwRWfa8qUKcrOzna+0tPTK6BCAABgRjW9XUBZxo4dq5UrV+qbb75R06ZNnevDwsJ04cIFnTp1yqVVJzMzU2FhYSWez8/PT35+fp4sGQAAmIRpW3QMw9DYsWP18ccf66uvvlLLli1dtnfp0kW1atVScnKyc93evXt18OBB9ejRo7LLBQAAJmTaFp34+HgtWrRIn3zyiYKCgpzjbkJCQhQQEKCQkBA9+OCDSkhIUP369RUcHKxx48apR48ebt9xBQAArM20t5fbbLZi1y9cuFCjRo2S5JgwcNKkSVq8eLHy8vLUt29fvf7666V2XV2O28sBAKh63P3+Nm3QqSwEHQAAqh7LzaMDAABQXgQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWQQdAABgWZYIOnPnzlWLFi3k7++v7t27a8uWLd4uCQAAmECVDzpLlixRQkKCEhMTtXXrVnXq1El9+/bVsWPHvF0aAADwsiofdF555RWNGTNGDzzwgKKiojR//nzVrl1bCxYs8HZpAADAy2p6u4ArceHCBaWmpmrKlCnOdTVq1FBsbKw2bdpU7DF5eXnKy8tzLmdnZ0uScnJyPFssAACoMIXf24ZhlLpflQ46x48fV0FBgUJDQ13Wh4aGas+ePcUeM23aNP31r38tsj4yMtIjNQIAAM85ffq0QkJCStxepYPOHzFlyhQlJCQ4l+12u7KystSgQQPZbDYvVlZU165dlZKS4u0yTKGqfxZmrN9bNVXWdT11nYo8b0WcKycnR5GRkUpPT1dwcHCF1AXvMeO/Fd5S1mdhGIZOnz6tiIiIUs9TpYNOw4YN5ePjo8zMTJf1mZmZCgsLK/YYPz8/+fn5uayrW7eup0q8Ij4+PvzD9X+q+mdhxvq9VVNlXddT16nI81bkuYKDg033dwzlZ8Z/K7zFnc+itJacQlV6MLKvr6+6dOmi5ORk5zq73a7k5GT16NHDi5VVjPj4eG+XYBpV/bMwY/3eqqmyruup61Tkec349wLexd+J/6ioz8JmlDWKx+SWLFmiuLg4vfHGG+rWrZtmzZqlDz/8UHv27CkydgcArCYnJ0chISHKzs6mJQAoRpXuupKke+65R7///rueffZZZWRkKDo6WqtXrybkAKgW/Pz8lJiYWKRLHoBDlW/RAQAAKEmVHqMDAABQGoIOAACwLIIOAACwLIIOAACwLIIOAACwLIIOAFhQenq6evXqpaioKHXs2FEfffSRt0sCvILbywHAgo4eParMzExFR0crIyNDXbp00c8//6zAwEBvlwZUqio/YSAAoKjw8HCFh4dLksLCwtSwYUNlZWURdFDt0HUFACb0zTff6I477lBERIRsNptWrFhRZJ+5c+eqRYsW8vf3V/fu3bVly5Ziz5WamqqCggJFRkZ6uGrAfAg6AGBCZ8+eVadOnTR37txity9ZskQJCQlKTEzU1q1b1alTJ/Xt21fHjh1z2S8rK0sjR47Um2++WRllA6bDGB0AMDmbzaaPP/5YgwYNcq7r3r27unbtqjlz5kiS7Ha7IiMjNW7cOE2ePFmSlJeXp9tuu01jxozR/fff743SAa+jRQcAqpgLFy4oNTVVsbGxznU1atRQbGysNm3aJEkyDEOjRo3SLbfcQshBtUbQAYAq5vjx4yooKFBoaKjL+tDQUGVkZEiSNm7cqCVLlmjFihWKjo5WdHS0fvzxR2+UC3gVd10BgAX17NlTdrvd22UAXkeLDgBUMQ0bNpSPj48yMzNd1mdmZiosLMxLVQHmRNABgCrG19dXXbp0UXJysnOd3W5XcnKyevTo4cXKAPOh6woATOjMmTPat2+fczktLU3btm1T/fr11axZMyUkJCguLk4xMTHq1q2bZs2apbNnz+qBBx7wYtWA+XB7OQCY0Pr169W7d+8i6+Pi4pSUlCRJmjNnjmbOnKmMjAxFR0dr9uzZ6t69eyVXCpgbQQcAAFgWY3QAAIBlEXQAAIBlEXQAAIBlEXQAAIBlEXQAAIBlEXQAAIBlEXQAAIBlEXQAAIBlEXQAAIBlEXQAVEmjRo3SoEGDrugc69evl81m06lTp0rdLzk5We3atVNBQUGZ51y9erWio6Nlt9uvqDYAFYOgA8CjRo0aJZvNJpvNJl9fX1199dV6/vnndfHixSs676uvvup85pOnPfnkk/rzn/8sHx+fMvft16+fatWqpffff78SKgNQFoIOAI/r16+fjh49ql9++UWTJk3Sc889p5kzZ/6hcxUUFMhutyskJER169at2EKL8e2332r//v0aOnSo28eMGjVKs2fP9mBVANxF0AHgcX5+fgoLC1Pz5s31yCOPKDY2Vp9++qkkKS8vT48//riaNGmiwMBAde/eXevXr3cem5SUpLp16+rTTz9VVFSU/Pz8dPDgwSJdV3l5eRo/frwaN24sf39/9ezZUykpKS51fPHFF2rTpo0CAgLUu3dv/fbbb2XW/sEHH+i2226Tv7+/c9327dvVu3dvBQUFKTg4WF26dNH333/v3H7HHXfo+++/1/79+//YBwagwhB0AFS6gIAAXbhwQZI0duxYbdq0SR988IF27NihYcOGqV+/fvrll1+c+587d07Tp0/XW2+9pV27dqlx48ZFzvnkk09q2bJleuedd7R161ZdffXV6tu3r7KysiRJ6enpGjJkiO644w5t27ZNDz30kCZPnlxmrRs2bFBMTIzLuhEjRqhp06ZKSUlRamqqJk+erFq1ajm3N2vWTKGhodqwYcMf+nwAVJya3i4AQPVhGIaSk5P15Zdfaty4cTp48KAWLlyogwcPKiIiQpL0+OOPa/Xq1Vq4cKFefPFFSVJ+fr5ef/11derUqdjznj17VvPmzVNSUpL69+8vSfrnP/+ptWvX6u2339YTTzyhefPmqVWrVnr55ZclSW3bttWPP/6o6dOnl1rzgQMHnLUVOnjwoJ544gldc801kqTWrVsXOS4iIkIHDhwox6cDwBMIOgA8buXKlapTp47y8/Nlt9s1fPhwPffcc1q/fr0KCgrUpk0bl/3z8vLUoEED57Kvr686duxY4vn379+v/Px83XDDDc51tWrVUrdu3fTTTz9Jkn766Sd1797d5bgePXqUWfv58+dduq0kKSEhQQ899JD+9a9/KTY2VsOGDVOrVq1c9gkICNC5c+fKPD8AzyLoAPC43r17a968efL19VVERIRq1nT803PmzBn5+PgoNTW1yB1NderUcf4cEBAgm81WqTUXatiwoU6ePOmy7rnnntPw4cP1+eefa9WqVUpMTNQHH3ygwYMHO/fJyspSo0aNKrtcAJdhjA4AjwsMDNTVV1+tZs2aOUOOJHXu3FkFBQU6duyYrr76apdXWFiY2+dv1aqVfH19tXHjRue6/Px8paSkKCoqSpLUrl07bdmyxeW47777rsxzd+7cWbt37y6yvk2bNnrssce0Zs0aDRkyRAsXLnRuy83N1f79+9W5c2e33wMAzyDoAPCaNm3aaMSIERo5cqSWL1+utLQ0bdmyRdOmTdPnn3/u9nkCAwP1yCOP6IknntDq1au1e/dujRkzRufOndODDz4oSXr44Yf1yy+/6IknntDevXu1aNEit+bh6du3r7799lvn8vnz5zV27FitX79eBw4c0MaNG5WSkqJ27do59/nuu+/k5+fnVtcYAM8i6ADwqoULF2rkyJGaNGmS2rZtq0GDBiklJUXNmjUr13n+/ve/a+jQobr//vt13XXXad++ffryyy9Vr149SY47oZYtW6YVK1aoU6dOmj9/vnOwc2lGjBihXbt2ae/evZIkHx8fnThxQiNHjlSbNm109913q3///vrrX//qPGbx4sUaMWKEateuXa73AKDi2QzDMLxdBACY2RNPPKGcnBy98cYbZe57/PhxtW3bVt9//71atmxZCdUBKA0tOgBQhmeeeUbNmzd36/lVv/32m15//XVCDmAStOgAAADLokUHAABYFkEHAABYFkEHAABYFkEHAABYFkEHAABYFkEHAABYFkEHAABYFkEHAABYFkEHAABY1v8H3SnctqxF6HsAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAphNJREFUeJzsnXl8VNX5/z+zz2Sy7wsJCQkhJIRACCGQAKIUREXcUFsV3L9trW2larUW+Wq1am2pVVFrW7X1W6utP7UqCipKIOwQCGEJgZCQhOzbZJl95v7+mOSSIZkwgdw5906e9+uVVzJ3ztznc55zcvPkLM+RcRzHgSAIgiAIgpA8ctYCCIIgCIIgiLGBAjuCIAiCIAg/gQI7giAIgiAIP4ECO4IgCIIgCD+BAjuCIAiCIAg/gQI7giAIgiAIP4ECO4IgCIIgCD+BAjuCIAiCIAg/gQI7giAIgiAIP4ECO4JgSG9vL37/+99jwYIFiIyMhEqlQkhICJKTk5Gfn4+77roL69evR21tLWupFyQ5ORkymYz/8mf27NmDn/3sZ8jLy0N0dDTUajX0ej0mT56MlStX4m9/+xt6eno8ft5msyE6OtrNXzKZDK+++qpX9r/88kvcfPPNSE5Ohk6ng1arRXx8PKZNm4brrrsOa9euxZYtWzx+vqOjA+vWrcOsWbMQGhoKnU6HlJQUrF69Gnv37vXaD319fUhLSxtSj5qaGq/vQRDEGMMRBMGEyspKbuLEiRyAC369++67Qz6/cOFCtzLV1dVjrrG6utrNxsKFCz2WPb8u/sjZs2e5JUuWeNVm119/vcf7fPTRR8N+ZtasWSPat9vt3B133OGV/SuuuGLYe+zatYuLjIz0+DmZTMY9+eSTXvnjRz/60bD3EKIvEgThHcqxDRMJgvAGjuNw66234syZM/y1yMhI5OTkIDAwEO3t7Th27Bg6OjoYqhwdV111FVpaWljLEIyqqioUFhaiubnZ7Xp8fDyys7OhUChQW1uLY8eOwel0wul0erzXO++8M+z1AwcO4MiRI5g2bdqw72/YsAHvvvsu/1qpVPKjhmazGVVVVTh9+jQ4D0eAnz17FsuWLUNXVxd/LS8vD5GRkdi2bRuMRiM4jsPTTz+N+Ph4/M///I/HOnz99dd4/fXXPb5PEAQbKLAjCAYcOnQIpaWl/OsVK1bgww8/hFKpHFLu3//+NyIjI30tcdS89tprrCUIhs1mwzXXXOMW1AUHB+Ovf/0rVq5c6Va2qakJr7/+Ok6dOjXsvVpbW/Hll1/yr1UqFWw2G//6nXfewe9///thP/u3v/3NzX5paSlSU1PdyrS0tODzzz8f1v4TTzzhFtQ9/fTTWLt2LQCgoqICeXl56OvrAwA8+uijuO222xAYGDjkPgaDAXfffTcAICQkBDKZzO2+BEEwhPGIIUGMS95//323qav169d7/dnzp2A9fQ1Mh1VXV3O//vWvuWuuuYZLT0/noqKiOJVKxen1em7SpEncypUruc8++8zNxvlTsJ6+Bk/NejMV29bWxj377LNcYWEhFxERwSmVSi40NJSbNWsW99hjj3G1tbXDfm64e3/44YfcZZddxgUHB3NarZbLzc3l/vGPfwz7+bffftvt8+vWrfPa3xzHcRs2bHD7vFwu57Zu3TriZ8xm87DX169f73avJ554ggsICOBfx8bGcjabbdjParVavtz06dNHVYeenh5Op9Pxnw8ICOCMRqNbmdWrV7tpe+utt4a91+Dp4H/84x9D2oemYgmCHRTYEQQDzl9jFRUVxb3yyivcyZMnL/jZ0QZ2//nPf7wqf/fdd/M2hAjsvvnmmxHXdg0EG//85z+HfPb8e69atcrjPf74xz8O+fylBnZFRUVun7/22mtH9fnBTJ8+fUg73XLLLW7Xzg+0BwgODnYrd//993Pbt2/3GEQO5ttvv3X77Jw5c4aUee2119zK3HnnnUPKfPzxx/z7N9xwA8dxQ9uHAjuCYAdNxRIEAwoKCqBUKmG32wG4pucefPBBAEBoaChyc3Mxf/583HjjjcjOznb77MKFCxEZGYni4mK0tbXx15ctW4aAgAD+tV6vd/tcUlISEhISEBYWBrlcjubmZhw6dIifBnzrrbewfPlyXHfdddDr9bjxxhthNBrdpg0jIyOxcOFC/nVWVpZX9a2oqMCKFSv4aT7g3Nq0kydP4vTp0wAAo9GIVatWISEhwc3O+fzjH/9AeHg4Zs2ahePHj6O+vp5/73//939x//33u/niUnA6ndi9e7fbtauuuuqi7lVaWorDhw/zr+fOnYvk5GR8//vfxwcffMBff+edd3DNNdcM+fz8+fOxceNG/vWbb76JN998E0qlEpmZmZg7dy6WLVuGZcuWQa1Wu322oqLC7XVCQsKQ+59/7fzPtLa28uvuoqOj8cYbb1yoygRB+BrWkSVBjFeefPJJr0bFli9fzrW0tAz5vLe7Ypubm7m6urph3zty5IjbPW655Ra398dqV+ytt946ZMTLZDJxHMdxDoeDu//++93eLygoGPHeubm5XHt7O8dxrinGrKwst/eLi4vdPn8pI3YtLS1D2mTTpk1ef34wDz74oNt9XnnlFY7jOM5isXChoaH8dbVazddvMGVlZVxgYOAF+0xSUhK3efNmt8/+9re/dStzxx13DLn/N99841ZmypQpbu/fcMMN/HuffPIJf51G7AhCPFAeO4JgxFNPPYW33noLEydOHLHcZ599hhUrVnjc6XghoqOjUVdXh3vvvRfZ2dkICQmBQqGATCYbsvvy/BGascDpdLqNMgHACy+8AK1WCwCQy+V44YUX3EaY9uzZg9bWVo/3fPbZZxEeHg4ACAwMxOWXX+72/tmzZ91e33nnneBcS0/AcRz+93//91KqdFFtYbVa8d577/GvFQoFv/FCrVbjxhtv9Fh2gOnTp2PPnj1YunTpiLkCa2trsXz5crfRQW/qMFK9/u///g8fffQRAGD16tVYsWKFx7IEQbCDAjuCYMhdd92F6upq7Nq1C88//zxWrFjBByyD2bVrF3bt2nVRNtavX4958+bhb3/7G44cOYLu7m6PqTgMBsNF2RiJ9vZ2t2S9arUaU6ZMcSsTGhqKpKQk/jXHcSMmuZ09e7bb65CQELfXFovlEhS7ExERMWS38sUk4P3ss8/Q3t7Ov7788ssRExPDv/7+97/vVt5TSpTMzExs2rQJZ86cwdtvv417770XU6dOHVLOarW6JTwODQ11e99oNA75zOCpcgAICwsDAJjNZn6pQFJSEl5++eVhtREEwR4K7AiCMTKZDAUFBfjlL3+JTz75BK2trfj000+HpJk4fvz4qO/d2NiIX/7yl27XEhMTcdVVV+HGG290GyUCLm4k6kIIcc+IiAi31wqFYsxtDCCXy1FQUOB27Ysvvhj1fc4P1Hbv3o0JEybwX6tWrXJ7fyCnnScSExNx55134i9/+QuOHTuGU6dODVmXOLjPZGRkuL03eF3iAOePdA58xmw28+lMWlpaMGnSJERGRvJfdXV1bp/Lzc1FZGQk3n//fY/6CYIQBgrsCIIBBoNh2BETwBVILF++HN/73vfcrqtUKrfX3hzbtXv3bn6DBgBcffXVOHPmDDZu3IgPP/wQr7zyyoifH4ujwSIjI92CVKvVisrKSrcyXV1dbsemyWQyJCcnX7LtseL80bSNGzeiuLh4xM8MHjVsbm7Gpk2b3N7v6enB2bNn+a+GhoYh9zg/GByuzACpqalYs2aN27XBfWb27NnQ6XT86/Ly8iF9cM+ePW6vFyxYMMSO2WxGe3u729f5I8CdnZ1ob2+H2Wz2qJcgCGGgwI4gGFBeXo6kpCT86le/GnZUpra2dshOzPN3oA7+Iw0MHW0B4Jb4FgC0Wi0frFksFvziF78YUef5NkYKLDwhl8uH7CJ97LHH+MDH6XTi8ccfh9Vq5d/Pz89HVFTUqG154p133nE7y3S0a+zuu+8+txEvp9PJJ5U+n6amJjz55JN8Al/AtT5tcIDtLf/85z/dPrdo0SLccMMN+Oyzz4ZMNzscDvy///f/3K4N7jOBgYG4+eab+dcmkwkvvvgi//rYsWNu9QkODh6SfJkgCAnAatcGQYxntm/f7raLMDIyklu4cCF37bXXckVFRZxKpXJ7f+bMmZzT6XS7x0MPPeRWJioqirvmmmu4G2+8kXv00Uc5jnPtapXL5W7lpk2bxl111VVcXFwcJ5PJ3N6bOHHiEK3h4eFuZXJycrgbbriBu/HGG7kvv/ySLzfSrtijR4+6JeEFwMXHx3NLly7lJk2a5HZdLpdz3377rdvnL5Qjb926dW7vv/32227vX2oeO47juJMnT3IxMTFDdqAmJCRwy5Yt466++mouOzub9/eKFSv4z06bNs3tM57y1HHc0Dx3g8umpqa67ZydNWsWd/XVV3NLly7lYmNj3T4nk8m4AwcOuN27vr7ebfctAC4vL4+78sorh7TPG2+84bVvaFcsQYgHCuwIggElJSUXTFkx8JWUlMSdOHFiyD0OHTrEKZXKYT8z+DD5NWvWeLz373//+wsGdo888ojHzw+k6+C4CwdfmzdvHhIknv+l0+mGPT1CDIEdx7kCo8WLF3vVbtdffz3HcRy3b98+t+thYWGc1Wr1aOPZZ591K3/jjTfy76WlpXllW6lUurXNYHbt2sVFRER4/KxMJuPWrl07Kr9QYEcQ4oESFBMEAwoLC3Ho0CF89dVX2LNnDyoqKnD27Fn09vZCLpcjLCwMWVlZuOaaa3DfffcNe15nTk4ONm3ahOeeew4HDhyAwWAYdqPC73//e0yZMgWvvfYaKioqoNVqMWPGDPziF7/A8uXL8fDDD4+o9dlnn0VISAjee+89nD59+qLXTS1ZsgQVFRX485//jC+++AIVFRXo6elBQEAA0tLSsHjxYvz4xz++YPoXliQkJODrr7/G7t278d5772HHjh04c+YMDAYDVCoVEhISkJOTgyuvvJKf9jx/ndwNN9wwZL3kYG655RY88cQT/OvPPvsMHR0dCA8Px86dO7Fp0ybs2LEDZWVlOHPmDDo6OmC32xEYGIjk5GQsWLAA999//5BUNgMUFBSgsrISL730Ej777DOcPn0aFosFMTExWLBgAR588EHk5+dfurMIgmCCjBvuLwFBEARBEAQhOWjzBEEQBEEQhJ9AgR1BEARBEISfQIEdQRAEQRCEn0CBHUEQBEEQhJ9AgR1BEARBEISfQIEdQRAEQRCEn0CBHUEQBEEQhJ9AgR1BEARBEISfQIEdQRAEQRCEn0CBHUEQBEEQhJ9AgR1BEARBEISfQIEdQRAEQRCEn0CBHUEQBEEQhJ9AgR1BEARBEISfQIEdQRAEQRCEn0CBHUEQBEEQhJ9AgR1BEARBEISfQIEdQRAEQRCEn0CBHUEQBEEQhJ9AgR1BEARBEISfQIEdQRAEQRCEn0CBHUEQBEEQhJ9AgR1BEARBEISfQIEdQRAEQRCEn0CBHUEQBEEQhJ8g+cCurq4Ol112GTIzMzF9+nT85z//YS2JIAiCIAiCCTKO4zjWIi6FxsZGNDc3Y8aMGWhqasKsWbNQWVkJvV7PWhpBEARBEIRPUbIWcKnExcUhLi4OABAbG4vIyEh0dHRQYEcQBEEQxLiD+VTstm3bsHz5csTHx0Mmk+GTTz4ZUmbDhg1ITk6GVqvFnDlzsHfv3mHvdeDAATgcDiQmJgqsmiAIgiAIQnwwD+z6+vqQk5ODDRs2DPv+Bx98gDVr1mDdunUoLS1FTk4Oli5dipaWFrdyHR0dWLVqFd58801fyCYIgiAIghAdolpjJ5PJ8PHHH+O6667jr82ZMwezZ8/Gq6++CgBwOp1ITEzEgw8+iMceewwAYLFY8L3vfQ/33Xcf7rjjjhFtWCwWWCwW/rXT6URHRwciIiIgk8nGvlIEQRAEQRCXAMdx6OnpQXx8POTykcfkRL3Gzmq14sCBA3j88cf5a3K5HIsXL8auXbsAuCp755134vLLL79gUAcAzz33HJ566inBNBMEQRAEQQhBXV0dJkyYMGIZUQd2bW1tcDgciImJcbseExODiooKAMCOHTvwwQcfYPr06fz6vHfffRfZ2dnD3vPxxx/HmjVr+NcGgwFJSUmoq6tDcHCwMBVhzIkTJzBlyhTWMsYcqdVLjHpZa2Jh3xc2WfuVIDxBfVMcjLYduru7kZiYiKCgoAuWFXVg5w1FRUVwOp1el9doNNBoNEOuBwcH+21gZzQa/bJuUquXGPWy1sTCvi9ssvYrQXiC+qY4uNh28GbJmKgDu8jISCgUCjQ3N7tdb25uRmxs7CXde8OGDdiwYQMcDgcAoKSkBHq9HvPmzUNZWRn6+voQGhqK9PR0fhduWloanE4nTp8+DQAoKCjAsWPH0N3djaCgIGRlZWH37t0AgJSUFCgUCpw6dQoAMHv2bJw6dQqdnZ0ICAjAzJkzsWPHDgBAUlISdDodTpw4AQDIzc3FmTNn0N7eDq1Wi/z8fGzbtg0AMGHCBAQHB+PYsWMAgBkzZqChoQEtLS1QqVSYN28etm/fDqfTibi4OERERKCurg7FxcXIzs5Ga2srmpqaoFAoUFRUhB07dsButyM6OhpxcXEoKysDAGRmZsJgMODs2bMAgIULF2L37t2wWCyIjIxEUlISSktLAQAZGRkwGo2ora0F4Aq2S0tLYTQaERYWhtTUVOzfvx8AMHnyZNhsNtTU1AAA5s6di/LycvT29iIkJAQZGRnYs2cPACA1NRUAUFVVBcC13rKiogIGgwGBgYGQy+UoLi4GACQnJ0OlUuHkyZMAgLy8PFRVVfH+zs3NRUlJCe/vgIAAftQ3NzcXtbW1aGtrg0ajQUFBAX/fhIQEhISE8P7OyclBY2MjWlpaoFQqUVhYiJKSEjgcDsTGxiIqKgrl5eUAgGnTpqG9vR2NjY2Qy+VQqVTYuXMnbDYboqOjER8fj0OHDvH+7u7uRn19PQBgwYIF2Lt3L8xmMyIiIjBx4kTe31OmTIHJZOL9XVhYiIMHD/L+TktLw759+/g+63A4UF1dzffZo0ePoqenB8HBwZDJZHxdJ02aBLlczvfZ/Px8VFZWoqurC3q9Hjk5Odi5cyfvb7VajcrKSt7f1dXVaG9vh06nQ15eHrZv3w4ASExMRGBgII4fPw4AmDlzJurr69Ha2oqGhgYArt3xHMchPj4eYWFhOHr0KABg+vTpaG5uRnNzM99nB/wdExODmJgYHD58GACQlZWFzs5ONDQ0QCaTYcGCBdi1axesViuioqIwYcIEHDx4EHV1dWhpaUFvby/q6uoAAPPnz8f+/fthMpkQERGBlJQUvs+mp6fDarXyfdabZ8TA75xUnhFHjhwBAL97RmRnZ/PLdqTwjJg/f77gz4i2tjYYjUavnxGZmZl8n2XxjFCr1Zg7d65PnxEAMHXqVFE9I/r6+uAtktg8kZ+fj1deeQWAa7NDUlISfvKTn/CbJy6F7u5uhISEwGAw0H8xBEEQBEGIjtHEKszTnfT29uLQoUP8fyXV1dU4dOgQ/5/GmjVr8Je//AV///vfcfz4cfzoRz9CX18f7rrrLoaqpcXAf0X+htTqJUa9rDWxsO8Lm6z9ShCeoL4pDoRsB+ZTsfv378eiRYv41wMbG1avXo133nkHt9xyC1pbW/Hkk0+iqakJM2bMwKZNm4ZsqCA8M5o1iFJCavUSo17WmljY94VN1n4lCE+w7ptOpxNWq5WpBjHAcRzMZjP/WqVSQaFQjMm9RTUV60sGr7GrrKzExo0b/XaNXXFxMSIiIvxu/YxOp0NraysAaayfiYmJQVtbm6jW2KnVarS1tQFgs37GYDDg2muv9en6mfb2dhQVFQm6fmbfvn2IiIiQzDOC1tiJ4xnhizV2ZrMZ8+fPZ7LG7vTp07BYLFAqlVCr1XxOWaVSCZlMBpvNBgBQq9VwOBxwOByQyWTQaDR8EKRQKCCXy4ctCwBardatrEKh4ANJlUoFp9PpVtZisYDjuGHLchwHu90OwLXx0mq1guM4yOVyKJVKr8uqVCq3ugKudG5yuRwajQY2mw0OhwMcxyErK4vv3+evsbv66qu9moodt4HdAONhjV17ezsiIiJYyxhzpFYvMeplrYmFfV/YZO1XgvAEq77JcRxqa2ths9m8SrLr79jtdj7I4zgORqMRLS0tCA0NRVxc3JDyo4lVmE/FEsJz5MgRLFy4kLWMMUdq9RKjXtaaWNj3hU3WfiUIT7Dqm3a7HUajEfHx8QgICPC5fbHR09MDrVbLv9bpdACAlpYWREdHX9K07PgOmQmCIAiCEJyB6U+1Ws1YiXgZCHgHppkvFgrsxgGeTuGQOlKrlxj1stbEwr4vbLL2K0F4gnXfpDPZXQyM0A1mrHwzbqdix1OC4q1btyIyMtLvFkZrtVp+EbIUFkZHR0ejoqJCVJsnVCoVr3e8bJ5oa2vD/PnzBd08sXfvXkRGRkrmGUGbJ8TxjPDnzRPZ2dmwWq3o6+uDw+FAQEAAent7AbhG8eRyOb/pISAgAFarFXa7HTKZDIGBgejp6QFwbvfoQFmdTgebzcZvXAgKCuLLKpVKqFQqmEwmAK7NEg6Hgx8RCwoKQm9vLziO4zd0GI1GvuzgHbyBgYEwGo1wOp1Dymo0GnAcx5fV6/UwmUxwOp1QKBTQarV8guGBk6/6+vqgVCqh1+thNpt5XRzHYe/eveA4zj8SFLNgPGyeKC4u9sv1PlKrlxj1stbEwr4vbLL2K0F4glXfNJvNqK6uRkpKitvasvFKT0/PkHNfR/KRpBIUE8IzVrlxxIbU6iVGvaw1sbDvC5us/UoQnpB633Q4OZTVtOO7I2dRVtMOh1P4sakvvvgCMpnM49ctt9wiuIbRQCN242DEjiAIgiBYMhYjdiXHG/H65mNo6zmX2DcySIsfLc1E0dShKULGCpPJBIPB4HbN4XDgrrvuQmlpKbZs2YKcnJxLtkMjdoTXDKzT8TekVi8x6mWtiYV9X9hk7VeC8IRU+2bJ8Ub85sNSt6AOANp6zPjNh6UoOd4omG2dTofY2Fj+KyoqCr/4xS8uKagbWF8oBLR5Yhxsnjh16hTsdrvfLYy2WCz8AmYpLIx2Op2CL4we7eYJs9nM15XF5om6ujoUFhb6dPNETU0NJk+eLOjmiYHfOak8I2jzhDieEb7YPNHU1ASj0SiazRNmmwNqlRpyuQzm/tMZAnQ6WK02OJ0OaFQK6AL0eG2Tq496YsOmI5gWr0doSDB6enpgtjmgVCihUilh6t9oodVooFLILmnzhM1mw/33349vv/0Wn376KSZNmsSfMjGazRNmsxkcx9HmCSEYD1Oxx48fx9SpU1nLGHOkVi8x6mWtiYV9X9hk7VeC8ASrvulpmnHpbzZ6/Ex+WhR+8/18lNW049F3d1/Qxu/uKEBOsutUjZv/8DUMxqFn0m5ee/VFqHfhcDhw++2346uvvsKWLVswY8aMi76XyWQakvKEpmIJrxnueBJ/QGr1EqNe1ppY2PeFTdZ+JQhPSLFvdvSaL1xoFOUuBofDgTvuuGNMgjrAlbZFKMbtVOx4oqyszC9TL0itXmLUy1oTC/u+sMnarwThCbH1zf/+cqnH9+RyV8Le8EDvNlsMLvePBxddmrBBDAR1mzdvxjfffDNsUFdYWIj169djzpw5uOeeezBt2jRcdtlleOyxx7B582YAwH//+19s3LgRb775Jkwm05B0J2MFBXYEQRAEQTBBq75wGDItKRyRQdohGycGExWsxbSk8FHd1xscDgdWrVrFB3UzZ84cttzatWvx/PPPY/78+ZDL5XjooYdgt9v5tZd2ux1PP/00Pv/88zHRNRI0FTsOyMzMZC1BEKRWLzHqZa2JhX1f2GTtV4LwhBT7pkIuw4+Wjqz7h0syoZCP7XFlTqcTq1atwieffIL/+7//Q1xcHJqamty+BjZgXnnllaitrcXGjRvx2muvAXCdfJGYmIiamhq8+eabuPrqq/mpcCGTNFNgNw44P/+OvyC1eolRL2tNLOz7wiZrvxKEJ6TaN4umxmHtTbmIDHIPiKKCtVh7U64geez27duH9957D0ajEVdddRXi4uLcvuLj4/ndqvv27UNHRwdCQkLc1s/l5+fju+++w+uvv45HHnmEvz4QEArBuJ2KHU/pTnbs2IGzZ8/6XSqDwfqkkMrA6XSipaVFVOlOOjo6eB+ySneSlpbm83QnwcHBgqY7Gfidk8ozgtKdiOMZ4at0J/Hx8aJJdwJ4f1ZszoRAvHn/PFQ0dKOlsxehejVy02LhdNj582HH8qzYGTNmoLu7G8DIZ8VWV1fjnnvuwaeffoo77rgDhw8fRmpqKpxOJ3JycvDwww/jV7/6FQDwKVF6e3ths9kESXcCbpxjMBg4AJzBYGAtRTC2bt3KWoIgSK1eYtTLWhML+76wydqvBOEJVn3TZDJxx44d40wmExP7QmE0Grm5c+dyxcXFHMdx3L///W/u5ptv5t/ft28fN3nyZM5ms7l9rru7e8i9RvLRaGIVymM3DvLYEQRBEARLxuJIMSly9913Y8WKFVixYsUFy1IeO8JrBobR/Q2p1UuMellrYmHfFzZZ+5UgPEF90zdUVVVhypQp0Ov1wwZ1dKQYcUlY+o9p8TekVi8x6mWtiYV9X9hk7VeC8AT1Td+QmprKr4kdDiEnS2nEbhwQGRnJWoIgSK1eYtTLWhML+76wydqvBOEJ6pviQKkUblyNArtxQFJSEmsJgiC1eolRL2tNLOz7wiZrvxKEJ6hvigO1Wi3YvcftVOx4Snfy+eefIzk52e9SGRgMBigUCgDSSGXgdDqhUqlEl+5k4D9HVulObr/9dp+nO1m2bJmg6U6+/fZbJCcnS+YZQelOxPGM8FW6k+XLl0sy3QngOmNVoVDwZXU6HWw2G+x2O4CxTXfidDr59CQjpTvRaDTgOI4vq9frYTKZ4HQ6oVAooNVq+XQlGo0GgGszhEajESTdCe2KHQe7YouLi0V1NuBYIbV6iVEva00s7PvCJmu/EoQnWPXN8bor1hM9PT1DzoqlXbGE12RkZLCWIAhSq5cY9bLWxMK+L2yy9itBeIL6pjigI8WIS2JguNjfkFq9xKiXtSYW9n1hk7VfCcIT1DfFgdPpFOzeFNiNAwbWWfgbUquXGPWy1sTCvi9ssvYrQXiC+qY4GFiPJwQU2BEEQRAEQfgJtHliHGyecDgc/O5Rf0Jq9RKjXtaaWNj3hU3WfiUIT7Dqm7R5wh2O4yCTydyu0eYJwmsGtsD7G1Krlxj1stbEwr4vbLL2K0F4gvqmOBByrSMFduMAf10sK7V6iVEva020eYIgfAv1zdHzxRdfQCaTefy65ZZbRn1PITdPjNsExeOJsLAw1hIEQWr1EqNe1ppY2PeFTdZ+JQhPSL1vcg4H2vftg6WlBZroaETMng2ZwFPLixYtQmNjo9s1h8OBu+66C6WlpfjVr3416nsKOR0+bgO78XTyREtLC4qLi/0uq/ykSZP47O9SyCqfm5sreFb50Z48MXHiRL6uLE6eGMCXJ0/YbDa0tLQIevLEwO+cVJ4RdPKEOJ4Rvjh5IiAgAEajUZInT7Ru2YJTv/sdLM3NGEAbG4v0X/4S4YsWARDu5ImYmBj+5AmZTIZ77rkHBw4cwGeffYapU6fCYrGM6uQJu92Onp4eOnlCCMbD5gl/zYIvtXqJUS9rTXTyBEH4FqmePNG4eTP2P/AAcH7I0r8BIW/DBsQtXToWUkfE4XDg9ttvx9dff40tW7YgJyfnou4j5MkT43bEjiAIgiAItthHWPMnUyig0GjAORw48vTTQ4M6wHVNJsORp59G7OLF/LSsp/sqAwIuWutAUPfVV19dUlAnNBTYjQMmT57MWoIgSK1eYtTLWhML+76wydqvBOEJsfXNL7OzPb4XfdllmPO3v6F93z6Ym5o834TjYG5qQvu+fYgsKAAAbFm4ENaOjiFFl/dP248Wh8OBO+64gw/qZsyYcVH3GWBgSlYIaFfsOGBgPYG/IbV6iVEva00s7PvCJmu/EoQnpNg3LS0tY1putAwEdZs3b8Y333wzJKg7ePAglg6aBv7vf/+L+++/H4BrfePAmtB77rkHf/zjHwG48tgJBY3YjQNqamowceJE1jLGHKnVS4x6WWtiYd8XNln7lSA8Iba+uax/I8lwDEyraqKjvbrX4HJX9G9uuVQcDgdWrVrFB3UzZ84cUiY7O5vfPGO32/H000/j888/BwCsXbsWzz//PObPnw+5XI6HHnoIgOtIMaFG7SiwIwiCIAiCCd6seYuYPRva2FiYm5uHX2cnk0EbG4uI2bNHdd8L4XQ6sWrVKnzyySf48MMPERcXh6bzpoSjoqKgVCqRmJiImpoafPHFF7j66qsRFxcHALjyyivxxBNPYOPGjdi0adMla/IGCuzGAXPnzmUtQRCkVi8x6mWtiYV9X9hk7VeC8MRwfZNFbrjRIFMoMO3JJ127YmUy9+Cuf1fstLVrx1zzvn378N577wEArrrqqqG6ZDJ0dXUhODgY+fn5+O677/D666/zKV8G7tHR0YGJEydCpVLx1/V6/ZhqHQytsRsHlI8w1C1lpFYvMeplrYmFfV/YZO1XgvDE+X2zcfNmfLNgAXbddhtKH3oIu267Dd8sWIDGzZsZKRyeuKVLkbdhA7QxMW7XtbGxgqU6mTNnDjiO8/jldDr51CP5+fl4+OGH8cMf/pBPY3L27Fnce++9+Pbbb1FTU8PniwTA59YTAhqxGwcMJIH0N6RWLzHqZa2JhX1f2GTtV4LwxEDf5JxO1P2//4eyxx4bUsbc3Iz9DzyAmevXI3bxYih0uiEH1rMgbulSxC5eLMrRxfT0dEREROB//ud/ALgCt5UrV+KVV15BSkoKHn/8cfzmN7/BBx98AICOFCMukZCQENYSBEFq9RKjXtaaWNj3hU3WfiXYIuapzZCQEDgdDmxMT/dcqH+q82D/Qv9l5eVjsmZtLJApFHxKEzHx2muv4cUXX4RS6QqrdDqd25TsypUrsXLlSv41HSlGXBIZGRmsJQiC1OolRr2sNbGw7wubrP1KsKNx82Ycefppt7xr2thYTHvySUGmCzmOg723F7auLlg7O4d8hUybhrglSwC4RuJafvxjfNnZOTojAo4uSZ2qqipcddVVWLJkCVasWOH15y7m9A1vocBuHLBnzx6/PN5IavUSo17WmljY94VN1n6VGmIe4fIWb6c2E5Yvv+C0psNiQffx4+cCtK4uWDs6+OAtqqgIE7//fQCA6exZbBmhryXdfDMf2CkDA93OWfUWhUhG68RIamoqf4bzaOjr6xtypNhYQYEdQRAEwQxfj3AJAed04vORTnQYNLVprKuDw2SCtaPjXNDW2YmEa65B+k9+AgCwtLWh5MYbPd5OGRTEB3bqsDAAgFyjgTosDOrwcKhDQ10/h4UhfNYs/nOKgADon3wSc664AoajR3Hgxz++YN0K/u//IJPTPkspMW4Duw0bNmDDhg1wOBwAgJKSEuj1esybNw9lZWXo6+tDaGgo0tPTsXfvXgBAWloanE4nTp8+DQAoKCjAsWPH0N3djaCgIGRlZWH37t0AgJSUFCgUCpw6dQoAMHv2bJw6dQqdnZ0ICAjAzJkzsWPHDgBAUlISdDodH/Xn5ubizJkzaG9vh1arRX5+PrZt2wYAmDBhAoKDg/lkiDNmzEBDQwNaWlqgUqkwb948bN++HU6nE3FxcYiIiEB3dzeKi4uRnZ2N1tZWNDU1QaFQoKioCDt27IDdbkd0dDTi4uJQVlYGAMjMzITBYMDZs2cBAAsXLsTu3bthsVgQGRmJpKQklJaWAnBNOxmNRtTW1gIAioqKUFpaCqPRiLCwMKSmpmL//v0AXMfZ2Gw21NTUAHBtvS8vL0dvby9CQkKQkZHBZ+lOTU0F4BrqBlw7lCoqKmAwGBAYGIikpCQU9yehTE5OhkqlwsmTJwEAeXl5qKqq4v2dm5uLkpIS3t8BAQGoqKjg/V1bW4u2tjZoNBoUFBTw901ISEBISAjv75ycHDQ2NqKlpQVKpRKFhYUoKSmBw+FAbGwsoqKi+F1n06ZNQ3t7OxobGyGXy5GamoqdO3fCZrMhOjoa8fHxOHToEO/v7u5u1NfXAwAWLFiAvXv3wmw2IyIiAhMnTuT9PWXKFJhMJt7fhYWFOHjwIO/vtLQ07Nu3j++zDocD1dXVfJ89evQoenp6EBwcjMTERL6ukyZNglwu5/tsfn4+Kisr0dXVBb1ej5ycHH7NSHJyMtRqNSorK3l/V1dXo729HTqdDnl5edi+fTsAIDExEYGBgTh+/DgAYObMmaivr0drayu/M2zbtm3gOA7x8fEICwvD0aNHAQDTp09Hc3Mzmpub+T474O+YmBjExMTg8OHDAICsrCx0dnaioaEBMpkMCxYswK5du2C1WhEVFYUJEybg4MGD6O7uRktLC3p7e1FXVwcAmD9/Pvbv3w+TyYSIiAikpKTwfTY9PR1Wq5Xvs948IwZ+56TyjBjYrefrZ4Rh+3aYNmzA+ZibmrD/xz+G7oEHsOAnP7noZ0R2djZ27drF91lPzwidTodZs2ahpKQEnNWKKLsdao7DmZMnAbMZiTExaGtoQF97O7QZGVhw330oLi6Gs6MD3L/+BZnVOqQOnjixfv2w16v370c6gJ07d8La2wtlVBS0EREwKRSQBQYiIjERTp0OPU4n2hMTwXEc9u7dC5PJhIn//jdS0tN5f6cMekZ0AIix2/lnhHziRMjCw1GpVkMWFgZuhGlZRUQEgnJyxuQZkZ2dDavVir6+PjgcDgQEBPAbOdRqNeRyOcxmMwAgICAAVqsVdrsdMpkMgYGB6OnpAQCoVCooFAq+rE6ng81mg91uBwAEBQXxZZVKJVQqFf+c0Wq1cDgc/OkbQUFB6O3tBcdxUCqVUKvVMPafMavVauF0OmHtb9vAwEAYjUY4nc4hZTUaDTiO48vq9XqYTCY4nU4oFApotVr09fXxZQFX4uOenh7o9XqYzWZe10C7chzn9owY+Lw3yDghz7WQAN3d3QgJCYHBYOC3Lfsb9fX1mDBhAmsZY47U6iVGvaw1sbDvC5us/Sp2OKcTltZWbLvuOs/HQMlk0MbE4IriYsiVQ8cg7CYTjLW1cBiNsBuNsPf18T87+voQNmsWwnNzAQC91dU49vzzbu/bB/2c9qMfYcpPfwoA6KmsxNZlyzxqn3TPPcj61a8AAKaGBnwzf/6o6h6Wm4vQ7Gx+RE0dFgZVaCgCEhOhT0oa1b0uhsF9s3HzZlduOGDY3HBjmUbEbDajuroaKSkpgq4vkwpWqxVqtdrt2kg+Gk2sMm5H7MYTVVVVfvlHRmr1EqNe1ppY2PeFTdZ+FSMcx8FhNMLS0YFvL7vMmw/A3NTErx+z9/Uh46GHkLJ6NQCg++hR7LjlFo8fn/LQQ3xg57Ra0fzNNx7LOgaNhigDA6GLj4dCr4cyIADKgAD+Z0VAAMIGHSmljojAjN//HjKlEgd//vML1wnAlDVrEMUwgfXgvjmQG27YqfC1ayUzFS5FLBbLkMBurKDAjiAIQqSIdVOB026HtbMTts5OWA0G188DuzK7uhC3ZAkfALXt3InSX/wCtq4uOEcxZTnA4IDDNig/oDIoCOrwcCj1eijOC8CUAQEIGrTmTRcXh+nPPDNssKbU66EalJ5GFx+Pxf3LCC6EQqNB4vXXg+M4xFx2GbYuXQpzS8vwx14B0MbFITI/f7QuEBQx54YjLg6aih0HU7Fms9kvh76lVi8x6mWtiYV9X9gcCxu+3lRgaW9H1+HDsHZ1uYK0Qd+tXV2YdNddiOkfaWv65hvs60/EOhzTnnySH1lr378fOweNrMlUKnD9a5y8IfNXv0JEfj6Uej00kZFQifg57cupzYuF1e/8wDRjcnIydDqdz+2LDafTCfl5m1KMRiPOnDlDU7HEhamoqMCMGTNYyxhzpFYvMeplrelS7V/MiJYv6nwpNi4mbQbHca6dll1dUAUFQdWfRqH39Gk0fPklP5pm6x9ds3Z1wWYwYNratUi49loAQOehQ9h3//0edcUsWsT/rA4NBWQyqEJC+B2YAz+rwsIQPHUqXzZk6lQs+PRTqMLCoA4JgVyng9NsBudweDXCNenOOyUzeiSFqU1Wv/MqlQoymQytra2IiooSxUkWLDGZTHyAO7DxorW1FXK5/JKnaCmwGwcYDAbWEgRBavUSo17Wmi7F/sWOaPmizqO14TCbYe3ogN1kwtb+nGPDMihtRs0//wl7Tw8ftA1Mc85cvx4T+hOl9p4+7XEXJuAapRtAGx2N4KwsV6AWGgpV//eBxf1hg4KBsJkzcc2JE14FXEq9HiFZWW7X5P150aatW+fzg92FRuxTm6x+5xUKBSZMmID6+np+h/l4ZriR04CAACQlJQ0ZyRstFNiNAwIDA1lLEASp1UtIvRe7Fou1Dy/G/qUmgh3OJud0wmE2w2mxnPtuscBpsUCfkuI2AtZZWgrHwPtms1v55B/8AEHp6QgMDERLcTFOvfkmf0++fP99Z7z4Ip84tumrr1Daf3yTt3T2p2MZjEylgmPQ4eL65GQk3XyzazStP0AbHLTp4uP5sqHZ2Vj46ade2R6rIEUKI1wXg1iPvQLY/s4HBgbyKa/GO0ePHkVKSgr/WqFQQKlUjslIJq2xGwdr7IbbVu0PSK1eQum9lLVYrH14vn3O6YTTauWDJXVEBJ/qoq+2Fn01Ndhz111e3Tvu6qsBh8MtYHNYrXCYTJj18ssI6Z8urPrb33Dst7/1eJ+5776LyHnzAAA1//wnyp980mPZ2X/+M2IXL4bVakXLF1/g4C9+4bHs4JG1xq++QunPfga5RgN7fw6uCzHxjjsQt3ixK0jrn+ZU6PWSnOIS6yYRf4T17zzhYrTtQGvsCDd27drll8cbSa1eY613LI4w8qRp4P+9gc9Z2tpg7ewcMurk6A+Y4q+6Cor+xJtNX3+NzoMHhx2lcpjNyH3pJWgiIgAAWx9/HNixgw++zt81ueibbxDY/19t7b//jVOvv+61fxo3bvT4nq27m/9ZrlK5vSdTqaDQaCDXaFx1GjQtEpCYiOiFC13vabVQaLV8OblWC31yMgCXX2fn5SH3pZfOlTmvvCYqir9v3JIluPr4cXAch5Zt27D37rsvWL/4K68U7ajQaBHzCJe/IbXnpr8iZDtQYEcQEmQ0Rxh17NsHcBwcFgtm/O53fLBW8Yc/oPeLL7BVrXabThz4eVl5OZT9i3uPPf886j/+2KO56Pnz+cCutaQENf/3fx7L2nt7+cCOs1hgbW0dtpxMoXAL9HRxcQhKT0dPfyb7CxF/7bWImDXrXODVH1yVnzjBj9YBQOJNNyH+mmv4MsMlw+XruWABohcs8Mp+wIQJCBhlLjuZTIbooiJoY2Nhbm4eflOBTAZtbCwiZs8e1b0JghgfXFRgZzabcfjwYbS0tMDpdLq9d23/DitCPCT3jyL4G1Kr11jqdfQfZeMNZ957j/8559lnIesf/jfW18NZUwNPE39OiwXoD+xUQUFQhYa6Rp0GBUkD3zFoRDBi7lzI1Wo+oBpcTq7VQh0ezpeddOediP7xj91GsgZ+Pn8kLfm22zDxBz/wekRr4i23DDsKlJac7JYyYyCv2VhyKW0tUygw7ckn/W5TASEOpPbc9FeEbIdRB3abNm3CqlWr0NbWNuQ9mUzGn71KiAfVeX8g/QWp1WtM9Y5i11T0FVcgLDsb8vPWc0y6+27oCgsRGRc37HTh4OBn2rp1mLZunVf24q+8EvFXXulVWX18PEIGLeC/EGMxouWLfnOpNvx1UwHBHqk9N/0VIdth1IHdgw8+iJUrV+LJJ59ETEyMEJqIMebkyZOIH8UfT6kgtXqNpV6FTof8t97yauQq9e67hx25Cs3ORllHB6YWFo6JpovhYnxyqSNavug3Y2FD7GkzCGkiteemvyJkO4w6WUpzczPWrFlDQR1BMGTwyBU87YKUyaCNi/PLtVgDI1ra855D2thYUWT3HysGNhUkXHstIgsKKKgjCOKCjDrdyd13343CwkLcc889QmnyKeMh3UlfXx/0ej1rGWOO1OolhN5LPcKItQ8v1f7FpMnwRZ1Z+5UgPEF9UxyMth1GE6uMOrAzGo1YuXIloqKikJ2dPWSe+Kc//elobsec8RDYHT58GNOnT2ctY8yRWr2E0jtsHru4OK/WYrH2IQv7vrDJ2q8E4Qnqm+JgtO0gaB67f/3rX/jqq6+g1WqxdetWt/xYMplMcoHdeKCzs5O1BEGQWr2E0nspa7FY+5CFfV/YZO1XgvAE9U1xIGQ7jDqwe+KJJ/DUU0/hscceu+TzzMaK66+/Hlu3bsUVV1yBDz/8kLUc0REwxqkcxILU6iWk3otN8Mrahyzs+8Ima78ShCeob4oDQf8ejHYqNjw8HPv27UNqaqpQmkbN1q1b0dPTg7///e+jDuzGw1Ssw+GAwg8XXUutXmLUy1oTC/u+sMnarwThCeqb4mC07TCaWGXUQ26rV6/GBx98MNqPCcpll12GoP5DuomhlJSUsJYgCFKrlxj1stbEwr4vbLL2K0F4gvqmOBCyHUY9FetwOPC73/0OmzdvxvTp04dsnli/fv2o7rdt2za8+OKLOHDgABobG/Hxxx/juuuucyuzYcMGvPjii2hqakJOTg5eeeUV5Ofnj1Y6QRAEQRCEXzPqwK68vBwzZ84EABw5csTtPU8HjY9EX18fcnJycPfdd+OGG24Y8v4HH3yANWvW4I033sCcOXPw0ksvYenSpThx4gSio6NHbW88kpSUxFqCIEitXmLUy1oTC/u+sMnarwThCeqb4kDIdhh1YPfdd9+NqYBly5Zh2bJlHt9fv3497rvvPtx1110AgDfeeAMbN27EW2+9hccee2zU9iwWCywWC/+6u7t79KIlhr8ulpVavcSol7Um2jxBEL6F+qY4ELIdRh3YDWbHjh3Iy8uDRqMZKz1uWK1WHDhwAI8//jh/TS6XY/Hixdi1a9dF3fO5557DU089NeR6SUkJ9Ho95s2bh7KyMvT19SE0NBTp6enYu3cvACAtLQ1OpxOnT58GABQUFODYsWPo7u5GUFAQsrKysHv3bgBASkoKFAoFTp06BQCYPXs2Tp06hc7OTgQEBGDmzJnYsWMHAFfkrtPpcOLECQBAbm4uzpw5g/b2dmi1WuTn52Pbtm0AgAkTJiA4OBjHjh0DAMyYMQMNDQ1oaWmBSqXCvHnzsH37djidTsTFxSEiIgKbNm1CcnIysrOz0draiqamJigUChQVFWHHjh2w2+2Ijo5GXFwcysrKAACZmZkwGAw4e/YsAGDhwoXYvXs3LBYLIiMjkZSUhNLSUgBARkYGjEYjamtrAQBFRUUoLS2F0WhEWFgYUlNTsX//fgDA5MmTYbPZUFNTAwCYO3cuysvL0dvbi5CQEGRkZGDPnj0AwG/QqaqqAgDMmTMHFRUVMBgMCAwMhMFgQEVFBQDXgcoqlQonT54EAOTl5aGqqor3d25uLr+mISkpCQEBAfxnc3NzUVtbi7a2Nmg0GhQUFKC4uBgAkJCQgJCQEN7fOTk5aGxsREtLC5RKJQoLC1FSUgKHw4HY2FhERUWhvLwcADBt2jS0t7ejsbERcrkcTqcTVVVVsNlsiI6ORnx8PA4dOsT7u7u7G/X19QCABQsWYO/evTCbzYiIiMDEiRN5f0+ZMgUmk4n3d2FhIQ4ePMj7Oy0tDfv27eP7rMPhQHV1Nd9njx49ip6eHgQHB6Ojo4P3w6RJkyCXy/k+m5+fj8rKSnR1dUGv1yMnJwc7d+7k/a1Wq1FZWcn7u7q6Gu3t7dDpdMjLy8P27dsBAImJiQgMDMTx48cBADNnzkR9fT1aW1tRV1eH22+/Hdu2bQPHcYiPj0dYWBiOHj0KAJg+fTqam5vR3NzM99kBf8fExCAmJgaHDx8GAGRlZaGzsxMNDQ2QyWRYsGABdu3aBavViqioKEyYMAEHDx5ETU0Nli1bht7eXtTV1QEA5s+fj/3798NkMiEiIgIpKSl8n01PT4fVauX7rDfPiG+//RbJycmSeUYMzL742zMiOzub/1shhWfE/PnzsXPnTkGfEU1NTVi+fLnXz4jMzEy+z7J4RqjVasydO9enzwgAmDp1qqieEX19ffAa7hIICgriqqqqLuUWbgDgPv74Y/712bNnOQDczp073co98sgjXH5+Pv/6iiuu4CIjIzmdTsclJCQMKT8Ys9nMGQwG/quuro4DwBkMhjGrh9jYunUrawmCILV6iVEva00s7PvCJmu/EoQnqG+Kg9G2g8Fg8DpWuaQRO250mVIE45tvvvG6rEajEWyEUazk5uayliAIUquXGPWy1sTCvi9ssvYrQXiC+qY4ELIdLimwE5rIyEgoFAo0Nze7XW9ubkZsbOwl3XvDhg3YsGEDHA4HAP+eiv32228RHR3td9MsSqUSXV1dAKQxzRIeHg6DwSCqqViZTAaDwQCAzTRLR0cHrr/+ep9Os7S0tGDhwoWCTrPs3r0b0dHRknlG0FSsOJ4RvpiK7evrw2WXXUZTsYynYkf7jPDZVOw///lPrre3l+M4jnM4HNyZM2cu5XZDpmI5juPy8/O5n/zkJ/xrh8PBJSQkcM8999wl2RpgNMObUsVfh96lVi8x6mWtiaZiCcK3UN8UB6Kain377bfxwQcf4MyZMwgODkZpaSkeeughKJVKpKSk8CNg3tLb28tH/wBQXV2NQ4cOITw8HElJSVizZg1Wr16NvLw85Ofn46WXXkJfXx+/S5a4MP469Sy1eolRL2tNLOz7wiZrvxKEJ6hvigMh28HrI8UcDgduuOEGbNq0CVdffTUmT56Mzs5ObN68GZ2dnXjllVdw9913jzqw27p1KxYtWjTk+urVq/HOO+8AAF599VU+QfGMGTPw8ssvY86cOaOy44nxcKQYQRAEQRDSZTSxiteB3e9//3usX78e3333HaZMmcJfdzqdWL9+PZ544gnY7fZRB3asGLzGrrKyEhs3bvTbNXaff/6536Y7GThrTwrrZ5xOJ1QqlajW2HV0dECpdA3cU7oTSnfib88IWmNH6U7EusbuYtKdXH311d4NQnk7v5uVlcW9++67Ht//3e9+x8lkMm9vJxpojZ10kVq9xKiXtSZaY0cQvoX6pjgQco2dfOSw7xxVVVUjTn8+8sgjcDqd3t6O8CEJCQmsJQiC1OolRr2sNbGw7wubrP1KEJ6gvikOhGwHrwM7vV6P1tZWj+8fOnQId99995iIIsaWkJAQ1hIEQWr1EqNe1ppY2PeFTdZ+JQhPUN8UB0K2g9eB3cKFC/HGG28M+15TUxNuvfVW/P3vfx8zYcTYMbD2w9+QWr3EqJe1Jhb2fWGTtV8JwhPUN8WBkO3gdbqTdevWYe7cuZDJZHjkkUeQlpaGjo4OfPbZZ3jmmWcwceJEflGqFBhPCYoHFnT628Joh8PBL2CWwsJoAIIvjB7t5gm73c7XldXmCQA+3zwh9MLogbJSeUbQ5glxPCN8tXnCaDTS5gnGmydG+4wYTYJir3fFAq6H79133813AABQKpX42c9+hgcffBATJ06U3Dq78ZDupKurC6GhoaxljDlSq5cY9bLWxMK+L2yy9itBeIL6pjgYbTuMJlYZVYLiBQsWoLKyEnv37kV1dTWCg4Mxd+5chIeHo6+vD+vWrRvN7Qgf0djY6Je/yFKrlxj1stbEwr4vbLL2K0F4gvqmOBCyHbxeY8d/QC5HQUEBvv/97+Pqq69GeHg4ANfmCgrsxElLSwtrCYIgtXqJUS9rTSzs+8Ima78ShCeob4oDIdth1IEdIT0GEtD6G1Krlxj1stbEwr4vbLL2K0F4gvqmOBCyHcZtC4+nzRMDC+T9bWH07NmzJbV5whcLo0e7eSIvL4/p5gm1Wg3At5snANd/y0IujB74nZPKM4I2T4yvZwRtnmC/eWK0zwjBNk/4I+Nh80RJSQmKiopYyxhzpFYvMeplrYmFfV/YZO1XgvAE9U1xMNp2GE2sQlOx4wCpnN87WqRWLzHqZa2JhX1f2GTtV4LwBPVNcSBkO1BgNw6IjY1lLUEQpFYvMeplrYmFfV/YZO1XgvAE9U1xIGQ7UGA3DoiKimItQRCkVi8x6mWtiYV9X9hk7VeC8AT1TXEgZDtQYDcOGFio629IrV5i1MtaEwv7vrDJ2q8E4Qnqm+JAyHagwI4gCIIgCMJPoHQn4yDdiclk8st0J1OmTJFUupNp06aJLt1Jeno603QndrsdgG/TnZhMJsHTnQz8zknlGUHpTsTxjPBFuhOVSkXpTkSQ7mS0zwhKdzIKxkO6k8rKSqSnp7OWMeZIrV5i1MtaEwv7vrDJ2q8E4Qnqm+JgtO1A6U4INxobG1lLEASp1UuMellrYmHfFzZZ+5UgPEF9UxwI2Q4U2I0D5HL/bGap1UuMellrYmHfFzZZ+5UgPEF9UxwI2Q40FTsOpmIJgiAIgpAuNBVLuDGwmNXfkFq9xKiXtSYW9n1hk7VfCcIT1DfFgZDtQIHdOMBms7GWIAhSq5cY9bLWxMK+L2yy9itBeIL6pjgQsh0o3ck4SHfS2trql+lOwsPDJZXuJDo6WnTpTsLCwpimO+ns7ATg23Qnra2tgqc7Gfidk8ozgtKdiOMZ4Yt0JyaTidKdiCDdyWifEZTuZBSMhzV2BoMBISEhrGWMOVKrlxj1stbEwr4vbLL2K0F4Yri+6XByOFLbgY5eM8IDtZiWFA6FXMZI4fhgtM8IWmNHuDHwH5+/IbV6iVEva00s7PvCJmu/EmxxODmU1bTjuyNnUVbTDodTPOMn5/fNkuONWPXyt3j03d14/uNDePTd3Vj18rcoOU5pUYREyGfEuJ2KJQiCIIixpuR4I17ffAxtPWb+WmSQFj9amomiqXEMlQ2l5HgjfvNh6ZDrbT1m/ObDUjx23Qwsyk5goIy4FGjEbhyQmZnJWoIgSK1eYtTLWhML+76wydqvhO9xchy+KqvDbz4sdQvqgHOBkhhGwTIzM+HkOBgtdry26eiIZZ//5JCoRhv9CSGfETRiNw7o7u5GVFQUaxljjtTqJUa9rDWxsO8Lm6z9SvgWJ8dh2TNfXLDchk1HMTEqCA4nB5vDCbvDCZvDCZvdichgLSZGBQEATFY7vi0/y79nG1TO5nAiIyEUi6a5RtKMFjte+PjguTKDytkdHPInR+OHS1xBhNXuwKo/78VoYrUjtR3ISY4YvVOIERHyGUGB3Tigvr6e3z3mT0itXmLUy1oTC/u+sMnar4QwcBwHJ8dB0X9qgMFoRfHRBnT2Wbz6fEevBfe+XjzseytmJ+PHV2YBcAVrL39xxON9luRM4AM7ANh9ssVj2bbuc6OHSoV8VEGdS7P5woWIUSPkM4ICO4IgCIIpLHdlOjkODicHlcIVrHX1WfDtkQZ09VnQ1WdBZ58VXb0WdPZZ0NVnxa2Fqbh9oevwdkOfBRsuMJ15PiqFDDq1EkqFHCqlHCqF6yssUMOX0amVmDclBiqF3L2cUg6VXI7J8ed2U2pUcvz8mmwo5a731f3llAP31Z+7r1wmw4NzAjC/qBAnznZh7fv7Lqg3PFA7qvoR7KF0J+Mg3QnHcZDJ/G/rutTqJaTei/3DyNqHLOz7wiZrv0oJITYb2B1OOJwcNCoFAFew9vXhenT1WdHZOyhg6w/WfjA/DXf0B2u1bb24z8OoGgBcMysJD16VDQDoM9vwh0/LEKLXwGpz4JvysxfU9rs7CphObQ70TYeTwx0vb0F7j+fRxqhgLf7+4OWU+kQARvuMGE2sQiN244C9e/dizpw5rGWMOVKrl1B6L+UPI2sfsrDvC5us/SoVvjtyFs9/fGjI9YHNBmtvyuX7sNXugNPJQat2/dnq7LVg06E6V5A2aEStq8+CbpMNt82fjFWXuYK1HpMNf/2mwqOOwVOpEUEaLMiMQ5heg1C9GmGBGv7nUL3GbQRMr1XhyZvzALj+uTpY03bBQGlaUrj3DhKAgb6pkMvw46VZw+6KHeCHSzIpqBMIIZ8R4zawG08nT1RUVMBsNvtdVvm+vj5JnTzhdDrHNKv8mTNnUN5sx+eVQ/+QDPxhfODyZMxIDPKYVb63t5fpyRN1dXWYM2fORWeVj4qKxsaSg+i1cpiWPgkxWjuamhpHzCpfU1ODlJQUQbPKD/zOXeozYntJCeoMDmiDIhAVqge6z0Iuk0n65Am7k0Nu3hzsOXAIfyrpGNJ3B/Pb/1eKqBAtOnstsNg5XDE5CD+9Lh979uxBu9GJd/YbPX72ZE09rNZk7Nq1CxY7hzkpIQjVq2HtM0CvkmFGVjp6OlrgNPcgIsQEh8PBPyN+kDvoGdENZKW5nhEnTo38jFiYKMNHxzzX59ppoTB0dTI9eaKpqQnZ2dn8yRMPXJ6M93afRafx3BFXIVo5rpikht7cBIslnE6eAPtnBJ08MQrGw1TskSNHMG3aNNYyxhyp1Wss9Xq7C+9CUymsfXgp9i92pNIXdR4LG2LIh+bkOFhsDhgtdmhVCui1KgBAt8mK0tNtMFntMFkdMFns/T+7Xs+dEoP5/RprW3vwxL/2ud6z2GG/hPQZV89Kwk/7p0FNVle6jjC9BqGBGoTp1f0ja67RteAANeQMpsOHa7eoYC1+uEQceeyG65t08oTvGe0zYjSxCgV24yCw6+npQVBQEGsZY47U6jWWer0N7AAgJzkCsaE6qJUK3P+9qVArXeuODlS1orqxA8FBAVArFFCr5NAoFVAr5VCrFEiNCYayf0G52eYa2VYr5WP6x/JifeIpseoAg6fwxsrmaLgUG06Ow9dl9Vj/2WGPZTzVz+5wAgDfbt0mK041dsNstcPYH3QN/Gy2OlCQHsOv9zrVaMAfPz/sCtT6gzSz1YGBPxB3X56BWwpdo+gnGw34yV9LPOq7tTAVd12eAQA4296Hu1/bOlo38Nw2fzIWTYtHWKAGeo1SEmsXxRwoSe256a+Mth1ojR3hRmlpKRYuXMhaxpgjtXqNpV65TIZfXjcDL3xy6IJly2raUdb/80A+KwD4qqweW482ePzchw8vQZDOFSC8sfkovjzompJQKeSu4E95Lhj83R0F/K6+TQdrsb+qFWqlAhqVgi+rUcqhUiqwLDcRwTo1AGDz9v1InJzpupfSPbBUK+UICVDzqSUGsDmcF9yJ+MZXxzB3Suywf0wv1A4DKS0cTg5OJweVUs5rMFvt6DbZ3N4f/HNsWAACtSqUlpZi+qwC1LT2DCnjcHJwcBymJoQiJjQAANDUacS+qlY4nE68vnmEubx+nv/4EFJ3VcFsdcJks/ePmDlgczjx4FXTcM2siQCAqqZuPP7PPR7vEx6o4QM7J8fhVFP3sOVkcPl9gGCdCtMnhiNArYRWrUSARgmtWgGdSgmdRoGpCWF82agQLV6+pxA6lQI6jRI6tRI6tQJXPfvlBesJuP4xSYwM9KqsWFDIZaLN/Sa156a/ImQ7UGBHEBIlIsi7NATL8yYiMkgLq93Jj+QAwJSEUDQ2NyM4NBwWmwM2uxMWuxNWmwNWhxMa1bmyVvu5P+oDSVD7LHb+mnxQAHWy0YDtx5s86lmQGccHduXNNvzlwH6PZV+/fz4mxbj+O/1gRxU+3FWFbpPNY/kBWrvNuOe1rVAr5a5gijsXVJnMFsSkdSEjIRQA8Nn+Gvzl6+OuwIvjhuT5+u0P8jEr1ZVI9NsjDfjTxnKPdtetnIV5GbEAgIPVbSMG3o+uyOEDu9PN3Xj1S895y87H5nCi4qxh2PdM1nPtEqxTIzkqCDqNoj+gcgVVOrUSAWolpvT7AAASIvR45vuzXYGaWtH/XQmdRgmNUu42UhYTGoAXV831SqtaqcCU+NAh1z96ZAnue6NY9JsNCEJqUGA3DpgyZQprCYIgtXqNtd5pSeGICNJc8A/jj5ZmDTtydcOcFMybqENsbOwFbf3i2un4ybJpsNodsNqdsNodsNicsDlc3/Wac4+Sy7LikRQV5Cprc8JiHwgaXa/12nNlJ02IQYejx/Ve/32t/cGlxe6Epn/aGAD6LDavgroBGjs9L6y32h38z04nB8ugwPV8nINWqyjkMijlMijkMsgHvstkUMjlkMsBhcLl5ylTpqCuV46JUYGu92Q4V6b/deig3ZURwVoUTomBXC5HW7cJx892XbB+N8xJwey0aAS4BW1KBGjO+Sw1Nhh//uGCC94LAPQaFWanRXtVdizQa1W0K5MBUntu+itCtgOtsRsHa+yqq6uRkpLCWsaYI7V6CaH3UtaaCaVpNIxkf+DRNDBS1G20orPPgvLaDrwyQlb+Ae5dnIHJsSFDgrCmxkbMzp4MXX/ajD6zDT1m26Ag7Vx5hUwGlVIx6uDiUvxaVtOOR9/dfcFyrPOhjRVi32zgb7D+nSdcjLYdaI0d4UZtba1f/iJLrV5C6C2aGoe1N+Ve9B9G1j4cyf75i+SDA1w7HSdEBOK97ScvOFJ5w5xJwwZkjSfLoFNP5V/rtSp+t+dYcSl+nZYUjsgg7ZCD5AfjT1OURVPjMHdKrGg3G/gbrH/nCRdCtgMFdgQhccbbH0Z/T6yqkMvwo6WZflu/4RDzZgOCkBo0FTsOpmLtdjuUSv+L4aVWLzHqZa3pUuxf7BSeL+o8FjZoipIQAta/84SL0bYD5bEbBeMhsNu3bx9mz57NWsaYI7V6iVEva02Xav9i8oX5os5jZUPM+dAIacL6d55wMdp2oDV2hBtGo+fdgVJGavUSo17Wmi7V/sVM4fmizmNlg6YoibGG9e884ULIdpBfuAghdcLCwi5cSIJIrV5i1MtaEwv7vrDJ2q8E4Qnqm+JAyHagqdhxMBVrNBoREBDAWsaYI7V6iVEva00s7PvCJmu/EoQnqG+Kg9G2A03FesGGDRuwYcMGOByuRKUlJSXQ6/WYN28eysrK0NfXh9DQUKSnp2Pv3r0AgLS0NDidTpw+fRoAUFBQgGPHjqG7uxtBQUHIysrC7t2u/FMpKSlQKBQ4deoUAGD27Nk4deoUOjs7ERAQgJkzZ2LHjh0AgKSkJOh0Opw4cQIAkJubizNnzqC9vR1arRb5+fnYtm0bAGDChAkIDg7GsWOuY4dmzJiBhoYGtLS0QKVSYd68edi+fTucTifi4uIQERGBzz//HMnJycjOzkZrayuampqgUChQVFSEHTt2wG63Izo6GnFxcSgrcx0+lZmZCYPBgLNnzwIAFi5ciN27d8NisSAyMhJJSUkoLXXt2svIyIDRaERtbS0AoKioCKWlpTAajQgLC0Nqair273edLjB58mTYbDbU1NQAAObOnYvy8nL09vYiJCQEGRkZ2LPHdQRSaqrrXMqqqioAwJw5c1BRUQGDwYDAwEAYDAYoFK5krMnJyVCpVDh58iQAIC8vD1VVVby/c3NzUVJSwvs7ICAAFRUVvL9ra2vR1tYGjUaDgoICFBcXAwASEhIQEhLC+zsnJweNjY1oaWmBUqlEYWEhSkpK4HA4EBsbi6ioKJSXu04mmDZtGtrb29HY2Ai5XA6n0wmVSgWbzYbo6GjEx8fj0KFDvL+7u7tRX18PAFiwYAH27t0Ls9mMiIgITJw4kff3lClTYDKZeH8XFhbi4MGDvL/T0tKwb98+vs86HA5UV1fzffbo0aPo6elBcHAwOjo6+AW8kyZNglwu5/tsfn4+Kisr0dXVBb1ej5ycHOzcuZP3t1qtRmVlJe/v6upqtLe3Q6fTIS8vD9u3bwcAJCYmIjAwEMePHwcAzJw5E/X19WhtbUVdXR1uv/12bNu2DRzHIT4+HmFhYTh61HVk2PTp09Hc3Izm5ma+zw74OyYmBjExMTh82HWmalZWFjo7O9HQ0ACZTIYFCxZg165dsFqtiIqKwoQJE3Dw4EHU1NRg2bJl6O3tRV2d65i0+fPnY//+/TCZTIiIiEBKSgrfZ9PT02G1Wvk+680z4ttvv0VycrJknhFHjrjyAvrbMyI7Oxu7du2SzDNi/vz52Llzp6DPiKamJixfvtzrZ0RmZibfZ1k8I9RqNebOnevTZwQATJ06VVTPiL6+PngLjdiNgxG74uJivzwbUGr1EqNe1ppY2PeFTdZ+JQhPUN8UB6Nth9HEKrTGbhyQlpbGWoIgSK1eYtTLWhML+76wydqvBOEJ6pviQMh2oMBuHDAw3exvSK1eYtTLWhML+76wydqvBOEJ6pviQMh2oMBuHDCwdsLfkFq9xKiXtSYW9n1hk7VfCcIT1DfFgZDtQIEdQRAEQRCEn0CbJ8bB5gmLxQKNRsNaxpgjtXqJUS9rTSzs+8Ima78ShCeob4qD0bYDbZ4g3BjYFu5vSK1eYtTLWhML+76wydqvBOEJ6pviQMh2oMBuHNDT08NagiBIrV5i1MtaEwv7vrDJ2q8E4Qnqm+JAyHagwG4c4K9TzFKrlxj1stbEwr4vbLL2K0F4gvqmOBCyHWiNHa2xkyxSq5cY9bLWRGvsCMK3UN8UB7TGjrgkBo4n8TekVi8x6mWtiYV9X9hk7VeC8AT1TXEgZDtQYEcQBEEQBOEnUGA3Dpg0aRJrCYIgtXqJUS9rTSzs+8Ima78ShCeob4oDIduBArtxgFzun80stXqJUS9rTSzs+8Ima78ShCeob4oDIduBWngccOrUKdYSBEFq9RKjXtaaWNj3hU3WfiUIT1DfFAdCtgMFdgRBEARBEH4CpTsZB+lOTCYTdDodaxljjtTqJUa9rDWxsO8Lm6z9ShCeoL4pDkbbDuMu3cnnn3+OKVOmYPLkyfjrX//KWo7oqKysZC1BEKRWLzHqZa2JhX1f2GTtV4LwBPVNcSBkOygFu7OPsNvtWLNmDb777juEhIRg1qxZuP766xEREcFammjo6upiLUEQpFYvMeplrYmFfV/YZO1XgvAE9U1xIGQ7SH7Ebu/evcjKykJCQgICAwOxbNkyfPXVV6xliQq9Xs9agiBIrV5i1MtaEwv7vrDJ2q8E4Qnqm+JAyHZgHtht27YNy5cvR3x8PGQyGT755JMhZTZs2IDk5GRotVrMmTMHe/fu5d9raGhAQkIC/zohIQFnz571hXTJkJOTw1qCIEitXmLUy1oTC/u+sMnarwThCeqb4kDIdmAe2PX19SEnJwcbNmwY9v0PPvgAa9aswbp161BaWoqcnBwsXboULS0tPlYqXXbu3MlagiBIrV5i1MtaEwv7vrDJ2q8E4Qnqm+JAyHZgvsZu2bJlWLZsmcf3169fj/vuuw933XUXAOCNN97Axo0b8dZbb+Gxxx5DfHy82wjd2bNnkZ+f7/F+FosFFouFf20wGAC4dpz4K319fX5ZP6nVS4x6WWtiYd8XNln7lSA8QX1THIy2HQbKepXIhBMRALiPP/6Yf22xWDiFQuF2jeM4btWqVdy1117LcRzH2Ww2Li0tjauvr+d6enq49PR0rq2tzaONdevWcQDoi77oi77oi77oi74k9VVXV3fBWIr5iN1ItLW1weFwICYmxu16TEwMKioqAABKpRJ/+MMfsGjRIjidTjz66KMj7oh9/PHHsWbNGv610+lER0cHIiIiIJPJhKkIY2bPno19+/axljHmSK1eYtTLWhML+0Lb7O7uRmJiIurq6vw2NyYhXVj/zhMuRtsOHMehp6cH8fHxFywr6sDOW6699lpce+21XpXVaDTQaDRu10JDQwVQJR4UCoVf/oGRWr3EqJe1Jhb2fWUzODhYdO1NEKx/5wkXF9MOISEhXpVjvnliJCIjI6FQKNDc3Ox2vbm5GbGxsYxUSY8HHniAtQRBkFq9xKiXtSYW9lnXmSBYQv1fHAjZDqI6Ukwmk+Hjjz/Gddddx1+bM2cO8vPz8corrwBwTZ0mJSXhJz/5CR577DFGSgmCIIZnPBxTSBCEeGE+Fdvb24tTp07xr6urq3Ho0CGEh4cjKSkJa9aswerVq5GXl4f8/Hy89NJL6Ovr43fJEgRBiAmNRoN169YNWfJBEAThC5iP2G3duhWLFi0acn316tV45513AACvvvoqXnzxRTQ1NWHGjBl4+eWXMWfOHB8rJQiCIAiCEDfMAzuCIAiCIAhibBD15gmCIAiCIAjCeyiwIwiCIAiC8BMosCMIgiAIgvATKLAjCIIgCILwEyiwIwiC8BF1dXW47LLLkJmZienTp+M///kPa0kEQfgZtCuWIAjCRzQ2NqK5uRkzZsxAU1MTZs2ahcrKSuj1etbSCILwE5gnKCYIghgvxMXFIS4uDgAQGxuLyMhIdHR0UGBHEMSYQVOxBEEQXrJt2zYsX74c8fHxkMlk+OSTT4aU2bBhA5KTk6HVajFnzhzs3bt32HsdOHAADocDiYmJAqsmCGI8QYEdQRCEl/T19SEnJwcbNmwY9v0PPvgAa9aswbp161BaWoqcnBwsXboULS0tbuU6OjqwatUqvPnmm76QTRDEOILW2BEEQVwEMpkMH3/8Ma677jr+2pw5czB79my8+uqrAACn04nExEQ8+OCDeOyxxwAAFosF3/ve93DffffhjjvuYCGdIAg/hkbsCIIgxgCr1YoDBw5g8eLF/DW5XI7Fixdj165dAACO43DnnXfi8ssvp6COIAhBoMCOIAhiDGhra4PD4UBMTIzb9ZiYGDQ1NQEAduzYgQ8++ACffPIJZsyYgRkzZqC8vJyFXIIg/BTaFUsQBOEjioqK4HQ6WcsgCMKPoRE7giCIMSAyMhIKhQLNzc1u15ubmxEbG8tIFUEQ4w0K7AiCIMYAtVqNWbNmYcuWLfw1p9OJLVu2YO7cuQyVEQQxnqCpWIIgCC/p7e3FqVOn+NfV1dU4dOgQwsPDkZSUhDVr1mD16tXIy8tDfn4+XnrpJfT19eGuu+5iqJogiPEEpTshCILwkq1bt2LRokVDrq9evRrvvPMOAODVV1/Fiy++iKamJsyYMQMvv/wy5syZ42OlBEGMVyiwIwiCIAiC8BNojR1BEARBEISfQIEdQRAEQRCEn0CBHUEQBEEQhJ9AgR1BEARBEISfQIEdQRAEQRCEn0CBHUEQBEEQhJ9AgR1BEARBEISfQIEdQRAEQRCEn0CBHUEQBEEQhJ9AgR1BEARBEISfQIEdQRAEQRCEn0CBHUEQBEEQhJ9AgR1BEARBEISfQIEdQRAEQRCEn0CBHUEQBEEQhJ9AgR1BEARBEISfoGQtgDVOpxMNDQ0ICgqCTCZjLYcgCIIgCMINjuPQ09OD+Ph4yOUjj8mN+8CuoaEBiYmJrGUQBEEQBEGMSF1dHSZMmDBimXEf2AUFBQFwOSs4OJixGmE4ceIEpkyZwlrGmCO1eolRL2tNLOz7wiZrvxKEJ6hvioPRtkN3dzcSExP5mGUkxn1gNzD9Ghwc7LeBndFo9Mu6Sa1eYtTLWhML+76wydqvBOEJ6pvi4GLbwZslY7R5YhygUqlYSxAEqdVLjHpZa2Jh3xc2WfuVIDxBfVMcCNkOMo7jOMHuLgG6u7sREhICg8FA/8UQBEEQBCE6RhOr0IjdOGD79u2sJQiC1OolRr2sNbGw7wubrP1KEJ6gvikOhGwHCuzGAU6nk7UEQZBavcSol7UmFvZ9YZO1XwnCE9Q3xYGQ7UCB3TggLi6OtQRBkFq9xKiXtSYW9n1hk7VfCcIT1DfFgZDtQIHdOCAiIoK1BEGQWr3EqJe1Jhb2fWGTtV8JwhPUN8WBkO1Agd044MiRI6wlCILU6iVGvaw1sbDvC5us/UoQnqC+KQ6EbAcK7AiCIAiCIPwECuzGAdnZ2awlCILU6iVGvaw1sbDvC5us/UoQnqC+KQ6EbAcK7MYBra2trCUIgtTqJUa9rDWxsO8Lm6z9ShCeoL4pDoRsBwrsxgFNTU2sJQiC1OolRr2sNbGw7wubrP1KEJ6gvikOhGwH0QZ2DocDa9euRUpKCnQ6HVJTU/Gb3/wGgw/K4DgOTz75JOLi4qDT6bB48WKcPHmSoWpxolAoWEsQBKnVS4x6WWtiYd8XNln7lSA8QX1THAjZDqI9Uuy3v/0t1q9fj7///e/IysrC/v37cdddd+HZZ5/FT3/6UwDACy+8gOeeew5///vfkZKSgrVr16K8vBzHjh2DVqv1yg4dKUYQBEEQhJjxiyPFdu7ciRUrVuDqq69GcnIybrrpJixZsgR79+4F4Bqte+mll/DrX/8aK1aswPTp0/GPf/wDDQ0N+OSTT9iKFxk7duxgLUEQpFYvMeplrYmFfV/YZO1XgvAE9U1xIGQ7iDawmzdvHrZs2YLKykoAQFlZGUpKSrBs2TIAQHV1NZqamrB48WL+MyEhIZgzZw527drl8b4WiwXd3d1uX/6O3W5nLUEQpFYvMeplrYmFfV/YZO1XgvAE9U1xIGQ7KAW78yXy2GOPobu7GxkZGVAoFHA4HHj22Wdx2223ATi38DAmJsbtczExMSMuSnzuuefw1FNPDbleUlICvV6PefPmoaysDH19fQgNDUV6ejo/SpiWlgan04nTp08DAAoKCnDs2DF0d3cjKCgIWVlZ2L17NwAgJSUFCoUCp06dAgDMnj0bp06dQmdnJwICAjBz5kw+Yk9KSoJOp8OJEycAALm5uThz5gza29uh1WqRn5+Pbdu2AQAmTJiA4OBgHDt2DAAwY8YMNDQ0oKWlBSqVCvPmzcP27dvhdDoRFxeHiIgItLa2ori4GNnZ2WhtbUVTUxMUCgWKioqwY8cO2O12REdHIy4uDmVlZQCAzMxMGAwGnD17FgCwcOFC7N69GxaLBZGRkUhKSkJpaSkAICMjA0ajEbW1tQCAoqIilJaWwmg0IiwsDKmpqdi/fz8AYPLkybDZbKipqQEAzJ07F+Xl5ejt7UVISAgyMjKwZ88eAEBqaioAoKqqCgAwZ84cVFRUwGAwIDAwEOHh4SguLgYAJCcnQ6VS8Wss8/LyUFVVxfs7NzcXJSUlvL8DAgJQUVHB+7u2thZtbW3QaDQoKCjg75uQkICQkBDe3zk5OWhsbERLSwuUSiUKCwtRUlICh8OB2NhYREVFoby8HAAwbdo0tLe3o7GxEXK5HNHR0di5cydsNhuio6MRHx+PQ4cO8f7u7u5GfX09AGDBggXYu3cvzGYzIiIiMHHiRN7fU6ZMgclk4v1dWFiIgwcP8v5OS0vDvn37+D7rcDhQXV3N99mjR4+ip6cHwcHBCAsL4+s6adIkyOVyvs/m5+ejsrISXV1d0Ov1yMnJwc6dO3l/q9Vq/h+vvLw8VFdXo729HTqdDnl5efwh14mJiQgMDMTx48cBADNnzkR9fT1aW1vR2dkJANi2bRs4jkN8fDzCwsJw9OhRAMD06dPR3NyM5uZmvs8O+DsmJgYxMTE4fPgwACArKwudnZ1oaGiATCbDggULsGvXLlitVkRFRWHChAk4ePAgWltb0dLSgt7eXtTV1QEA5s+fj/3798NkMiEiIgIpKSl8n01PT4fVauX7rDfPiIHfOak8IwaSpfrbMyI7O5v/R18Kz4j58+cL/owwmUwwGo1ePyMyMzP5PsviGaFWqzF37lyfPiMAYOrUqaJ6RvT19cFbRLvG7v3338cjjzyCF198EVlZWTh06BB+/vOfY/369Vi9ejV27tyJwsJCNDQ0uJ25dvPNN0Mmk+GDDz4Y9r4WiwUWi4V/3d3djcTERL9eY9fV1YXQ0FDWMsYcqdVLjHpZa2Jh3xc2WfuVIDxBfVMcjLYd/GKN3SOPPILHHnsMt956K7Kzs3HHHXfgoYcewnPPPQcAiI2NBQA0Nze7fa65uZl/bzg0Gg2Cg4Pdvvydgf+w/Q2p1UuMellrYmHfFzZZ+5UgPEF9UxwI2Q6iDeyMRiPkcnd5CoUCTqcTgGuIMjY2Flu2bOHf7+7uxp49ezB37lyfaiUIgiAIghADol1jt3z5cjz77LNISkpCVlYWDh48iPXr1+Puu+8GAMhkMvz85z/HM888g8mTJ/PpTuLj43HdddexFS8yMjMzWUsQBKnVS4x6WWtiYd8XNln7lSA8QX1THAjZDqIdsXvllVdw00034cc//jGmTp2Khx9+GP/zP/+D3/zmN3yZRx99FA8++CDuv/9+zJ49G729vdi0aZPXOezGCwaDgbUEQZBavcSol7UmFvZ9YZO1XwnCE9Q3xYGQ7SDawC4oKAgvvfQSzpw5A5PJhKqqKjzzzDNQq9V8GZlMhqeffhpNTU0wm8345ptvkJ6ezlC1OBnYteZvSK1eYtTLWhML+76wydqvBOEJ6pviQMh2EG1gRxAEQRAEQYwO0aY78RV0pBhBEARBEGLGL9KdEGPHQLJDf0Nq9RKjXtaaWNj3hU3WfiUIT1DfFAdCtgMFduOAwQmZ/Qmp1UuMellrYmHfFzZZ+5UgPEF9UxwI2Q4U2I0DIiMjWUsQBKnVS4x6WWtiYd8XNln7lSA8QX1THAjZDhTYjQOSkpJYSxAEqdVLjHpZa2Jh3xc2WfuVIDxBfVMcCNkOFNiNAwYOhvY3pFYvMeplrYmFfV/YZO1XgvAE9U1xIGQ7UGBHEARBEAThJ1BgNw7IyMhgLUEQpFYvMeplrYmFfV/YZO1XgvAE9U1xIGQ7UGA3DjAajawlCILU6iVGvaw1sbDvC5us/UoQnqC+KQ6EbAcK7MYBtbW1rCUIgtTqJUa9rDWxsO8Lm6z9ShCeoL4pDoRsBwrsCIIgCIIg/AQ6UmwcHCnmcDigUChYyxhzpFYvMeplrYmFfV/YZO1XgvAE9U1xMNp2oCPFCDf8dXu71OolRr2sNVG6E4LwLdQ3xQGlOyEuCX9dLCu1eolRL2tNtHmCIHwL9U1xQJsniEsiLCyMtQRBkFq9xKiXtSYW9n1hk7VfCcIT1DfFgZDtQIHdOCA1NZW1BEGQWr3EqJe1Jhb2fWGTtV8JwhPUN8WBkO1Agd04YP/+/awlCILU6iVGvaw1sbDvC5us/UoQnqC+KQ6EbAcK7AiCIAiCIPwECuzGAZMnT2YtQRCkVi8x6mWtiYV9X9hk7VeC8AT1TXEgZDtQYDcOsNlsrCUIgtTqJUa9rDWxsO8Lm6z9ShCeoL4pDoRsBwrsxgE1NTWsJQiC1OolRr2sNbGw7wubrP1KEJ6gvikOhGwHCuwIgiAIgiD8BDpSbBwcKWa1WqFWq1nLGHOkVi8x6mWtiYV9X9hk7VeC8AT1TXEw2nbwmyPFzp49i9tvvx0RERHQ6XTIzs522yLMcRyefPJJxMXFQafTYfHixTh58iRDxeKkvLyctQRBkFq9xKiXtSYW9n1hk7VfCcIT1DfFgZDtINrArrOzE4WFhVCpVPjyyy9x7Ngx/OEPf3DL1vy73/0OL7/8Mt544w3s2bMHer0eS5cuhdlsZqhcfPT29rKWIAhSq5cY9bLWxMK+L2yy9itBeIL6pjgQsh2Ugt35EnnhhReQmJiIt99+m7+WkpLC/8xxHF566SX8+te/xooVKwAA//jHPxATE4NPPvkEt956q881i5WQkBDWEgRBavUSo17WmljY94VN1n4lCE9Q3xQHQraDaEfsPv30U+Tl5WHlypWIjo7GzJkz8Ze//IV/v7q6Gk1NTVi8eDF/LSQkBHPmzMGuXbs83tdisaC7u9vty9/JyMhgLUEQpFYvMeplrYmFfV/YZO1XgvAE9U1xIGQ7+GzErqurC6GhoV6XP336NF5//XWsWbMGv/rVr7Bv3z789Kc/hVqtxurVq9HU1AQAiImJcftcTEwM/95wPPfcc3jqqaeGXC8pKYFer8e8efNQVlaGvr4+hIaGIj09HXv37gUApKWlwel04vTp0wCAgoICHDt2DN3d3QgKCkJWVhZ2794NwDW6qFAocOrUKQDA7NmzcerUKXR2diIgIAAzZ87Ejh07AABJSUnQ6XQ4ceIEACA3NxdnzpxBe3s7tFot8vPzsW3bNgDAhAkTEBwcjGPHjgEAZsyYgYaGBrS0tEClUmHevHnYvn07nE4n4uLiEBERgc8//xzJycnIzs5Ga2srmpqaoFAoUFRUhB07dsButyM6OhpxcXEoKysDAGRmZsJgMODs2bMAgIULF2L37t2wWCyIjIxEUlISSktLAbg6qNFoRG1tLQCgqKgIpaWlMBqNCAsLQ2pqKr82cvLkybDZbPxW77lz56K8vBy9vb0ICQlBRkYG9uzZA+DcWXpVVVUAgDlz5qCiogIGgwGBgYEwGAxQKBQAgOTkZKhUKn6NZV5eHqqqqnh/5+bmoqSkhPd3QEAAKioqeH/X1taira0NGo0GBQUFKC4uBgAkJCQgJCSE93dOTg4aGxvR0tICpVKJwsJClJSUwOFwIDY2FlFRUfzaiWnTpqG9vR2NjY2Qy+VwOp1QqVSw2WyIjo5GfHw8Dh06xPu7u7sb9fX1AIAFCxZg7969MJvNiIiIwMSJE3l/T5kyBSaTifd3YWEhDh48yPs7LS0N+/bt4/usw+FAdXU132ePHj2Knp4eBAcHo6OjA0ql6zEwadIkyOVyvs/m5+ejsrISXV1d0Ov1yMnJwc6dO3l/q9VqVFZW8v6urq5Ge3s7dDod8vLysH37dgBAYmIiAgMDcfz4cQDAzJkzUV9fj9bWVtTV1eH222/Htm3bwHEc4uPjERYWhqNHjwIApk+fjubmZjQ3N/N9dsDfMTExiImJweHDhwEAWVlZ6OzsRENDA2QyGRYsWIBdu3bBarUiKioKEyZMwMGDB1FTU4Nly5aht7cXdXV1AID58+dj//79MJlMiIiIQEpKCt9n09PTYbVa+T7rzTPi22+/RXJysmSeEUeOHAEAv3tGZGdn8//oS+EZMX/+fOzcuVPQZ0RTUxOWL1/u9TMiMzOT77MsnhFqtRpz58716TMCAKZOnSqqZ0RfXx+8hhOA559/nnv//ff51ytXruTkcjkXHx/PHTp0yKt7qFQqbu7cuW7XHnzwQa6goIDjOI7bsWMHB4BraGhwK7Ny5Uru5ptv9nhfs9nMGQwG/quuro4DwBkMBm+rJzm2bt3KWoIgSK1eYtTLWhML+76wydqvBOEJ6pviYLTtYDAYvI5VBJmKfeONN5CYmAgA+Prrr/H111/jyy+/xLJly/DII494dY+4uDhkZma6XZs6dSr/H0hsbCwAoLm52a1Mc3Mz/95waDQaBAcHu335OwP/1fobUquXGPWy1sTCvi9ssvYrQXiC+qY4ELIdBAnsmpqa+MDu888/x80334wlS5bg0Ucf5Yd/L0RhYSE/7TBAZWUlJk6cCMA1RBkbG4stW7bw73d3d2PPnj2YO3fuGNWEIAiCIAhCOggS2IWFhfHz0ps2beI3OHAcB4fD4dU9HnroIezevRu//e1vcerUKbz33nt488038cADDwAAZDIZfv7zn+OZZ57Bp59+ivLycqxatQrx8fG47rrrhKiWZBlYf+JvSK1eYtTLWhML+76wydqvBOEJ6pviQMh2EGTzxA033IAf/OAHmDx5Mtrb27Fs2TIAwMGDB5GWlubVPWbPno2PP/4Yjz/+OJ5++mmkpKTgpZdewm233caXefTRR9HX14f7778fXV1dKCoqwqZNm6DVaoWoFkEQBEEQhKgR5Egxm82GP/3pT6irq8Odd96JmTNnAgD++Mc/IigoCPfee+9Ym7xoxsORYmaz2S+DXanVS4x6WWtiYd8XNln7lSA8QX1THIy2HZgfKaZSqfDwww/jT3/6Ex/UAa7pVTEFdeOFgS37/obU6iVGvaw1sbDvC5us/UoQnqC+KQ6EbAfBEhS/++67KCoqQnx8PM6cOQMAeOmll/Df//5XKJOEBwwGA2sJgiC1eolRL2tNLOz7wiZrvxKEJ6hvigMh20GQwG4gsfCyZcvQ1dXFb5gIDQ3FSy+9JIRJYgQCAwNZSxAEqdVLjHpZa2Jh3xc2WfuVIDxBfVMcCNkOgqyxy8zMxG9/+1tcd911CAoKQllZGSZNmoQjR47gsssuQ1tb21ibvGjGwxo7q9UKtVrNWsaYI7V6iVEva00s7PvCJmu/EoQnqG+Kg9G2A/M1dtXV1W5r6wbQaDSjOxaDGBNGOjtXykitXmLUy1oTC/u+sMnarwThCeqb4kDIdhAksEtJSeHPtxvMpk2bMHXqVCFMEgRBEARBjHsEyWO3Zs0aPPDAAzCbzeA4Dnv37sW//vUvPPfcc/jrX/8qhEliBJKTk1lLEASp1UtIvQ4nhyO1HejoNSM8UItpSeFQyGVMNXkDC/u+sMnarwThCeqb4kDIdhAksLv33nuh0+nw61//GkajET/4wQ8QHx+PP/3pT7j11luFMEmMgEqlYi1BEKRWL6H0lhxvxOubj6Gtx8xfiwzS4kdLM1E0NY6JJm9hYd8XNln7lSA8QX1THAjZDoKlO7nttttw8uRJ9Pb2oqmpCfX19bjnnnuEMkeMwMmTJ1lLEASp1Wus9To5DpsP1eE3H5a6BXUA0NZjxm8+LMV35Wcx0v4o1j5kYd8XNln7lSA8QX1THAjZDoKM2AGA3W7H1q1bUVVVhR/84AcAgIaGBgQHB9N2a4K4RJwch2XPfHHBcs9/cgj5k6Oh19J/6QRBEOMBQdKdnDlzBldeeSVqa2thsVhQWVmJSZMm4Wc/+xksFgveeOONsTZ50YyHdCd9fX3Q6/WsZYw5UqvXWOr1NrADgMuy4jBncgwSIwMxKSbYbe0dax+ysO8Lm6z9ShCeoL4pDkbbDszTnfzsZz9DXl4eOjs7odPp+OvXX389tmzZIoRJYgSqqqpYSxAEqdVrLPVabQ6vy2492ogXPjmEn721w21a9uuyevz9q0PYX9WK5i4jnGP/P94FYdGGvrAptb5JjB+ob4oDIdtBkKnY7du3Y+fOnUOS7yUnJ+Ps2bNCmCRGoLOzk7UEQZBavVjpnZ0WBZPVAY7joFSc+1/u8wNnUHG2C/89shcAoFHKER+uR2JkICZGBuK2BZMhk114Z+2lwMInvrAptb5JjB+ob4oDIdtBkMDO6XTyx4gNpr6+HkFBQUKYJEYgICCAtQRBkFq9xlKvRqXAR48swX1vFKO9x+KxXFSwFk/dMnvY1CdzJkdDbjeh16FCQ0cfLHYnqlt6UN3Sg7iwANy+MJ0v+5v/HECv2YbEyEBMiNAjMcL1PSpEB/klBH8s2tAXNqXWN4nxA/VNcSBkOwiyxu6WW25BSEgI3nzzTQQFBeHw4cOIiorCihUrkJSUhLfffnusTV4042GNncPhgEKhYC1jzJFavYTQW3K8Eb/5sNTj+2tvyh0x5cmAJofTiaYuE+raelHf3gelQobr8lP4cit//xW6TbYhn9co5ZieHIFnvp/PX6tv70VEkBY69YX/b2TRhr6wKbW+SYwfqG+Kg9G2w2hiFUECu7q6Olx55ZXgOA4nT55EXl4eTp48icjISGzbtg3R0dFjbfKiGQ+BXXFxMRYuXMhaxpgjtXoJpXe4PHZRwVr8cMmF89h5o4njOFSc7UJdey/q2/pQ396LuvY+NHT0we7kMDMlEs/fPocv//0/foOOXgsig7SYEHludC8xIhBJUYGICj637vZSfXIxiZl90W+k1jeJ8QP1TXEw2nYYTawiyFRsYmIiysrK8MEHH6CsrAy9vb245557cNttt7ltpiAI4tIpmhqHuVNiL+rkCW+QyWSYOiEMUyeEuV0fGOWz2Z38NYvNAYfT9b9iW48ZbT1mHKpu59+fPjEcL66ay7/eVWeFo/wsP8XrzSjfAJeSmJkgCMJfGfPAzmazISMjA59//jluu+023HbbbWNtghglSUlJrCUIgtTqJaRehVyGnOSIUX/uUjQp5HIkhLtv19eoFPj3L76HHpOtf2TPfZRvUsy5/zTNVju+q7biu+pD/LXBo3wzkiOGDdCcHIevy+qx/rPDQ94bSMz82HUzcNm0+GE3f/ii30itbxLjB+qb4kDIdhjzwE6lUsFsNl+4IOEz/HWxrNTqJUa9QmkK0qmGHeUbjMXuxMKMSLQbnahr64XBaHUb5bPZnXxgZ7U78PO3diIhQo9txxovaH+kxMy0eYIYz1DfFAdCtoMgU7EPPPAAXnjhBfz1r3+FUinY4RaEl1RUVCAmJoa1jDFHavUSo16WmkIC1CiMNvPrTM4f5cuYEMqXbegwoqq5G1XN3V7f/z+7qjA7LRpheg3CAjX8NK8v6izGtiYIgPqmWBCyHQSJuvbt24ctW7bgq6++QnZ29pDsyh999JEQZgmCkDAjjfJFhWjx1C15qG7uxjtbK726379KqvCvknNJQDUqBcL0amSFOzCwZNlosePrw/UI12sQGqhBmF6NML0GARql4Dn8vOFiNocQBDG+ESSwCw0NxY033ijErYmLIDc3l7UEQZBavcSol7Umb+3rNSoUpMdgRnKE14FdYqQeNrsTnX1WWGwOWGwONHWZcNnUiXyZFoMJr206OuSzKoUcYYEaXDt7IlbOTQUA9Fls+OpQPcL0GoQGugLAML0GQTrVkCBwLPxKm0MIIWD9O0+4ELIdBAnsxJSnjgBqa2uRlZXFWsaYI7V6iVEva02jtT+axMx//p+F/OiWyWpHZ68FnX0WdDTW8uUUchkKM2LR1ed6r6vXCqPVDpvDiRaDCXbHuWxQzV0mvPHVsSG2FHIZQvVqXJ+fgpXzXEHgiaoa1Jr1CNVrEKrvHwkM1CBIp77giNulbg4hiJFg/TtPuBCyHWgB3Digra2NtQRBkFq9xKiXtabR2pfJZNBrVfjx0qwREzP/cEmmWwClUyuhC1ciPlyP4tPl/PXEyEA8uXKW22ctNocryOuzIDxQy19XKeSYPzXuXBDYZ0Gv2Q6Hk0N7jwV257kgsPpsK/5aWovzkcuAkAANbihIwc39QWCf2YYvSmv7g0A1fv2vfRf0w0ibQwhiJFj/zhMuhGwHQQK7mTNnDvufpEwmg1arRVpaGu68804sWrTI63s+//zzePzxx/Gzn/0ML730EgDAbDbjF7/4Bd5//31YLBYsXboUr732Gi0MPQ+NRsNagiBIrV5i1Mta08XaL5oah7U35V5UYuYL2dSoFIgNDUBsqPuutcTIQPz6JvfpE6vdga4+K7r6LAjVn7uvTqvBZVlh6OyzoLPXFQR2m2xwckBnnwXOQUFgU5cJf91S4VW9B1N8tAGXZydAO4rcfwTB+neecCFkOwhy8sTjjz+O119/HdnZ2cjPdx01tG/fPhw+fBh33nknjh07hi1btuCjjz7CihUrLni/ffv24eabb0ZwcDAWLVrEB3Y/+tGPsHHjRrzzzjsICQnBT37yE8jlcuzYscNrrePh5AmC8FektLnA4XTyQWBIgAaRwa7RwPr2Xvxz20l09lnR0WvGmdbeUd03UKtCVLAW0SE6XJGdgIVZ8QAAm8OJtm4zIoI0UCvpCCmCkDLMjxS77777kJSUhLVr17pdf+aZZ3DmzBn85S9/wbp167Bx40bs379/xHv19vYiNzcXr732Gp555hnMmDEDL730EgwGA6KiovDee+/hpptuAuDaPjx16lTs2rULBQUFXmkdD4Gdvx4hI7V6iVEva00s7Iv5SDGz1Y4VL2z2qqxaKYd10KkfAHDPFRn8FG9VkwE//ksJACBMr0FUsNb1FaJDZLAWM5IjMTkuZNQaCWnD+neecCG5I8X+/e9/48CBA0Ou33rrrZg1axb+8pe/4Pvf/z7Wr19/wXs98MADuPrqq7F48WI888wz/PUDBw7AZrNh8eLF/LWMjAwkJSWNGNhZLBZYLOcWXXd3e58XiyAIQkhGsznk7w9eDrPVjtZuM1q7TWjtNiMjIZQv022y8cFfZ/+6wMpGA//+PVdk8IHd6eZurH1/H6KDdXzw5woEXd/jw/UIFHA9n5RGXglC7AgS2Gm1WuzcuRNpaWlu13fu3Amt1jX94HQ6+Z898f7776O0tBT79g1dTNzU1AS1Wo3Q0FC36zExMWhqavJ4z+eeew5PPfXUkOslJSXQ6/WYN28eysrK0NfXh9DQUKSnp2Pv3r0AgLS0NDidTpw+fRoAUFBQgGPHjqG7uxtBQUHIysrC7t27AQApKSlQKBQ4deoUAGD27Nk4deoUOjs7ERAQgJkzZ/JTxklJSdDpdDhx4gQA1zboM2fOoL29HVqtFvn5+di2bRsAYMKECQgODsaxY67deTNmzEBDQwNaWlqgUqkwb948bN++HU6nE3FxcYiIiEBHRweKi4uRnZ2N1tZWNDU1QaFQoKioCDt27IDdbkd0dDTi4uJQVlYGAMjMzITBYMDZs2cBAAsXLsTu3bthsVgQGRmJpKQklJa6Fq9nZGTAaDSitta1WLyoqAilpaUwGo0ICwtDamoqPzI7efJk2Gw21NTUAADmzp2L8vJy9Pb2IiQkBBkZGdizZw8AIDW1f+ShypWLbM6cOaioqIDBYEBgYCBiYmJQXFwMAEhOToZKpcLJkycBAHl5eaiqquL9nZubi5KSEt7fAQEBqKio4P1dW1uLtrY2aDQaFBQU8PdNSEhASEgI7++cnBw0NjaipaUFSqUShYWFKCkpgcPhQGxsLKKiolBe7lqcP23aNLS3t6OxsRFyuRwJCQnYuXMnbDYboqOjER8fj0OHDvH+7u7uRn19PQBgwYIF2Lt3L8xmMyIiIjBx4kTe31OmTIHJZOL9XVhYiIMHD/L+TktL439n0tLS4HA4UF1dzffZo0ePoqenB8HBwYiOjubrOmnSJMjlcr7P5ufno7KyEl1dXdDr9cjJycHOnTt5f6vValRWVvL+rq6uRnt7O3Q6HfLy8rB9+3YArrOjAwMDcfz4cQCuNbj19fVobW3l/7Hatm0bOI5DfHw8wsLCcPSoKwXJ9OnT0dzcjObmZr7PDvg7JiYGMTExOHzYtXs0KysLnZ2daGhogEwmw4IFC7Br1y5YrVZERUVhwoQJOHjwIDo6OtDS0oLe3l7U1dUBAObPn4/9+/fDZDIhIiICKSkpfJ9NT0+H1Wrl+6w3z4iB37mLfUYsSdXgX4c8B3arF0zC8WNHhzwj6ioArtf1jOiuPYZfzNUhdco0HK+ux5nGdvTZZQiMiMOxqloYW2pQWelAREQEvt1xCG3dZrR1D39q0OUpalw7awLi4uLw3e6DKDljxaSEKAQonHCaDAjWyHDl5fNx5NB+WK3WUT0j6k0abDzei/bec/UNC1BiUbISGZHKS3pGZGdnY9euXXyfFfszYv78+YI/I6xWK4xGo9fPiMzMTL7PsnhGqNVqzJ0716fPCACYOnWqqJ4RfX19w/5uDocgU7HPPPMMfvvb3+K+++7D7NmzAbjWyf31r3/Fr371KzzxxBP44x//iC+++AJff/31sPeoq6tDXl4evv76a0yfPh0AcNlll/FTse+99x7uuusut9E3wNXRFi1ahBdeeGHY+w43YpeYmOjXU7Gtra2IiopiLWPMkVq9xKiXtSYW9n1hcyxsDJfHzpvNIReD0WJHbVsPWg2u0b+WbjNaDSZ+NPCHSzL5tXu7TjTjf/89/BIarUqBHy7NxLKZrnMw23vM2HeqhR/5iwrRQadWwslx6DZasedky7BpXQagtC5jD+vfecLFaNuB+VTsr3/9a6SkpODVV1/Fu+++C8D1H8Rf/vIX/OAHPwAA/PCHP8SPfvQjj/c4cOAAWlpa3JL4ORwObNu2Da+++io2b94Mq9WKrq4ut1G75uZmxMbGeryvRqMZd7uCjh075pdrKqRWLyH1cg4H2vftg6WlBZroaETMng2Z4sIL5ln7kIV9X9gcCxtFU+Mwd0qsT6YoAzRKZCSEISPhwmUTI/W4+/IMfvq3rduEFoMJ3SYbzDYHdKpzf1YqGwz44+flbp8P1CrRa7Z7pUuqaV3EPLXM+neecCFkOwi2T/62227Dbbfd5vF9nU434uevuOIKfrh6gLvuugsZGRn45S9/icTERKhUKmzZsoU/5eLEiROora3F3LlzL70CBCERGjdvxpGnn4Z50BIEbWwspj35JOKWLmWojLhUFHIZcpIjWMtwY0JEIG4pDBxy3WxzoK3b5Jb2JUCjRF5qFB8EGi12r4O6Ae5/YxuiQrT4QdFk5E+OBgA0dRqxq7IZgVoVgnSur4GfA7UqJruAB49CvvPdCXQMmlqOCNLgviumYu6UGGhUChqBJARFkKlYAOjq6sKHH36I06dP4+GHH0Z4eDhKS0sRExODhAQv/i0chsFTsYAr3ckXX3yBd955B8HBwXjwwQcBgJ/j94bxsCv2/FFNf0Fq9RprvZzTibr/9/9Q9thjQ9/s/8Mxc/16JCxf7vEPCWsfsrDvC5us/SpW+iw2nG3rw4NveZ+SaoDHb5iJy/qng0uON46YoPqnV03D1bNcR8edajTg3W0nEaRVIVCncvsepFMhJTqYTz1zsTg5Dsue+cKrsv/95VKmuQepb4qD0bYD86nYw4cPY/HixQgJCUFNTQ3uvfdehIeH46OPPkJtbS3+8Y9/jImdP/7xj5DL5bjxxhvdEhQT7jQ2NvrlL7LU6jWWejmnE59PnjxCAdf/awcfeggxixZBFRQkuKaLgYV9X9hk7VexoteokBQ1dLRvJO5bPBWxoTpMGbTjNyxQg4WZcegx29Brsrm+9//M9dsZoKnLiN2VzR7v/+BV03BNfxB4qKYNT31wAIH9I3+BWiWCdGo+GJw3JQZZieEAXEFqfXsfgrQq6LXe/yl1OAUZS/Ga4fqmmKeO/RUhnxGCBHZr1qzBnXfeid/97ncIGvQH5aqrruLX2F0MW7dudXut1WqxYcMGbNiw4aLvOR5oaWnB1KlTWcsYc6RWL1Z6d95+O4ImTYI6LAxTH30Uiv7d6L3V1Wjcvx/JoaFQh4dDwWDtKQuf+MKm1PqmL9GoFPjvL5fC4eS8Suty/ZyUIUFGVmI4H2ANxslxMFrsUCnk/LXU2BD89Kpp6DXb0GOyuX3vNdsQNWi0rsdkg9Fqh9FqR4vBNOT+cWEBvN2TjQb88t09o67/v3dWITMxDIFaFfQaVwAZHOC76eOBvunt1DEAmj4WACGfEYIEdvv27cOf//znIdcTEhJGTEVCCINS6Z9HDkmtXmOp12EePi3FcHQfOYLuI0cAmQxZTzzBXz/xxz+ib+NGfPO//wsAUAQEQB0aCnVYGNTh4cjbsAFKvR4A0L53L8wtLa73Bn0pLpCy6EJcqk8uZtOIL/qN1PqmL5HJZPxU5GjP/L0QcplsSL69uLAAflr2QuSnReOtH1/GjwD2mKxugWBa7LmEzk6nK/Ds6d804i3v76gacu3uy6fglkJXerAzrT34/X/LoO8fMXR9V0GvUSJQq0LmhDCk9ecftDmc6DZaodeqoFHKvQq+lErlBaeO23sseP6TQ/xr1tPH/oiQzwhB7qzRaIZN/FtZWUnbrBlQWFjIWoIgSK1erPSm3n8/NBERsBuNbkGPUq+HJjIS1s5OcA4HHEYjTEYjTA0NgEzmFrTVvPsuGr4Y+odAodNBHRaGhV98wU/3NmzciJ5Tp4YEgeqwMKjCwqActHHqUnxysZtGfNEOUuubrLiUM3+FQKNSICFC71XZ3EmR+L+fXQEA6DFZcdPvh0/ddT6pMcGQyYA+ix29Zhv6zDa3Xb/nJ5I+n7svn8IHdmdaevDAX12595Ry2bkgUOsKAr83fQIuz07o12jD1qNnoQ9Oxt5TLV5pJYRDyGeEIIHdtddei6effhr//ve/Abj+Q6utrcUvf/lLfgcr4TtKSkpQVFTEWsaYI7V6jaVehU6HKw8dwtalS2FuaeHX1J2PNi4OUx9+eNhRrJznnkNJSQm+V1gIe08PrJ2d/Je9p8ftM0Hp6Yhob4e1owPWri5XMGi3w2EywWSxQBkQwJdt3LRp2CBwgKUHDkDdv7bkm3XrENbZCXV4uCv46x8xVPUHgsFTpkCuch+BGWnTiLm5GfsfeGDETSO+6DdS65ss8WVaF6EYPPV7If50T6FbeY7jMHjZXUp0MJ66JQ99Zht6LXbXd7MNfWZXIDgx6tzyJpPNAblMBifHwe7kYDBaYTBa+fdnDNpR3dxlxKtfHh113Z75/mxoVHTW8Fgj5DNCkMDuD3/4A2666SZERUXBZDJh4cKFaGpqwty5c/Hss88KYZIYAYfD+2kCKSG1eo2lXplMBlVQEKatW4f9Dzzg2gU7OLjrD2imrV074tSkw+Fw3Ss4GKrgYOgnDj9llf7gg0jv33UOuP4Y2Xt7Ye3shM1gcLMRtXAhVCEhboGitbMT1q4ucA4HVIN2dNkqKtAwwnnRg4PAij/8Ac3ffovu/tMAhmXQppHw2bOhi4mBTO7+R9cX/WasbFxsfkKpIca0LqNhYN3grhPNblOY5/Prm3KHBIEymQyKQTFsSIAaBekxXtnNTgrHF08sg9nmcAv+BkYCJ8Wc+13TqBQoyohFfVMrVDo9WgwmGIy2C9roMdlofZ0ACPkcEiSwCwkJwddff40dO3agrKwMvb29yM3NdTvXlfAdIyVsljJSq5cQeuOWLkXehg3DT0muXXvBPHYXq2kgsBxut23STTch6aabhlznOA6Ovj63QCvm+usReuWVQ4PA/oBxcBDYW1MzclB3HluKioB+ncrgYJfe4GA4ZDJYsrOhCXctgm/ftw99NTVQ9tdnoNzAa7laPRrXABibtqb8hNJhYN3gouwEqJRyn04ty2Qy6NRK6NRKRI2QBSMxMhBrV87CiRMnMDElFSte2OzV/V/45BAumxYPOQV3Y4qQf7/GPLBzOp1455138NFHH6GmpgYymQwpKSmIjY0Fx3EU+TPAX9c1Sq1eQumNW7oUsYsXX9TIji99KJPJoAx0T3WRvGQJwsOH7m4cjik//zkSli/H/hFOrBkCx8HW3Q1bdzcG73GUD1q4XP/JJ6h9/32Pt7iiuBgBEyYAAGr++U80ffONe/DXHzQqg4P51DJRUVGw95/tqAgIGNVz71KnmqWIP41Min1qWWrPTX9FyHYY08CO4zhce+21+OKLL5CTk4Ps7GxwHIfjx4/jzjvvxEcffYRPPvlkLE0SXlBeXu6XR8hIrV5C6pUpFIgsKBj151j7cDT2g1JTEThpEvLfegt77777guXnvP02gjMyYOvpgb272/W9pwdH9+/nd/sCQHB6OqIXLYK9p4cPAu29vbD39gIAlINGJbuPH0frtm0ebV6xdStUQUEoLy9H1O7dqHrzTcgUCj4AHDwqmPXkkwiIdyXc7Tp8GN2VlVAGBuLAAw94rpSX+QmlhD+OTMo5JxKaTiKyP1CVJ84GII5Atby8HAsWLPBq6njN8un4Xs4EGq0TACGfvWMa2L3zzjvYtm0btmzZgkWLFrm99+233+K6667DP/7xD6xatWoszRIEMU6QyWSILiqCNjYW5ubm4TeNyGTQxsYiqrAQMoUC2uhot7dPBga6jQalrF6NlNWrh9yGczhg6+11mw5OuvlmhM2c6QoA+wNFPhjs6YFqUMLRgcCQczhg6+qCravL7f6DU880btqEU8OkiBqJkpUroYuNhUKnc31ptVAEBGDSXXchoP90n+4TJ9B9/Pi5Mud9aSMjL2qqeaxo3LzZtUb0vHYcGJnM27BBcsGdFAJVllPHhPCM6ZFiS5YsweWXX47HhjviCMBvf/tbFBcXY/Nm7+b2fcF4OFKsvb0dERHSXZjsCanVS4x6WWu6WPt8QAAMu2lkpIDAF3Vub29HeHg4HCYTH/S5BYM9PZhw/fV86pfaf/8bjZs2wWowoOvQoUuyveDTTxGSlQUAOPnaa6j4wx88lp33r38hIj8fAHDmX/9CxR//yAd9yvOCwMkPPICQ/oSqhqNH0bJ9+5AyA1+BqalQh7hScjjtdoDj3HY3c04nLK2t2HbddbC0eEi9IZNBGxODK4qL3abOxcpYHPHnC4br/3TyhO8Z7XOI2ZFihw8fxu9+9zuP7y9btgwvv/zyWJokvID1H2+hkFq9xKiXtaaLtX8pm0Z8FdhFRERAGRDgSgVzgYXSSTffjKSbb4bdaMSX2dle2Uj/6U8RkJQEh8nk+jIa4TCboY05t6NSl5CAyKIi/j2+bP+XYlBOQVt3N6zt7R7tJd9+O/9z58GDqHjxRY9lZ//5z4jt3yx39rPPcOjhhyFTKvnAz2MwNxiOg7mpCQd+9jMETZoEmUqFuCVLEJyRAQAwnj2LluJiyFUqyJRKyJVKyFQq13elEsHp6dD1T3Xbe3vRV1vrXkah4H9WBARc0skrY3XEny8Yrv+LeerYXxHyOTSmgV1HRwdiYjxv046JiUFnZ+dYmiS8oLGxEenp6axljDlSq5cY9bLWdCn2L3bTiC/qfLE2RpOfMP0nP7lgXSesWIEJK1Z4ZTvp5psRfdllbkGiw2SCvT8IDExJ4cvqU1KQeOONrrJmM+wD5fu/q0LOndDgMLm2rXB2O+z9I5ajoWnTJgyE7vqkJD6w6z52DOVr13r8XPZvfoPk/iMsO8vKsHuEJUCZv/oVUu+5x1X24EHs/MEPXIGfUukeOCqVSL33XiTfdhsAoK+mBgcffXRIrsWROPHyywjPzXUF/Xo9FHo9lAEBUIeH+yTgG+ibnNMJa0cHmr/7DhXr17sF29qYGEx97DE+OFfodH6zUUcsCPkcGtPAzuFwjHhMhkKhgN1uH0uThBfI5d4nz5QSUquXGPWy1nSp9i9m04gv6nyxNsYqP+HFMHA6iDdEFRYiysvM+UkrVyL+6qv5oM/a2YkdK1d6rStu2TJoo6LgtNsROGkSf10TGYnY730PTrsdnN0Op83m+t7/s2bQaIhMoYAmOnpIOc7myuM2eKrXabPBaT2X5Pd8bIMCU1tPDzoPHPC6LgBQ/dZbqH7rrSHXU1avxrQnnwQAmFtbsW35crfATxkQ4PpZr0fkvHmYcO21Lr1WK85++um5coM/o9dDGRTkNhopl8svOMJobm7GwYce4l8vKy93S0JOXDpCPofGdI2dXC7HsmXLoPEwpG2xWLBp0yZRJZYdD2vsCIKQHsMuwo+L8yo/oZjhOA4Okwmcw+HVyOTi4mLBUp9wHOc69BXgbTgsFljb2/mAkQ8C+4NCXVwcP8VrNRjQtnMn7EYjyh591CubITk5UKjVrlHOvj7YjUbY+/ow6c47kbFmDQCgt7oa342Q9zX5jjuQ3X/Gs6WtDV/NmeOx7IQbbsDM/mlzh9mM4quvhiIgAN3HjnmlF6DATgwwW2O3epidZedDO2J9z86dOzFv3jzWMsYcqdVLjHpZa2Jh3xc2x8LGpeQnFDMymYwPEliMTJ6vBefdX6HR8IHbhVCHhCB+2TJwHIe4JUu8ClTn/+c/F6yTLj4eCz77bEjwN/DzwOaYAaIXLnSVMRrh6O0993Nfn1tqH3tvL/pqaryq2wD5f/2r21pMYmwQ8jk0poHd22+/PZa3I8YIm+3Cx8ZIEanVS4x6WWtiYd8XNsfKxsXmJ5QKl3pyilgY6yl0hUaDkMxMr2xrIiMxZ5ipXcC1qYMbNEOmDApCwGOPIXPiRK8Tfe+9915cc/IkXwdibBDyOST+PeTEJRN9Xh4vf0Fq9RKjXtaaWNj3hU3WfpUS/jQyKbZAVSaXux3hp9BoEF9UhCgPZ0ITvkPIZ8SYrrGTIuNhjZ3BYEDIoF1q/oLU6iVGvaw1sbDvC5us/UqwRcxHpA38rbP39l5w6lgTE4PF/SlliLFltM+I0cQq4tumR4w5hy4x4alYkVq9xKiXtSYW9n1hk7VfCbYMTKEnXHstIgsKRBPUAa6+OXjqGMDQaVaZDJDJkL1uHQV1AiHkM4ICO4IgCIIYhwxMHWvPyz+rjY2V5HFuhAtaYzcOyPRyEa7UkFq9xKiXtSYW9n1hk7VfCcIT5/dNf1rjKCWEfEbQiN04oLu7m7UEQZBavcSol7UmFvZ9YZO1XwnCE8P1TTFPHfsrQj4jKLAbB9TX17OWIAhSq5cY9bLWxMK+L2yy9itBeIL6pjgQsh0osCMIgiAIgvATKN3JOEh3wnGcXx7gLLV6iVEva00s7PvCJmu/EoQnqG+Kg9G2g1+kO3nuuecwe/ZsBAUFITo6Gtdddx1OnDjhVsZsNuOBBx5AREQEAgMDceONN6K5uZmRYvGyd+9e1hIEQWr1EqNe1ppY2PeFTdZ+JQhPUN8UB0K2g2gDu+LiYjzwwAPYvXs3vv76a9hsNixZsgR9fX18mYceegifffYZ/vOf/6C4uBgNDQ244YYbGKoWJ2azmbUEQZBavcSol7UmFvZ9YZO1XwnCE9Q3xYGQ7SDadCebNm1ye/3OO+8gOjoaBw4cwIIFC2AwGPC3v/0N7733Hi6//HIArrNqp06dit27d6PAj89XHC0RERGsJQiC1OolRr2sNbGw7wubrP1KEJ6gvikOhGwH0Y7YnY/BYAAAhIeHAwAOHDgAm82GxYsX82UyMjKQlJSEXbt2ebyPxWJBd3e325e/M9FPzwWUWr3EqJe1Jhb2fWGTtV8JwhPUN8WBkO0g2hG7wTidTvz85z9HYWEhpk2bBgBoamqCWq1GaGioW9mYmBg0DTp8+Xyee+45PPXUU0Oul5SUQK/XY968eSgrK0NfXx9CQ0ORnp7Oz4WnpaXB6XTi9OnTAICCggIcO3YM3d3dCAoKQlZWFnbv3g0ASElJgUKhwKlTpwAAs2fPxqlTp9DZ2YmAgADMnDkTO3bsAAAkJSVBp9Pxawhzc3Nx5swZtLe3Q6vVIj8/H9u2bQMATJgwAcHBwTh27BgAYMaMGWhoaEBLSwtUKhXmzZuH7du3w+l0Ii4uDhEREfj888+RnJyM7OxstLa2oqmpCQqFAkVFRdixYwfsdjuio6MRFxeHsrIyAK7kiQaDAWfPngUALFy4ELt374bFYkFkZCSSkpJQWloKwBVQG41G1NbWAgCKiopQWloKo9GIsLAwpKamYv/+/QCAyZMnw2azoaamBgAwd+5clJeXo7e3FyEhIcjIyMCePXsAAKmpqQCAqqoqAMCcOXNQUVEBg8GAwMBAGAwGKPrzLSUnJ0OlUuHkyZMAgLy8PFRVVfH+zs3NRUlJCe/vgIAAVFRU8P6ura1FW1sbNBoNCgoKUFxcDABISEhASEgI7++cnBw0NjaipaUFSqUShYWFKCkpgcPhQGxsLKKiolBeXg4AmDZtGtrb29HY2Ai5XA6n0wmVSgWbzYbo6GjEx8fzx8pkZmaiu7ub3wK/YMEC7N27F2azGREREZg4cSLv7ylTpsBkMvH+LiwsxMGDB3l/p6WlYd++fXyfdTgcqK6u5vvs0aNH0dPTg+DgYHR0dECpdD0GJk2aBLlczvfZ/Px8VFZWoqurC3q9Hjk5Odi5cyfvb7VajcrKSt7f1dXVaG9vh06nQ15eHrZv3w4ASExMRGBgII4fPw4AmDlzJurr69Ha2oq6ujrcfvvt2LZtGziOQ3x8PMLCwnD06FEAwPTp09Hc3Izm5ma+zw74OyYmBjExMTh8+DAA4P+3d7cxTZ19GMCvwmh5UdGJUJmgDgaDZYJDbch0kQUDfiBhGrdEImKURCMuGQrBbJm6D3PGbHNGRfeGy6aTGScxuuGWOuIbhhfn5lARiQLJLM6hqIAF2z4fjH2ePtgBjnPu+5xev2TJw+H0/K/7Zd3/aU/LCy+8gFu3buHPP/+EwWDAK6+8gurqavT29mLcuHGYMGECfv31V1y7dg1z587FvXv30NbWBgCYNWsW6urq0NPTg7Fjx2Ly5MnuPRsXF4fe3l73nh3Mc8SxY8cwadIkzTxH/PHHHwCgu+eIF1980f1/9LXwHDFr1iycPn1a0ecIm82GrKysQT9HJCYmuvesiOcIo9GI1NRUVZ8jACAhIUGq54j/vQ1tQC4NWL58uWvixImutrY297E9e/a4jEZjv3OnT5/uKi4u9nqt+/fvuzo7O93/tLW1uQC4Ojs7Fckug6qqKtERFKG1ccmYV3QmEfXVqCl6Xom84d6Uw1DXobOzc9C9ivSv2BUUFODw4cM4fvw4JkyY4D5uNpvR29uL27dve7xq197eDrPZ7PV6JpMJJpNJycjSiY+PFx1BEVobl4x5RWcSUV+NmqLnlcgb7k05KLkO0t5j53K5UFBQgIMHD+LYsWOYPHmyx+9TUlIQEBAAq9XqPtbY2IjW1lakpqaqHVdqPT09oiMoQmvjkjGv6Ewi6qtRU/S8EnnDvSkHJddB2sZu5cqV+Oabb7B3716MHDkSNpsNNpvNPRmhoaFYunQpCgsL8csvv6C+vh5LlixBamoqPxH7fx7dZ6E3WhuXjHlFZxJRX42aoueVyBvuTTkouQ7SvhVbWloKAJg9e7bH8bKyMuTl5QEAPv74Y/j5+WH+/Pmw2+3IyMjAjh07VE5KREREJAf+STEf+JNiDx48cH/yUU+0Ni4Z84rOJKK+GjVFzyuRN9ybchjqOujiT4rR8Hn08W290dq4ZMwrOpOI+mrUFD2vRN5wb8pByXVgY+cDuru7RUdQhNbGJWNe0ZlE1Fejpuh5JfKGe1MOSq4DGzsfMGbMGNERFKG1ccmYV3QmEfXVqCl6Xom84d6Ug5LrwHvsfOAeu+7ubgQHB4uOMey0Ni4Z84rOJKK+GjVFzyuRN9ybchjqOvAeO/Lw6E/H6I3WxiVjXtGZRNRXo6boeSXyhntTDkquAxs7IiIiIp1gY+cDYmNjRUdQhNbGJWNe0ZlE1Fejpuh5JfKGe1MOSq4DGzsf4HA4REdQhNbGJWNe0ZlE1Fejpuh5JfKGe1MOSq4DGzsfcPXqVdERFKG1ccmYV3QmEfXVqCl6Xom84d6Ug5LrwMaOiIiISCf4dSc+8HUndrsdJpNJdIxhp7VxyZhXdCYR9dWoKXpeibzh3pTDUNeBX3dCHhoaGkRHUITWxiVjXtGZRNRXo6boeSXyhntTDkquAxs7H3D37l3RERShtXHJmFd0JhH11agpel6JvOHelIOS68DGzgfo9S1mrY1LxryiM4mor0ZN0fNK5A33phyUXAfeY8d77DRLa+OSMa/oTLzHjkhd3Jty4D129K+cOXNGdARFaG1cMuYVnUlEfTVqip5XIm+4N+Wg5DqwsSMiIiLSCTZ2PuDZZ58VHUERWhuXjHlFZxJRX42aoueVyBvuTTkouQ5s7HyAn58+l1lr45Ixr+hMIuqrUVP0vBJ5w70pByXXgSvsA65cuSI6giK0Ni4Z84rOJKK+GjVFzyuRN9ybclByHdjYEREREekEv+7EB77upKenB0FBQaJjDDutjUvGvKIziaivRk3R80rkDfemHIa6Dvy6E/Jw+fJl0REUobVxyZhXdCYR9dWoKXpeibzh3pSDkuvAxs4H3L59W3QERWhtXDLmFZ1JRH01aoqeVyJvuDfloOQ66KKx2759OyZNmoTAwEBYLBbU1NSIjiSVkJAQ0REUobVxyZhXdCYR9dWoKXpeibzh3pSDkuug+XvsysvLkZubi507d8JisWDLli3Yv38/GhsbER4ePuDjfeEeu76+PgQEBIiOMey0Ni4Z84rOJKK+GjVFzyuRN9ybchjqOvjUPXYfffQR8vPzsWTJEiQmJmLnzp0IDg7Gl19+KTqaNE6fPi06giK0Ni4Z84rOJKK+GjVFzyuRN9ybclByHZ5S7Moq6O3tRX19PdauXes+5ufnh/T0dFRXVz/2MXa7HXa73f1zZ2cngIfdsF51dXXpcnxaG5eMeUVnElFfjZqi55XIG+5NOQx1HR6dO5g3WTXd2N28eRMOhwMREREexyMiInDp0qXHPmbjxo3YsGFDv+NRUVGKZCQiIiIaDnfv3kVoaOg/nqPpxu5JrF27FoWFhe6fnU4nOjo6MHbsWBgMBoHJlDN9+nTU1taKjjHstDYuGfOKziSivtI179y5g6ioKLS1ten2vl3SLtH/ztNDQ10Hl8uFu3fvIjIycsBzNd3YhYWFwd/fH+3t7R7H29vbYTabH/sYk8kEk8nkcWz06NFKRZSCv7+/Lv8Do7VxyZhXdCYR9dWqOWrUKOnWm0j0v/P00JOsw0Cv1D2i6Q9PGI1GpKSkwGq1uo85nU5YrVakpqYKTCaXlStXio6gCK2NS8a8ojOJqC96zEQicf/LQcl10MXXnSxevBi7du3CjBkzsGXLFnz33Xe4dOlSv3vviIiU5gtfoURE8tL0W7EA8MYbb+Cvv/7Cu+++C5vNhuTkZFRWVrKpIyIhTCYT1q1b1++WDyIiNWj+FTsiIiIiekjT99gRERER0X+xsSMiIiLSCTZ2RERERDrBxo6IiIhIJ9jYEREREekEGzsiIpW0tbVh9uzZSExMxJQpU7B//37RkYhIZ/h1J0REKrl+/Tra29uRnJwMm82GlJQUXL58GSEhIaKjEZFOaP4LiomItGL8+PEYP348AMBsNiMsLAwdHR1s7Iho2PCtWCKiQTp+/DiysrIQGRkJg8GAioqKfuds374dkyZNQmBgICwWC2pqah57rfr6ejgcDkRFRSmcmoh8CRs7IqJB6urqQlJSErZv3/7Y35eXl6OwsBDr1q3D2bNnkZSUhIyMDNy4ccPjvI6ODuTm5uLTTz9VIzYR+RDeY0dE9AQMBgMOHjyI7Oxs9zGLxYLp06dj27ZtAACn04moqCisWrUKJSUlAAC73Y45c+YgPz8fixYtEhGdiHSMr9gREQ2D3t5e1NfXIz093X3Mz88P6enpqK6uBgC4XC7k5eXh1VdfZVNHRIpgY0dENAxu3rwJh8OBiIgIj+MRERGw2WwAgFOnTqG8vBwVFRVITk5GcnIyzp8/LyIuEekUPxVLRKSSmTNnwul0io5BRDrGV+yIiIZBWFgY/P390d7e7nG8vb0dZrNZUCoi8jVs7IiIhoHRaERKSgqsVqv7mNPphNVqRWpqqsBkRORL+FYsEdEg3bt3D1euXHH/fPXqVZw7dw5PP/00oqOjUVhYiMWLF2PatGmYMWMGtmzZgq6uLixZskRgaiLyJfy6EyKiQaqqqkJaWlq/44sXL8bu3bsBANu2bcPmzZths9mQnJyMrVu3wmKxqJyUiHwVGzsiIiIineA9dkREREQ6wcaOiIiISCfY2BERERHpBBs7IiIiIp1gY0dERESkE2zsiIiIiHSCjR0RERGRTrCxIyIiItIJNnZEREREOsHGjohokPLy8pCdnf2vrlFVVQWDwYDbt2//43lWqxUJCQlwOBwDXrOyshLJyclwOp3/KhsRaR8bOyLSnby8PBgMBhgMBhiNRsTGxuK9997DgwcP/tV1P/nkE/ffhFVacXEx3nnnHfj7+w94bmZmJgICArBnzx4VkhGRzNjYEZEuZWZm4vr162hqasLq1auxfv16bN68+Ymu5XA44HQ6ERoaitGjRw9v0Mc4efIkmpubMX/+/EE/Ji8vD1u3blUwFRFpARs7ItIlk8kEs9mMiRMnYsWKFUhPT8ehQ4cAAHa7HWvWrMEzzzyDkJAQWCwWVFVVuR+7e/dujB49GocOHUJiYiJMJhNaW1v7vRVrt9vx5ptvIjw8HIGBgZg5cyZqa2s9cvzwww+Ii4tDUFAQ0tLScO3atQGz79u3D3PmzEFgYKD72G+//Ya0tDSMHDkSo0aNQkpKCurq6ty/z8rKQl1dHZqbm59swohIF9jYEZFPCAoKQm9vLwCgoKAA1dXV2LdvH37//XcsWLAAmZmZaGpqcp/f3d2NTZs24fPPP0dDQwPCw8P7XbO4uBgHDhzAV199hbNnzyI2NhYZGRno6OgAALS1tWHevHnIysrCuXPnsGzZMpSUlAyY9cSJE5g2bZrHsZycHEyYMAG1tbWor69HSUkJAgIC3L+Pjo5GREQETpw48UTzQ0T68JToAERESnK5XLBarTh69ChWrVqF1tZWlJWVobW1FZGRkQCANWvWoLKyEmVlZXj//fcBAH19fdixYweSkpIee92uri6UlpZi9+7dmDt3LgDgs88+w88//4wvvvgCRUVFKC0tRUxMDD788EMAQHx8PM6fP49Nmzb9Y+aWlhZ3tkdaW1tRVFSE559/HgDw3HPP9XtcZGQkWlpahjA7RKQ3bOyISJcOHz6MESNGoK+vD06nEwsXLsT69etRVVUFh8OBuLg4j/PtdjvGjh3r/tloNGLKlCler9/c3Iy+vj68/PLL7mMBAQGYMWMGLl68CAC4ePEiLBaLx+NSU1MHzN7T0+PxNiwAFBYWYtmyZfj666+Rnp6OBQsWICYmxuOcoKAgdHd3D3h9ItIvNnZEpEtpaWkoLS2F0WhEZGQknnrq4dPdvXv34O/vj/r6+n6fOB0xYoT7fwcFBcFgMKia+ZGwsDDcunXL49j69euxcOFCHDlyBD/++CPWrVuHffv24bXXXnOf09HRgXHjxqkdl4gkwnvsiEiXQkJCEBsbi+joaHdTBwBTp06Fw+HAjRs3EBsb6/GP2Wwe9PVjYmJgNBpx6tQp97G+vj7U1tYiMTERAJCQkICamhqPx505c2bAa0+dOhUXLlzodzwuLg5vvfUWfvrpJ8ybNw9lZWXu392/fx/Nzc2YOnXqoMdARPrDxo6IfEpcXBxycnKQm5uL77//HlevXkVNTQ02btyII0eODPo6ISEhWLFiBYqKilBZWYkLFy4gPz8f3d3dWLp0KQBg+fLlaGpqQlFRERobG7F3795BfQ9eRkYGTp486f65p6cHBQUFqKqqQktLC06dOoXa2lokJCS4zzlz5gxMJtOg3uolIv1iY0dEPqesrAy5ublYvXo14uPjkZ2djdraWkRHRw/pOh988AHmz5+PRYsW4aWXXsKVK1dw9OhRjBkzBsDDT6oeOHAAFRUVSEpKws6dO90fzvgnOTk5aGhoQGNjIwDA398ff//9N3JzcxEXF4fXX38dc+fOxYYNG9yP+fbbb5GTk4Pg4OAhjYGI9MXgcrlcokMQEZGnoqIi3LlzB7t27Rrw3Js3byI+Ph51dXWYPHmyCumISFZ8xY6ISEJvv/02Jk6cOKi//3rt2jXs2LGDTR0R8RU7IiIiIr3gK3ZEREREOsHGjoiIiEgn2NgRERER6QQbOyIiIiKdYGNHREREpBNs7IiIiIh0go0dERERkU6wsSMiIiLSCTZ2RERERDrxH01ybVg/ELV0AAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -2883,23 +2926,37 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m24:09:03T20:09:35 | INFO | line:124 |aurora.pipelines.transfer_function_kernel | update_dataset_df | DECIMATION LEVEL 2\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:35 | INFO | line:143 |aurora.pipelines.transfer_function_kernel | update_dataset_df | Dataset Dataframe Updated for decimation level 2 Successfully\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:35 | INFO | line:354 |aurora.pipelines.process_mth5 | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:36 | INFO | line:354 |aurora.pipelines.process_mth5 | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:36 | INFO | line:354 |aurora.pipelines.process_mth5 | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:37 | INFO | line:354 |aurora.pipelines.process_mth5 | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:37 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 411.663489s (0.002429Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:37 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 342.524727s (0.002919Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:37 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 275.526776s (0.003629Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:37 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 216.783308s (0.004613Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:37 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 172.015831s (0.005813Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:37 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 133.242890s (0.007505Hz)\u001b[0m\n"
+ "\u001b[1m2026-01-18T11:08:27.099027-0800 | INFO | aurora.pipelines.transfer_function_kernel | update_dataset_df | line: 137 | DECIMATION LEVEL 2\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:27.211266-0800 | INFO | aurora.pipelines.transfer_function_kernel | update_dataset_df | line: 156 | Dataset Dataframe Updated for decimation level 2 Successfully\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:28.840191-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:30.529324-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:32.287750-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:33.879941-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:33.886130-0800 | INFO | aurora.pipelines.feature_weights | extract_features | line: 43 | Features could not be accessed from MTH5 -- \n",
+ "Calculating features on the fly (development only)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:33.895857-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 823.326978s (0.001215Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:33.952461-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 685.049455s (0.001460Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:34.006948-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 551.053553s (0.001815Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:34.062928-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 433.566617s (0.002306Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:34.118533-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 344.031663s (0.002907Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:34.175711-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 266.485780s (0.003753Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:34.233901-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 823.326978s (0.001215Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:34.284600-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 685.049455s (0.001460Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:34.336117-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 551.053553s (0.001815Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:34.387346-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 433.566617s (0.002306Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:34.439029-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 344.031663s (0.002907Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:34.491238-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 266.485780s (0.003753Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:34.545582-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 823.326978s (0.001215Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:34.596150-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 685.049455s (0.001460Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:34.648027-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 551.053553s (0.001815Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:34.701438-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 433.566617s (0.002306Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:34.754631-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 344.031663s (0.002907Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:34.809684-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 266.485780s (0.003753Hz)\u001b[0m\n"
]
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAG9CAYAAAAfotIVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLIUlEQVR4nO3de3yMd97/8fcYchASIpUECaqq4hQV1JYWmzqsVh174K7owf3bFqVRXdrdTVvdtfSwqlJ6Ij1Rbam2WsqmlFolog6lFA1SJEpIKoiYuX5/5M50RhKZMJOZSV7Px2Mecp2+388M5vrke7pMhmEYAgAAgCSphqcDAAAA8CYkRwAAAHZIjgAAAOyQHAEAANghOQIAALBDcgQAAGCH5AgAAMAOyREAAIAdkiMAAAA7JEcAAAB2SI4AAADs+HxylJmZqZ49eyomJkbt27fXRx995OmQUMmys7M1bdo03XrrrQoPD5efn5+CgoLUpk0bPfjgg1qxYoXKeoTgCy+8IJPJ5PBavnz5Zev75ZdfNHHiRLVp00ZBQUHy9/dXRESE2rVrp7vvvlvTp0/XqVOnSlxnsVj02muvqXv37qpfv74CAwPVsmVLTZgwQceOHSv3fV68eFGdOnVyiHX06NFOfUYAgAowfNzRo0eN77//3jAMwzh27JjRqFEj48yZM54NCpUmOTnZCAgIMCRd9pWRkVHq9W3atClx7tChQ8usLz093QgJCSm3vuJ/k8XOnTtn9OnTp8zzQ0NDjbS0tMu+12effbbEdQkJCRX8xAAA5alZGQmYO0VGRioyMlKSFBERobCwMOXk5CgoKMjDkcHdZs6cqb/85S+2bbPZrAEDBthaV/bv36+vvvpK2dnZpV6flpamXbt2ldj/+eefKycnR6GhoSWOPfLII8rNzZUkBQUF6e6779a1116rwsJC7du3T+vXr1dmZmaJ65566imtWrXKFucDDzygyMhIpaSk6PDhw8rJydHw4cP1ww8/lPpvd8eOHZo2bZpzHwwA4Op4Ojv75ptvjNtvv92IjIw0JBmffPJJiXPmzJljNG3a1PD39ze6dOlibNq0qdSytmzZYrRp08bNEfuOVatWGUOHDjWioqIMPz8/o3bt2kbXrl2N+fPnG1ar9YrKXLNmjfHAAw8YHTt2NCIiIgw/Pz8jMDDQaNGihTF69Ghjx44dFSpvwYIFTrXwXGrXrl2G2Wy2XdewYUNj69atJc67cOGC8frrrxvZ2dkljj3yyCO266Ojox1aoF555ZUS5+fm5jrEmpKSUmpsmzdvNn799Vfb9smTJw1/f3/bdU8++aTt2J49ewyTyWQ79uqrr5b6HmJjYw1JRlxcnNG4cWNajgDAjTyeHH355ZfGU089ZSxdurTU5OiDDz4w/Pz8jPnz5xu7du0yxowZY9SrV6/Eze7kyZNGTEyMsWHDhkqM3jtdvHjR4cZf2uvuu+++ogRp0qRJly3Xz8/PWL16tdPlXWly9Oc//9nhuiVLllTofZw/f96oX7++Q8IyePBg2/aNN95Y4pqTJ0861Pn4448bFy9eLLeuRYsWOVyXnp7ucLxdu3a2Y/369StxfVJSkiHJ8Pf3N3bt2mU0bdqU5AgA3Mjj3Wr9+/dX//79yzz+0ksvacyYMbr//vslSfPmzdMXX3yh+fPna8qUKZKkgoICDRo0SFOmTNEf/vCHy9ZXUFCggoIC27bValVOTo4aNGggk8nkgnfkec8995xeffVVSZLJZNJdd92lqKgoffbZZ/rpp58kSYsXL9ZNN92kBx54oEJl16xZU927d1dMTIzq16+vgIAA5eTkaNWqVdq7d68uXLigcePGafPmzU6Vd+7cOYft3377TXl5eeVet3r1atvP9erVU+/evZ26rtjSpUsdBk3ffvvtatmypT755BNJ0tatW7Vx40a1adPGdk7NmjUVHR2tw4cPSyoazD1//nzddNNNat++vTp37qwePXrI39/foa60tDSH7bCwMIdYo6OjtXPnTknS9u3bHY7t2LFD//znPyVJTz75pJo0aeIwuLywsLBC7xsAqgrDMPTbb7+pUaNGqlHDxfPLPJ2d2dMlLUcFBQWG2Wwu0Zo0atQoY+DAgYZhGIbVajXuueceIykpyak6in8L58WLFy9evHj5/iszM9NFWcjvPN5ydDknTpyQxWJReHi4w/7w8HDt2bNHkrRhwwYtXrxY7du317JlyyRJ7777rtq1a1dqmVOnTlViYqJtOzc3V9HR0crMzFRwcLB73kglWrdune644w7b9g8//KCoqCjb9tixY/Xee+9Jkvz9/XX8+PEKlf/111/r0UcfLXXQsb3Vq1erS5cuFSq7IiIjI3X27FlJUlxcnFJTU52+NisrSzExMbJYLJKkv/71r5o8ebIk6aGHHrItB3HNNddoz549qlnT8b/J+vXrNXPmTH377beyWq2l1jFlyhRNnTpVkjRx4kQtWLDAdiwnJ0dms9m2PWbMGH344YeSHP9O/vGPf2jmzJkKDAzU+vXr1bJlS0lSu3btbK1XI0aM0Ny5c51+7wBQVeTl5SkqKkp169Z1edlenRw5o3v37mXeoErj7+9fottDkoKDg6tEcnRpF8t1113n8H6bNGli+7mgoKDMz6M0R48e1ciRI21JyeXUrFnTrZ9n48aNtW/fPknSgQMHVLduXae7RefOnWtLjCQpISHBFuuoUaNsydGvv/6qb7/9VgMHDnS4fsCAARowYIByc3O1ceNGbdq0ScuXL9eWLVts57z66quaPn26JNlmUxYzmUwOn8358+dtP4eFhSk4OFiHDx/WSy+9JKmom7RTp04O1xerVatWlfh3CwBXyh1DYrx6EciwsDCZzeYSU7Gzs7MVERFxVWUnJycrJiZGnTt3vqpyvM2FCxccti9tGbL/LAMCApxOjKSiKe72idGLL76o06dPyzCMUqfEu9Mf//hH28+nTp3Sp59+6vS1b7/9tsN2y5YtbYsq2re6SVJKSkqZ5YSEhKhfv35KSkpSWlqaw/itvLw822fdvn17h+t+/vlnh+0DBw7Yfi5u8czJydHFixclSZMmTXJY+PHQoUMO74XFIAHAtbw6OfLz81OnTp0cukysVqtSU1PVrVu3qyp77Nix2r17d4nBslXNu+++a/s5Ly9Pn3/+uW3bvjXCGSdPnnTYvv/++xUSEiJJtm6hikpJSXG48R88eNCp68aNG+fQNfXwww9r+/btJc4rLCzUm2++aUsSN23apB9//NHp+JYvX64TJ07YthMSEpSenl7quXXq1LH9XKNGDVtTb58+fRQQEGA7tmTJEtvPu3fv1u7du23bd955p9OxAQDcw+PdamfOnNH+/ftt2xkZGdq2bZtCQ0MVHR2txMREJSQkKC4uTl26dNGsWbOUn59vm72Gy/vrX/+qPXv2qGnTpvr4448dbvRjxoypUFmtWrVy2B4wYID69++vHTt26OOPP3ZJvM5q06aNpk2bpieffFJS0TiiuLg43X777erYsWOJRSDj4+MlyWHsj8lk0vDhw0s0yZ45c0ZffPGFpKLk6v3339eECRMkSe+8847eeecdtWjRQt27d9e1114rk8mk7du3a+nSpbYybrnlFtWuXVuSVL9+fY0dO1YvvviiJGnGjBk6ceKEIiMjNX/+fNvss6ZNm+q+++6TVDQDb+jQoaW+9xUrVtha8Jo2baq4uLgq1wIKAB7l8iHeFbRmzZpSR5/br9/yyiuvGNHR0Yafn5/RpUsX47vvvnNZ/cUL++Xm5rqsTE+6dN2gAQMGlPr5DhgwoMLrHF24cMFhTZ5L/77st9esWXNF8Tq7zlGxl19+2WGBxbJeGRkZxrlz54x69erZ9sXHx5daptVqdVhLKDY21nasvHqkokeB7Ny506HMc+fOGbfddluZ19SvX7/cx4cUY50jAHDv/dvj3Wo9e/aUUbQYpcPLfqzHuHHjdOjQIRUUFGjTpk3q2rWr5wL2MUuXLtWzzz6rFi1ayM/PT82aNVNSUpKWLFlS4UFstWrV0tdff63Ro0erQYMG8vf3V9u2bfX666/r6aefds8bKMejjz6qjIwMPf300+revbuuueYa1axZU7Vr11br1q318MMPa+3atWratKmWLVum06dP264ta40nk8mkhIQE2/a2bdtsXXZbt27V888/rwEDBqh169Zq0KCBzGaz6tatq44dO+qJJ57Qrl271LZtW4cyAwICtGLFCs2dO1fdunVTcHCw/P391aJFC40fP14//PCD4uLiXP8BAQAqzGQYZTyuvIpLTk5WcnKyLBaLfvrpJ+Xm5laJWT8pKSkOXY7V9K8XAFDF5eXlKSQkxC33b4+3HHlKdRmQDQAAKqbaJkcAAACl8fhsNXjWkSNHHNYMKsvgwYNtixoCAFCVkRxVMaNHj67QgoCFhYXau3dvuecdO3bsKqICAMB3VNvkyH5AdnXWrFkzBm0DAGCn2s5WK+bO0e4AAMA9mK0GAABQSUiOAAAA7JAcAQAA2Km2yVFycrJiYmJ4YCcAAHDAgGwGZAMA4HMYkA0AAFBJSI4AAADskBwBAADYITkCAACwQ3IEAABgp9omR0zlBwAApWEqP1P5AQDwOUzlBwAAqCQkRwAAAHZIjgAAAOyQHAEAANghOQIAALBDcgQAAGCn2iZHrHMEAABKwzpHrHMEAIDPYZ0jAACASkJyBAAAYKempwMAAFQTFou0fr107JgUGSn16CGZzZ6OCiiB5AgA4H5Ll0oTJki//PL7viZNpJdfloYM8VxcQCnoVgMAuI/VKi1YIA0b5pgYSdKRI0X7lyzxTGxAGWg5AoDqpDK7tqzWy5ddPFl64kRp0CC62OA1aDkCgOpi6VKpWTOpVy9pxIiiP5s1K9rvDvn5zp33yy9FCRvgJUiOAKCqc6Zra+HC31tyXKVGBW4xx465tm7gKlTb5IgVsgFUC8VdWw88UHryYxhFr5Ejpd9+c23dtWtLX37p3LmRka6tG7gKrJDNCtkA3MnT09fLG/dj78svpf79XVu/xVLUdXfkSOnJmclUNGstI4MxR6gQVsgGAF9U2WN8SnPunPPn5uS4vn6zuWi6vlSUCNkr3p41i8QIXoXkCADcYenSy4/xqcwEyVnu6toaMkT6+GOpcWPH/U2aFO1nnSN4GbrV6FYD4GqFhVLTpmUPMjaZihKFjAyppptXVDGMorFEMTHS0aOe7drydBcjqhR33r9Z5wgAXMlqlfz8Ln+OYRS1KK1e7foxPpcymaTgYGn27KIWK5PJMUGqzK4ts1nq2dO9dQAuQLcaAN9msUhr10qLFhX9abF4Nh5n1/aRKnf6Ol1bgNNoOQLgu7zxeV0VWdunWTO3hVGqIUOkO++kawsoB2OOGHME+KaPP5buuqvkGJribqL33pPuvbfkDCl386YxPkAVxlR+ALBXWCgNH175ixo6w36MT/H2pcclpq8DXozkCIDvcfY5XBs2uDeOy2GMD+CzGHMEwDneNA370CHnznPHooYVwRgfwCeRHAEon7cNfI6IcO48b3heF9PXAZ9DtxqAsnnqae7lue22ou6qsgZbm0xSVJR0662VGxeAKoHkCPA0b1unp5gnn+Zenpo1GfAMwG2qbXKUnJysmJgYde7c2dOhoDrzhgeTlqUiixl++6374igLA54BuAnrHLHOETyl+MGkZa3T4+kbfH6+VKeOc+e+915RC5IneNNAcQCVhmerAVVNYaE0blzZ3VUmkzRxYtFMJ0/d6GvXlr78UvrTn8o/99LWm8rEgGcALlZtu9UAjyl+MOnlnqtlGFJmpvPr+biDyST16VPUTVXewOcePSo3NgBwI5IjoLJ564NJS2M2F03Xlxj4DKDaIDkCKltFHkzqDev0MPAZQDXDgGwGZKOy+eqDSRn4DMCLMCAbqErsH0w6bFjRtn2C5K3dVQx8BlBN0K0GeArdVQDglWg5AjyJB5MCgNchOQI8je4qAPAqdKsBAADYITkCAACwc0XdaufPn9eOHTt0/PhxWa1Wh2MDBw50SWAAAACeUOHkaOXKlRo1apROnDhR4pjJZJLFYnFJYAAAAJ5Q4W618ePHa/jw4Tp27JisVqvDi8QIAAD4ugonR9nZ2UpMTFR4eLg74gEAAPCoCidHw4YN09q1a90QCgAAgOdV+NlqZ8+e1fDhw3XNNdeoXbt2qlWrlsPxRx991KUBuhvPVgMAwPd41bPVFi1apFWrVikgIEBr166Vqfg5UCoakO1ryREAAIC9CnerPfXUU3rmmWeUm5urgwcPKiMjw/b6+eef3RFjuQYPHqz69etr2LBhHqkfAABUHRVOji5cuKC7775bNWp4z/qREyZM0DvvvOPpMAAAQBVQ4QwnISFBixcvdkcsV6xnz56qW7eup8MAAABVQIXHHFksFs2cOVNfffWV2rdvX2JA9ksvvVSh8tatW6fnn39e6enpOnbsmD755BMNGjTI4Zzk5GQ9//zzysrKUocOHfTKK6+oS5cuFQ0dAACgXBVOjnbu3KmOHTtKkn744QeHY/aDs52Vn5+vDh066IEHHtCQIUNKHF+8eLESExM1b948de3aVbNmzVLfvn21d+9eNWzYsML1AQAAXE6Fk6M1a9a4NID+/furf//+ZR5/6aWXNGbMGN1///2SpHnz5umLL77Q/PnzNWXKlArXV1BQoIKCAtt2Xl5exYMGAABV1lWNqt6wYYNDouFqFy5cUHp6uuLj4237atSoofj4eG3cuPGKypw+fbpCQkJsr6ioKFeFCwAAqoCrSo769++vI0eOuCqWEk6cOCGLxVLiUSXh4eHKysqybcfHx2v48OH68ssv1aRJk8smTlOnTlVubq7tlZmZ6bb4AQCA76lwt5q9Ci6u7Tb/+c9/nD7X399f/v7+bowGAAD4Mu9ZrKgUYWFhMpvNys7OdtifnZ2tiIiIqyo7OTlZMTEx6ty581WVAwAAqparSo5ee+01W5eX1WrV4cOHXRJUMT8/P3Xq1Empqam2fVarVampqerWrdtVlT127Fjt3r1baWlpVxsmAACoQircrbZgwQItXrxYhw4dUnBwsLZu3arHHntMNWvWVPPmzWWxWCpU3pkzZ7R//37bdkZGhrZt26bQ0FBFR0crMTFRCQkJiouLU5cuXTRr1izl5+fbZq8BAAC4ktPJkcVi0ZAhQ7Ry5UoNGDBAAwcO1KlTp/TRRx/p9ddf1yuvvHJFAWzZskW9evWybScmJkoqWok7JSVFd999t3799Vf9/e9/V1ZWlmJjY7Vy5coSg7QBAABcwWQ4Oar6hRde0EsvvaQ1a9aoVatWtv1Wq1UvvfSSnnrqKV28eLHCLUeelpeXp5CQEOXm5io4ONjT4QAAACe48/7t9JijlJQUzZw50yExkorWHXr88cf13HPPec3sNWcwIBsAAJTG6ZajwMBA7dixQy1btnR3TJWKliMAAHyPV7QcBQUF6ddffy3z+LZt2/TAAw+4JCgAAABPcTo5uvXWWzVv3rxSj2VlZemee+7R22+/7bLAAAAAPMHp5CgpKUlLlixRQkKCfvjhB50/f15Hjx7Va6+9ps6dOyssLMydcQIAAFQKp5Oj9u3ba8WKFdqwYYM6dOigoKAgRUVF6dFHH9W9996rRYsWMSAbAAD4PKcHZBezWq3avHmzMjIyFBwcrG7duik0NFT5+fl64YUXlJSU5K5Y3YIB2QAA+B533r8rnBxVNSRHAAD4Hq+YrQYAAFAdkBwBAADYqbbJEQOyAQBAaRhzxJgjAAB8jjvv3zVdWhoAAGWwWKT166Vjx6TISKlHD8ls9nRUQEkkRwAAt1u6VJowQfrll9/3NWkivfyyNGSI5+ICSlNtxxwBQHVksUhr10qLFhX9abG4tz6rVVqwQBo2zDExkqQjR4r2L1ni3hiAiqLlCACqicpuvbFaL99tVjzideJEadAgutjgPWg5AoAqzpnWm4ULf09WKtsvvxSNRQK8RbVtOUpOTlZycrIs7m5TBgAPcrb1ZuRI6fbbJVdO+jl3zvlzjx1zXb3A1aq2LUdjx47V7t27lZaW5ulQAMArbNjgubojIz1XN3CpattyBACVwdPT1yvSepOT49q6a9eWcnOlmBjp6NHSu+1MpqJxTz16uLZu4GpU25YjAHC3pUulZs2kXr2kESOK/mzWrGi/N3J1643JVNRNN3v279uXHpekWbMYjA3vQnIEAC7mTQOgi1tvGjcumZwUM5mkqCjp1lvdE8OQIdLHHxfFYK9Jk6L9rHMEb8PjQ3h8CAAXKm8AtL3cXNcOgL6cpUuLkjLJMSkrTpgqI0nxdBcjqhZ33r9pOQLg0yp7UUNXqswB0N7QemM2Sz17SvfeW/QniRG8FQOyAfgsb3wkhckkvfWW9OCD5Z976pT747E3ZIh055203gDlqbbJEescAb7t44+lu+4qOW6neEzPe+8VtVCUNc7GXc6edS4xkqSICPfGUpri1hsAZWPMEWOOAJ9TWCj5+ZV/XmWO6SmWny/VqePcuRcuSLVquTceoKpizBEAj/OmsT3OPmrCE4sa1q4tnTkjvf9+UatVadPXTSbpo49IjABvRXIEoFzetl5PVpZz51X2mB6pKPEJCir6nC43ALp45hgA71NtxxwBKJ/VKr39dtEYGm8a21O/vnPneWJMjz0GQAO+iTFHjDkCSuWt6/VIUl6eFBJS/nmM6QGqLsYcAfBqlT22p25dxvQAcB+SIwCl8uQDS8tjMjGmB4D7MOYI8LCq8EgFVz+w1FmM6QHgDiRHgAd54wrPxYofWBoTIx09WvpDUk2monjd9cBSZ7CoIQBXq7bdasnJyYqJiVHnzp09HQqqIWee2r5kiWdiK2YyFQ2ynj379+1Lj0vSrFm01ACoWpitxmw1VDJnZ4E1aSIdPOgdiUdpLVxRUUWJkadbuABUT+68f9OtBlSy/Hznzvvll6KxNN7QZcTYHgDVCckRUMlqVKAz+9gx98VRUYztAVBdVNsxR4Cn1K4tffmlc+d6ahYYAFRnJEdAJTOZpD59isYUlfXIDZOpaExPjx6VGxsAgOQI8AizuWi6vsQsMADwNiRHgIcMGXL5FZ6ZBQYAnsGAbMCDmAUGAN6H5AjwMGaBAYB3oVsNAADADskRAACAHZIjAAAAOyRHAAAAdkiOAAAA7FTb5Cg5OVkxMTHq3Lmzp0MBAABexGQYhuHpIDwpLy9PISEhys3NVXBwsKfDAQAATnDn/bvathwBAACUhuQIAADADskRAACAHZIjAAAAOyRHAAAAdkiOAAAA7JAcAQAA2CE5AgAAsENyBAAAYIfkCAAAwA7JEQAAgB2SIwAAADskRwAAAHZIjgAAAOyQHAEAANghOQIAALBDcgQAAGCH5AgAAMBOlUiOli9frlatWqlly5Z68803PR0OAADwYTU9HcDVunjxohITE7VmzRqFhISoU6dOGjx4sBo0aODp0AAAgA/y+ZajzZs3q02bNmrcuLHq1Kmj/v37a9WqVZ4OCwAA+CiPJ0fr1q3THXfcoUaNGslkMmnZsmUlzklOTlazZs0UEBCgrl27avPmzbZjR48eVePGjW3bjRs31pEjRyojdAAAUAV5PDnKz89Xhw4dlJycXOrxxYsXKzExUUlJSdq6das6dOigvn376vjx45UcKQAAqA48Puaof//+6t+/f5nHX3rpJY0ZM0b333+/JGnevHn64osvNH/+fE2ZMkWNGjVyaCk6cuSIunTpUmZ5BQUFKigosG3n5uZKkvLy8q72rQAAgEpSfN82DMP1hRteRJLxySef2LYLCgoMs9nssM8wDGPUqFHGwIEDDcMwjMLCQuO6664zfvnlF+O3334zrr/+euPEiRNl1pGUlGRI4sWLFy9evHhVgdeBAwdcno94vOXock6cOCGLxaLw8HCH/eHh4dqzZ48kqWbNmnrxxRfVq1cvWa1WPfHEE5edqTZ16lQlJibatq1Wq3JyctSgQQOZTCb3vJFSdO7cWWlpaT5bj6vLvdry8vLyFBUVpczMTAUHB7ssLnhGZf3/8AW+/ll4Y/yeiqky6nVnHa4s2xVl5ebmKjo6WqGhoS6JyZ5XJ0fOGjhwoAYOHOjUuf7+/vL393fYV69ePTdEdXlms7lSbuLuqsfV5bqqvODgYJKjKqCy/n/4Al//LLwxfk/FVBn1urMOV5btyrJq1HD98GmPD8i+nLCwMJnNZmVnZzvsz87OVkREhIeico2xY8f6dD2uLreyPg/4Bv49/M7XPwtvjN9TMVVGve6sw5Vle+O/C3um/xvr4xVMJpM++eQTDRo0yLava9eu6tKli1555RVJRd1g0dHRGjdunKZMmeKhSOFt8vLyFBISotzcXK/7LRUA4Hru/N73eLfamTNntH//ftt2RkaGtm3bptDQUEVHRysxMVEJCQmKi4tTly5dNGvWLOXn59tmrwFSUXdpUlJSiS5TAEDV5M7vfY+3HK1du1a9evUqsT8hIUEpKSmSpDlz5uj5559XVlaWYmNjNXv2bHXt2rWSIwUAANWBx5MjAAAAb+LVA7IBAAAqG8kRAACAHZIjAAAAOyRHqPIyMzPVs2dPxcTEqH379vroo488HRIAwE1Onz6tuLg4xcbGqm3btnrjjTcqXAYDslHlHTt2TNnZ2YqNjVVWVpY6deqkn376SUFBQZ4ODQDgYhaLRQUFBapdu7by8/PVtm1bbdmy5bKPFruUx9c5AtwtMjJSkZGRkqSIiAiFhYUpJyeH5AgAqiCz2azatWtLkgoKCmQYhiraDkS3GrzeunXrdMcdd6hRo0YymUxatmxZiXOSk5PVrFkzBQQEqGvXrtq8eXOpZaWnp8tisSgqKsrNUQMAroQrvvNPnz6tDh06qEmTJpo8ebLCwsIqFAPJEbxefn6+OnTooOTk5FKPL168WImJiUpKStLWrVvVoUMH9e3bV8ePH3c4LycnR6NGjdLrr79eGWEDAK6AK77z69Wrp+3btysjI0MLFy4s8YzW8jDmCD6lrOfvde7cWXPmzJFU9Py9qKgojR8/3vb8vYKCAt12220aM2aM7rvvPk+EDgCooCv9zrf3yCOPqHfv3ho2bJjT9dJyBJ924cIFpaenKz4+3ravRo0aio+P18aNGyVJhmFo9OjR6t27N4kRAPgwZ77zs7Oz9dtvv0mScnNztW7dOrVq1apC9ZAcwaedOHFCFotF4eHhDvvDw8OVlZUlSdqwYYMWL16sZcuWKTY2VrGxsdq5c6cnwgUAXAVnvvMPHTqkHj16qEOHDurRo4fGjx+vdu3aVageZquhyuvevbusVqunwwAAVIIuXbpo27ZtV1UGLUfwaWFhYTKbzSUG22VnZysiIsJDUQEA3KGyvvNJjuDT/Pz81KlTJ6Wmptr2Wa1Wpaamqlu3bh6MDADgapX1nU+3GrzemTNntH//ftt2RkaGtm3bptDQUEVHRysxMVEJCQmKi4tTly5dNGvWLOXn5+v+++/3YNQAgCvhDd/5TOWH11u7dq169epVYn9CQoJSUlIkSXPmzNHzzz+vrKwsxcbGavbs2eratWslRwoAuFre8J1PcgQAAGCHMUcAAAB2SI4AAADskBwBAADYITkCAACwQ3IEAABgh+QIAADADskRAACAnWq/QrbVatXRo0dVt25dmUwmT4cDAACcYBiGfvvtNzVq1Eg1ari2rafaJ0dHjx5VVFSUp8MAAABXIDMzU02aNHFpmdU+Oapbt66kog83ODjYw9EAAABn5OXlKSoqynYfd6VqnxwVd6UFBweTHAEA4GPcMSSGAdkAAAB2SI4AAADskBwBAADYITkCAACwQ3IEAABgh+QIAADADskRAACAHZIjAAAAOyRHAAAAdkiOAAAA7JAcAQAA2CE5AgAAsOO1yZHFYtHf/vY3NW/eXIGBgWrRooWmTZsmwzBs5xiGob///e+KjIxUYGCg4uPjtW/fPg9GDQAAfJ3XJkczZszQ3LlzNWfOHP3444+aMWOGZs6cqVdeecV2zsyZMzV79mzNmzdPmzZtUlBQkPr27avz5897MHIAAODLTIZ9U4wXuf322xUeHq633nrLtm/o0KEKDAzUe++9J8Mw1KhRI02aNEmPP/64JCk3N1fh4eFKSUnRPffc41Q9eXl5CgkJUW5uroKDg93yXgAAgGu58/7ttS1Hf/jDH5SamqqffvpJkrR9+3Z9++236t+/vyQpIyNDWVlZio+Pt10TEhKirl27auPGjWWWW1BQoLy8PIcXAABAsZqeDqAsU6ZMUV5enm644QaZzWZZLBb94x//0MiRIyVJWVlZkqTw8HCH68LDw23HSjN9+nQ988wz7gscAAD4NK9tOfrwww/1/vvva+HChdq6davefvttvfDCC3r77bevqtypU6cqNzfX9srMzHRRxN4nOztb06ZN06233qrw8HD5+fkpKChIbdq00YMPPqgVK1aorF7VF154QSaTyeG1fPnyy9b3yy+/aOLEiWrTpo2CgoLk7++viIgItWvXTnfffbemT5+uU6dOlbjOYrHotddeU/fu3VW/fn0FBgaqZcuWmjBhgo4dO1bu+7x48aI6derkEOvo0aOd+owAACjB8FJNmjQx5syZ47Bv2rRpRqtWrQzDMIwDBw4Ykozvv//e4ZxbbrnFePTRR52uJzc315Bk5ObmXnXM3iQ5OdkICAgwJF32lZGRUer1bdq0KXHu0KFDy6wvPT3dCAkJKbe+S/++zp07Z/Tp06fM80NDQ420tLTLvtdnn322xHUJCQkV/MQAAL7Enfdvr+1WO3v2rGrUcGzYMpvNslqtkqTmzZsrIiJCqampio2NlVQ0OGvTpk16+OGHKztcrzJz5kz95S9/sW2bzWYNGDDA1rqyf/9+ffXVV8rOzi71+rS0NO3atavE/s8//1w5OTkKDQ0tceyRRx5Rbm6uJCkoKEh33323rr32WhUWFmrfvn1av359qa10Tz31lFatWmWL84EHHlBkZKRSUlJ0+PBh5eTkaPjw4frhhx8UFBRU4vodO3Zo2rRpzn0wAAA4w+XploskJCQYjRs3NpYvX25kZGQYS5cuNcLCwownnnjCds6//vUvo169esann35q7Nixw7jzzjuN5s2bG+fOnXO6nqrWcrRr1y7DbDbbWlAaNmxobN26tcR5Fy5cMF5//XUjOzu7xLFHHnnEdn10dLRDC9Qrr7xS4vziz7D4lZKSUmpsmzdvNn799Vfb9smTJw1/f3/bdU8++aTt2J49ewyTyWQ79uqrr5b6HmJjYw1JRlxcnNG4cWNajgCgmnDn/dtrk6O8vDxjwoQJtpvztddeazz11FNGQUGB7Ryr1Wr87W9/M8LDww1/f3/jj3/8o7F3794K1VPVkqM///nPDonKkiVLKnT9+fPnjfr16zskLIMHD7Zt33jjjSWuOXnypEOdjz/+uHHx4sVy61q0aJHDdenp6Q7H27VrZzvWr1+/EtcnJSUZkgx/f39j165dRtOmTUmOAKCaqJbJUWWpaslRy5YtbQlC/fr1DYvFUqHrFy9e7JCw7Nixo9R9l7JPTCQZDRo0MAYOHGgkJSUZK1euNM6fP1/imqlTpzpcc+rUKYfjd955p+1Yo0aNHI59//33Rq1atQxJxowZM0rEQHIEAFWbO+/fXjtbDVfmyJEjtp+vv/76EuO2ypOSkmL7uU2bNmrXrp3uuOMO1alTp9Rziv373/+WyWSybZ88eVKfffaZnnnmGfXr10/h4eF69tlnZbFYbOfk5OQ4lHHpIl5169Z1KK9YYWGhRo8ercLCQt10002aNGlShd4jAACXQ3IEm2PHjtkGR0uyrTIeGBiogQMH2va/9957unjxosO1gwcP1tdff63evXuXmpDl5uYqKSnpsoOnjUuWFbh0u9i0adO0fft2BQYGKiUlRWazufw3BwCAk0iOqpjGjRvbfv7pp5/KTDBK88477zi07Ng/guXee++1/Xz8+HF9+eWXJa7v2bOnUlNTlZOToxUrVujpp59WXFycwzn//ve/bT83aNDA4dhvv/1W5nZYWJgk6fDhw5o+fbok6bnnnlOrVq2cfn8AADiD5KiK+eMf/2j7+dSpU/r000+dvvbSBTZbtmxpW1TxjjvucDhWWtdasZCQEPXr109JSUlKS0vTAw88YDuWl5dnW0Kgffv2Dtf9/PPPDtsHDhyw/dyuXTtJRV1xxa1WkyZNclj48dChQw7vhcUgAQBXguSoihk3bpxDN9PDDz+s7du3lzivsLBQb775po4fPy5J2rRpk3788Uen61m+fLlOnDhh205ISFB6enqp59qPV6pRo4ZtLFGfPn0UEBBgO7ZkyRLbz7t379bu3btt23feeafTsQEAcDW8dhFIXJk2bdpo2rRpevLJJyUVPYMuLi5Ot99+uzp27FhiEcjiB/cuWLDAVobJZNLw4cMdBlhL0pkzZ/TFF19IKkqu3n//fU2YMEFSUZfcO++8oxYtWqh79+669tprZTKZtH37di1dutRWxi233KLatWtLkurXr6+xY8fqxRdflCTNmDFDJ06cUGRkpObPn2/rEmzatKnuu+8+SVK9evU0dOjQUt/7ihUrdPbsWds1cXFx6ty581V8mgCA6shkVGRQShWUl5enkJAQ5ebmlpgt5ctmz56tJ554QgUFBZc9LyMjQxEREYqMjNTp06clSfHx8Vq9enWJcw3DUPPmzW3dV7Gxsfr+++8lqUQiVZrQ0FB98803atu2rW3f+fPnNXDgwFLrk4oSqFWrVpUYu1SaZs2a2WJLSEi4bNcfAMC3ufP+TbdaFfXoo48qIyNDTz/9tLp3765rrrlGNWvWVO3atdW6dWs9/PDDWrt2rZo2baply5bZEiNJDmOE7JlMJiUkJNi2t23bZuuy27p1q55//nkNGDBArVu3VoMGDWQ2m1W3bl117NhRTzzxhHbt2uWQGElSQECAVqxYoblz56pbt24KDg6Wv7+/WrRoofHjx+uHH35wKjECAMBVaDmqoi1HAABUZbQcAQAAVBKSIwAAADskRwAAAHZIjgAAAOyQHAEAANghOQIAALBDcgQAAGCH5AgAAMAOyREAAIAdkiMAAAA7JEcAAAB2SI4AAADskBwBAADYITkCAACwQ3IEAABgh+QIAADADskRAACAHa9Ojo4cOaL/+Z//UYMGDRQYGKh27dppy5YttuOGYejvf/+7IiMjFRgYqPj4eO3bt8+DEQMAAF/ntcnRqVOndPPNN6tWrVpasWKFdu/erRdffFH169e3nTNz5kzNnj1b8+bN06ZNmxQUFKS+ffvq/PnzHowcAAD4MpNhGIangyjNlClTtGHDBq1fv77U44ZhqFGjRpo0aZIef/xxSVJubq7Cw8OVkpKie+65x6l68vLyFBISotzcXAUHB7ssfgAA4D7uvH97bcvRZ599pri4OA0fPlwNGzZUx44d9cYbb9iOZ2RkKCsrS/Hx8bZ9ISEh6tq1qzZu3FhmuQUFBcrLy3N4AQAAFPPa5Ojnn3/W3Llz1bJlS3311Vd6+OGH9eijj+rtt9+WJGVlZUmSwsPDHa4LDw+3HSvN9OnTFRISYntFRUW5700AAACf47XJkdVq1Y033qh//vOf6tixo/73f/9XY8aM0bx5866q3KlTpyo3N9f2yszMdFHEAACgKqi05Oj06dMVOj8yMlIxMTEO+1q3bq3Dhw9LkiIiIiRJ2dnZDudkZ2fbjpXG399fwcHBDi8AAIBibkmOZsyYocWLF9u277rrLjVo0ECNGzfW9u3bnSrj5ptv1t69ex32/fTTT2ratKkkqXnz5oqIiFBqaqrteF5enjZt2qRu3bq54F0AAIDqyC3J0bx582xjeVavXq3Vq1drxYoV6t+/vyZPnuxUGY899pi+++47/fOf/9T+/fu1cOFCvf766xo7dqwkyWQyaeLEiXruuef02WefaefOnRo1apQaNWqkQYMGueNtAQCAaqCmOwrNysqyJUfLly/XXXfdpT59+qhZs2bq2rWrU2V07txZn3zyiaZOnapnn31WzZs316xZszRy5EjbOU888YTy8/P1v//7vzp9+rS6d++ulStXKiAgwB1vCwAAVANuWeeoUaNG+vjjj/WHP/xBrVq10nPPPafhw4dr79696ty5s1dNn2edIwAAfI87799uaTkaMmSIRowYoZYtW+rkyZPq37+/JOn777/Xdddd544qAQAAXMItydG///1vNWvWTJmZmZo5c6bq1KkjSTp27JgeeeQRd1QJAADgEl77+JDKQrcaAAC+xycfH/Luu++qe/fuatSokQ4dOiRJmjVrlj799FN3VQkAAHDV3JIczZ07V4mJierfv79Onz4ti8UiSapXr55mzZrljioBAABcwi3J0SuvvKI33nhDTz31lMxms21/XFycdu7c6Y4qAQAAXMItyVFGRoY6duxYYr+/v7/y8/PdUSUAAIBLuCU5at68ubZt21Zi/8qVK9W6dWt3VAkAAOASbpnKn5iYqLFjx+r8+fMyDEObN2/WokWLNH36dL355pvuqBIAAMAl3JIcPfTQQwoMDNRf//pXnT17ViNGjFCjRo308ssv65577nFHlQAAAC7h9nWOzp49qzNnzqhhw4burOaKsc4RAAC+xyfXObp48aL+85//6N1331VgYKAk6ejRozpz5oy7qgQAALhqbulWO3TokPr166fDhw+roKBAt912m+rWrasZM2aooKBA8+bNc0e1AAAAV80tLUcTJkxQXFycTp06ZWs1kqTBgwcrNTXVHVUCAAC4hFtajtavX6///ve/8vPzc9jfrFkzHTlyxB1VAgAAuIRbWo6sVqvtkSH2fvnlF9WtW9cdVQIAALiEW5KjPn36ODxDzWQy6cyZM0pKStKf/vQnd1QJAADgEm6Zyp+Zmal+/frJMAzt27dPcXFx2rdvn8LCwrRu3TqvmtbPVH4AAHyPO+/fblvn6OLFi1q8eLG2b9+uM2fO6MYbb9TIkSMdBmh7A5IjAAB8j08lR4WFhbrhhhu0fPlyn3iOGskRAAC+x6cWgaxVq5bOnz/v6mIBAAAqhVsGZI8dO1YzZszQxYsX3VE8AACA27hlnaO0tDSlpqZq1apVateunYKCghyOL1261B3VAgAAXDW3JEf16tXT0KFD3VE0AACAW7klOVqwYIE7igUAAHA7t4w5AgAA8FVuSY46duyoG2+8scSrU6dOuvnmm5WQkKA1a9ZUqMx//etfMplMmjhxom3f+fPnNXbsWDVo0EB16tTR0KFDlZ2d7eJ3AwAAqhO3JEf9+vXTzz//rKCgIPXq1Uu9evVSnTp1dODAAXXu3FnHjh1TfHy8Pv30U6fKS0tL02uvvab27ds77H/sscf0+eef66OPPtI333yjo0ePasiQIe54SwAAoJpwy5ijEydOaNKkSfrb3/7msP+5557ToUOHtGrVKiUlJWnatGm68847L1vWmTNnNHLkSL3xxht67rnnbPtzc3P11ltvaeHCherdu7ekorFOrVu31nfffaebbrrJ9W8McAOLRVq/Xjp2TIqMlHr0kMxmT0cFANWXW1qOPvzwQ917770l9t9zzz368MMPJUn33nuv9u7dW25ZY8eO1YABAxQfH++wPz09XYWFhQ77b7jhBkVHR2vjxo1llldQUKC8vDyHF+ApS5dKzZpJvXpJI0YU/dmsWdF+AIBnuCU5CggI0H//+98S+//73/8qICBAkmS1Wm0/l+WDDz7Q1q1bNX369BLHsrKy5Ofnp3r16jnsDw8PV1ZWVpllTp8+XSEhIbZXVFSUE+8IcC2rVVqwQBo2TPrlF8djR44U7V+yxDOxAUB155ZutfHjx+vPf/6z0tPT1blzZ0lF44befPNNPfnkk5Kkr776SrGxsWWWkZmZqQkTJmj16tXlJlEVMXXqVCUmJtq28/LySJBQqazWy3ebFT/tcOJEadAgutgAoLK5/MGzxd5//33NmTPH1nXWqlUrjR8/XiNGjJAknTt3TiaTqczEZ9myZRo8eLDMdncGi8Uik8mkGjVq6KuvvlJ8fLxOnTrl0HrUtGlTTZw4UY899phTcfLgWVS28pIje2vWSD17ujUcAPBJ7rx/u6XlSJJGjhypkSNHlnk8MDDwstf/8Y9/1M6dOx323X///brhhhv0l7/8RVFRUapVq5ZSU1Ntq3Hv3btXhw8fVrdu3a7+DQBuYjJJb70lPfhg+eceO+b+eAAAjtyWHJ0+fVoff/yxfv75Zz3++OMKDQ3V1q1bFR4ersaNG5d7fd26ddW2bVuHfUFBQWrQoIFt/4MPPqjExESFhoYqODhY48ePV7du3ZipBq929qxziZFUNHsNAFC53JIc7dixQ/Hx8QoJCdHBgwf10EMPKTQ0VEuXLtXhw4f1zjvvuKSef//736pRo4aGDh2qgoIC9e3bV6+++qpLygY8LSqqaFo/AKByuWXMUXx8vG688UbNnDlTdevW1fbt23Xttdfqv//9r0aMGKGDBw+6usorxpgjVDbDKGo9+vRT6X/+5/d9xUymoj8//ljypjVNvXU9Jm+NC4B7ufP+7Zap/Glpafp//+//ldjfuHHjy06zB6oDk0kKCipa1+jjj6VLe5mbNPG+xMgb12MqXg4hKsoxrqZNpYULpfx8x6TTUywWae1aadGioj8tFk9HBKA8bulW8/f3L3VxxZ9++knXXHONO6oEfNKQIdKdd3pvy4fVKr39dtEYqUsTjeL1mN57T7r33t9bvCorrrI+oyNHpOK5IGfOFCWinrJ0qTRhguNaVk2aSC+/7F3JLwBHbulWe+ihh3Ty5El9+OGHCg0N1Y4dO2Q2mzVo0CDdcsstmjVrlqurvGJ0qwGlq8iSA7m5UmX+9ykslPz8yj+vsuMqdrmksjiJ9ERS6Wl0gcKVfK5b7cUXX9SZM2d0zTXX6Ny5c7r11lt13XXXqW7duvrHP/7hjioBeNCGDd5ZX3q6e+MoTXFS+cADpXfrGUbRa+RI6bffKj++yu7ms1ql48cv3wXqDd2fgD23dKuFhIRo9erV2rBhg7Zv364zZ87oxhtvLPF8NADeqyLrMZ065f547B096tx53j7EccMGqX9/99djtUonTkhffCE99ZTj+lmNG0szZxZ179au7dqWrPJaH+27QP9vfWDAK7g8ObJarUpJSdHSpUt18OBBmUwmNW/eXBERETIMQ6bq1IYM+LCKrMcUEeHeWC5Vv75z54WHuzeO0nhbUlmRBMVTY7T+8hfp7rvpYoP3cGm3mmEYGjhwoB566CEdOXJE7dq1U5s2bXTo0CGNHj1agwcPdmV1ALxEZa/HdPPNzp3niXWivDmpLI+ru9hMpqLWqvL88kvRWCTAW7g0OUpJSdG6deuUmpqq77//XosWLdIHH3yg7du36z//+Y++/vprly0ACVQZXjrXu3btopaE998vusld2uhbvO+jj6RatSo3trp1vTOuiqqM5K1GDSk11blzXT1G6+xZacAA587lUTnwJi5NjhYtWqQnn3xSvXr1KnGsd+/emjJlit5//31XVgn4Nm9cQOj/OLse07BhnonNG+OSvC+pNAzp0CHnznX3GK0asuhWrdU9WqRbtVY19PsvAjwqB97EpVP5IyIitHLlSsXGxpZ6/Pvvv1f//v29aiFIpvLDI5yZ6/3RR9L/PVTZG1guWLTz1fU6e+CYareIVLtHesjs5/lBIt48Pby0dY6ioqRZsypvnaP8fKlOHefOTU2Vevd2Xd2GUTQjLyZG6npkqWZpgqL0+4eRqSaaqJeVFjVEGRne8/cG3+DO+7dLkyM/Pz8dOnRIkWX8CnD06FE1b95cBQUFrqryqpEcodI5u4BQkybSwYPeccdgNcMr5unk7dLkqIYs6qH1itQxHVOk1quHrCoK6MIF97RmfffEUnV5fpgkw6G7wqqiXwQ2T/5YN83k3xEqxmfWObJYLKpZs+wJcGazWRcvXnRllYDvyc937jxvGaW6dGlRH5V9YiT9vkS2F3QBejOzLOqptbpXi9RTa2VW5Y4ps+/mG6KlOqhmWqteWqQRWqteOqhmGqKl7uvmKyzUTe+Nk+mSxEiSasiQSdJNH0z0mrF2gOTiqfyGYWj06NHy9/cv9bg3tRgBHlOjAr+TeHqUamGhNG5c2asZmkxFLUoDB0qX+cWo2vKCFjeTSQoKtGpEwdu6Vw/KkOPfZWMd0ccaJtOF9yTDxUt2W622pczLKtUkQ8rMLPpFoGdP19UNXAWXfpslJCSUe86oUaNcWSXge2rXlr78UvrTn8o/15OjVO1ubGUyjKIb/+rVlbOaYWk83W9VGm96KJ1dN65JJZOUGsXJ0siR0u23u/Z5K862kkqe/0UAsOPS5GjBggWuLA6omkwmqU+fohaEI0dKb5UxmYqOe2KhnmK+cGPzgpaZEsobU2a4MRm5Wq5esrsiraRMV4MXccuz1QCUw2wuuoFLpc/1loqmNHmyBaQiN7ZmzdwWRpmK5+uXNRbKUw/tqkhS+e237ouj2Llzzp+bk+PaumvXLnr6b+PGZbeQmUxFU/g8+YsAcAmSI8BThgy5/EI9np4FVpEb2623Vm5shYXS8OHe+WTXiiSVlf1QuvK4uvXGZCpqGZs9+/ftS49Lnv9FALgEyRHgSUOGFE3XX7OmqKVjzRopI8PziZHk3Tc2Z2fxbdjg3jhKUzymzBmXJsbu4A1Jrrf/IgBcguklgKeZzd49S6f4xlba2J7KXM3QnrNLPru6m8gZ3jamzD7JHTasaNs+pspKcocMke680/sGzwOlIDkCUD5vu7E5+8RWTw3yLR5T5slk5FLekOR6+y8CwP9x6QrZvogVsgEfdPFi0SDwo0cv3zLj6WdSeMPzQy7ljUsfAFfAZx4f4otIjgAfVbxyt1R6y4y3jGUhGQHcwp33b7rVAPgmb+gmcgZdSYDPITkC4Lu8bSwUgCqB5AiAb6NlBoCLsc4RAACAHZIjAAAAO16bHE2fPl2dO3dW3bp11bBhQw0aNEh79+51OOf8+fMaO3asGjRooDp16mjo0KHKzs72UMQAAKAq8Nrk6JtvvtHYsWP13XffafXq1SosLFSfPn2Ub/dQx8cee0yff/65PvroI33zzTc6evSohnjLDBUAAOCTfGado19//VUNGzbUN998o1tuuUW5ubm65pprtHDhQg37v7VO9uzZo9atW2vjxo266aabnCqXdY4AAPA97rx/e23L0aVyc3MlSaGhoZKk9PR0FRYWKj4+3nbODTfcoOjoaG3cuLHMcgoKCpSXl+fwAgAAKOYTyZHVatXEiRN18803q23btpKkrKws+fn5qV69eg7nhoeHKysrq8yypk+frpCQENsrKirKnaEDAAAf4xPJ0dixY/XDDz/ogw8+uOqypk6dqtzcXNsrMzPTBRECAICqwusXgRw3bpyWL1+udevWqUmTJrb9ERERunDhgk6fPu3QepSdna2Iyzyx29/fX/7+/u4MGQAA+DCvbTkyDEPjxo3TJ598oq+//lrNmzd3ON6pUyfVqlVLqamptn179+7V4cOH1a1bt8oOFwAAVBFe23I0duxYLVy4UJ9++qnq1q1rG0cUEhKiwMBAhYSE6MEHH1RiYqJCQ0MVHBys8ePHq1u3bk7PVAMAALiU107lN5lMpe5fsGCBRo8eLaloEchJkyZp0aJFKigoUN++ffXqq69etlvtUkzlBwDA97jz/u21yVFlITkCAMD3sM4RAABAJSE5AgAAsENyBAAAYIfkCAAAwA7JEQAAgB2SIwAAADskRwAAAHZIjgAAAOyQHAEAANghOQIAALBDcgQAAGCH5AgAAMAOyREAAIAdkiMAAAA7JEcAAAB2SI4AAADskBwBAADYITkCAACwQ3IEAABgh+QIAADADskRAACAHZIjAAAAOyRHAAAAdkiOAAAA7JAcAQAA2CE5AgAAsFMlkqPk5GQ1a9ZMAQEB6tq1qzZv3uzpkAAAgI/y+eRo8eLFSkxMVFJSkrZu3aoOHTqob9++On78uKdDAwAAPsjnk6OXXnpJY8aM0f3336+YmBjNmzdPtWvX1vz58z0dGgAA8EE1PR3A1bhw4YLS09M1depU274aNWooPj5eGzduLPWagoICFRQU2LZzc3MlSXl5ee4NFgAAuEzxfdswDJeX7dPJ0YkTJ2SxWBQeHu6wPzw8XHv27Cn1munTp+uZZ54psT8qKsotMQIAAPc5efKkQkJCXFqmTydHV2Lq1KlKTEy0bVutVuXk5KhBgwYymUyVFkfnzp2Vlpbms/W4utyrLS8vL09RUVHKzMxUcHCwy+KCZ1TW/w9f4OufhTfG76mYKqNed9bhyrJdUVZubq6io6MVGhrqkpjs+XRyFBYWJrPZrOzsbIf92dnZioiIKPUaf39/+fv7O+yrV6+eu0Isk9lsrpSbuLvqcXW5riovODiY5KgKqKz/H77A1z8Lb4zfUzFVRr3urMOVZbuyrBo1XD982qcHZPv5+alTp05KTU217bNarUpNTVW3bt08GFn5xo4d69P1uLrcyvo84Bv49/A7X/8svDF+T8VUGfW6sw5Xlu2N/y7smQx3jGSqRIsXL1ZCQoJee+01denSRbNmzdKHH36oPXv2lBiLhKorLy9PISEhys3N9brfUgEArufO732f7laTpLvvvlu//vqr/v73vysrK0uxsbFauXIliVE14+/vr6SkpBJdpgCAqsmd3/s+33IEAADgSj495ggAAMDVSI4AAADskBwBAADYITkCAACwQ3IEAABgh+QIVV5mZqZ69uypmJgYtW/fXh999JGnQwIAuMnp06cVFxen2NhYtW3bVm+88UaFy2AqP6q8Y8eOKTs7W7GxscrKylKnTp30008/KSgoyNOhAQBczGKxqKCgQLVr11Z+fr7atm2rLVu2qEGDBk6X4fOLQALliYyMVGRkpCQpIiJCYWFhysnJITkCgCrIbDardu3akqSCggIZhqGKtgPRrQavt27dOt1xxx1q1KiRTCaTli1bVuKc5ORkNWvWTAEBAeratas2b95calnp6emyWCyKiopyc9QAgCvhiu/806dPq0OHDmrSpIkmT56ssLCwCsVAcgSvl5+frw4dOig5ObnU44sXL1ZiYqKSkpK0detWdejQQX379tXx48cdzsvJydGoUaP0+uuvV0bYAIAr4Irv/Hr16mn79u3KyMjQwoULlZ2dXaEYGHMEn2IymfTJJ59o0KBBtn1du3ZV586dNWfOHEmS1WpVVFSUxo8frylTpkgqalq97bbbNGbMGN13332eCB0AUEFX+p1v75FHHlHv3r01bNgwp+ul5Qg+7cKFC0pPT1d8fLxtX40aNRQfH6+NGzdKkgzD0OjRo9W7d28SIwDwYc5852dnZ+u3336TJOXm5mrdunVq1apVheohOYJPO3HihCwWi8LDwx32h4eHKysrS5K0YcMGLV68WMuWLVNsbKxiY2O1c+dOT4QLALgKznznHzp0SD169FCHDh3Uo0cPjR8/Xu3atatQPcxWQ5XXvXt3Wa1WT4cBAKgEXbp00bZt266qDFqO4NPCwsJkNptLDLbLzs5WRESEh6ICALhDZX3nkxzBp/n5+alTp05KTU217bNarUpNTVW3bt08GBkAwNUq6zufbjV4vTNnzmj//v227YyMDG3btk2hoaGKjo5WYmKiEhISFBcXpy5dumjWrFnKz8/X/fff78GoAQBXwhu+85nKD6+3du1a9erVq8T+hIQEpaSkSJLmzJmj559/XllZWYqNjdXs2bPVtWvXSo4UAHC1vOE7n+QIAADADmOOAAAA7JAcAQAA2CE5AgAAsENyBAAAYIfkCAAAwA7JEQAAgB2SIwAAADskRwAAAHZIjgAAAOyQHAHwSaNHj9agQYOuqoy1a9fKZDLp9OnTlz0vNTVVrVu3lsViKbfMlStXKjY2Vlar9apiA+A5JEcA3Gr06NEymUwymUzy8/PTddddp2effVYXL168qnJffvll23OW3O2JJ57QX//6V5nN5nLP7devn2rVqqX333+/EiID4A4kRwDcrl+/fjp27Jj27dunSZMm6emnn9bzzz9/RWVZLBZZrVaFhISoXr16rg20FN9++60OHDigoUOHOn3N6NGjNXv2bDdGBcCdSI4AuJ2/v78iIiLUtGlTPfzww4qPj9dnn30mSSooKNDjjz+uxo0bKygoSF27dtXatWtt16akpKhevXr67LPPFBMTI39/fx0+fLhEt1pBQYEeffRRNWzYUAEBAerevbvS0tIc4vjyyy91/fXXKzAwUL169dLBgwfLjf2DDz7QbbfdpoCAANu+7du3q1evXqpbt66Cg4PVqVMnbdmyxXb8jjvu0JYtW3TgwIEr+8AAeBTJEYBKFxgYqAsXLkiSxo0bp40bN+qDDz7Qjh07NHz4cPXr10/79u2znX/27FnNmDFDb775pnbt2qWGDRuWKPOJJ57QkiVL9Pbbb2vr1q267rrr1LdvX+Xk5EiSMjMzNWTIEN1xxx3atm2bHnroIU2ZMqXcWNevX6+4uDiHfSNHjlSTJk2Ulpam9PR0TZkyRbVq1bIdj46OVnh4uNavX39Fnw8Az6rp6QAAVB+GYSg1NVVfffWVxo8fr8OHD2vBggU6fPiwGjVqJEl6/PHHtXLlSi1YsED//Oc/JUmFhYV69dVX1aFDh1LLzc/P19y5c5WSkqL+/ftLkt544w2tXr1ab731liZPnqy5c+eqRYsWevHFFyVJrVq10s6dOzVjxozLxnzo0CFbbMUOHz6syZMn64YbbpAktWzZssR1jRo10qFDhyrw6QDwFiRHANxu+fLlqlOnjgoLC2W1WjVixAg9/fTTWrt2rSwWi66//nqH8wsKCtSgQQPbtp+fn9q3b19m+QcOHFBhYaFuvvlm275atWqpS5cu+vHHHyVJP/74o7p27epwXbdu3cqN/dy5cw5dapKUmJiohx56SO+++67i4+M1fPhwtWjRwuGcwMBAnT17ttzyAXgfkiMAbterVy/NnTtXfn5+atSokWrWLPrqOXPmjMxms9LT00vMBKtTp47t58DAQJlMpkqNuVhYWJhOnTrlsO/pp5/WiBEj9MUXX2jFihVKSkrSBx98oMGDB9vOycnJ0TXXXFPZ4QJwAcYcAXC7oKAgXXfddYqOjrYlRpLUsWNHWSwWHT9+XNddd53DKyIiwunyW7RoIT8/P23YsMG2r7CwUGlpaYqJiZEktW7dWps3b3a47rvvviu37I4dO2r37t0l9l9//fV67LHHtGrVKg0ZMkQLFiywHTt//rwOHDigjh07Ov0eAHgPkiMAHnP99ddr5MiRGjVqlJYuXaqMjAxt3rxZ06dP1xdffOF0OUFBQXr44Yc1efJkrVy5Urt379aYMWN09uxZPfjgg5KkP//5z9q3b58mT56svXv3auHChU6tk9S3b199++23tu1z585p3LhxWrt2rQ4dOqQNGzYoLS1NrVu3tp3z3Xffyd/f36luOwDeh+QIgEctWLBAo0aN0qRJk9SqVSsNGjRIaWlpio6OrlA5//rXvzR06FDdd999uvHGG7V//3599dVXql+/vqSiGWRLlizRsmXL1KFDB82bN8824PtyRo4cqV27dmnv3r2SJLPZrJMnT2rUqFG6/vrrddddd6l///565plnbNcsWrRII0eOVO3atSv0HgB4B5NhGIangwAAbzZ58mTl5eXptddeK/fcEydOqFWrVtqyZYuaN29eCdEBcDVajgCgHE899ZSaNm3q1PPSDh48qFdffZXECPBhtBwBAADYoeUIAADADskRAACAHZIjAAAAOyRHAAAAdkiOAAAA7JAcAQAA2CE5AgAAsENyBAAAYIfkCAAAwM7/BzchG7fqGr/YAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAoYZJREFUeJzs3Xl4VOXZ+PHvzGSyTVayJxAS9i0EYgiEVS0V0bpUq7a17rWb9W2ldemi/tRaaxdqVayvXbTa+tbWutQNF9RA2AKEfYtAIJCdkEz2STJzfn+EHDMkgQnMyTlncn+uKxdk5sz93M+TJ4ebszzHoiiKghBCCCGEMD2r3gkIIYQQQgj/kMJOCCGEECJASGEnhBBCCBEgpLATQgghhAgQUtgJIYQQQgQIKeyEEEIIIQKEFHZCCCGEEAFCCjshhBBCiAAhhZ0QQgghRICQwk4IHTU3N/Pb3/6WhQsXEh8fj91uJzo6moyMDPLy8rjllltYvnw5ZWVleqd6RhkZGVgsFvUrkG3cuJEf/OAH5ObmkpiYSHBwMA6Hg/Hjx3PNNdfwl7/8haampgE/39nZSWJiotd4WSwWnn76aZ/af++997j22mvJyMggLCyM0NBQUlNTmTZtGldeeSX3338/q1atGvDzJ06c4MEHH+S8884jJiaGsLAwMjMzuemmmygqKvJ5HFpaWhg3blyffhw+fNjnGEIIP1OEELooKSlRRo8erQBn/HrppZf6fH7RokVe25SWlvo9x9LSUq82Fi1aNOC2p/YlEJWXlysXXXSRTz+zL3/5ywPGee211/r9zHnnnXfa9ru6upQbbrjBp/a/8IUv9Btj/fr1Snx8/ICfs1gsygMPPODTeHz3u9/tN4YWc1EI4Zsg/5aJQghfKIrCV7/6VY4cOaK+Fh8fT3Z2NhEREdTV1bFnzx5OnDihY5aDc8kll1BTU6N3Gpo5ePAg8+bNo7q62uv11NRUsrKysNlslJWVsWfPHjweDx6PZ8BYL7zwQr+vb9myhV27djFt2rR+31+xYgUvvfSS+n1QUJB61LC9vZ2DBw9y6NAhlAEeAV5eXs7SpUtpaGhQX8vNzSU+Pp7Vq1fT2tqKoig8/PDDpKam8u1vf3vAPnz44Yf88Y9/HPB9IYQ+pLATQgfbtm2juLhY/f6KK67g1VdfJSgoqM92//rXv4iPjx/qFAftmWee0TsFzXR2dvKlL33Jq6iLioriz3/+M9dcc43XtlVVVfzxj3/kwIED/caqra3lvffeU7+32+10dnaq37/wwgv89re/7fezf/nLX7zaLy4uZuzYsV7b1NTU8Pbbb/fb/s9+9jOvou7hhx/m/vvvB2Dfvn3k5ubS0tICwD333MP1119PREREnzhOp5Nbb70VgOjoaCwWi1dcIYSOdD5iKMSw9M9//tPr1NXy5ct9/uypp2AH+uo5HVZaWqr8/Oc/V770pS8pEyZMUBISEhS73a44HA5lzJgxyjXXXKO89dZbXm2cegp2oK/ep2Z9ORV7/Phx5dFHH1XmzZunxMXFKUFBQUpMTIxy3nnnKffdd59SVlbW7+f6i/3qq68q559/vhIVFaWEhoYqOTk5yosvvtjv559//nmvzz/44IM+j7eiKMqKFSu8Pm+1WpVPP/30tJ9pb2/v9/Xly5d7xfrZz36mhIeHq98nJycrnZ2d/X42NDRU3W769OmD6kNTU5MSFhamfj48PFxpbW312uamm27yyu2vf/1rv7F6nw5+8cUX+/x85FSsEPqRwk4IHZx6jVVCQoLy1FNPKZ999tkZPzvYwu7f//63T9vfeuutahtaFHYfffTRaa/t6ik2/vGPf/T57Kmxb7zxxgFj/P73v+/z+XMt7ObPn+/1+csvv3xQn+9t+vTpfX5O1113nddrpxbaPaKiory2+9a3vqWsWbNmwCKyt48//tjrs7Nnz+6zzTPPPOO1zc0339xnm9dff119/6qrrlIUpe/PRwo7IfQjp2KF0MGcOXMICgqiq6sL6D49d+eddwIQExNDTk4OCxYs4OqrryYrK8vrs4sWLSI+Pp6CggKOHz+uvr506VLCw8PV7x0Oh9fn0tPTSUtLIzY2FqvVSnV1Ndu2bVNPA/71r3/lsssu48orr8ThcHD11VfT2trqddowPj6eRYsWqd9PnTrVp/7u27ePK664Qj3NB59fm/bZZ59x6NAhAFpbW7nxxhtJS0vzaudUL774IiNGjOC8885j7969HDt2TH3v//2//8e3vvUtr7E4Fx6Phw0bNni9dskll5xVrOLiYnbs2KF+n5+fT0ZGBl/72td45ZVX1NdfeOEFvvSlL/X5/IIFC3jnnXfU75977jmee+45goKCmDJlCvn5+SxdupSlS5cSHBzs9dl9+/Z5fZ+WltYn/qmvnfqZ2tpa9bq7xMREnn322TN1WQgx1PSuLIUYrh544AGfjopddtllSk1NTZ/P+3pXbHV1tXL06NF+39u1a5dXjOuuu87rfX/dFfvVr361zxGvtrY2RVEUxe12K9/61re83p8zZ85pY+fk5Ch1dXWKonSfYpw6darX+wUFBV6fP5cjdjU1NX1+JitXrvT5873deeedXnGeeuopRVEUxeVyKTExMerrwcHBav962759uxIREXHGOZOenq68//77Xp/95S9/6bXNDTfc0Cf+Rx995LXNxIkTvd6/6qqr1PfeeOMN9XU5YieEccg6dkLo5KGHHuKvf/0ro0ePPu12b731FldcccWAdzqeSWJiIkePHuWb3/wmWVlZREdHY7PZsFgsfe6+PPUIjT94PB6vo0wAjz/+OKGhoQBYrVYef/xxryNMGzdupLa2dsCYjz76KCNGjAAgIiKCCy+80Ov98vJyr+9vvvlmlO5LT1AUhf/3//7fuXTprH4WHR0dvPzyy+r3NptNvfEiODiYq6++esBte0yfPp2NGzeyZMmS064VWFZWxmWXXeZ1dNCXPpyuX3//+9957bXXALjpppu44oorBtxWCKEfKeyE0NEtt9xCaWkp69ev51e/+hVXXHGFWrD0tn79etavX39WbSxfvpy5c+fyl7/8hV27dtHY2DjgUhxOp/Os2jiduro6r8V6g4ODmThxotc2MTExpKenq98rinLaRW5nzZrl9X10dLTX9y6X6xwy9hYXF9fnbuWzWYD3rbfeoq6uTv3+wgsvJCkpSf3+a1/7mtf2Ay2JMmXKFFauXMmRI0d4/vnn+eY3v8nkyZP7bNfR0eG14HFMTIzX+62trX0+0/tUOUBsbCwA7e3t6qUC6enpPPnkk/3mJoTQnxR2QujMYrEwZ84c7r33Xt544w1qa2v573//22eZib179w46dmVlJffee6/Xa6NGjeKSSy7h6quv9jpKBGd3JOpMtIgZFxfn9b3NZvN7Gz2sVitz5szxeu3dd98ddJxTC7UNGzYwcuRI9evGG2/0er9nTbuBjBo1iptvvpk//elP7NmzhwMHDvS5LrH3nJk0aZLXe72vS+xx6pHOns+0t7ery5nU1NQwZswY4uPj1a+jR496fS4nJ4f4+Hj++c9/Dpi/EEIbUtgJoQOn09nvERPoLiQuu+wyvvjFL3q9brfbvb735bFdGzZsUG/QALj00ks5cuQI77zzDq+++ipPPfXUaT/vj0eDxcfHexWpHR0dlJSUeG3T0NDg9dg0i8VCRkbGObftL6ceTXvnnXcoKCg47Wd6HzWsrq5m5cqVXu83NTVRXl6uflVUVPSJcWox2N82PcaOHcuyZcu8Xus9Z2bNmkVYWJj6/c6dO/vMwY0bN3p9v3Dhwj7ttLe3U1dX5/V16hHg+vp66urqaG9vHzBfIYQ2pLATQgc7d+4kPT2dn/70p/0elSkrK+tzJ+apd6D2/kca+h5tAbwWvgUIDQ1VizWXy8WPfvSj0+Z5ahunKywGYrVa+9xFet9996mFj8fj4Sc/+QkdHR3q+3l5eSQkJAy6rYG88MILXs8yHew1drfffrvXES+Px6MuKn2qqqoqHnjgAXUBX+i+Pq13ge2rf/zjH16fu+CCC7jqqqt46623+pxudrvd/Oc///F6rfeciYiI4Nprr1W/b2tr4ze/+Y36/Z49e7z6ExUV1WfxZSGECeh114YQw9maNWu87iKMj49XFi1apFx++eXK/PnzFbvd7vX+zJkzFY/H4xXjrrvu8tomISFB+dKXvqRcffXVyj333KMoSvddrVar1Wu7adOmKZdccomSkpKiWCwWr/dGjx7dJ9cRI0Z4bZOdna1cddVVytVXX62899576nanuyt29+7dXovwAkpqaqqyZMkSZcyYMV6vW61W5eOPP/b6/JnWyHvwwQe93n/++ee93j/XdewURVE+++wzJSkpqc8dqGlpacrSpUuVSy+9VMnKylLH+4orrlA/O23aNK/PDLROnaL0Xeeu97Zjx471unP2vPPOUy699FJlyZIlSnJystfnLBaLsmXLFq/Yx44d87r7FlByc3OViy++uM/P59lnn/V5bOSuWCGMQwo7IXRQWFh4xiUrer7S09OV/fv394mxbds2JSgoqN/P9H6Y/LJlywaM/dvf/vaMhd3dd9894Od7lutQlDMXX++//36fIvHUr7CwsH6fHmGEwk5RugujxYsX+/Rz+/KXv6woiqJs2rTJ6/XY2Filo6NjwDYeffRRr+2vvvpq9b1x48b51HZQUJDXz6a39evXK3FxcQN+1mKxKPfff/+gxkUKOyGMQxYoFkIH8+bNY9u2bXzwwQds3LiRffv2UV5eTnNzM1arldjYWKZOncqXvvQlbr/99n6f15mdnc3KlSt57LHH2LJlC06ns98bFX77298yceJEnnnmGfbt20doaCgzZszgRz/6EZdddhk//vGPT5vro48+SnR0NC+//DKHDh066+umLrroIvbt28f//u//8u6777Jv3z6ampoIDw9n3LhxLF68mO9973tnXP5FT2lpaXz44Yds2LCBl19+mbVr13LkyBGcTid2u520tDSys7O5+OKL1dOep14nd9VVV/W5XrK36667jp/97Gfq92+99RYnTpxgxIgRrFu3jpUrV7J27Vq2b9/OkSNHOHHiBF1dXURERJCRkcHChQv51re+1Wcpmx5z5syhpKSEJ554grfeeotDhw7hcrlISkpi4cKF3HnnneTl5Z37YAkhdGFR+vuXQAghhBBCmI7cPCGEEEIIESCksBNCCCGECBBS2AkhhBBCBAgp7IQQQgghAoQUdkIIIYQQAUIKOyGEEEKIACGFnRBCCCFEgJDCTgghhBAiQEhhJ4QQQggRIKSwE0IIIYQIEFLYCSGEEEIECCnshBBCCCEChBR2QgghhBABQgo7IYQQQogAIYWdEEIIIUSAkMJOCCGEECJASGEnhBBCCBEgpLATQgghhAgQUtgJIYQQQgQIKeyEEEIIIQKEFHZCCCGEEAFCCjshhBBCiAAhhZ0QQgghRICQwk4IIYQQIkBIYSeEEEIIESBMX9gdPXqU888/nylTpjB9+nT+/e9/652SEEIIIYQuLIqiKHoncS4qKyuprq5mxowZVFVVcd5551FSUoLD4dA7NSGEEEKIIRWkdwLnKiUlhZSUFACSk5OJj4/nxIkTUtgJIYQQYtjR/VTs6tWrueyyy0hNTcVisfDGG2/02WbFihVkZGQQGhrK7NmzKSoq6jfWli1bcLvdjBo1SuOshRBCCCGMR/fCrqWlhezsbFasWNHv+6+88grLli3jwQcfpLi4mOzsbJYsWUJNTY3XdidOnODGG2/kueeeG4q0hRBCCCEMx1DX2FksFl5//XWuvPJK9bXZs2cza9Ysnn76aQA8Hg+jRo3izjvv5L777gPA5XLxxS9+kdtvv50bbrjhtG24XC5cLpf6vcfj4cSJE8TFxWGxWPzfKSGEEEKIc6AoCk1NTaSmpmK1nv6YnKGvsevo6GDLli385Cc/UV+zWq0sXryY9evXA92dvfnmm7nwwgvPWNQBPPbYYzz00EOa5SyEEEIIoYWjR48ycuTI025j6MLu+PHjuN1ukpKSvF5PSkpi3759AKxdu5ZXXnmF6dOnq9fnvfTSS2RlZfUb8yc/+QnLli1Tv3c6naSnp3P06FGioqK06YgwtP379zNx4kS90zCFQB0rM/TLKDnqkYfWbWoV399xjTIHxNBrbGxk1KhRREZGnnFbQxd2vpg/fz4ej8fn7UNCQggJCenzelRUlBR2w1Rra6v87H0UqGNlhn4ZJUc98tC6Ta3i+zuuUeaA0I8vl4wZurCLj4/HZrNRXV3t9Xp1dTXJycnnFHvFihWsWLECt9sNQGFhIQ6Hg7lz57J9+3ZaWlqIiYlhwoQJ6l2448aNw+PxcOjQIQDmzJnDnj17aGxsJDIykqlTp7JhwwYAMjMzsdlsHDhwAIBZs2Zx4MAB6uvrCQ8PZ+bMmaxduxaA9PR0wsLC2L9/PwA5OTkcOXKEuro6QkNDycvLY/Xq1QCMHDmSqKgo9uzZA8CMGTOoqKigpqYGu93O3LlzWbNmDR6Ph5SUFOLi4ti1axcAWVlZ1NbWUlVVhc1mY/78+axdu5auri4SExNJSUlh+/btAEyZMgWn00l5eTkAixYtYsOGDbhcLuLj40lPT6e4uBiASZMm0draSllZGdBdbBcXF9Pa2kpsbCxjx45l8+bNAIwfP57Ozk4OHz4MQH5+Pjt37qS5uZno6GgmTZrExo0bARg7diwABw8eBLqvt9y3bx9Op5OIiAiysrLUU/IZGRnY7XY+++wzAHJzczl48KA63jk5ORQWFqrjHR4erh71dbvd7N69m+PHjxMSEsKcOXMoKCgAIC0tjejoaHW8s7OzqayspKamhqCgIObNm0dhYSFut5vk5GQSEhLYuXMnANOmTaOuro7KykqsVisLFixg3bp1dHZ2kpiYSGpqKtu2bVPHu7GxkWPHjgGwcOFCioqKaG9vJy4ujtGjR6vjPXHiRNra2tTxnjdvHlu3blXHe9y4cWzatEmds263m9LSUnXO7t69m6amJqKiopgyZYo6Z8eMGYPValXnbF5eHiUlJTQ0NOBwOMjOzubo0aMUFBSQkZFBcHAwJSUl6niXlpZSV1dHWFgYubm5rFmzBoBRo0YRERHB3r17AZg5cybHjh2jtraW4OBg8vPzWb16NYqikJqaSmxsLLt37wZg+vTpVFdXU11drc7ZnvFOSkoiKSmJHTt2ADB16lTq6+upqKjAYrGwcOFC1q9fT0dHBwkJCYwcOZKtW7cCMHnyZJqbmzl69CgANpuNoqIi2traiIuLIzMzU52zEyZMoKOjQ52zeu0j2tvb1Xmp5z6iZw4M5T6iurqagoICzfYRVVVVuN3uAfcROTk5lJWVDXof0TM2/txH9LRr1H3EunXr1PEOpH3EggUL2Lx5s277iJaWFnxlipsn8vLyeOqpp4Dumx3S09P5/ve/r948cS4aGxuJjo7G6XTK/4SEEEIIYTiDqVV0X+6kubmZbdu2qf8rKS0tZdu2ber/NJYtW8af/vQn/va3v7F3716++93v0tLSwi233KJj1iKQ9PyvUZxZoI6VGfpllBz1yEPrNrWK7++4RpkDwth0PxW7efNmLrjgAvX7nhsbbrrpJl544QWuu+46amtreeCBB6iqqmLGjBmsXLmyzw0VQpytwVyjOdwF6liZoV9GyVGPPLRuU6v4/o5rlDlwLjweDx0dHXqnYTh2ux2bzeaXWIY6FTuUel9jV1JSwjvvvCPX2A3Ta+yio6Ox2+1yjZ0P18+89dZbxMXFBdz1M0lJSTQ2Nhr6Gruamhra29sBffcRH3/8MXFxcUO6j/joo49wOBya7SOam5u5+OKL/X6NXUNDA1dccYXf9hE9bYBx9xGnu8bu0KFDuFwugoKCCA4OVteUDQoKwmKx0NnZCUBwcDButxu3243FYiEkJESd+zabDavV2u+2AKGhoV7b2mw2tZC02+14PB6vbV0uF4qi9Lutoih0dXUB3TdednR0oCgKVquVoKAgn7e12+1efQW8tu3s7MTtdqMoClOnTlXn96nX2F166aU+nYodtoVdD7nGTtTV1REXF6d3GqYQqGNlhn4ZJUc98tC6Ta3i+zuuUebA2VAUhbKyMjo7O31aZHc4URSF1tZWampqiImJISUlpc82prrGTgi99RytEGcWqGNlhn4ZJUc98tC6Ta3i+zuuUebA2ejq6qK1tZWEhATCw8MJDQ2Vr5NfYWFhxMXFkZiYSENDg3pE8WxJYSeEEEIITfUUK8HBwTpnYlzh4eEA6mnmsyWFnRj2BnpKiegrUMfKDP0ySo565KF1m1rF93dco8yBcyHPZB+Yv8ZG97ti9SILFMvNE71vnqisrJSbJ3y4MPqTTz4hPj4+4G6eSExM5MCBA4a+eaK6ulq9AFvPfUTPHBjKfcSGDRs0vXmiqamJpUuX+v3mifr6eq688kq5eeLk3Oro6KClpQW32014eDjNzc1A91E8q9Wq3vQQHh5OR0cHXV1dWCwWIiIiaGpqAj6/e7Rn27CwMDo7O9WbESIjI9Vtg4KCsNvttLW1Ad03S7jdbvWIWGRkJM3NzSiKot7Q0draqm7b+w7eiIgIWltb8Xg8fbYNCQlBURR1W4fDQVtbGx6PB5vNRmhoqLrAcM+Tr3p+lx0OB+3t7WpeiqJQVFSEoiiBsUCxHuTmCVFQUMCiRYv0TsMUAnWszNAvo+SoRx5at6lVfH/HNcocOBvt7e2UlpaSmZlJaGio3ukY0unGSG6eEGIQ/LV20HAQqGNlhn4ZJUc98tC6Ta3i+zuuUeaAntwehe2H6/hkVznbD9fh9mh/bOrdd9/FYrEM+HXddddpnsNgyBE7OWInhBBCaMofR+wK91byx/f3cLypXX0tPjKU7y6ZwvzJfZcI8Ze2tjacTqfXa263m1tuuYXi4mJWrVpFdnb2ObcjR+yE8JOe65jEmQXqWJmhX0bJUY88tG5Tq/j+jmuUOaCHwr2VPPJqsVdRB3C8qZ1HXi2mcG+lZm2HhYWRnJysfiUkJPCjH/3Ir0WdP8nNE3LzxLC/ecLlcrF79265ecKHC6MPHDhAV1dXwN084fF4KCoqMvTNEw0NDeq81HMf0TMHhnIfUVZWRldXl2b7iPLycubMmeP3myfKysr8uo+oqalR2zXqPmKwN0+0d7oJtgdjtVpoP3lDQXhYGB0dnXg8bkLsNsLCHTyz8vRr+K1YuYtpqQ5ioqNoamqivdNNkC0Iuz2ItpM3WoSGhGC3Wc7p5onOzk6+9a1v8fHHH/Pf//6XMWPGqE+ZkJsnDEJOxYq9e/cyefJkvdMwhUAdKzP0yyg56pGH1m1qFd/fcY0yB87GQKcZlzzyzoCfyRuXwCNfy2P74TrueWnDGdv49Q1zyM7ofjLHtb/7EGdr32fSvn//pWeRfTe32803vvENPvjgA1atWsWMGTPOOlZ/5FSsEH7S3+NbRP8CdazM0C+j5KhHHlq3qVV8f8c1yhwYaiea28+80SC2Oxtut5sbbrhBs6LOn4btqVghemzfvt20SwgMtUAdKzP0yyg56pGH1m1qFd/fcY0yB/zpzXuXDPie1dq9YO+ICN9utui93Yt3XnBuifXSU9S9//77fPTRR/0WdfPmzWP58uXMnj2b2267jWnTpnH++edz33338f777wPw5ptv8s477/Dcc8/5Lbf+SGEnhBBCCF2EBp+5DJmWPoL4yNA+N070lhAVyrT0EYOK6wu3282NN96oFnUzZ87sd7v777+fX/3qVyxYsACr1cpdd91FV1eXeu1lV1cXDz/8MG+//bZf8jodORUrhr0pU6bonYJpBOpYmaFfRslRjzy0blOr+P6Oa5Q5MNRsVgvfXXL6vn/noinYrP59XJnH4+HGG2/kjTfe4O9//zspKSlUVVV5ffXcgHnxxRdTVlbGO++8wzPPPAN0P/li1KhRHD58mOeee45LL710SE6nS2Enhr1T1ycSAwvUsTJDv4ySox55aN2mVvH9Hdcoc0AP8yencP9XcoiP9D4tmxAVyv1fydFkHbtNmzbx8ssv09rayiWXXEJKSorXV2pqqnq36qZNmzhx4gTR0dHY7XY1Rl5eHp988gl//OMfufvuu/2eY3+G7alYWe5EljvpvdyJy+WS5U58WMpg7dq1lJeXB+RyJydOnDD0cif79+9Xfx/13Ef0zIGh3Eds2rSJ8vJyTZc7yczM1GS5k3HjxvltH7Fz5051vI26j9DyWbHZIyN47ltz2VfRSE19MzGOYHLGJeNxd6nPh/Xns2JnzJhBY2MjcPpnxZaWlnLbbbfx3//+lxtuuIEdO3YwduxYPB4P2dnZ/PjHP+anP/0pgLokipbLnaAMc06nUwEUp9OpdypCJ59++qneKZhGoI6VGfpllBz1yEPrNrWK7++4RpkDZ6OtrU3Zs2eP0tbWpncqftXa2qrk5+crBQUFiqIoyr/+9S/l2muvVd/ftGmTMn78eKWzs/OMsU43RoOpVWQdO1nHTgghhNCUPx4pZka33norV1xxBVdcccUZt5V17ITwk57TDOLMAnWszNAvo+SoRx5at3lqfMXt5viGDZT/978c37AB5eQlO+ca91wZZQ6IMzt48CATJ07E4XD4VNT507C9xk6IHj3XOogzC9SxMkO/jJKjlnkobjd1mzbhqqkhJDGRuFmzsNhsmve9d/zK999n18MP015Vpb4WmpzMtAceIGXJwGuunSmuPxhlDogzGzt2rHrd/FCTwk4Me/Hx8XqnYBqBOlZm6JdRctQqj9MVVPEjR2rSZo/4+HgUj4ej//kP2++7r8/77dXVbL7jDmYuX07aZZdhsfi2rIa/x8ooc0AYm5yKFcNeenq63imYRqCOlRn6ZZQctcij8v332XzHHV5FHXxeUIWdvJNVKyPT0nh7/Ph+izoAFAUUha133UXXyTs5feHvsTLKHBDGNmyP2MlyJ7LcSe/lTtLS0mS5Ex+WMnjttdfIyMgIyOVOHA6HoZc72bNnDxEREcDZ7SOqq6qwHDrEuIQE9ldVYR0/ntS0tEHvI958800yMjL8so9oaW4mymKh9sEHu4unU518bedDD3E4LIzo8HDGjhzJttJSLDYbY8eOpe3wYY4UFaF0dJCZmkrl4cO0OZ3YgREREZzIzcUaFUVGRgYN771H+WuvobhchFgsdDQ3425rQ3G58HVp23V//zuLvvtdn5c7ueGGG/y2jygsLGTEiO6nKxh1H6HlcicAdrsdm82mbhsWFkZnZyddXV2Af5c78Xg86vIkp1vuJCQkBEVR1G179iUejwebzUZoaKi6XElISAig7XIncles3BU77BUUFATc8xe1EqhjZYZ+nUuO/rxu7GzzaD12jLbKSrqamuhsaqLT6WTXQw8NOg7A4jVrCEtNBWD3o49y6K9/HXDb81euJHL8eAD2/+EPlDz55Fm12WPm8uWM9PFieH/PKzPM04EM17tiB8Nfd8UO2yN2QvSYNGmS3imYRqCOlRn6dTY5nst1Y4qi4HG5uouwxka1IJs4caK6Tfl//8uJ4uLPi7WmJroaG9XPfHHtWoIcDgBKnnySo//5z6D7cCqL3Y67100EjtGjic3JwRYeji00lKDwcGxhYer39uhoddvUSy4havLkz7c5+XWiuRnb0aMU33nnGdsPTUryOVd/zyszzFOhPynsxLDXczhdnFmgjtXZ9GugOzi1MtgcFY+Ht08eqep/g+6TNVvvuovE888n+ORRgB0PPEDle+/R2dSEcvKUVW9T3noLkpMBqF27lqOvvjpgE51NTWphF5qSgmP0aIIiI7FHRWELD6f6o4987s+s554jceFCrL0e1wSQ8Y1vkPGNb/gUI3L8ePXoXW+1paWMWrKEPcnJtFdX939a2GIhNDmZuFmzfM7Z378vgfr7J/xLCjsx7JWVlZGZmal3GqYQqGM12H7589TmmSiKQldzM4e3bfPKseqjj2gqKaGjoYHOxkY6GxrocDrpbGigq7WVRW+/7XMbdevWkXLxxQB42tvpOHHi8zctFuyRkWpBVnboEGNPPow+6cILCU1MxB4V1f1+ZCRBUVHq9iFxcWqYSXfdxaS77vLql7utDcXt5tMlS2ivqem/oAIssbEknX++ZoVzz89/2gMPsPmOO8Bi8c7l5NHMafffP6gc/P37Eqi/f8K/pLATQggfncupTU9XF51OJ51OZ3cx5nTibmsj9ZJL1G0+e+YZTmzZ4rVNp9PZvUBuUBDKlVeqcY+++ipVH344YK7uQax51nnyYnOACXfeyZjbblOLsyCHA4v18wUUem4aAEhZsuSsC1mLxUJQeDgA0x588LQFVejXv67p0dAeKUuWkLtiRf9F+/33+71oF0ILcvOE3Dwx7LndbmxD8I9GINB6rIb69GYPX/p1xlObvVy8bRv2yEgAtvzP/1BTUNDvMhkWu51L9+5Vi7VN3/nOgMWaNTiYJcXFBIWFAVD60ks4d+/GHhVFcEwM9pgYgqOjsZ/8ipw0iePr1lF0661nzDf/H/8gfs4cn/qm1Rzo9yhoSgrT7r+fxMWLNZ13p/bJX/PQ32Nl5n2V3DxxZnLzhBB+UlxczKxBXDcznGk5VkN5evNUxcXFjAsKovXYse4jZQ0NdJw4QUdDAx319QDkPv20z/HqNm0i+cILAfB0dHgVdUGRkd2F2MkCzNPRge3kEgijv/Y1kr7wBezR0eo2PX8W79ypFnUAmTfccMY8EufPJ9TP141pNQdSliwhefHifguqTZs2afo7emqfLDabz4XuYOIaLZ4ITFLYiWFPLkj2nRZj5Y8V/xWPp/uOzJYWwk8ugwFw7I03aD54UC3QOurru4u2hgYsNhuLT6791trayp5nn+XEyfXoTmUJCkLx8WkDAJ1Op/r3KT/9KZPvvbe7kIuKwho08G438TRLWZzN2FtsNr9fN6bl78tABZXWv6NaxZebJwLDu+++y6WXXjrg+9deey2vvPLKEGZ0elLYiWEvNjZW7xRMw99jNZg7N5MuuAB7ZCT7//AHnHv2fF6k1der16EFjxjBkpMLrwKU/etf1J1c8PpUlqAgFEXBYrEQGxuLbdo0LBYLwbGx3ac1Y2O7v2JiCB4xAltoKHl//atPpzbDUlLUvzv89LSAsx17f183psfvi9ZtahXf33FlX6XP5RoXXHABlZWVXq+53W5uueUWiouL+elPf6pp+4M1bAs7efKEPHmi58kTkyZNYvfu3fLkCR9Wla+pqaGgoOCcnjwxY/p0juzdS31nJ/bTHL061ZqXXuLC732PQx98QNfJn92pulwuPv30U6xWKwsXLqR9/HjsDgcRSUnEjRpFeUMDlogIxmRl4QoKoqCgAIvFQk5ODnu/+EU6588nqp8nT7R3dLCmsBDF4yEkORnXKY++6s2emMiutjYsBQV+3UdERkaq83Kw+4iG9HTsv/gFwac8eaIpLY3gurpB7SN65sBQ7iNaWlooKCjQbB9hs9lwu90D7iNycnIoKysb9D7C4/EA+G0fYbPZ1HaNuo/Q8skTtatWceDXv8ZVXa3+voUmJzPh3nsZccEFgHZPnkhKSlKfPGGxWLjtttvYsmULb731FpMnT8blcsmTJ4xCbp4QZl7NfagNZqwadu2i+eDB7icOHDtG68mvtspKgqOjuWjjRrpaW3kvK8uneD0r/lesXEnHiROfH007eWTNHhOjXqumZb96nmsK9HtqM3fFCk2uCTTKPNUjD63b1Cq+PHnic+d684T6e3dqyaLx792p3G433/jGN/jwww9ZtWoV2dnZfostN08IIfoYitMUiqLQUVdH69Gj3cVaeTltx47R2djIeb0e17TnsceoO/k//VN1OJ2DWo4DICQxEYDUk+ut6UWWxBDCf7pOc92gxWbDFhKC4naz6+GHB36esMXCrocfJnnxYnV/N1DcniV2zkZPUffBBx/4vajzJynsxLA33sclLIzOX3eVKopCR309bceO0V5dTfIXv6i+Z//Xv3j3e9/Dc/KUyalm/PrX2E7+TzN2xgxQFMJHjiR81CjC0tK6/z5yJKFJSVhsNhRF4eJt2864QG1oSgrxeXk+92GwBjsHTncHp1aMMk/1yEPrNrWK7++4RpkD/nS6I/aJ55/P7L/8hbpNm7z2a30oCu1VVdRt2qTefLNq0SLvhbZPuuzkafvBcrvd3HDDDWpRN2PGjLOKMxSksBPDXmc/j00yE1/vKk1evBhbWFifO0sr3nuPuo0baSsv7z4KV16Ou9f/di/Zs0c9xemh+8kEPctkhI8cSXhaWnfhNnKkV9zJd999xtwtJ59qcKYFagd75+Zgnc0c8NeSGL4yyjzVIw+t29Qqvr/jGmUODDVXTY1ftxusnqLu/fff56OPPupT1G3dupX77ruP999/H4A333yTd955h+eee4558+axfPlyZs+ezW233ca0adO4q9cTWLQghZ0Y9g4fPszo0aP1TuOsDOauUoDIiRNpr6zkixs2qMVazSef9Ptw9tCkJMLS0uhsbMSWkABA54UXcuE99xCWkoI1ONhv/dD79KYZ5oBRctQjD63b1Cq+v+MaZQ7409KTN5L0p+c/cz2XYZxJ7+2+0OsJKefC7XZz4403qkXdzJkz+2yTlZWl3jzT1dXFww8/zNsnH+l3//3386tf/YoFCxZgtVo1L+pACjshhpWmk3det1VUEHHymZOJF15ISEJC96nSUaMIHzmSsNTUfm9EsMbH49DoHxY9Tm8KIfTlyzVvcbNmDXqh7XO5lq6Hx+Phxhtv5I033uDVV18lJSWFqlNOCSckJBAUFMSoUaM4fPiwuuZdyskljy6++GJ+9rOf8c4777By5cpzzskXcles3BU77HV0dBDsx6NPQ2kwd5UC5P35z4SPGoVj9Gisdvug2zPzWJ2OGfpllBz1yEPrNrWK7++4RpkDZ8Nvd8XCkN2NvnHjRuac5nILi8VCQ0MDUVFR/PCHPyQ7O5vly5ezbt06Ik8+UnDTpk1ce+21zJw5k9dee+207fnrrljrad8VYhjYeZpTAYEmcdEiIseNO6uiDgJ3rMzQL6PkqEceWrepVXx/xzXKHNBDz+UaoUlJXq+HJidrttTJ7NmzURRlwC+Px6MWWXl5efz4xz/mO9/5jlrUlZeX881vfpOPP/6Yw4cPq+tFak1OxYphr7mfh7ObhS0szKe7SkOSklhcUIDFem7/lzPzWJ2OGfpllBz1yEPrNrWK7++4RpkDejHy5RoTJkwgLi6Ob3/72wC0tbVxzTXX8NRTT5GZmclPfvITHnnkkSF59JgUdmLYi46O1juFs+brXaVZDz541kfpejPzWJ2OGfpllBz1yEPrNrWK7++4RpkDehrqu9F99cwzz/Cb3/yGoJNP0wkLC1OfwgFwzTXXcM011wxJLnIqVgx7kyZN0juFczZUpykCYaz6Y4Z+GSVHPfLQuk2t4vs7rlHmgPjcwYMHmThxIg6HgyuuuELvdAAp7IRQnztpdilLlrB49Wry//EPcn7/e/L/8Q8WFxT49dqTQBmrU5mhX0bJUY88tG5Tq/j+jmuUOSA+N3bsWPbv389TTz2ldyoqORUrRAAx6mkKIYQQQ2PYFnYrVqxgxYoVuN1uAAoLC3E4HMydO5ft27fT0tJCTEwMEyZMoKioCIBx48bh8Xg4dOgQAHPmzGHPnj00NjYSGRnJ1KlT2XDy2ZiZmZnYbDYOHDgAwKxZszhw4AD19fWEh4czc+ZM1q5dC0B6ejphYWHsP7nGWE5ODkeOHKGuro7Q0FDy8vJYvXo1ACNHjiQqKkpdDHHGjBlUVFRQU1OD3W5n7ty5rFmzBo/HQ0pKCnFxceqdOFlZWdTW1lJVVYXNZmP+/PmsXbuWrq4uEhMTSUlJYfv27QBMmTIFp9NJeXk5AIsWLWLDhg24XC7i4+NJT0+nuLgY6D490NraSllZGQDz58+nuLiY1tZWYmNjGTt2LJs3bwa6H4nT2dnJ4cOHAcjPz2fnzp00NzcTHR3NpEmT1P+Vjh07Fug+1A3ddyjt27cPp9NJREQEWVlZrF+/HoCMjAzsdjufffYZALm5uRw8eFAd75ycHAoLC9XxDg8PZ9++fQAkJyeze/dujh8/TkhICHPmzKHg5OKWaWlpREdHq+OdnZ1NZWUlNTU1BAUFMW/ePAoLC3G73SQnJ5OQkKDeuTZt2jTq6uqorKzEarWyYMEC1q1bR2dnJ4mJiaSmprJt2zZ1vBsbGzl27BgACxcupKioiPb2duLi4hg9erQ63hMnTqStrU0d73nz5rF161Z1vMeNG8emTZvUOet2uyktLVXn7O7du2lqaiIqKoopU6aoc3bMmDFYrVZ1zubl5VFSUkJDQwMOh4Ps7GwaGxspKCggIyOD4OBgSkpK1PEuLS2lrq6OsLAwcnNzWbNmDQCjRo0iIiKCvXv3AjBz5kyOHTtGbW0twcHB5Ofns3r1ahRFITU1ldjYWHbv3g3A9OnTqa6uprq6Wp2zPeOdlJREUlISO3bsAGDq1KnU19dTUVGBxWJh4cKFrF+/no6ODhISEhg5ciRbt24FYPLkyTQ3N3P06FH197WoqIi2tjbi4uLIzMxU5+yECRPo6OhQ56xe+4iYmBh1Xuq5j+iZA0O5j+js7KSgoECzfYTL5cLtdg+4j8jJyaGsrGzQ+4iWlhYAv+0jQkND1XaNuo/oua7s1H1EVlYWHR0dtLS04Ha7CQ8PV28GCQ4Oxmq10n7yUYXh4eF0dHTQ1dWFxWIhIiKCpqYmAOx2OzabTd02LCyMzs5Ourq6AIiMjFS3DQoKwm6309bWBkBoaChut1t9gkdkZCTNzc0oikJQUBDBwcG0nnzqTmhoKB6Ph46ODgAiIiJobW3F4/H02TYkJKT7UYwnt3U4HLS1teHxeLDZbISGhqpzIeTk+qCuk8/KdjgctLe3q3kpikJRURGKonjtI3o+7wtZx07WsRv2jh07xshTHocl+heoY2WGfhklRz3y0LpNreL7O65R5sDZONd17IYDWcdOCD85eJYPhR6OAnWszNAvo+SoRx5at6lVfH/HNcocEMYmhZ0QQgghRICQU7FyKnbYa29vl1MDPgrUsTJDv4ySox55aN2mVvH9Hdcoc+Bs9JxmzMjIICwsTO90DKm1tZUjR46c86nYYXvzhBA99u3bx4wZM/ROwxQCdazM0C+j5KhHHlq3qVV8f8c1yhw4G3a7HYvFQm1tLQkJCVhOLp4uUG+8qK2txWq1nvPzgKWwE8Oe0+nUOwXTCNSxMkO/jJKjHnlo3aZW8f0d1yhz4GzYbDZGjhzJsWPH1Duehbfw8HDS09OxnuOjH6WwE8NeRESE3imYRqCOlRn6ZZQc9chD6za1iu/vuEaZA2crIiJCXc5GeLPZbAQFBfnlSKZcYyfX2A17HR0d53zoe7gI1LEyQ7+MkqMeeWjdplbx/R3XKHNADD1Z7kSIQehZwFScWaCOlRn6ZZQc9chD6za1iu/vuEaZA8LYpLATQgghhAgQZ3WNXXt7Ozt27KCmpgaPx+P13uWXX+6XxIQYKhkZGXqnYBqBOlZm6JdRctQjD63b1Cq+v+MaZQ4IYxt0Ybdy5UpuvPFGjh8/3uc9i8WiPntVCLOw2+16p2AagTpWZuiXUXLUIw+t29Qqvr/jGmUOCGMb9KnYO++8k2uuuYbKyko8Ho/XlxR1wox6HgouzixQx8oM/TJKjnrkoXWbWsX3d1yjzAFhbIMu7Kqrq1m2bBlJSUla5COEEEIIIc7SoJc7ufXWW5k3bx633XabVjkNKVnuRLS0tOBwOPROwxQCdazM0C+j5KhHHlq3qVV8f8c1yhwQQ0/TR4o9/fTTXHPNNaxZs4asrKw+5/z/53/+Z7AhhdDVwYMHmT59ut5pmEKgjpUZ+mWUHPXIQ+s2tYrv77hGmQPC2AZd2P3f//0fH3zwAaGhoXz66adeqyRbLBYp7ITp1NfX652CaQTqWJmhX0bJUY88tG5Tq/j+jmuUOSCMbdDX2P3sZz/joYcewul0cvjwYUpLS9WvQ4cOaZHjGX35y18mNjaWr3zlK7q0L8wtPDxc7xRMI1DHygz9MkqOeuShdZtaxfd3XKPMAWFsg77GbsSIEWzatImxY8dqldOgffrppzQ1NfG3v/2NV199dVCflWvshNvtxmaz6Z2GKQTqWJmhX0bJUY88tG5Tq/j+jmuUOSCGnqaPFLvpppt45ZVXzjo5LZx//vlERkbqnYYwqcLCQr1TMI1AHSsz9MsoOeqRh9ZtahXf33GNMgeEsQ36Gju3282vf/1r3n//faZPn97n5only5cPKt7q1av5zW9+w5YtW6isrOT111/nyiuv9NpmxYoV/OY3v6Gqqors7Gyeeuop8vLyBpu6EEIIIURAG3Rht3PnTmbOnAnArl27vN7rfSOFr1paWsjOzubWW2/lqquu6vP+K6+8wrJly3j22WeZPXs2TzzxBEuWLGH//v0kJiYOuj0hTpWenq53CqYRqGNlhn4ZJUc98tC6Ta3i+zuuUeaAMLZBF3affPKJXxNYunQpS5cuHfD95cuXc/vtt3PLLbcA8Oyzz/LOO+/w17/+lfvuu2/Q7blcLlwul/p9Y2Pj4JMWAUUuSPZdoI6VGfpllBzl5gn94hplDghjG3Rh19vatWvJzc0lJCTEX/l46ejoYMuWLfzkJz9RX7NarSxevJj169efVczHHnuMhx56qM/rhYWFOBwO5s6dy/bt22lpaSEmJoYJEyZQVFQEwLhx4/B4POrdv3PmzGHPnj00NjYSGRnJ1KlT2bBhAwCZmZnYbDYOHDgAwKxZszhw4AD19fWEh4czc+ZM1q5dC3T/LywsLIz9+/cDkJOTw5EjR6irqyM0NJS8vDxWr14NwMiRI4mKimLPnj0AzJgxg4qKCmpqarDb7cydO5c1a9bg8XhISUkhLi5OPbKalZVFbW0tVVVV2Gw25s+fz9q1a+nq6iIxMZGUlBS2b98OwJQpU3A6nZSXlwOwaNEiNmzYgMvlIj4+nvT0dIqLiwGYNGkSra2tlJWVATB//nyKi4tpbW0lNjaWsWPHsnnzZgDGjx9PZ2cnhw8fBiA/P5+dO3fS3NxMdHQ0kyZNYuPGjQDqDToHDx4EYPbs2ezbtw+n00lERARZWVnqPMjIyMBut6uP3MnNzeXgwYPqeOfk5KjXp6SnpxMeHs6+ffuA7mI/LS2N48ePExISwpw5cygoKAAgLS2N6Ohodbyzs7OprKykpqaGoKAg5s2bR2FhIW63m+TkZBISEti5cycA06ZNo66ujsrKSqxWKwsWLGDdunV0dnaSmJhIamoq27ZtU8e7sbGRY8eOAbBw4UKKiopob28nLi6O0aNHq+M9ceJE2tra1PGeN28eW7duVcd73LhxbNq0SZ2zbreb0tJSdc7u3r2bpqYmoqKimDJlijpnx4wZg9VqVedsXl4eJSUlNDQ04HA4yM7OZuXKlWRkZJCRkUFwcDAlJSXqeJeWllJXV0dYWBi5ubmsWbMGgFGjRhEREcHevXsBmDlzJseOHaO2tpbg4GDy8/NZvXo1iqKQmppKbGwsu3fvBmD69OlUV1dTXV2tztme8U5KSiIpKYkdO3YAMHXqVOrr66moqMBisbBw4ULWr19PR0cHCQkJjBw5kq1btwIwefJkmpubOXr0KAAej4cjR47Q1tZGXFwcmZmZ6pydMGECHR0d6pzVax+xZ88eIiIiAH33ET1zYCj3ER9//DGpqama7SPKy8u57rrrBtxH5OTkUFZWNuh9RFlZGTfccIPf9hHr1q1jxIgRht5HrFu3Th3vQNpHLFiwgM2bN+u2j2hpacFnyjmIjIxUDh48eC4hvADK66+/rn5fXl6uAMq6deu8trv77ruVvLw89fsvfOELSnx8vBIWFqakpaX12b639vZ2xel0ql9Hjx5VAMXpdPqtH8JcPv30U71TMI1AHSsz9MsoOeqRh9ZtahXf33GNMgfE0HM6nT7XKud0xE4Z3Eopmvnoo4983jYkJESzI4zCnHJycvROwTQCdazM0C+j5KhHHlq3qVV8f8c1yhwQxnZOhZ3W4uPjsdlsVFdXe71eXV1NcnLyOcVesWIFK1aswO12A3IqdjifinU4HISFhcmpWB9PxSYmJgbcaZYRI0bQ1tZm6FOxFRUVdHV1AfruIz788EMSExOHdB/x6aefEhUVpdk+wul0cumll/r9VGxdXR1XXXWV3/YRO3fuVNexM+o+Qk7FmvxU7D/+8Q+lublZURRFcbvdypEjR84lXJ9TsYqiKHl5ecr3v/999Xu3262kpaUpjz322Dm11WMwhzdFYJLTG74L1LEyQ7+MkqOcitUvrlHmgBh6mp6Kff7553nllVc4cuQIUVFRFBcXc9dddxEUFERmZqZ6BMxXzc3NavUPUFpayrZt2xgxYgTp6eksW7aMm266idzcXPLy8njiiSdoaWlR75IV4lzJqXnfBepYmaFfRslRjzy0blOr+P6Oa5Q5IIzN50eKud1urrrqKlauXMmll17K+PHjqa+v5/3336e+vp6nnnqKW2+9ddCF3aeffsoFF1zQ5/WbbrqJF154AYCnn35aXaB4xowZPPnkk8yePXtQ7QxEHikmhBBCCCMbTK3ic2H329/+luXLl/PJJ58wceJE9XWPx8Py5cv52c9+RldX16ALO730vsaupKSEd955R66xG6bX2MlyJ75fP/Pyyy8H7HInDofD0NfYGWW5kzfffHPIlzv5z3/+I8udTJlCYWGhLHcyjK+xu/TSS307COXr+d2pU6cqL7300oDv//rXv1YsFouv4QxDrrETct2K7wJ1rMzQL6PkKNfY6RfXKHNADL3B1CrW05d9nzt48OBpT3/efffdeDweX8MJYRhpaWl6p2AagTpWZuiXUXLUIw+t29Qqvr/jGmUOCGPzubBzOBzU1tYO+P62bdu49dZb/ZKUEEMpOjpa7xRMI1DHygz9MkqOeuShdZtaxfd3XKPMAWFsPhd2ixYt4tlnn+33vaqqKr761a/yt7/9zW+JCTFUeq6NEWcWqGNlhn4ZJUc98tC6Ta3i+zuuUeaAMDaflzt58MEHyc/Px2KxcPfddzNu3DhOnDjBW2+9xS9+8QtGjx6tXpRqBrJAsdw80fvmid27d8vNEz5cGN3zcwu0C6M9Hg9FRUWGvnmiublZnZd67iN6xmEo9xEVFRUUFBRoevOE2+1W9xEjR47iaKObPQeOEBFs4fLzZ1F+7OhZ3TwB+G0fceLECbVdo+4j5OYJ/Rco9vmuWIDVq1dz6623qhMAICgoiB/84AfceeedjB492nTX2clyJ6KhoYGYmBi90zCFQB0rM/TLKDlqmYfbo7Cr7AQnmtsZERHKtPQR2KwWzfveO37h3kr++P4ejje1q+/HR4by3SVTmD855azj+jtPMbwMplYZ1ALFCxcupKSkhKKiIkpLS4mKiiI/P58RI0bQ0tLCgw8+eE6JC6GHyspK2Vn6KFDHygz9MkqOWuVxuoIqDm0LmsrKSqKio/loxzF+998dfd4/3tTOI68Wc/9XcgZV3Pl7rIwyB4Sx+XyNnfoBq5U5c+bwta99jUsvvVRdU8fhcEhhJ0yppqZG7xRMI1DHygz9MkqOWuTxya5yHnm12Kuog88LqtV7Kvzantuj4Op009LeSUOLiwNllSz9xbv9FnW9PfvBHtwen09y+X2sjDIHhLEN+pFiQgSaoCD5NfBVoI6VGfp1rjkOdJpzqPPoTVEUGts6+e2b20+73dv723Gv3EWXR6HL7eG7S6YSFtydx5tFpawvqaHL7aHL7aHT7aHL3b1dp8fD8pvmEh8VCsCfP9rLfzYcYhC1mZfaxnZ2lZ0gOyPOp+39Pa/MME+F/obtLJGbJ+Tmid6rysvNE75dGN3V1UVBQUFAXhht9Jsnxo4de9Y3T7y36TNe3VJDU8fnFU1ksIVrZyXzhezRg9pH9MyBgfYR7e3thEePIGpEEtWHu3/HJk2axMe7Kth6sIaWTgVLiIOa+maaXR7cPhRZHW54c9MR9fuJoSeICLYyduxY9pVVs7W0bsDPFq5bT2yYlYyMDFpaWvot6qwWsFotdPmQTNHWXWRnLPJ5HwH+u3kiOTlZbp6QmyfOaFA3TwQiuXlCFBYWMn/+fL3TMIVAHSsz9OtscyzcW8kjrxYP+L4v1415FIXG1g4aWjo4VrJdzePD7cfYfqSOhhYX9c0uGlo6aGhx0XWyevrvfRcTYrcB8Nv/bufD7ccGnX+P/IlJjEuOxm6z8KXc0ThC7ADsr2igvK4Fu81KkM1KkM3S6+9WxiRFEhzUnUNLeyeuLjdB1s+3DbJZWbd2LZEjJ3PPSxvOmMevb5jj8xE7f88rM8xToQ3Nbp4QIhCZ5fnGRhCoY2WGfp1Njp1uDytW7j7tNk+/t5v8icnqadkPth9l++E66ls6aGh2Ud/SXbB5Th4DuHueQ/3sjiN1AxZrEaFBNLV1qoXdvInJpMaGExsRQqwjhBhHCLGOYG586hOf+vLlvMx+C6qJqTFMTI3xKYYj1I4De5/X3W4309JHEBcZQl2Ta8DPJ0R1n8L2lb/nlRnmqdCfFHZi2EtOTtY7BdMI1LE6m37565o1X50px44uN87WDhpbO3C2dpKdMYIv/fK9M8atb3FRfKiWWeMSAdhVdoKPdpT3u21kmJ2I2AT1+3mTkkkd4WBERAgxjmC1YItxBKtHyXrkT0wif2JSn5iv3X0Rtz9bcNqCKiYsaFAF1WAlJ3cXtt9bMvW0Rze/c9GUQf2M/f37Eqi/f8K/pLATw15CQsKZNxKA9mM11MVSj8H2y59rnfWny+2hsa2DxtZOtVirOO5mwgQFi6V7PP6++jM2lFSfLOQ6aO/0Pprz2j0X+dxeRf3n1+/Mm5RM2ggHMY6QkwVb9xG2aEcwdpuVEydOqNvOmZDEnAl9i7XBcITaz1hQ3bJojKbzoOfnP39yCvd/JafPzzYhKpTvXDT4n62/f19kXyV8IYWdGPZ27tzJokWL9E7DFLQcK62LpdPxtV8eRRn0Wmduj0Jz++cFWmNrB862k39v6+SbX5ikFmtPvruTT3ZV0Orq6rf9y2ZPIDyke7dd29jGZ5VOr/dtVgvR4cFEhQXj6nTz+Ddmc+/fN56xXxkJn1+zM3t8ErPHD1ysaTEHzlRQuWtKgPF+bbO33n2aPzmF/InJfvkPhr/HSvZVwhdS2AkhdHU2xZIWFEXBfXI5jc6e5TJOLqHR5fYwMj6Cpb9494xxHn9jG3MmJBFk614m9NFXt7B2f/WA2399wTj1RgCPR1GLOgsQFR5MVJidqPBgOlsb6XJ//mSfL503mrkTk9RCLjo8mPCQILVIBIgOD/H7dWNaOV1BVVBTMqS52KwWn2+QEMJohm1hJ8udyHInPcudZGRkyHIn+LaUQVtbm1+XOwmy23l4VX2f389T/eGtrXiOH2DhggWsePVjGlrdhIY7CAkLo6q6FrdHISo6FndXBwtS3epSBg+9uIpjDR1YbHasQXaam1txKwpWmx0FhW/nhKjj/4P//Yj9tR0D5nDv/PAz5gnQ0eXhhTc/YXxcEHPmzKGzrQmA0CALsRGhWN0uwuwWEmOjiAoLorBwLaFBFmbNmsXM+C7Sc8OJiwpnzqwcNqzvXjoiPT2Fjo44tm7qnu85OTm46o7SXlcHoaFMPM0+4uYFmfzu3X0D5nt9fjqFa7o/68s+omcOaLmPiIns4vDhXRQeQX1GuZbPilUUxetZsf0tiVRWVjbofURHR/d88tc+IioqSpY7keVOzkiWO5HlToa9kpISJkyYoHcapnCuY9Xi6qSqvo0WVyfTR8fhURSfjoLB58tM3PX8OvYc678YDA8O4vV7l6jf//QfG9ly6Hi/21ot8N7PLwW6+/XP7U2s3VfltY3dZj25dIaFv//gC6zdV8Xjb2w7Y64/umw6F80YBUB7R5e69Ma5OJex7+8099leN6bH74vWbWoV399xZV81fMlyJ0IMQmVlpewsfTSYsSrYXcHB6kaq6lupbGilqr6VxrZOAEZEhPB/dy3GarFw75UzfCqWTjR3FyVzJiSRkRjptV5Zz589S2v0uG7eOC6ema5u23t9M7vNgqJ034xQWVnJjy6by7LLpqvvWS0Wr9OaAHGRoT71PSnm86N7ocH+2c2eyzz153Vjevy+aN2mVvH9HVf2VcIXUtiJYc9qPbcjKUai9V2lFouFxtYOqhpaqaxv7fVnG65ON7+/Za667dtbjrDjyIk+MaLDg0mICsPt8WCzWn0ulkZEdG933byxPufr63VSVqsVR2jf9c1OpcVaZ74613nqr+vG9Ph90bpNreL7O24g7auEduRUrJyKFQHCX3eVdro91DS0UdnQyonmdi7KHqW+9/P/K2LTgdoBP/vWTy5W1y97fWMp5SdaSIkNJznm5FdsmHqjQA+3R+GGJ1edsVj6250XDsnSJ2fijyc5CCHEYMipWCEGYd26dcydO/fMGxrYQMVGz12l9105gwuy0gDU0489PtpxjO2H69Sjb8cb2+n5354FOH9qqlqsdbZ0L68xIiLEq2BLiQ0nOTYca6+4X56d6VPuWiwMO1iDmQP+XutMixy1pEceWrepVXx/xzXKHBDGJoWdGPY6Ozv1TuGcuD0Kf3x/z2m3+dUb2/hkVzlVzjZqne288qPFarG27XDfx0KF2G2kxHQXa62uLnXb8zPsPHTThYSeci3budKrWOox2Dngz2vWfGWUeapHHlq3qVV8f8c1yhwQxjZsCztZ7kSWO+lZyiAyMtLUy51EjpzsVQwNZGOvU6hvf7iazOQYpkyZQkzXcRaODmbi6CQSo0JpPl5OuN3C7NmzKCkpYfvmDepSBi0Nx9m4rlCzpQweWDqK6vYgdpUcIiLYwqXzZ1JbW0NBQYmmSxnEx8dTVFR0VksZzDm5jyg8ou0+Ijg4WJ2Xeu4jamtrNV/u5NR9RFNTk6bLnTQ2Nmqy3EnPUzr8tY/weDyy3Iksd3JGco2dXGM37DmdTqKjo/VO46x9squcX72+7YzbXZQ9kkVTU08eiQvDdhYXYpt9rAZihn4ZJUc98tC6Ta3i+zuuUeaAGHqDqVXkFhsx7PX8j9iseu4WPZPF00eSOzaBtDjHWRV1YP6xGogZ+mWUHPXIQ+s2tYrv77hGmQPC2KSwE8LkepbgOB2jPDZKCCGEtqSwE8PelClT9E7hnPTcVXo6/rqr1OxjNRAz9MsoOeqRh9ZtahXf33GNMgeEsUlhJ4a9xsZGvVM4Zz13lcafsthvQlSoX9dVC4Sx6o8Z+mWUHPXIQ+s2tYrv77hGmQPC2IbtXbFC9Dh27Jh6d52ZDcUSHIEyVqcyQ7+MkqMeeWjdplbx/R3XKHNAGJsUdkIEEH89NkoIIYQ5yXInstzJsHfqkxjEwAJ1rMzQL6PkqEceWrepVXx/xzXKHBBDT5Y7EWIQehaOFGcWqGNlhn4ZJUc98tC6Ta3i+zuuUeaAMLZheypWnjwhT57oWVXe5XKZ+skTQ7mq/L59+2hvbw+4VeU9Hs9ZP3liqPYRx48fN8STJ3rmwFDuIw4dOkR7e7tm+4jy8nJyc3P9/uSJsrIyZs+e7bd9REVFhTx5Qp48cUZyKlZOxQ57u3btYtq0aXqnYQqBOlZm6JdRctQjD63b1Cq+v+MaZQ6IoSenYoUYhNGjR+udgmkE6liZoV9GyVGPPLRuU6v4/o5rlDkgjE0KOzHs9Zy+EGcWqGNlhn4ZJUc98tC6Ta3i+zuuUeaAMDYp7IQQQgghAoQUdmLYmzhxot4pmEagjpUZ+mWUHPXIQ+s2tYrv77hGmQPC2KSwE8NeW1ub3imYRqCOlRn6ZZQc9chD6za1iu/vuEaZA8LYpLATw17PkgDizAJ1rMzQL6PkqEceWrepVXx/xzXKHBDGJoWdEEIIIUSAkHXsZB27Ya+rq4ugoGG7VvegBOpYmaFfRslRjzy0blOr+P6Oa5Q5IIaerGMnxCD0rDQuzixQx8oM/TJKjnrkoXWbWsX3d1yjzAFhbFLYiWGvtbVV7xRMI1DHygz9MkqOeuShdZtaxfd3XKPMAWFsUtiJYS82NlbvFEwjUMfKDP0ySo565KF1m1rF93dco8wBYWxyjZ1cYzfstba2Eh4erncaphCoY2WGfhklRz3y0LpNreL7O65R5oAYeoOpVYbtVZgrVqxgxYoVuN1uAAoLC3E4HMydO5ft27fT0tJCTEwMEyZMoKioCIBx48bh8Xg4dOgQAHPmzGHPnj00NjYSGRnJ1KlT2bBhAwCZmZnYbDYOHDgAwKxZszhw4AD19fWEh4czc+ZM1q5dC0B6ejphYWHs378fgJycHI4cOUJdXR2hoaHk5eWxevVqAEaOHElUVBR79uwBYMaMGVRUVFBTU4Pdbmfu3LmsWbMGj8dDSkoKcXFx7Nq1C4CsrCxqa2upqqrCZrMxf/581q5dS1dXF4mJiaSkpLB9+3YApkyZgtPppLy8HIBFixaxYcMGXC4X8fHxpKenq4+3mTRpEq2treqt+PPnz6e4uJjW1lZiY2MZO3YsmzdvBmD8+PF0dnZy+PBhAPLz89m5cyfNzc1ER0czadIkNm7cCMDYsWMBOHjwIACzZ89m3759OJ1OIiIiyMrKYv369QBkZGRgt9v57LPPAMjNzeXgwYPqeOfk5FBYWKiOd3h4OPv27QPA5XKRlpbG8ePHCQkJYc6cORQUFACQlpZGdHS0Ot7Z2dlUVlZSU1NDUFAQ8+bNo7CwELfbTXJyMgkJCezcuROAadOmUVdXR2VlJVarlQULFrBu3To6OztJTEwkNTWVbdu2qePd2NjIsWPHAFi4cCFFRUW0t7cTFxfH6NGj1fGeOHEibW1t6njPmzePrVu3quM9btw4Nm3apM5Zt9tNaWmpOmd3795NU1MTUVFRTJkyRZ2zY8aMwWq1qnM2Ly+PkpISGhoacDgcZGdn8+9//5uMjAwyMjIIDg6mpKREHe/S0lLq6uoICwsjNzeXNWvWADBq1CgiIiLYu3cvADNnzuTYsWPU1tYSHBxMfn4+q1evRlEUUlNTiY2NZffu3QBMnz6d6upqqqur1TnbM95JSUkkJSWxY8cOAKZOnUp9fT0VFRVYLBYWLlzI+vXr6ejoICEhgZEjR6rXKE2ePJnm5maOHj0KgMfjweFw0NbWRlxcHJmZmeqcnTBhAh0dHeqc1WsfsWfPHiIiIgB99xFvvvkmGRkZQ7qPePPNN0lNTdVsH1FeXs5111034D4iJyeHsrKyQe8jysrKuOGGG/y2jygsLGTEiBGG3kesW7dOHe9A2kcsWLCAzZs367aPaGlpwVdyxE6O2A17BQUFLFq0SO80TCFQx8oM/TJKjnrkoXWbWsX3d1yjzAEx9OSuWCEGYdy4cXqnYBqBOlZm6JdRctQjD63b1Cq+v+MaZQ4IY5PCTgx7PafjxZkF6liZoV9GyVGPPLRuU6v4/o5rlDkgjE0KOzHs9VxbIs4sUMfKDP0ySo565KF1m1rF93dco8wBYWxS2AkhhBBCBAi5eUJunhj2XC4XISEheqdhCoE6Vmbol1Fy1CMPrdvUKr6/4xplDoihJzdPCDEIPbfNizML1LEyQ7+MkqMeeWjdplbx/R3XKHNAGJsUdmLYa2pq0jsF0wjUsTJDv4ySox55aN2mVvH9Hdcoc0AYmxR2YtiTU/C+C9SxMkO/jJKjHnlo3aZW8f0d1yhzQBibXGMn19gNe3Ldiu8CdazM0C+j5CjX2OkX1yhzQAw9ucZOiEHoeXyLOLNAHSsz9MsoOeqRh9ZtahXf33GNMgeEsUlhJ4QQQggRIKSwE8PemDFj9E7BNAJ1rMzQL6PkqEceWrepVXx/xzXKHBDGJoWdGPasVvk18FWgjpUZ+mWUHPXIQ+s2tYrv77hGmQPC2GSWiGHvwIEDeqdgGoE6Vmbol1Fy1CMPrdvUKr6/4xplDghjk8JOCCGEECJAyHInstzJsNfW1kZYWJjeaZhCoI6VGfpllBz1yEPrNrWK7++4RpkDYugNu+VO3n77bSZOnMj48eP585//rHc6wmRKSkr0TsE0AnWszNAvo+SoRx5at6lVfH/HNcocEMYWpHcC56qrq4tly5bxySefEB0dzXnnnceXv/xl4uLi9E5NmERDQ4PeKZhGoI6VGfpllBz1yEPrNrWK7++4RpkDwthMf8SuqKiIqVOnkpaWRkREBEuXLuWDDz7QOy1hIg6HQ+8UTCNQx8oM/TJKjnrkoXWbWsX3d1yjzAFhbLoXdqtXr+ayyy4jNTUVi8XCG2+80WebFStWkJGRQWhoKLNnz6aoqEh9r6KigrS0NPX7tLQ0ysvLhyJ1ESCys7P1TsE0AnWszNAvo+SoRx5at6lVfH/HNcocEMame2HX0tJCdnY2K1as6Pf9V155hWXLlvHggw9SXFxMdnY2S5YsoaamZogzFYFq3bp1eqdgGoE6Vmbol1Fy1CMPrdvUKr6/4xplDghj0/0au6VLl7J06dIB31++fDm33347t9xyCwDPPvss77zzDn/961+57777SE1N9TpCV15eTl5e3oDxXC4XLpdL/d7pdALdd5yI4amlpUV+/j4K1LEyQ7+MkqMeeWjdplbx/R3XKHNADL2en7tPC5koBgIor7/+uvq9y+VSbDab12uKoig33nijcvnllyuKoiidnZ3KuHHjlGPHjilNTU3KhAkTlOPHjw/YxoMPPqgA8iVf8iVf8iVf8iVfpvo6evToGWsp3Y/Ync7x48dxu90kJSV5vZ6UlMS+ffsACAoK4ne/+x0XXHABHo+He+6557R3xP7kJz9h2bJl6vcNDQ2MHj2asrIyoqOjtemIMLRZs2axadMmvdMwhUAdKzP0yyg56pGH1m1qFd+fcRsbGxk1ahRHjx6VNVeHIUVRaGpqIjU19YzbGrqw89Xll1/O5Zdf7tO2ISEhhISE9Hk9OjpaflmGKZvNJj97HwXqWJmhX0bJUY88tG5Tq/haxI2KijLEPBBDz9eDT7rfPHE68fHx2Gw2qqurvV6vrq4mOTlZp6xEoLnjjjv0TsE0AnWszNAvo+SoRx5at6lVfKP8zMTwYqhHilksFl5//XWuvPJK9bXZs2eTl5fHU089BYDH4yE9PZ3vf//73HfffefcpjxSTAghhNHJv1XCV7qfim1ububAgQPq96WlpWzbto0RI0aQnp7OsmXLuOmmm8jNzSUvL48nnniClpYW9S7ZcxUSEsKDDz7Y7+lZIYQQwgjk3yrhK92P2H366adccMEFfV6/6aabeOGFFwB4+umn+c1vfkNVVRUzZszgySefZPbs2UOcqRBCCCGEsele2AkhhBBCCP8w9M0TQgghhBDCd1LYCSGEEEIECCnshBBCCCEChBR2QgghhBABQgq7ARw9epTzzz+fKVOmMH36dP7973/rnZIQQgjhpaGhgdzcXGbMmMG0adP405/+pHdKQmdyV+wAKisrqa6uZsaMGVRVVXHeeedRUlKCw+HQOzUhhBACALfbjcvlIjw8nJaWFqZNm8bmzZtP+8x0Edh0X6DYqFJSUkhJSQEgOTmZ+Ph4Tpw4IYWdEEIIw7DZbISHhwPgcrlQFAU5XjO8Beyp2NWrV3PZZZeRmpqKxWLhjTfe6LPNihUryMjIIDQ0lNmzZ1NUVNRvrC1btuB2uxk1apTGWQshhBhO/PFvVUNDA9nZ2YwcOZK7776b+Pj4IcpeGFHAFnYtLS1kZ2ezYsWKft9/5ZVXWLZsGQ8++CDFxcVkZ2ezZMkSampqvLY7ceIEN954I88999xQpC2EEGIY8ce/VTExMWzfvp3S0lJefvllqqurhyp9YUDD4ho7i8XC66+/zpVXXqm+Nnv2bGbNmsXTTz8NgMfjYdSoUdx5553cd999QPdh7S9+8Yvcfvvt3HDDDXqkLoQQYpg423+revve977HhRdeyFe+8pWhSlsYTMAesTudjo4OtmzZwuLFi9XXrFYrixcvZv369QAoisLNN9/MhRdeKEWdEEKIIefLv1XV1dU0NTUB4HQ6Wb16NRMnTtQlX2EMw7KwO378OG63m6SkJK/Xk5KSqKqqAmDt2rW88sorvPHGG8yYMYMZM2awc+dOPdIVQggxDPnyb9WRI0dYsGAB2dnZLFiwgDvvvJOsrCw90hUGIXfFDmD+/Pl4PB690xBCCCEGlJeXx7Zt2/ROQxjIsDxiFx8fj81m63OBaXV1NcnJyTplJYQQQnxO/q0SZ2NYFnbBwcGcd955rFq1Sn3N4/GwatUq8vPzdcxMCCGE6Cb/VomzEbCnYpubmzlw4ID6fWlpKdu2bWPEiBGkp6ezbNkybrrpJnJzc8nLy+OJJ56gpaWFW265RceshRBCDCfyb5Xwt4Bd7uTTTz/lggsu6PP6TTfdxAsvvADA008/zW9+8xuqqqqYMWMGTz75JLNnzx7iTIUQQgxX8m+V8LeALeyEEEIIIYabYXmNnRBCCCFEIJLCTgghhBAiQEhhJ4QQQggRIKSwE0IIIYQIEFLYCSGEEEIECCnshBBCCCEChBR2QgghhBABQgo7IYQQQogAIYWdEEIIIUSAkMJOCCGEECJASGEnhBBCCBEgpLATQgghhAgQUtgJIYQQQgQIKeyEEEIIIQKEFHZCCCGEEAFCCjshhBBCiAARpHcCevN4PFRUVBAZGYnFYtE7HSGEEEIIL4qi0NTURGpqKlbr6Y/JDfvCrqKiglGjRumdhhBCCCHEaR09epSRI0eedpthX9hFRkYC3YMVFRWlczZCD/v372fixIl6p2EKgTpWZuiXUXLUIw+t29Qqvr/jGmUOiKHX2NjIqFGj1JrldIZ9Yddz+jUqKkoKu2GqtbVVfvY+CtSxMkO/jJKjHnlo3aZW8f0d1yhzQOjHl0vG5OYJMezZ7Xa9UzCNQB0rM/TLKDnqkYfWbWoV399xjTIHhLFZFEVR9E5CT42NjURHR+N0OuV/QkIIIYQwnMHUKnLETgx7a9as0TsF0wjUsTJDv4ySox55aN2mVvH9Hdcoc0AYmxR2YtjzeDx6p2AagTpWZuiXUXLUIw+t29Qqvr/jGmUOCGOTwk4MeykpKXqnYBqBOlZm6JdRctQjD63b1Cq+v+MaZQ4IY5PCTgx7cXFxeqdgGoE6Vmbol1Fy1CMPrdvUKr6/4xplDghjk8JODHu7du3SOwXTCNSxMkO/jJKjHnlo3aZW8f0d1yhzQBibFHZCCCGEEAFCCjsx7GVlZemdgmkE6liZoV9GyVGPPLRuU6v4/o5rlDkgjE0KOzHs1dbW6p2CaQTqWJmhX0bJUY88tG5Tq/j+jmuUOSCMTQo7MexVVVXpnYJpBOpYmaFfRslRjzy0blOr+P6Oa5Q5IIzNsIWd2+3m/vvvJzMzk7CwMMaOHcsjjzxC7wdlKIrCAw88QEpKCmFhYSxevJjPPvtMx6yFGdlsNr1TMI1AHSsz9MsoOeqRh9ZtahXf33GNMgeEsRn2kWK//OUvWb58OX/729+YOnUqmzdv5pZbbuHRRx/lf/7nfwB4/PHHeeyxx/jb3/5GZmYm999/Pzt37mTPnj2Ehob61I48UkwIIYQQRhYQjxRbt24dV1xxBZdeeikZGRl85Stf4aKLLqKoqAjoPlr3xBNP8POf/5wrrriC6dOn8+KLL1JRUcEbb7yhb/LCVNauXat3CqYRqGNlhn4ZJUc98tC6Ta3i+zuuUeaAMDbDFnZz585l1apVlJSUALB9+3YKCwtZunQpAKWlpVRVVbF48WL1M9HR0cyePZv169cPGNflctHY2Oj1JYa3rq4uvVMwjUAdKzP0yyg56pGH1m1qFd/fcY0yB4SxBemdwEDuu+8+GhsbmTRpEjabDbfbzaOPPsr1118PfH4RaVJSktfnkpKSTnuB6WOPPcZDDz3U5/XCwkIcDgdz585l+/bttLS0EBMTw4QJE9SjhOPGjcPj8XDo0CEA5syZw549e2hsbCQyMpKpU6eyYcMGADIzM7HZbBw4cACAWbNmceDAAerr6wkPD2fmzJnq/77S09MJCwtj//79AOTk5HDkyBHq6uoIDQ0lLy+P1atXAzBy5EiioqLYs2cPADNmzKCiooKamhrsdjtz585lzZo1eDweUlJSiIuLUxe1zMrKora2lqqqKmw2G/Pnz2ft2rV0dXWRmJhISkoK27dvB2DKlCk4nU7Ky8sBWLRoERs2bMDlchEfH096ejrFxcUATJo0idbWVsrKygCYP38+xcXFtLa2Ehsby9ixY9m8eTMA48ePp7Ozk8OHDwOQn5/Pzp07aW5uJjo6mkmTJrFx40YAxo4dC8DBgwcBmD17Nvv27cPpdBIREUFWVpZaxGdkZGC329VrLHNzczl48KA63jk5ORQWFqrjHR4ezr59+wCIjIxk9+7dHD9+nJCQEObMmUNBQQEAaWlpREdHq+OdnZ1NZWUlNTU1BAUFMW/ePAoLC3G73SQnJ5OQkMDOnTsBmDZtGnV1dVRWVmK1WlmwYAHr1q2js7OTxMREUlNT2bZtmzrejY2NHDt2DICFCxdSVFREe3s7cXFxjB49Wh3viRMn0tbWpo73vHnz2Lp1qzre48aNY9OmTeqcdbvdlJaWqnN29+7dNDU1ERUVxZQpU9Q5O2bMGKxWqzpn8/LyKCkpoaGhAYfDQXZ2NrW1tRQUFJCRkUFwcLD6H6/c3FxKS0upq6sjLCyM3Nxc9YHlo0aNIiIigr179wIwc+ZMjh07Rm1tLcHBweTn57N69WoURSE1NZXY2Fh2794NwPTp06murqa6ulqdsz3jnZSURFJSEjt27ABg6tSp1NfXU1FRgcViYeHChaxfv56Ojg4SEhIYOXIkW7duBWDy5Mk0Nzdz9OhRAOLj4ykqKqKtrY24uDgyMzPVOTthwgQ6OjrUOavXPiI4OFidl3ruI3rmwFDuI5qamigoKNBsH9HY2Ijb7R5wH5GTk0NZWdmg9xEnTpwA8Ns+wuPxqO0adR+xbt06dbwDaR+xYMECNm/erNs+oqWlBV8Z9hq7f/7zn9x999385je/YerUqWzbto0f/vCHLF++nJtuuol169Yxb948KioqvJ6fd+2112KxWHjllVf6jetyuXC5XOr3jY2NjBo1Sq6xG8YaGhqIiYnROw1TCNSxMkO/jJKjHnlo3aZW8f0d1yhzQAy9gLjG7u677+a+++7jq1/9KllZWdxwww3cddddPPbYYwAkJycDUF1d7fW56upq9b3+hISEEBUV5fUlhreeo5TizAJ1rMzQL6PkqEceWrepVXx/xzXKHBDGZtjCrrW1FavVOz2bzYbH4wG6D1EmJyezatUq9f3GxkY2btxIfn7+kOYqhBBCCGEEhr3G7rLLLuPRRx8lPT2dqVOnsnXrVpYvX86tt94KgMVi4Yc//CG/+MUvGD9+vLrcSWpqKldeeaW+yQtTmTJlit4pmEagjpUZ+mWUHPXIQ+s2tYrv77hGmQPC2Ax7xO6pp57iK1/5Ct/73veYPHkyP/7xj/n2t7/NI488om5zzz33cOedd/Ktb32LWbNm0dzczMqVK31ew04IAKfTqXcKphGoY2WGfhklRz3y0LpNreL7O65R5oAwNsMWdpGRkTzxxBMcOXKEtrY2Dh48yC9+8QuCg4PVbSwWCw8//DBVVVW0t7fz0UcfMWHCBB2zFmbUc1efOLNAHSsz9MsoOeqRh9ZtahXf33GNMgeEsRm2sBNCCCGEEINj2OVOhoo8UkwIIYQQRhYQy50IMVR6FoMUZxaoY2WGfhklRz3y0LpNreL7O65R5oAwNinsxLDXe8FqcXqBOlZm6JdRctQjD63b1Cq+v+MaZQ4IY5PCTgx78fHxeqdgGoE6Vmbol1Fy1CMPrdvUKr6/4xplDghjk8JODHvp6el6p2AagTpWZuiXUXLUIw+t29Qqvr/jGmUOCGOTwk4Mez0PzhZnFqhjZYZ+GSVHPfLQuk2t4vs7rlHmgDA2KeyEEEIIIQKEFHZi2Js0aZLeKZhGoI6VGfpllBz1yEPrNrWK7++4RpkDwtiksBPDXmtrq94pmEagjpUZ+mWUHPXIQ+s2tYrv77hGmQPC2KSwE8NeWVmZ3imYRqCOlRn6ZZQc9chD6za1iu/vuEaZA8LYpLATQgghhAgQ8kgxeaTYsOd2u7HZbHqnYQqBOlZm6JdRctQjD63b1Cq+v+MaZQ6IoSePFBNiEGQJAd8F6liZoV9GyVGWO9EvrlHmgDA2KezEsCcXJPsuUMfKDP0ySo5y84R+cY0yB4SxSWEnhr3Y2Fi9UzCNQB0rM/TLKDnqkYfWbWoV399xjTIHhLFJYSeGvbFjx+qdgmkE6liZoV9GyVGPPLRuU6v4/o5rlDkgjE0KOzHsbd68We8UTCNQx8oM/TJKjnrkoXWbWsX3d1yjzAFhbFLYCSGEEEIECCnsxLA3fvx4vVMwjUAdKzP0yyg56pGH1m1qFd/fcY0yB4SxSWEnhr3Ozk69UzCNQB0rM/TLKDnqkYfWbWoV399xjTIHhLFJYSeGvcOHD+udgmkE6liZoV9GyVGPPLRuU6v4/o5rlDkgjE0KOyGEEEKIACGPFJNHig17HR0dBAcH652GKQTqWJmhX0bJUY88tG5Tq/j+jmuUOSCGXsA8Uqy8vJxvfOMbxMXFERYWRlZWltft3oqi8MADD5CSkkJYWBiLFy/ms88+0zFjYUY7d+7UOwXTCNSxMkO/jJKjHnlo3aZW8f0d1yhzQBibYQu7+vp65s2bh91u57333mPPnj387ne/81p5+9e//jVPPvkkzz77LBs3bsThcLBkyRLa29t1zFyYTXNzs94pmEagjpUZ+mWUHPXIQ+s2tYrv77hGmQPC2IL0TmAgjz/+OKNGjeL5559XX8vMzFT/rigKTzzxBD//+c+54oorAHjxxRdJSkrijTfe4Ktf/eqQ5yzMKTo6Wu8UTCNQx8oM/TJKjnrkoXWbWsX3d1yjzAFhbIY9Yvff//6X3NxcrrnmGhITE5k5cyZ/+tOf1PdLS0upqqpi8eLF6mvR0dHMnj2b9evXDxjX5XLR2Njo9SWGt0mTJumdgmkE6liZoV9GyVGPPLRuU6v4/o5rlDkgjG3Ijtg1NDQQExPj8/aHDh3ij3/8I8uWLeOnP/0pmzZt4n/+538IDg7mpptuoqqqCoCkpCSvzyUlJanv9eexxx7joYce6vN6YWEhDoeDuXPnsn37dlpaWoiJiWHChAkUFRUBMG7cODweD4cOHQJgzpw57Nmzh8bGRiIjI5k6dSobNmwAuo8u2mw2Dhw4AMCsWbM4cOAA9fX1hIeHM3PmTNauXQtAeno6YWFh7N+/H4CcnByOHDlCXV0doaGh5OXlsXr1agBGjhxJVFQUe/bsAWDGjBlUVFRQU1OD3W5n7ty5rFmzBo/HQ0pKCnFxcezatQuArKwsamtrqaqqwmazMX/+fNauXUtXVxeJiYmkpKSwfft2AKZMmYLT6aS8vByARYsWsWHDBlwuF/Hx8aSnp1NcXAx072xaW1spKysDYP78+RQXF9Pa2kpsbCxjx45Vr40cP348nZ2d6m37+fn57Ny5k+bmZqKjo5k0aRIbN24EPn8u4sGDBwGYPXs2+/btw+l0EhERQVZWllrEZ2RkYLfb1Wssc3NzOXjwoDreOTk5FBYWquMdHh7Ovn37gO5iPy0tjePHjxMSEsKcOXMoKCgAIC0tjejoaHW8s7OzqayspKamhqCgIObNm0dhYSFut5vk5GQSEhLU62CmTZtGXV0dlZWVWK1WFixYwLp16+js7CQxMZHU1FS2bdumjndjYyPHjh0DYOHChRQVFdHe3k5cXByjR49Wx3vixIm0tbWp4z1v3jy2bt2qjve4cePYtGmTOmfdbjelpaXqnN29ezdNTU1ERUUxZcoUdc6OGTMGq9Wqztm8vDxKSkpoaGjA4XCQnZ3NK6+8QkZGBhkZGQQHB1NSUqKOd2lpKXV1dYSFhZGbm8uaNWsAGDVqFBEREezduxeAmTNncuzYMWprawkODiY/P5/Vq1ejKAqpqanExsaye/duAKZPn051dTXV1dXqnO0Z76SkJJKSktixYwcAU6dOpb6+noqKCiwWCwsXLmT9+vV0dHSQkJDAyJEj2bp1KwCTJ0+mubmZo0ePAuDxeHA4HLS1tREXF0dmZqY6ZydMmEBHR4c6Z/XaR+zZs4eIiAhA333Em2++SUZGxpDuI15//XVSU1M120eUl5dz3XXXDbiPyMnJoaysbND7iLKyMm644Qa/7SMKCwsZMWKEofcR69atU8c7kPYRCxYsYPPmzbrtI1paWvCZooFf/epXyj//+U/1+2uuuUaxWq1Kamqqsm3bNp9i2O12JT8/3+u1O++8U5kzZ46iKIqydu1aBVAqKiq8trnmmmuUa6+9dsC47e3titPpVL+OHj2qAIrT6fS1eyLAfPrpp3qnYBqBOlZm6JdRctQjD63b1Cq+v+MaZQ6Ioed0On2uVTQ5Ffvss88yatQoAD788EM+/PBD3nvvPZYuXcrdd9/tU4yUlBSmTJni9drkyZPV/4EkJycDUF1d7bVNdXW1+l5/QkJCiIqK8voSw1vP//rFmQXqWJmhX0bJUY88tG5Tq/j+jmuUOSCMTZPCrqqqSi3s3n77ba699louuugi7rnnHvXw75nMmzdPPTXZo6SkhNGjRwPdhyiTk5NZtWqV+n5jYyMbN24kPz/fTz0RQgghhDAPTQq72NhY9bz0ypUr1RscFEXB7Xb7FOOuu+5iw4YN/PKXv+TAgQO8/PLLPPfcc9xxxx0AWCwWfvjDH/KLX/yC//73v+zcuZMbb7yR1NRUrrzySi26JQJUz/U54swCdazM0C+j5KhHHlq3qVV8f8c1yhwQxqbJzRNXXXUVX//61xk/fjx1dXUsXboUgK1btzJu3DifYsyaNYvXX3+dn/zkJzz88MNkZmbyxBNPcP3116vb3HPPPbS0tPCtb32LhoYG5s+fz8qVKwkNDdWiW0IIIYQQhqbJI8U6Ozv5wx/+wNGjR7n55puZOXMmAL///e+JjIzkm9/8pr+bPGvySDHR3t4u/xnwUaCOlRn6ZZQc9chD6za1iu/vuEaZA2Lo6f5IMbvdzo9//GP+8Ic/qEUddJ9eNVJRJwSgLmkgzixQx8oM/TJKjnrkoXWbWsX3d1yjzAFhbJotUPzSSy8xf/58UlNTOXLkCABPPPEEb775plZNCnFWnE6n3imYRqCOlRn6ZZQc9chD6za1iu/vuEaZA8LYNCnsehYWXrp0KQ0NDeoNEzExMTzxxBNaNCnEWetZ9FWcWaCOlRn6ZZQc9chD6za1iu/vuEaZA8LYNLnGbsqUKfzyl7/kyiuvJDIyku3btzNmzBh27drF+eefz/Hjx/3d5FmTa+xER0cHwcHBeqdhCoE6Vmbol1Fy1CMPrdvUKr6/4xplDoihp/s1dqWlpV7X1vUICQkZ3GMxhBgCp3u2sPAWqGNlhn4ZJUc98tC6Ta3i+zuuUeaAMDZNCrvMzEz1+Xa9rVy5ksmTJ2vRpBBCCCHEsKfJOnbLli3jjjvuoL29HUVRKCoq4v/+7/947LHH+POf/6xFk0KctYyMDL1TMI1AHSsz9MsoOeqRh9ZtahXf33GNMgeEsWlS2H3zm98kLCyMn//857S2tvL1r3+d1NRU/vCHP/DVr35ViyaFOGt2u13vFEwjUMfKDP0ySo565KF1m1rF93dco8wBYWyaLXdy/fXX89lnn9Hc3ExVVRXHjh3jtttu06o5Ic7aZ599pncKphGoY2WGfhklRz3y0LpNreL7O65R5oAwNs0Ku66uLj766CNeeuklwsLCAKioqKC5uVmrJoUQQgghhjVNljs5cuQIF198MWVlZbhcLkpKShgzZgw/+MEPcLlcPPvss/5u8qzJcieipaUFh8OhdxqmEKhjZYZ+GSVHPfLQuk2t4vs7rlHmgBh6ui938oMf/IDc3Fzq6+vVo3UAX/7yl1m1apUWTQpx1g4ePKh3CqYRqGNlhn4ZJUc98tC6Ta3i+zuuUeaAMDZNbp5Ys2YN69at67OQYkZGBuXl5Vo0KcRZq6+v1zsF0wjUsTJDv4ySox55aN2mVvH9Hdcoc0AYmyZH7Dwej/oYsd6OHTtGZGSkFk0KcdbCw8P1TsE0AnWszNAvo+SoRx5at6lVfH/HNcocEMamyTV21113HdHR0Tz33HNERkayY8cOEhISuOKKK0hPT+f555/3d5NnTa6xE263G5vNpncaphCoY2WGfhklRz3y0LpNreL7O65R5oAYerpfY/fb3/6WtWvXMmXKFNrb2/n617+unoZ9/PHHtWhSiLNWWFiodwqmEahjZYZ+GSVHPfLQuk2t4vs7rlHmgDA2Ta6xGzVqFNu3b+eVV15h+/btNDc3c9ttt3H99dd73UwhhBBCCCH8x++FXWdnJ5MmTeLtt9/m+uuv5/rrr/d3E0L4VXp6ut4pmEagjpUZ+mWUHPXIQ+s2tYrv77hGmQPC2Px+KtZut9Pe3u7vsEJoRi5I9l2gjpUZ+mWUHOXmCf3iGmUOCGPT5Bq7O+64g8cff5yuri4twgvhV/v27dM7BdMI1LEyQ7+MkqMeeWjdplbx/R3XKHNAGJsm19ht2rSJVatW8cEHH5CVldVnpezXXntNi2aFEEIIIYY1TZY7ueWWW077vix3IoykqalJ1lf0UaCOlRn6ZZQc9chD6za1iu/vuEaZA2LoDaZW0eSInZEKNyHOpKysjKlTp+qdhikE6liZoV9GyVGPPLRuU6v4/o5rlDkgjE2Ta+yEMJPjx4/rnYJpBOpYmaFfRslRjzy0blOr+P6Oa5Q5IIxNk8Ju5syZ5OTk9Pk677zzmDdvHjfddBOffPLJoGL+6le/wmKx8MMf/lB9rb29nTvuuIO4uDgiIiK4+uqrqa6u9nNvRKALCQnROwXTCNSxMkO/jJKjHnlo3aZW8f0d1yhzQBibJoXdxRdfzKFDh3A4HFxwwQVccMEFREREcPDgQWbNmkVlZSWLFy/mzTff9Cnepk2b+N///V+mT5/u9fpdd93FW2+9xb///W8KCgqoqKjgqquu0qJLIoDNmTNH7xRMI1DHygz9MkqOeuShdZunxnd7FLYfruOTXeVsP1yH23N2l6L7O2+jzAFhbJoUdsePH+dHP/oRa9as4Xe/+x2/+93vWL16NT/+8Y9paWnhgw8+4Oc//zmPPPLIGWM1Nzdz/fXX86c//YnY2Fj1dafTyV/+8heWL1/OhRdeyHnnncfzzz/PunXr2LBhgxbdEgGqoKBA7xRMI1DHygz9MkqOeuShdZsFBQV4FIWGFhfvbzvKN/6winte2sCvXt/GPS9t4IYnV/HJznLaO7oYzP2G/s7bKHNAGJsmhd2//vUvvva1r/V5/atf/Sr/+te/APja177G/v37zxjrjjvu4NJLL2Xx4sVer2/ZsoXOzk6v1ydNmkR6ejrr168fMJ7L5aKxsdHrSwghxPClKApLf/Eu1y3/iOVv7eBEs8vr/bomF796YxtXPP4+rk63TlkK4RtN7ooNDQ1l3bp1jBs3zuv1devWERoaCoDH41H/PpB//vOfFBcXs2nTpj7vVVVVERwcTExMjNfrSUlJVFVVDRjzscce46GHHurzemFhIQ6Hg7lz57J9+3ZaWlqIiYlhwoQJFBUVATBu3Dg8Hg+HDh0Cug+L79mzh8bGRiIjI5k6dap6tDAzMxObzcaBAwcAmDVrFgcOHKC+vp7w8HBmzpzJ2rVrge7HxISFhamFbk5ODkeOHKGuro7Q0FDy8vJYvXo1ACNHjiQqKoo9e/YAMGPGDCoqKqipqcFutzN37lzWrFmDx+MhJSWFuLg4du3aBUBWVha1tbVUVVVhs9mYP38+a9eupauri8TERFJSUti+fTsAU6ZMwel0Ul5eDsCiRYvYsGEDLpeL+Ph40tPTKS4uBroL6tbWVsrKygCYP38+xcXFtLa2Ehsby9ixY9m8eTMA48ePp7Ozk8OHDwOQn5/Pzp07aW5uJjo6mkmTJrFx40YAxo4dC8DBgwcBmD17Nvv27cPpdBIREUFWVpZaxGdkZGC32/nss88AyM3N5eDBg+p45+TkqA/QTk9PJzw8XF3sMzY2lt27d3P8+HFCQkKYM2eO+j/jtLQ0oqOj1fHOzs6msrKSmpoagoKCmDdvHoWFhbjdbpKTk0lISGDnzp0ATJs2jbq6OiorK7FarSxYsIB169bR2dlJYmIiqampbNu2TR3vxsZGjh07BsDChQspKiqivb2duLg4Ro8erY73xIkTaWtrU8d73rx5bN26VR3vcePGqb8z48aNw+12U1paqs7Z3bt309TURFRUFFOmTFHn7JgxY7BareqczcvLo6SkhIaGBhwOB9nZ2Zw4cYKCggIyMjIIDg6mpKREHe/S0lLq6uoICwsjNzeXNWvWAN3Pjo6IiGDv3r1A9zW4x44do7a2luDgYPLz81m9ejWKopCamqr+PACmT59OdXU11dXV6pztGe+kpCSSkpLYsWMHAFOnTqW+vp6KigosFgsLFy5k/fr1dHR0kJCQwMiRI9m6dSsAkydPprm5maNHjwKQkpJCUVERbW1txMXFkZmZqc7ZCRMm0NHRoc5ZvfYR4eHh6rzUcx/RMwe02Ed4FAUlMoW6pnbanMcZFW1j3ty5tLW1UVBQoNk+oqWlBV9tKCri/PlzfdpHOJ1OAL/tI6xWq9quUfcR69atU8c7kPYRCxYsYPPmzbrtIwYzRzVZx+4Xv/gFv/zlL7n99tuZNWsW0H2d3J///Gd++tOf8rOf/Yzf//73vPvuu3z44Yf9xjh69Ci5ubl8+OGH6rV1559/PjNmzOCJJ57g5Zdf5pZbbsHl8v6fVV5eHhdccAGPP/54v3FdLpfXZxobGxk1apSsYzeM1dbWkpCQoHcaphCoY2WGfhklR63yKNxbyR/f38Pxps8fSRkfGcp3l0xhYnyQX9osP9FCWW0ztY1t1Da2U9vYxvHGdqrqW6hrceHxnDnG49+YzYzMeJ/a8/dYGWUOiKGn+zp2P//5z8nMzOTpp5/mpZdeArr/B/GnP/2Jr3/96wB85zvf4bvf/e6AMbZs2UJNTQ05OTnqa263m9WrV/P000/z/vvv09HRQUNDg9dRu+rqapKTkweMGxISIncWCS979uxh0aJFeqdhCoE6Vmbol1Fy9GceHkWhsbWDjZ/VsPytHX3eP97UziOvFnP5pBC+95UvYLFY+myjKApNbZ29irXPC7baxjb+33W5OELsALy6/hDvFpedU86nnqY9HX//zIwyB4SxaVLYAVx//fVcf/31A74fFhZ22s9/4QtfUA9X97jllluYNGkS9957L6NGjcJut7Nq1SquvvpqAPbv309ZWRn5+fnn3gEhhBCa8Zy8rs0X/93nImtv5ckCrp3r5o0lLLj7n68VK3fz1uYjA3621tmOI7G7sBudEMGElGgSokKJjwojISqUhKgwDh/Yy//tbB8wRm8jIuTAgDA2zQq7hoYGXn31VQ4dOsSPf/xjRowYQXFxMUlJSaSlpZ3x85GRkUybNs3rNYfDQVxcnPr6bbfdxrJlyxgxYgRRUVHceeed5Ofnyy3hYlCys7P1TsE0AnWszNCvc83R7VHYVXaCE83tjIgIZVr6CGzWvkfAtM4DoKPLPagjXwCP/mer+vfzp6aSkdj9aK2eQivGEUx8ZHehlhAdSnxkd+E2IvLzQuzKvEyuzMvsE7s+LYxrLo7g9mcLqGsaOK+EqFCyRsf5nLO/55UZ5qnQnyaF3Y4dO1i8eDHR0dEcPnyYb37zm4wYMYLXXnuNsrIyXnzxRb+08/vf/x6r1crVV1+Ny+ViyZIlPPPMM36JLYaPysrKPjfhiP4F6liZoV/nkuPprl+bPznlnPPodHtwtnTQ0OLC2fr5n0tmjMIR2n207D8bDvHW5iM0tLho6xj8naWJUWGMSYokITqMELtNff2q2Zl8JX8MwUG203z69Kqqqpg8eTLfWzKVR14txuLxkFp9kPC2RlrDoqhIGotitfKdi6YMqhj297wywzwV+tOksFu2bBk333wzv/71r70eWHzJJZeo19idjU8//dTr+9DQUFasWMGKFSvOOqYQNTU1TJ48We80/MJfR2UGEkhj1ZsZ+nU2OXoUhQ+3Hzvt9Wv3XTmD86elel2/1uX2nCzQOmhodXUXba0dOFtcpHiq1TxeXvMZr64/RIurq9/2Z2bGk3mysHN1uqmsb1Xfs1ktg1r490eXT+/3poXQ4HP/Z6xnbOdPTuHe1CZqn/wt4c316vutEbEk/M+PB10E+3temWGeCv1pUtj1PCniVGlpaaddikQIPQQFaXZFwpDofQH6C5/s9zrFFRcZwu1fmEz+xCQAQuy2fi9A95XZx2ogZujXYHP09Rq2X72xjckjY0iOdQDw11X7eGXdwQG3/3be5/9Zt1gsalFns1qIDg/u/nIEExMegj3o86VSL8xKIzsjjujwYGIcIdgscOWvP/CKPdCRMoCp6SN87/wgBQUFoXg8HP3Pf2j55c8IP+X98JYGWh77OccSwkm77DKff4f8Pa/MME+F/jSZJSEhIf0u/FtSUiK3agvDmTdvnt4pnLUz/ePds7BqjzfvXXJORzjMPFanczb90vro6KlOzbGlvZO6pnYaTh5Zc7a6Tv7ZfSr0exdP9Tl20YEaLp/Vfe1ZWEj3/LBaIOpkoRbjCDn5ZzBz88aon1syYyTzJyUT7QgmItSO9TQFT3JMOMkxn5dMiqLw5r1LAFi/v5p//eFvLNj4HyJbG9RtmsJjWDP7ar7+o1uw2zRZTx+Aufn5vD1+/MAbnFwVbOtdd5F0wQXYe52JOh1//74E6u+f8C9NCrvLL7+chx9+WH3KhMVioaysjHvvvVe9g1UIoygsLGT+/Pl6p2EKgTpWvvbL16OjZ3tktK6pnaqG1u5ToOr1at3F2uHyah675XxGRHQv7P73NZ/x2obSAWNdNbvvTQID9+vzv1+WO5pLctKJDOu/UCssLCT55FiNiAhlRITPzXixWCyEBFnpOHGCsfvWccknf+HUE7MRrQ1c8slf6JhoR5n043M62gzgbm+nqaSEzqYmOhsb6WxspKuxkYMnF7v1xYniYpJ8XHLE378vgfr7J/xLk8Lud7/7HV/5yldISEigra2NRYsWUVVVRX5+Po8++qgWTQpx1txu8z4iyAI88tVZ3P/Pvk9nOVVqbDiP/qeYEZGh3LBwAvFR3QVCXVM7HV0eYiNCCLWf/gJ0rcdqqI+Cqe360K/BHB3tfWS0Z1HcU4+odV+z1sEjX5tFXGT3z+I/Gw7xn9MUayeaXGphFxMeQkRoEDHhId2nPnsdVYtxhBDr8H1ZjoyEz49ARZy8Jm4g/poDisfT5yjZqT/pnu9bn32W5quuAo+HzsZGQpOSCB85EoC2qioOv/iiWqh1NjXR1VO4NTWRedNNjP/Od7rjlJWx5stfPqe8OxsafN7W378vZt5XiaGjSWEXHR3Nhx9+yNq1a9m+fTvNzc3k5OT0ed6rEEZwugWtjc7V6fapqAOoqG+l4uTF69cv+Pwf1Nc3lvLv9d2PtwkPCWKEI4QRkd2FwYjIUK6dO0YtJiJjE2hocREVHnza025nw593bg7W6eZAl9tDc3unenenL2oa2kg/uRzHu8VlvHpyfPtT3+xSC7vE6DBSYsOJCQ8m2hFCjOPzU6FtzjoSoz9f//PauWO4bt7YAeMqisJrd1+kLuEx0PVrg13C41x/XxS3m476etpragb1uU8vukj9+8Qf/pAJd94JQFdjIwf6uaa7R0ddnfp3e3Q0oSkp2KOi1K+gyEiaXS6c773nUx4hiYk+5+zvfYuZ91Vi6Pi9sPN4PLzwwgu89tprHD58GIvFQmZmJsnJySiKcs6H0oXwt+F03ecPLs2iocVFbK9FVt0eheAgKx1dHlpdXbS6ujh24vPnEl495/NTemvLXPzkzY+wWS3EOkKIjQhhRMTJPx0hXJGXQczJI0Utrk6CrFavpSn6c7Z3bvrK7VFocXXS0t5Fc3snLe2d3X+6ujh/aiohdhsJCQm8v+0ohfuqPn+/vYum9k71oe8vfP98r6Ojp7vQf+fRE2phlzbCwYSU6O4izRFysmjrvrkgxhFMSuzn150NtM4awIkT0USFB6vfn2ksLBYLjlA731sylX/87vkBr1+7/ke3DOqoaH+/L4rHQ0d9Pa7jxz//qq1lxHnnETtzJgANO3ZQdPvtuE6cwKdnd/XtEPaYGOyRkdh6LXAfkpjImFtvJSgyEntkpFfBZo+KIjQpSd02NCmJL558ZnRvdXV1RD32GJ8uWdJdcA7wpM3QlBTi8/J8Ttnf+5bhtK8SZ8+vhZ2iKFx++eW8++67ZGdnk5WVhaIo7N27l5tvvpnXXnuNN954w59NCnHOdu7cadrH9ITYbV5HZQYSFxnC3+68sN8L0L990RS+9cXJtLq6ONHs4kSzi/pmFyea2znR7FILNYDyqu6jLG6PwvGmdq+jawCXnJeu/v0fqz/jPxtKcYQEqQXgiIhQYiO6jwYuzRlFRKjd5zs388Yn4gi1c6S2ifITLWrhdWohds+V2eojpJ5ZuZs3Nx0eMG52RhzJMeHs3LmTo52JFH028FGkhhaXWtSNObJ9wELp0OhsgnoVSpfkpHNJTvqp4QbtbOap4vGQvqvwtNevZVw+DWVS3zs9FUWh0+nEVVurFmquujpKFYUv3HorAA07d1L0rW/RUVeH0s9pwgk/+IFa2NkcDlzHj3e/YbEQHBtLx4kTPvdlzosvkjB3bp/Xg2NimPqzn/kcpz+7du1i0aJFTHvwQTbfcQdYLN7F3cmxmXb//Vhsvq+X5+99i5n3VWLo+LWwe+GFF1i9ejWrVq3iggsu8Hrv448/5sorr+TFF1/kxhtv9GezQgxbvY/KPPJq8YDbfW/J1NPeVdgTxxFqZ1T8wFfDLx0fyi9uWUBDS4da+PUuBHtf1+Vs7QCgxdVFi6uLY3UtXrG+kJUGob72FPYcq2fWuERe31jKe1uPDrhdU1unWtgF91puI8RuIyI0iIhQOxEn+9q7lJk/OZmRcQ4cJ9//fLsgHCFBdHZ1H2Uac2Q7Sz/5S592I1obWPrJX3jvgttIipnte8c0cuo1bANdv7b1rrsIiY9Xi6aGXbvY9O1v46qrQ+ns7BM3+PLL1b8HORy4ep1StcfGEhofT0h8PCEJCUT2at8xahQL33qLkPh4gkeMwGKz4W5rQ3G7z3ikzBIbS/xs7cc0ZckSclesYNfDD9Pea2mu0ORkpt1/PylLlmiegxDnyqIoA/wmnYWLLrqICy+8kPvuu6/f93/5y19SUFDA+++/768mz1ljYyPR0dE4nU6ioqL0TkfooK6ujrg4368xMqr+rlFLiArlOxf57xq1wYyVoii0urqo61X41Z8sBE80u1h22XRsVgsfbDvG8re7T8Oe7vTmvVfO4MKsNF5df4jCvZW9CrAgr2Js4ZQU9QaAprZO3B4PjlD7aQtbX/qlKArNzW28O28+YS3OPoUSgAK0RcRw1aYN2IP7vyZP8Xhwu1x4Tn4FORwERXQX0x0NDTh378bT0YG7vR2Py9W9bXs7TfX1pF94ITHTpwPQXFrKgT/+UY3lbm/v/tzJ7Ud/4xvs/PnPT9unHqmXX855v/99d9xDh/jki19U37NHR3cXaie/IubOZeJXvwqAp6ODxpKS7vfi4rDafb8OsbfK99/vPlIG/R4pm/irXzHhK185q9i+OPXnr7jd1G3ahKumhpDEROJmzRrUkbqB4vo7TzF8DKZW8esRux07dvDrX/96wPeXLl3Kk08+6c8mhThngbKznD85hTnjEtjyzsc4KyqJTk3hvEsXEWT336/5YMaq91HA9AGOArZ3dKlF3ZlOb/Y8E/Qr+WP4Sv6Y/sL1ERnmW6HRX78URaGrubn77kqnk9DkZD6dNavP4rW9WYDw5gYOPfe/TPz+9wGoWbOGbT/+sVp4eTo6vD6T9cgjZJx8Io9z9242nOaMhsPhUAu7TqeTo//5z4DbtpWXnyZTb/boaPXvYWlpLHj99e4ja3Fx2EK8764tKSlR/24NDibmlGd6n40zHSlryvR96ZazcerP32KzEe+HZ45LYSf04NfC7sSJEyT1ulD1VElJSdTX1w/4vhB6qKysZMKECXqncc4q33/f6x/GGuCT3yQz7YEH/HYKSZOxUjxMOlDEF9a+3OetntObHyy4kSmjLh50aE9XF51O5+dLYTid3V9NTXQ6naRcfDERmZlUVlYSXVHB/t///vNtGxu9LvKfcZr/tJ6q9ciRXv1TPr+27BQWmw2l6/PHcdmjo4mcMAFbaCjWkBCsISHYQkOxBQdT29BAxLhx6rZhaWlMvucerMHB6va2kBCsoaHYQkIISUzkwB//6FO+veeHLSRELR77o9XvS8qSJSQvXtzvkbKSggJNf0e16pO/4wbKvkpoy6+FndvtPu0jT2w2G11d/T9TUAi9WK3arWg/FHoehbS9n0sg2qur2XzHHcxcvpzkxYuxhYWd053p/h6rYJuF7//thwO+35PpkjUvYmlbBpGRtBw+zIni4r4F28m/T77nHkbk5ABw9D//YcdPfzpgfEd6OhGZmVitVtwtLTh37eqzjTU4uPuI1iDGLb7XEwJG5OSw6N13uwuwXoWXNSQE6yn7y5hp0zh/gGU31qxZQ9KCBer3oQkJjPv2twfMQVEULt62ze93emr5+zLQkTKtf0e1iu/vuGbfV4mh4ddr7KxWK0uXLiUkpP+FMV0uFytXrjTUIotyjZ0ws/4WeT2dizZtwmq3ExQerl4z1NHQQEd9PUpXF56uLpTOThS3W/17THY2QY7u54g2lZTg3LcPpavLa3vPye9HXnmlurzE8Y0bqf7oIzydnf3GnnDnnUSOH+9z/nl//StJixZx5JVXTlusnffkk6ReeikAFe+9x5bvf5+giAjs0dFe65fZo6NJv+46tQhsr6nBuXu31/v26Gj1VGTPqVlfCqXFBQVndU2WFs50/VruihVyU4AQBqfbNXY33XTTGbeRO2KF0axbt465/SyjEIg+mDULgAtXrcKRkQHAwT/9iQPPPjvgZxa+9RbRU6YAsPHPf6btNNd1jTjvPLWwc+7ezaG//nXAbdOvu47wUaN8zr1nxX9HejoJCxZ8Xnz1LsSiotTlNQCSv/hFLt2/v8+RsVP1zIHQ0yw+a7FYsEdG+n1JDF+d7Tz1952eevy+aN2mVvH9HXc47avE2fNrYff888/7M5wQQ6KznyUdzMLd3n7mjfrh6XXU3BYWRlBEBBa7HavNhiUoCKvd3v3nyS9VXBzxc+disdm8trHY7VhsNoJHjFA3jZ0+nXHf/vbn8XrHttmIGDvwUxP607Pif3x+PvH5+T595kwFXY/BzAG9lsQ4l3l6uuvXhjKPs6V1m1rF93dcM++rxNDR5JFiQphJ4iAeEWR2S4qL1eu7ekz4/veZcPIOzjNJu/xyJt97r0/bjsjNZURu7mm30eo6sMEa7BzwZ6Hkq3Odp/6601OP3xet29Qqvr/jDqd9lTh7ciWmGPZSU1P1TuGs2cLCuHjbtu7Tn6e5uD8kKYlL9+0jODoaW2joWd9A4e+x6n168+QLp24AFotmpzd7nE2/egqltMsvJ37OHM2vqTPKPNUjD63b1Cq+v+MaZQ4IY5PCTgx727Zt0zuFs+ZrYZT14INnvXhsb1qNVc/pzdBTlksKTU4ekov7zTAHjJKjHnlo3aZW8f0d1yhzQBibnIoVIgAEwqOQ9Di9KYQQgcavy52YkSx3Impra0lISNA7Db/w16OQBhJIY9WbGfpllBz1yEPrNrWK7++4RpkDYugNplaRU7Fi2GtsbNQ7Bb/R+rqvQBqr3szQL6PkqEceWrepVXx/xzXKHBDGJoWdGPaOHTumdwqmEahjZYZ+GSVHPfLQuk2t4vs7rlHmgDA2KeyEEEIIIQKEXGMn19gNe4qinNPzU4eTQB0rM/TLKDnqkYfWbWoV399xjTIHxNALiGvsHnvsMWbNmkVkZCSJiYlceeWV7N+/32ub9vZ27rjjDuLi4oiIiODqq6+murpap4yFWRUVFemdgmkE6liZoV9GyVGPPLRuU6v4/o5rlDkgjM2whV1BQQF33HEHGzZs4MMPP6Szs5OLLrqIlpYWdZu77rqLt956i3//+98UFBRQUVHBVVddpWPWwozaz/KxXMNRoI6VGfpllBz1yEPrNrWK7++4RpkDwtgMu47dypUrvb5/4YUXSExMZMuWLSxcuBCn08lf/vIXXn75ZS688EKg+1m1kydPZsOGDczxw6NzxPAQFxendwqmEahjZYZ+GSVHPfLQuk2t4vs7rlHmgDA2wx6xO5XT6QRgxMmHjG/ZsoXOzk4WL16sbjNp0iTS09NZv379gHFcLheNjY1eX2J4Gz16tN4pmEagjpUZ+mWUHPXIQ+s2tYrv77hGmQPC2Ax7xK43j8fDD3/4Q+bNm8e0adMAqKqqIjg4mJiYGK9tk5KSqOq18v6pHnvsMR566KE+rxcWFuJwOJg7dy7bt2+npaWFmJgYJkyYoF7XMG7cODweD4cOHQJgzpw57Nmzh8bGRiIjI5k6dSobNmwAIDMzE5vNxoEDBwCYNWsWBw4coL6+nvDwcGbOnMnatWsBSE9PJywsTL2GMCcnhyNHjlBXV0doaCh5eXmsXr0agJEjRxIVFcWePXsAmDFjBhUVFdTU1GC325k7dy5r1qzB4/GQkpJCXFwcu3btAiArK4va2lqqqqqw2WzMnz+ftWvX0tXVRWJiIikpKWzfvh2AKVOm4HQ6KS8vB2DRokVs2LABl8tFfHw86enpFBcXA90FdWtrK2VlZQDMnz+f4uJiWltbiY2NZezYsWzevBmA8ePH09nZyeHDhwHIz89n586dNDc3Ex0dzaRJk9i4cSMAY8eOBeDgwYMAzJ49m3379uF0OomIiCArK0st4jMyMrDb7Xz22WcA5ObmcvDgQXW8c3JyKCwsVMc7PDycffv2Ad3FflpaGsePHyckJIQ5c+ZQUFAAQFpaGtHR0ep4Z2dnU1lZSU1NDUFBQcybN4/CwkLcbjfJyckkJCSwc+dOAKZNm0ZdXR2VlZVYrVYWLFjAunXr6OzsJDExkdTUVPURQVOmTKGxsVFdzmDhwoUUFRXR3t5OXFwco0ePVsd74sSJtLW1qeM9b948tm7dqo73uHHj2LRpkzpn3W43paWl6pzdvXs3TU1NREVFMWXKFHXOjhkzBqvVqs7ZvLw8SkpKaGhowOFwkJ2dzWuvvUZGRgYZGRkEBwdTUlKijndpaSl1dXWEhYWRm5vLmjVrABg1ahQRERHs3bsXgJkzZ3Ls2DFqa2sJDg4mPz+f1atXoygKqampxMbGsnv3bgCmT59OdXU11dXV6pztGe+kpCSSkpLYsWMHAFOnTqW+vp6KigosFgsLFy5k/fr1dHR0kJCQwMiRI9m6dSsAkydPprm5maNHjwLd+xiHw0FbWxtxcXFkZmaqc3bChAl0dHSoc1avfcSePXuIiIgA9N1HvPnmm2RkZAzpPuLtt98mNTVVs31EeXk511133YD7iJycHMrKyga9jygrK+OGG27w2z6isLBQPbhh1H3EunXr1PEOpH3EggUL2Lx5s277iN6XoZ2RYgLf+c53lNGjRytHjx5VX/vHP/6hBAcH99l21qxZyj333DNgrPb2dsXpdKpfR48eVQDF6XRqkrswvk8//VTvFEwjUMfKDP0ySo565KF1m1rF93dco8wBMfScTqfPtYrhj9h9//vf5+2332b16tWMHDlSfT05OZmOjg4aGhq8jtpVV1eTnJw8YLyQkBBCQkK0TFmYzMSJE/VOwTQCdazM0C+j5KhHHlq3qVV8f8c1yhwQxmbYa+wUReH73/8+r7/+Oh9//DGZmZle75933nnY7XZWrVqlvrZ//37KysrIz88f6nSFibW1temdgmkE6liZoV9GyVGPPLRuU6v4/o5rlDkgjM2whd0dd9zB3//+d15++WUiIyOpqqqiqqpKndjR0dHcdtttLFu2jE8++YQtW7Zwyy23kJ+fL3fEikHpuQ5FnFmgjpUZ+mWUHPXIQ+s2tYrv77hGmQPC2Ax7KvaPf/wjAOeff77X688//zw333wzAL///e+xWq1cffXVuFwulixZwjPPPDPEmQohhBBCGIM8UkweKTbsdXV1ERRk2P/jGEqgjpUZ+mWUHPXIQ+s2tYrv77hGmQNi6AXEI8WEGCo9t7eLMwvUsTJDv4ySox55aN2mVvH9Hdcoc0AYmxR2YthrbW3VOwXTCNSxMkO/jJKjHnlo3aZW8f0d1yhzQBibFHZi2IuNjdU7BdMI1LEyQ7+MkqMeeWjdplbx/R3XKHNAGJtcYyfX2A17ra2thIeH652GKQTqWJmhX0bJUY88tG5Tq/j+jmuUOSCGnlxjJ8Qg9DxaR5xZoI6VGfpllBz1yEPrNrWK7++4RpkDwtiksBNCCCGECBBS2Ilhb9y4cXqnYBqBOlZm6JdRctQjD63b1Cq+v+MaZQ4IY5PCTgx7brdb7xRMI1DHygz9MkqOeuShdZtaxfd3XKPMAWFsUtiJYa+0tFTvFEwjUMfKDP0ySo565KF1m1rF93dco8wBYWxS2AkhhBBCBAhZ7kSWOxn2XC4XISEheqdhCoE6Vmbol1Fy1CMPrdvUKr6/4xplDoihJ8udCDEIu3fv1jsF0wjUsTJDv4ySox55aN2mVvH9Hdcoc0AYmxR2YthramrSOwXTCNSxMkO/jJKjHnlo3aZW8f0d1yhzQBibFHZi2JNT8L4L1LEyQ7+MkqMeeWjdplbx/R3XKHNAGJtcYyfX2A17ct2K7wJ1rMzQL6PkKNfY6RfXKHNADD25xk6IQdiwYYPeKZhGoI6VGfpllBz1yEPrNrWK7++4RpkDwtiksBNCCCGECBBS2Ilhb8yYMXqnYBqBOlZm6JdRctQjD63b1Cq+v+MaZQ4IY5PCTgx7Vqv8GvgqUMfKDP0ySo565KF1m1rF93dco8wBYWwyS8Swd+DAAb1TMI1AHSsz9MsoOeqRh9ZtahXf33GNMgeEsUlhJ4QQQggRIGS5E1nuZNhra2sjLCxM7zRMIVDHygz9MkqOeuShdZtaxfd3XKPMATH0ZLkTIQahpKRE7xRMI1DHygz9MkqOeuShdZtaxfd3XKPMAWFsUtiJYa+hoUHvFEwjUMfKDP0ySo565KF1m1rF93dco8wBYWwBUditWLGCjIwMQkNDmT17NkVFRXqnJEzE4XDonYJpBOpYmaFf/7+9+41p4v7jAP6ulZY/TtjsaO0EtsDKIM6WgTRkmgxTAz4gYTq3RGLBTJK5yZKhNZgtA/dgzpgtzKjg3AbLMgczbsTMDbc0aVSGodTgjH8YEqQ8kDrGUCyudG1/D8y6XwNKp5Rrr+9XQkK//d7n3net3id31xIuGYXIEep1hqr+bNcNl/cAhbeIv8eutbUVRqMRjY2N0Ov1qK+vx9GjR9Hb24vk5OQZl+c9duR2uxETEyN0jIgg1n0VCdsVLhmFyBHqdYaq/mzXDZf3AM29qLrH7qOPPkJlZSU2bdqE7OxsNDY2Ij4+Hp9//rnQ0ShC/PLLL0JHiBhi3VeRsF3hklGIHKFeZ6jqz3bdcHkPUHibL3SAhzE5OQmbzYadO3f6x+bNmweDwYDOzs5pl3G5XHC5XP7HN2/eBHC3G6bo5HQ6+foHSaz7KhK2K1wyCpEj1OsMVf3Zrhsu7wGae/+87sFcZI3oxm5kZAQejwdKpTJgXKlU4sqVK9Mus3v3buzatWvKeEpKSkgyEhEREc2G8fFxJCYm3ndORDd2D2Lnzp2orq72Px4bG0NaWhrsdvuMO4vEafny5bBarULHiAhi3VeRsF3hklGIHKFeZ6jqz2bdW7duISUlBUNDQ7wfPAr5fD6Mj49DrVbPODeiGzuFQgGpVAqHwxEw7nA4oFKppl1GLpdDLpdPGU9MTOQ/ligllUr52gdJrPsqErYrXDIKkSPU6wxV/VDUXbhwYVi8D2juBXvyKaI/PCGTyZCbmwuz2ewf83q9MJvNKCgoEDAZRZI33nhD6AgRQ6z7KhK2K1wyCpEj1OsMVf1wec0ouoji607Ky8tx6NAh5Ofno76+Ht988w2uXLky5d676fDrToiIKNzxWEXBiuhLsQDwyiuv4Pfff8e7776L4eFh6HQ6tLe3B9XUAXcvzdbW1k57eZaIiCgc8FhFwYr4M3ZEREREdFdE32NHRERERP9iY0dEREQkEmzsiIiIiESCjR0RERGRSLCxIyIiIhIJNnb3MDQ0hBdeeAHZ2dlYtmwZjh49KnQkIiKiAGNjY8jLy4NOp8PSpUtx+PBhoSORwPh1J/dw/fp1OBwO6HQ6DA8PIzc3F7/99hsSEhKEjkZERAQA8Hg8cLlciI+Ph9PpxNKlS9Hd3Y1FixYJHY0EEvFfUBwqixcvxuLFiwEAKpUKCoUCo6OjbOyIiChsSKVSxMfHAwBcLhd8Ph94via6ifZS7KlTp1BSUgK1Wg2JRIK2trYpcw4cOIAnn3wSsbGx0Ov16OrqmraWzWaDx+NBSkpKiFMTEVE0mY1j1djYGLRaLZYsWQKTyQSFQjFH6Skcibaxczqd0Gq1OHDgwLTPt7a2orq6GrW1tTh37hy0Wi2Kiopw48aNgHmjo6MwGo345JNP5iI2ERFFkdk4ViUlJeH8+fMYGBjAkSNH4HA45io+haGouMdOIpHgu+++Q2lpqX9Mr9dj+fLl2L9/PwDA6/UiJSUFVVVVqKmpAXD3tPbq1atRWVmJjRs3ChGdiIiixIMeq/7f66+/jlWrVuGll16aq9gUZkR7xu5+JicnYbPZYDAY/GPz5s2DwWBAZ2cnAMDn86GiogKrVq1iU0dERHMumGOVw+HA+Pg4AODmzZs4deoUMjMzBclL4SEqG7uRkRF4PB4olcqAcaVSieHhYQBAR0cHWltb0dbWBp1OB51OhwsXLggRl4iIolAwx6rBwUGsXLkSWq0WK1euRFVVFZ599lkh4lKY4Kdi72HFihXwer1CxyAiIrqn/Px89PT0CB2DwkhUnrFTKBSQSqVTbjB1OBxQqVQCpSIiIvoXj1X0IKKysZPJZMjNzYXZbPaPeb1emM1mFBQUCJiMiIjoLh6r6EGI9lLs7du3cfXqVf/jgYEB9PT04LHHHkNqaiqqq6tRXl6OvLw85Ofno76+Hk6nE5s2bRIwNRERRRMeq2i2ifbrTiwWCwoLC6eMl5eXo7m5GQCwf/9+7N27F8PDw9DpdNi3bx/0ev0cJyUiomjFYxXNNtE2dkRERETRJirvsSMiIiISIzZ2RERERCLBxo6IiIhIJNjYEREREYkEGzsiIiIikWBjR0RERCQSbOyIiIiIRIKNHREREZFIsLEjIiIiEgk2dkREQaqoqEBpaelD1bBYLJBIJBgbG7vvPLPZjKysLHg8nhlrtre3Q6fTwev1PlQ2Iop8bOyISHQqKiogkUggkUggk8mQkZGB9957D3///fdD1f3444/9f78z1Hbs2IF33nkHUql0xrnFxcWIiYnBV199NQfJiCicsbEjIlEqLi7G9evX0dfXh23btqGurg579+59oFoejwderxeJiYlISkqa3aDTOHPmDPr7+7Fu3bqgl6moqMC+fftCmIqIIgEbOyISJblcDpVKhbS0NGzZsgUGgwHHjx8HALhcLmzfvh1PPPEEEhISoNfrYbFY/Ms2NzcjKSkJx48fR3Z2NuRyOex2+5RLsS6XC2+++SaSk5MRGxuLFStWwGq1BuT44YcfoNFoEBcXh8LCQly7dm3G7C0tLVi9ejViY2P9Y+fPn0dhYSEeeeQRLFy4ELm5ueju7vY/X1JSgu7ubvT39z/YDiMiUWBjR0RRIS4uDpOTkwCArVu3orOzEy0tLfj111+xfv16FBcXo6+vzz9/YmICe/bswaeffoqLFy8iOTl5Ss0dO3bg2LFj+OKLL3Du3DlkZGSgqKgIo6OjAIChoSGsXbsWJSUl6OnpwebNm1FTUzNj1tOnTyMvLy9grKysDEuWLIHVaoXNZkNNTQ1iYmL8z6empkKpVOL06dMPtH+ISBzmCx2AiCiUfD4fzGYzTp48iaqqKtjtdjQ1NcFut0OtVgMAtm/fjvb2djQ1NeH9998HALjdbhw8eBBarXbauk6nEw0NDWhubsaaNWsAAIcPH8bPP/+Mzz77DCaTCQ0NDUhPT8eHH34IAMjMzMSFCxewZ8+e+2YeHBz0Z/uH3W6HyWTCM888AwB4+umnpyynVqsxODj4H/YOEYkNGzsiEqXvv/8eCxYsgNvthtfrxYYNG1BXVweLxQKPxwONRhMw3+VyYdGiRf7HMpkMy5Ytu2f9/v5+uN1uPP/88/6xmJgY5Ofn4/LlywCAy5cvQ6/XByxXUFAwY/Y7d+4EXIYFgOrqamzevBlffvklDAYD1q9fj/T09IA5cXFxmJiYmLE+EYkXGzsiEqXCwkI0NDRAJpNBrVZj/vy7/93dvn0bUqkUNpttyidOFyxY4P89Li4OEolkTjP/Q6FQ4M8//wwYq6urw4YNG3DixAn8+OOPqK2tRUtLC1588UX/nNHRUTz++ONzHZeIwgjvsSMiUUpISEBGRgZSU1P9TR0A5OTkwOPx4MaNG8jIyAj4UalUQddPT0+HTCZDR0eHf8ztdsNqtSI7OxsAkJWVha6uroDlzp49O2PtnJwcXLp0acq4RqPBW2+9hZ9++glr165FU1OT/7m//voL/f39yMnJCXobiEh82NgRUVTRaDQoKyuD0WjEt99+i4GBAXR1dWH37t04ceJE0HUSEhKwZcsWmEwmtLe349KlS6isrMTExAReffVVAMBrr72Gvr4+mEwm9Pb24siRI0F9D15RURHOnDnjf3znzh1s3boVFosFg4OD6OjogNVqRVZWln/O2bNnIZfLg7rUS0TixcaOiKJOU1MTjEYjtm3bhszMTJSWlsJqtSI1NfU/1fnggw+wbt06bNy4Ec899xyuXr2KkydP4tFHHwVw95Oqx44dQ1tbG7RaLRobG/0fzrifsrIyXLx4Eb29vQAAqVSKP/74A0ajERqNBi+//DLWrFmDXbt2+Zf5+uuvUVZWhvj4+P+0DUQkLhKfz+cTOgQREQUymUy4desWDh06NOPckZERZGZmoru7G0899dQcpCOicMUzdkREYejtt99GWlpaUH//9dq1azh48CCbOiLiGTsiIiIiseAZOyIiIiKRYGNHREREJBJs7IiIiIhEgo0dERERkUiwsSMiIiISCTZ2RERERCLBxo6IiIhIJNjYEREREYkEGzsiIiIikfgfz3gkI+Ub8FoAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -2911,22 +2968,34 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m24:09:03T20:09:38 | INFO | line:124 |aurora.pipelines.transfer_function_kernel | update_dataset_df | DECIMATION LEVEL 3\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:38 | INFO | line:143 |aurora.pipelines.transfer_function_kernel | update_dataset_df | Dataset Dataframe Updated for decimation level 3 Successfully\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:38 | INFO | line:354 |aurora.pipelines.process_mth5 | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:38 | INFO | line:354 |aurora.pipelines.process_mth5 | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:39 | INFO | line:354 |aurora.pipelines.process_mth5 | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:39 | INFO | line:354 |aurora.pipelines.process_mth5 | save_fourier_coefficients | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:39 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 1514.701336s (0.000660Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:39 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 1042.488956s (0.000959Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:39 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 723.371271s (0.001382Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:39 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 532.971560s (0.001876Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:39 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 412.837995s (0.002422Hz)\u001b[0m\n"
+ "\u001b[1m2026-01-18T11:08:35.295784-0800 | INFO | aurora.pipelines.transfer_function_kernel | update_dataset_df | line: 137 | DECIMATION LEVEL 3\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:35.360085-0800 | INFO | aurora.pipelines.transfer_function_kernel | update_dataset_df | line: 156 | Dataset Dataframe Updated for decimation level 3 Successfully\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:36.877715-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:39.242069-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:40.725902-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:42.311975-0800 | INFO | aurora.time_series.spectrogram_helpers | save_fourier_coefficients | line: 341 | Skip saving FCs. dec_level_config.save_fc = False\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:42.317272-0800 | INFO | aurora.pipelines.feature_weights | extract_features | line: 43 | Features could not be accessed from MTH5 -- \n",
+ "Calculating features on the fly (development only)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:42.326059-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 3029.402672s (0.000330Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:42.378961-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 2084.977911s (0.000480Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:42.431614-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 1446.742543s (0.000691Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:42.481407-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 1065.943120s (0.000938Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:42.533075-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 825.675990s (0.001211Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:42.585870-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 3029.402672s (0.000330Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:42.639383-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 2084.977911s (0.000480Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:42.690837-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 1446.742543s (0.000691Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:42.743077-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 1065.943120s (0.000938Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:42.793603-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 825.675990s (0.001211Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:42.847955-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 3029.402672s (0.000330Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:42.898694-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 2084.977911s (0.000480Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:42.951861-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 1446.742543s (0.000691Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:43.004133-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 1065.943120s (0.000938Hz)\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:43.056842-0800 | INFO | aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | line: 46 | Accessing band 825.675990s (0.001211Hz)\u001b[0m\n"
]
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG9CAYAAAAcFdw9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHUklEQVR4nO3df3zP9f7/8fvbm/0wNr+yGRuS5DfZLCed0tnBjkh+nIrPMSnnewqpoUifs0qf41AcqUU/DusXqUw/hDgrkcQQigjNj7CJ8Z4NM3u/vn/s7J23bbyXvfd+v1/v2/VyeV3s9ev5erzem70ee/56WQzDMAQAAGBC1TwdAAAAgLuQ6AAAANMi0QEAAKZFogMAAEyLRAcAAJgWiQ4AADAtEh0AAGBaJDoAAMC0SHQAAIBpkegAAADTItEBAACm5fOJzqFDh3TbbbepTZs26tChg95//31Ph4QqlJ2drSlTpujWW29VeHi4AgICFBISorZt2+r+++/X8uXLVd7r3J5//nlZLBanZenSpZe93s8//6xHHnlEbdu2VUhIiAIDAxUREaH27dvr7rvv1tSpU3Xy5MlS5xUVFemVV15R9+7dVbduXQUHB6tly5YaO3asjh49esX7vHDhgrp06eIU6/Dhw136jADArxk+7siRI8a3335rGIZhHD161IiMjDTy8vI8GxSqREpKihEUFGRIuuySmZlZ5vlt27YtdezAgQPLvd7mzZuNsLCwK16v5OexxNmzZ42ePXuWe3y9evWMjIyMy97rM888U+q8xMTECn5iAOB/qldFMuVOjRo1UqNGjSRJERERatCggXJychQSEuLhyOBO06dP1+OPP+5Yt1qt6tOnj6PWY+/evfrss8+UnZ1d5vkZGRnasWNHqe2ffPKJcnJyVK9evVL7HnroIdlsNklSSEiI7r77bl177bUqLCzUnj17tHbtWh06dKjUeZMnT9bKlSsdcY4YMUKNGjVSamqqDh48qJycHA0ePFjff/99mT+327dv15QpU1z7YAAAzjydaX355ZfGHXfcYTRq1MiQZCxZsqTUMS+99JLRtGlTIzAw0OjatauxYcOGMsvatGmT0bZtWzdH7BtWrlxpDBw40IiKijICAgKMmjVrGnFxcca8efMMu93+m8r84osvjBEjRhidO3c2IiIijICAACM4ONho0aKFMXz4cGP79u0VKm/+/Pku1bxcaseOHYbVanWc17BhQ2PLli2ljjt//rzx6quvGtnZ2aX2PfTQQ47zo6OjnWqGXnzxxVLH22w2p1hTU1PLjG3jxo3GL7/84lg/ceKEERgY6DjviSeecOzbtWuXYbFYHPtefvnlMu+hU6dOhiQjJibGaNy4MTU6AFABHk90li1bZkyePNlIS0srM9F59913jYCAAGPevHnGjh07jJEjRxp16tQp9fA6ceKE0aZNG2PdunVVGL33uXDhgtNDvKzl7rvv/k3Jzrhx4y5bbkBAgLFq1SqXy/utic7f/vY3p/MWL15cofs4d+6cUbduXafk46677nKs33jjjaXOOXHihNM1x48fb1y4cOGK11q4cKHTeZs3b3ba3759e8e+3r17lzo/OTnZkGQEBgYaO3bsMJo2bUqiAwAV4PGmq4SEBCUkJJS7f+bMmRo5cqTuu+8+SdLcuXP16aefat68eZo4caIkqaCgQP3799fEiRP1u9/97rLXKygoUEFBgWPdbrcrJydH9evXl8ViqYQ78qxnn31WL7/8siTJYrHoz3/+s6KiovTxxx/rxx9/lCQtWrRIN910k0aMGFGhsqtXr67u3burTZs2qlu3roKCgpSTk6OVK1dq9+7dOn/+vEaPHq2NGze6VN7Zs2ed1k+fPq3c3Nwrnrdq1SrH13Xq1NHtt9/u0nkl0tLSnDoM33HHHWrZsqWWLFkiSdqyZYvWr1+vtm3bOo6pXr26oqOjdfDgQUnFHZnnzZunm266SR06dFBsbKxuueUWBQYGOl0rIyPDab1BgwZOsUZHR+u7776TJG3bts1p3/bt2/WPf/xDkvTEE0+oSZMmTh2rCwsLK3TfAGAmhmHo9OnTioyMVLVqlxlb5elM62K6pEanoKDAsFqtpWp5hg0bZvTr188wDMOw2+3GPffcYyQnJ7t0jZK/kFlYWFhYWFh8fzl06NBln/ser9G5nOPHj6uoqEjh4eFO28PDw7Vr1y5J0rp167Ro0SJ16NBBH374oSTprbfeUvv27cssc9KkSUpKSnKs22w2RUdH69ChQwoNDXXPjVSRNWvWqG/fvo7177//XlFRUY71UaNG6e2335YkBQYG6tixYxUq//PPP9fDDz9cZofbi61atUpdu3atUNkV0ahRI505c0aSFBMTo/T0dJfPzcrKUps2bVRUVCRJevLJJzVhwgRJ0gMPPOCYnuCaa67Rrl27VL2683+RtWvXavr06frqq69kt9vLvMbEiRM1adIkSdIjjzyi+fPnO/bl5OTIarU61keOHKn33ntPkvP35P/+7/80ffp0BQcHa+3atWrZsqUkqX379o5apSFDhmjOnDku3zsAmElubq6ioqJUu3btyx7n1YmOK7p3717uA6csgYGBpZoXJCk0NNTnE51LmzGuu+46p3tt0qSJ4+uCgoJyP4uyHDlyREOHDnUkGJdTvXp1t36WjRs31p49eyRJ+/btU+3atV1udpwzZ44jyZGkxMRER6zDhg1zJDq//PKLvvrqK/Xr18/p/D59+qhPnz6y2Wxav369NmzYoKVLl2rTpk2OY15++WVNnTpVkhwjAktYLBanz+bcuXOOrxs0aKDQ0FAdPHhQM2fOlFTcFNmlSxen80vUqFHD539mAeBqXen3v1dPGNigQQNZrdZSQ4Szs7MVERFxVWWnpKSoTZs2io2NvapyvMn58+ed1i+tsbn4cwwKCnI5yZGKh11fnOTMmDFDp06dkmEYZQ7Tdqc//OEPjq9Pnjypjz76yOVz33jjDaf1li1bOibgu7g2TJJSU1PLLScsLEy9e/dWcnKyMjIynPo75ebmOj7rDh06OJ33008/Oa3v27fP8XVJLWROTo4uXLggSRo3bpzTJIEHDhxwuhcmDgSAy/PqRCcgIEBdunRxapqw2+1KT09Xt27drqrsUaNGaefOnaU6i5rJW2+95fg6NzdXn3zyiWP94loCV5w4ccJp/b777lNYWJgkOZpeKio1NdXpIb5//36Xzhs9erRT88+DDz6obdu2lTqusLBQr7/+uiPh27Bhg3744QeX41u6dKmOHz/uWE9MTNTmzZvLPLZWrVqOr6tVq+aoSu3Zs6eCgoIc+xYvXuz4eufOndq5c6dj/c4773Q5NgCAazzedJWXl6e9e/c61jMzM7V161bVq1dP0dHRSkpKUmJiomJiYtS1a1fNmjVL+fn5jlFYKN+TTz6pXbt2qWnTpvrggw+cHtojR46sUFmtWrVyWu/Tp48SEhK0fft2ffDBB5USr6vatm2rKVOm6IknnpBU3O8mJiZGd9xxhzp37lxqwsD4+HhJcuorY7FYNHjw4FJVnnl5efr0008lFSdK77zzjsaOHStJevPNN/Xmm2+qRYsW6t69u6699lpZLBZt27ZNaWlpjjJ+//vfq2bNmpKkunXratSoUZoxY4Ykadq0aTp+/LgaNWqkefPmOUZRNW3aVH/5y18kFY8kGzhwYJn3vnz5ckfNWtOmTRUTE2OqWkkAqHSuj4lyjy+++KLMXtQXzxHy4osvGtHR0UZAQIDRtWtX45tvvqm065dMBGez2SqtTE+5dF6aPn36lPnZ9unTp8Lz6Jw/f95pzpdLv1cXr3/xxRe/KV5X59Ep8cILLzhNxlfekpmZaZw9e9aoU6eOY1t8fHyZZdrtdqe5ajp16uTYd6XrSMWvc/juu++cyjx79qzxxz/+sdxz6tate8VXQJRgHh0AKObq89vjTVe33XabjOKJC52Wi/tHjB49WgcOHFBBQYE2bNiguLg4zwXsQ9LS0vTMM8+oRYsWCggIULNmzZScnKzFixdXeM6gGjVq6PPPP9fw4cNVv359BQYGql27dnr11Vf11FNPuecGruDhhx9WZmamnnrqKXXv3l3XXHONqlevrpo1a6p169Z68MEHtXr1ajVt2lQffvihTp065Ti3vDmELBaLEhMTHetbt251NItt2bJFzz33nPr06aPWrVurfv36slqtql27tjp37qzHHntMO3bsULt27ZzKDAoK0vLlyzVnzhx169ZNoaGhCgwMVIsWLTRmzBh9//33iomJqfwPCAAgi2GU82pnk0tJSVFKSoqKior0448/ymaz+fwIltTUVKcmPT/91gIA/EBubq7CwsKu+Pz2eI2Op/hDZ2QAAPyd3yY6AADA/Dw+6gqec/jwYac5acpz1113OSbAAwDAl5DomMjw4cMrNHlcYWGhdu/efcXjjh49ehVRAQDgOX6b6FzcGdlfNWvWjA7LAABT89tRVyVc7bUNAAC8B6OuAACA3yPRAQAApkWiAwAATMtvE52UlBS1adOGFyICAGBidEamMzIAAD6HzsgAAMDvkegAAADTItEBAACmRaIDAABMy29fAQEAMKGiImntWunoUalRI+mWWySr1dNRwYP8NtHhXVcATM0fH/hpadLYsdLPP/+6rUkT6YUXpAEDPBcXPIrh5QwvB2A2/vjAT0uTBg2SLn2kWSzF/37wgXnv3U8xvBwA/FHJA//iJEeSDh8u3p6W5pm43KmwUBo9unSSI/267ZFHimu54HdIdADALPzxgW+3SwEBxU105TEM6dCh4qY8+B0SHQAwA3994Ofnu37s5T4bmJbfdkYG4Ef8oWOuvz7wq1Xg7/VGjdwXB7wWNToAzC0tTWrWTOrRQxoypPjfZs3M11fFXx/4NWtKNpvUuPGvHY8vZbFIUVHFCS78DokOAHOy26X58y/fMXfBgrL7s/gif33gWyxSaKg0e/av65ful6RZs8xXiweX+G2ik5KSojZt2ig2NtbToQDeq6hIWr1aWriw+F9f6cRqtxc/1EaMKL9jrmFIQ4dKp09XfXzu4O8P/AEDioeQN27svL1JE4aW+znm0WEeHaBsvjwXy+nTxQ99V3z6qfSnP7k3nqpW1vcuKqo4yfH2793V8of+WJDk+vObzsgAnNnt0htvSPffX7o2pKTJ5/33pYEDPROfKyrSX+XkSffF4SkDBkh33umfD3yrVbrtNk9HAS9CogNUNW/+i7Okyac8F8/F0r+/98R9qZo1pWXLXKupubSpwyx44AOS/LiPDuARZhkB9PPP3j0Xi8Ui9exZ3NTmTx1zAZRCogNUFV+Ymv/sWdeP9fa5WKzW4v5Ekv91zAXgQKIDVAVXpuYfO1a6cKFq47oavjAXCyNxAL/HqCtGXcHdrtTv5WLLlkkJCe6N53IMo3jEUps20pEjZSdmFktxopCZ6Tu1Id7cLwrAb8KoK8Bb+NLU/BfPxTJoUPH6xcmOrzb50DEX8Fs0XQHuVpGhzs2auS2MCqHJB4BJ+G3TVUpKilJSUlRUVKQff/yRpiu4jy83B9HkA8BLudp05beJTgn66KDKlIy6kspuDqKmBABc5urzm6YroKrQHAQAVY7OyEBV8uep+QHAA0h0gKrGCCAAqDI0XQEAANMi0QEAAKZFogMAAEyLRAcAAJgWiQ4AADAtEh0AAGBaJDoAAMC0SHQAAIBpkegAAADTItEBAACm5beJTkpKitq0aaPY2FhPhwIAANzEYhiG4ekgPMnV17wDAADv4erz229rdAAAgPmR6AAAANMi0QEAAKZFogMAAEyLRAcAAJgWiQ4AADAtEh0AAGBaJDoAAMC0SHQAAIBpkegAAADTItEBAACmVf23nHTu3Dlt375dx44dk91ud9rXr1+/SgkMAADgalU40VmxYoWGDRum48ePl9pnsVhUVFRUKYEBAABcrQo3XY0ZM0aDBw/W0aNHZbfbnRaSHAAA4E0qnOhkZ2crKSlJ4eHh7ogHAACg0lQ40Rk0aJBWr17thlAAAAAql8UwDKMiJ5w5c0aDBw/WNddco/bt26tGjRpO+x9++OFKDdDdcnNzFRYWJpvNptDQUE+HAwAAXODq87vCnZEXLlyolStXKigoSKtXr5bFYnHss1gsPpfoAAAA86pw09XkyZP19NNPy2azaf/+/crMzHQsP/30kztivKK77rpLdevW1aBBgzxyfQAA4J0qnOicP39ed999t6pV8565BseOHas333zT02EAAAAvU+FsJTExUYsWLXJHLL/Zbbfdptq1a3s6DAAA4GUq3EenqKhI06dP12effaYOHTqU6ow8c+bMCpW3Zs0aPffcc9q8ebOOHj2qJUuWqH///k7HpKSk6LnnnlNWVpY6duyoF198UV27dq1o6AAAwM9UONH57rvv1LlzZ0nS999/77Tv4o7JrsrPz1fHjh01YsQIDRgwoNT+RYsWKSkpSXPnzlVcXJxmzZqlXr16affu3WrYsGGFrwcAAPxHhROdL774olIDSEhIUEJCQrn7Z86cqZEjR+q+++6TJM2dO1effvqp5s2bp4kTJ1b4egUFBSooKHCs5+bmVjxoAADgE66qR/G6deuckobKdv78eW3evFnx8fGObdWqVVN8fLzWr1//m8qcOnWqwsLCHEtUVFRlhQsAALzMVSU6CQkJOnz4cGXFUsrx48dVVFRU6nUT4eHhysrKcqzHx8dr8ODBWrZsmZo0aXLZJGjSpEmy2WyO5dChQ26LHwAAeFaFm64uVsFJld3mP//5j8vHBgYGKjAw0I3RAAAAb+E9k+GUoUGDBrJarcrOznbanp2drYiIiKsqOyUlRW3atFFsbOxVlQMAALzXVSU6r7zyiqNZyW636+DBg5USVImAgAB16dJF6enpjm12u13p6enq1q3bVZU9atQo7dy5UxkZGVcbJgAA8FIVbrqaP3++Fi1apAMHDig0NFRbtmzRo48+qurVq6t58+YqKiqqUHl5eXnau3evYz0zM1Nbt25VvXr1FB0draSkJCUmJiomJkZdu3bVrFmzlJ+f7xiFBQAAUB6XE52ioiINGDBAK1asUJ8+fdSvXz+dPHlS77//vl599VW9+OKLvymATZs2qUePHo71pKQkScUzMKempuruu+/WL7/8or///e/KyspSp06dtGLFilIdlAEAAC5lMVzsUfz8889r5syZ+uKLL9SqVSvHdrvdrpkzZ2ry5Mm6cOFChWt0PM3V17wDAADv4erz2+U+OqmpqZo+fbpTkiMVz2szfvx4Pfvss14zCssVdEYGAMD8XK7RCQ4O1vbt29WyZUt3x1SlqNEBAMD3VHqNTkhIiH755Zdy92/dulUjRoyoWJQAAABu5HKic+utt2ru3Lll7svKytI999yjN954o9ICAwD8dkVF0urV0sKFxf/6WPdJoNK4nOgkJydr8eLFSkxM1Pfff69z587pyJEjeuWVVxQbG6sGDRq4M04AgIvS0qRmzaQePaQhQ4r/bdaseLvZkeDhUi4nOh06dNDy5cu1bt06dezYUSEhIYqKitLDDz+se++9VwsXLqQzMgB4kN0uzZ8vDRok/fyz877Dh4u3L17smdiqgj8neCify52RS9jtdm3cuFGZmZkKDQ1Vt27dVK9ePeXn5+v5559XcnKyu2J1CzojA+ZXVCStXSsdPSo1aiTdcotktXo6qsplt7t2T02aSPv3m+v+7XbpjTek+++XLn2iWSzF/77/vjRwYNXHBvdx9fld4UTHbEh0AHNLS5PGjnWu4WjSRHrhBWnAAM/FVdlcTXQk6YsvpNtuc2s4VcafEzx/V+mjrgDAl7jSjLNgQekaAF919qzrxx496r44qlp+vmvH/fxzca0e/E+F33UFAN7uSn/llyQ3Q4dKd9wh+VtlbqNGno6g8lSrwJ/rZkrw4Dq/rdGhMzJwZf4wgmXdOk9HUDlq1pRsNqlx41/7pVzKYpGioor7KJlFzZrSsmWuHWumBA+u89tEZ9SoUdq5c6cyMjI8HQrglXx5BEtFmnFyctwXR1WyWIprpmbP/nX90v2SNGuWufqpWCxSz57FfXD8KcGD6/w20QFQNn8bomy2v/IHDJA++KC4ZudiTZoUbzdTB+wSVmtx53LJfxI8uI5RV4y6QhXz5qHOZhnBYhjS6dNSmzbSkSNldzi2WIrvIzPTe+/janjzz5m7lDXCLiqqOMkxY4Ln7xhe7iISHVQlbx/qfPq06x1zfWGIclpacQ2U5JzslPyVb9YaDn/mjwmev2J4OeBFfGWos9lGsPhjM46/s1qLE/B77y3+lyQH1OhQowM3q8hEbjabZ4c6G4a0YoX0pz9d+VhfqNEpwV/5gPm4+vz223l0UlJSlJKSoiIzjpeFz1q3TkpI8Nz1Lx7Bcvjw5fu2+NIIlpK/8gH4H79tumJ4OaqKrw11ZgQLADPx20QH8EbeMtSZvi0AzII+OvTRgZv58lBn+rYA8Fb00QG8xMUz1g4aVLxe1lBnb2wOom8LAF9H0xVQRWgOAoCqR40OUIUGDJDuvJPmIACoKiQ6QBWjOQgAqo7fNl2lpKSoTZs2io2N9XQoAADATRh1xagrAAB8Du+6AgAAfo9EBwAAmBaJDgAAMC0SHQAAYFokOgAAwLRIdAAAgGmR6AAAANMi0QEAAKblt4kOMyMDAGB+zIzMzMgAAPgcZkYGAAB+j0QHAACYFokOAAAwLRIdAABgWiQ6AADAtEh0AACAaZHoAAAA0yLRAQAApkWiAwAATItEBwAAmBaJDgAAMC0SHQAAYFokOgAAwLT8NtFJSUlRmzZtFBsb6+lQAACAm1gMwzA8HYQnufqadwAA4D1cfX77bY0OAAAwPxIdAABgWiQ6AADAtEh0AACAaZHoAAAA0yLRAQAApkWiAwAATItEBwAAmBaJDgAAMC0SHQAAYFokOgAAwLRIdAAAgGmR6AAAANMi0QEAAKZFogMAAEyLRAcAAJgWiQ4AADAtEh0AAGBapkh0li5dqlatWqlly5Z6/fXXPR0OAADwEtU9HcDVunDhgpKSkvTFF18oLCxMXbp00V133aX69et7OjQAAOBhPl+js3HjRrVt21aNGzdWrVq1lJCQoJUrV3o6LAAA4AU8nuisWbNGffv2VWRkpCwWiz788MNSx6SkpKhZs2YKCgpSXFycNm7c6Nh35MgRNW7c2LHeuHFjHT58uCpCBwAAXs7jiU5+fr46duyolJSUMvcvWrRISUlJSk5O1pYtW9SxY0f16tVLx44dq+JIAQCAr/F4H52EhAQlJCSUu3/mzJkaOXKk7rvvPknS3Llz9emnn2revHmaOHGiIiMjnWpwDh8+rK5du5ZbXkFBgQoKChzrNptNkpSbm3u1twIAAKpIyXPbMIzLH2h4EUnGkiVLHOsFBQWG1Wp12mYYhjFs2DCjX79+hmEYRmFhoXHdddcZP//8s3H69Gnj+uuvN44fP17uNZKTkw1JLCwsLCwsLCZYDh06dNncwuM1Opdz/PhxFRUVKTw83Gl7eHi4du3aJUmqXr26ZsyYoR49eshut+uxxx677IirSZMmKSkpybFut9uVk5Oj+vXry2KxuOdGfqPY2FhlZGR4Ogyv4OufhTfG76mYquq67rpOZZZbGWXl5uYqKipKhw4dUmhoaKXEBc/xxt8VnnKlz8IwDJ0+fVqRkZGXLcerEx1X9evXT/369XPp2MDAQAUGBjptq1OnjhuiunpWq5VfXP/l65+FN8bvqZiq6rruuk5llluZZYWGhnrdzxgqzht/V3iKK59FWFjYFcvxeGfky2nQoIGsVquys7OdtmdnZysiIsJDUVWdUaNGeToEr+Hrn4U3xu+pmKrquu66TmWW640/F/AsfiZ+VVmfheW/fWO8gsVi0ZIlS9S/f3/Htri4OHXt2lUvvviipOKmpujoaI0ePVoTJ070UKQA4B1yc3MVFhYmm81GTQBQBo83XeXl5Wnv3r2O9czMTG3dulX16tVTdHS0kpKSlJiYqJiYGHXt2lWzZs1Sfn6+YxQWAPizwMBAJScnl2qSB1DM4zU6q1evVo8ePUptT0xMVGpqqiTppZde0nPPPaesrCx16tRJs2fPVlxcXBVHCgAAfI3HEx0AAAB38erOyAAAAFeDRAcAAJgWiQ4AADAtEh0AMKFTp04pJiZGnTp1Urt27fTaa695OiTAI+iMDAAmVFRUpIKCAtWsWVP5+flq166dNm3adNlX5ABmRI0OAJiQ1WpVzZo1JUkFBQUyDOPKb3kGTIhEBwC80Jo1a9S3b19FRkbKYrHoww8/LHVMSkqKmjVrpqCgIMXFxWnjxo1O+0+dOqWOHTuqSZMmmjBhgho0aFBF0QPeg0QHALxQfn6+OnbsqJSUlDL3L1q0SElJSUpOTtaWLVvUsWNH9erVS8eOHXMcU6dOHW3btk2ZmZlasGBBqfcGAv6APjoA4OXKew9gbGysXnrpJUnF7wGMiorSmDFjynwP4EMPPaTbb79dgwYNqqqwAa9AjQ4A+Jjz589r8+bNio+Pd2yrVq2a4uPjtX79eklSdna2Tp8+LUmy2Wxas2aNWrVq5ZF4AU/y+Es9AQAVc/z4cRUVFSk8PNxpe3h4uHbt2iVJOnDggP761786OiGPGTNG7du390S4gEeR6ACACXXt2lVbt271dBiAx9F0BQA+pkGDBrJaraU6F2dnZysiIsJDUQHeiUQHAHxMQECAunTpovT0dMc2u92u9PR0devWzYORAd6HpisA8EJ5eXnau3evYz0zM1Nbt25VvXr1FB0draSkJCUmJiomJkZdu3bVrFmzlJ+fr/vuu8+DUQPeh+HlAOCFVq9erR49epTanpiYqNTUVEnSSy+9pOeee05ZWVnq1KmTZs+erbi4uCqOFPBuJDoAAMC06KMDAABMi0QHAACYFokOAAAwLRIdAABgWiQ6AADAtEh0AACAaZHoAAAA0/L7mZHtdruOHDmi2rVry2KxeDocAADgAsMwdPr0aUVGRqpatfLrbfw+0Tly5IiioqI8HQYAAPgNDh06pCZNmpS73+8Tndq1a0sq/qBCQ0M9HA0AAHBFbm6uoqKiHM/x8vh9olPSXBUaGkqiAwCAj7lStxM6IwMAANMi0QEAAKZFogMAAEyLRAcAAJgWiQ4AADAtEh0AAGBaJDoAAMC0SHQAAIBpkegAAADTItEBAACmRaIDAABMi0QHAACYltcmOkVFRfrf//1fNW/eXMHBwWrRooWmTJkiwzAcxxiGob///e9q1KiRgoODFR8frz179ngwagAA4E28NtGZNm2a5syZo5deekk//PCDpk2bpunTp+vFF190HDN9+nTNnj1bc+fO1YYNGxQSEqJevXrp3LlzHowcAAB4C4txcRWJF7njjjsUHh6uf//7345tAwcOVHBwsN5++20ZhqHIyEiNGzdO48ePlyTZbDaFh4crNTVV99xzj0vXyc3NVVhYmGw2m0JDQ91yLwAAoHK5+vz22hqd3/3ud0pPT9ePP/4oSdq2bZu++uorJSQkSJIyMzOVlZWl+Ph4xzlhYWGKi4vT+vXryy23oKBAubm5TgsAADCn6p4OoDwTJ05Ubm6ubrjhBlmtVhUVFen//u//NHToUElSVlaWJCk8PNzpvPDwcMe+skydOlVPP/20+wIHAABew2trdN577z298847WrBggbZs2aI33nhDzz//vN54442rKnfSpEmy2WyO5dChQ5UUsXfJzs7WlClTdOuttyo8PFwBAQEKCQlR27Ztdf/992v58uUqr9Xy+eefl8VicVqWLl162ev9/PPPeuSRR9S2bVuFhIQoMDBQERERat++ve6++25NnTpVJ0+eLHVeUVGRXnnlFXXv3l1169ZVcHCwWrZsqbFjx+ro0aNXvM8LFy6oS5cuTrEOHz7cpc8IAOAHDC/VpEkT46WXXnLaNmXKFKNVq1aGYRjGvn37DEnGt99+63TM73//e+Phhx92+To2m82QZNhstquO2VukpKQYQUFBhqTLLpmZmWWe37Zt21LHDhw4sNzrbd682QgLC7vi9S79Xp09e9bo2bNnucfXq1fPyMjIuOy9PvPMM6XOS0xMrOAnBgDwNa4+v7226erMmTOqVs25wslqtcput0uSmjdvroiICKWnp6tTp06SijsmbdiwQQ8++GBVh+s1pk+frscff9yxbrVa1adPH0etx969e/XZZ58pOzu7zPMzMjK0Y8eOUts/+eQT5eTkqF69eqX2PfTQQ7LZbJKkkJAQ3X333br22mtVWFioPXv2aO3atWXWnE2ePFkrV650xDlixAg1atRIqampOnjwoHJycjR48GB9//33CgkJKXX+9u3bNWXKFNc+GACAf6qixKvCEhMTjcaNGxtLly41MjMzjbS0NKNBgwbGY4895jjmn//8p1GnTh3jo48+MrZv327ceeedRvPmzY2zZ8+6fB0z1ejs2LHDsFqtjpqNhg0bGlu2bCl13Pnz541XX33VyM7OLrXvoYcecpwfHR3tVDP04osvljq+5PMrWVJTU8uMbePGjcYvv/ziWD9x4oQRGBjoOO+JJ55w7Nu1a5dhsVgc+15++eUy76FTp06GJCMmJsZo3LgxNToA4EdcfX57baKTm5trjB071vGwvfbaa43JkycbBQUFjmPsdrvxv//7v0Z4eLgRGBho/OEPfzB2795doeuYKdH529/+5pR0LF68uELnnzt3zqhbt65T8nHXXXc51m+88cZS55w4ccLpmuPHjzcuXLhwxWstXLjQ6bzNmzc77W/fvr1jX+/evUudn5ycbEgyAgMDjR07dhhNmzYl0QEAP+LziU5VMVOi07JlS8fDvm7dukZRUVGFzl+0aJFT8rF9+/Yyt13q4iRDklG/fn2jX79+RnJysrFixQrj3Llzpc6ZNGmS0zknT5502n/nnXc69kVGRjrt+/bbb40aNWoYkoxp06aVioFEBwDMz9Xnt9eOukLFHT582PH19ddfX6qP05WkpqY6vm7btq3at2+vvn37qlatWmUeU+Jf//qXLBaLY/3EiRP6+OOP9fTTT6t3794KDw/XM888o6KiIscxOTk5TmVcOtlT7dq1ncorUVhYqOHDh6uwsFA33XSTxo0bV6F7BAD4FxIdSJKOHj3q6BgsyTGzdHBwsPr16+fY/vbbb+vChQtO59511136/PPPdfvtt5eZXNlsNiUnJ1+247BxyVD3S9dLTJkyRdu2bVNwcLBSU1NltVqvfHMAAL9FomMijRs3dnz9448/lpsslOXNN990qnG5+BUa9957r+PrY8eOadmyZaXOv+2225Senq6cnBwtX75cTz31lGJiYpyO+de//uX4un79+k77Tp8+Xe56gwYNJEkHDx7U1KlTJUnPPvusWrVq5fL9AQD8E4mOifzhD39wfH3y5El99NFHLp976USMLVu2dEzA17dvX6d9ZTVflQgLC1Pv3r2VnJysjIwMjRgxwrEvNzfXMay9Q4cOTuf99NNPTuv79u1zfN2+fXtJxc1dJbVJ48aNc5ok8MCBA073wsSBAACJRMdURo8e7dSU8+CDD2rbtm2ljissLNTrr7+uY8eOSZI2bNigH374weXrLF26VMePH3esJyYmavPmzWUee3H/nmrVqjn63vTs2VNBQUGOfYsXL3Z8vXPnTu3cudOxfuedd7ocGwAAF/PaCQNRcW3bttWUKVP0xBNPSCp+H1hMTIzuuOMOde7cudSEgSUvRJ0/f76jDIvFosGDBzt1LpakvLw8ffrpp5KKE6V33nlHY8eOlVTc7PXmm2+qRYsW6t69u6699lpZLBZt27ZNaWlpjjJ+//vfq2bNmpKkunXratSoUZoxY4Ykadq0aTp+/LgaNWqkefPmOZrdmjZtqr/85S+SpDp16mjgwIFl3vvy5ct15swZxzkxMTGKjY29ik8TAGAGFqMiHTlMyNXXvPuS2bNn67HHHlNBQcFlj8vMzFRERIQaNWqkU6dOSZLi4+O1atWqUscahqHmzZs7mog6deqkb7/9VpJKJUVlqVevnr788ku1a9fOse3cuXPq169fmdeTipOhlStXlurrU5ZmzZo5YktMTLxs8xoAwPe5+vym6cqEHn74YWVmZuqpp55S9+7ddc0116h69eqqWbOmWrdurQcffFCrV69W06ZN9eGHHzqSHElOfWouZrFYlJiY6FjfunWro1lsy5Yteu6559SnTx+1bt1a9evXl9VqVe3atdW5c2c99thj2rFjh1OSI0lBQUFavny55syZo27duik0NFSBgYFq0aKFxowZo++//96lJAcAgPJQo2PCGh0AAMyOGh0AAOD3SHQAAIBpkegAAADTItEBAACmRaIDAABMi0QHAACYFokOAAAwLRIdAABgWiQ6AADAtEh0AACAaZHoAAAA0yLRAQAApkWiAwAATItEBwAAmBaJDgAAMC0SHQAAYFokOgAAwLS8OtE5fPiw/ud//kf169dXcHCw2rdvr02bNjn2G4ahv//972rUqJGCg4MVHx+vPXv2eDBiAADgTbw20Tl58qRuvvlm1ahRQ8uXL9fOnTs1Y8YM1a1b13HM9OnTNXv2bM2dO1cbNmxQSEiIevXqpXPnznkwcgAA4C0shmEYng6iLBMnTtS6deu0du3aMvcbhqHIyEiNGzdO48ePlyTZbDaFh4crNTVV99xzj0vXyc3NVVhYmGw2m0JDQystfgAA4D6uPr+9tkbn448/VkxMjAYPHqyGDRuqc+fOeu211xz7MzMzlZWVpfj4eMe2sLAwxcXFaf369eWWW1BQoNzcXKcFAACYk9cmOj/99JPmzJmjli1b6rPPPtODDz6ohx9+WG+88YYkKSsrS5IUHh7udF54eLhjX1mmTp2qsLAwxxIVFeW+mwAAAB7ltYmO3W7XjTfeqH/84x/q3Lmz/vrXv2rkyJGaO3fuVZU7adIk2Ww2x3Lo0KFKihgAAHibKkt0Tp06VaHjGzVqpDZt2jhta926tQ4ePChJioiIkCRlZ2c7HZOdne3YV5bAwECFhoY6LQAAwJzckuhMmzZNixYtcqz/+c9/Vv369dW4cWNt27bNpTJuvvlm7d6922nbjz/+qKZNm0qSmjdvroiICKWnpzv25+bmasOGDerWrVsl3AUAAPB1bkl05s6d6+j7smrVKq1atUrLly9XQkKCJkyY4FIZjz76qL755hv94x//0N69e7VgwQK9+uqrGjVqlCTJYrHokUce0bPPPquPP/5Y3333nYYNG6bIyEj179/fHbcFAAB8THV3FJqVleVIdJYuXao///nP6tmzp5o1a6a4uDiXyoiNjdWSJUs0adIkPfPMM2revLlmzZqloUOHOo557LHHlJ+fr7/+9a86deqUunfvrhUrVigoKMgdtwUAAHyMW+bRiYyM1AcffKDf/e53atWqlZ599lkNHjxYu3fvVmxsrFcN6WYeHQAAfI+rz2+31OgMGDBAQ4YMUcuWLXXixAklJCRIkr799ltdd9117rgkAABAKW5JdP71r3+pWbNmOnTokKZPn65atWpJko4ePaqHHnrIHZcEAAAoxWtfAVFVaLoCAMD3ePwVEG+99Za6d++uyMhIHThwQJI0a9YsffTRR+66JAAAgBO3JDpz5sxRUlKSEhISdOrUKRUVFUmS6tSpo1mzZrnjkgAAAKW4JdF58cUX9dprr2ny5MmyWq2O7TExMfruu+/ccUkAAIBS3JLoZGZmqnPnzqW2BwYGKj8/3x2XBAAAKMUtiU7z5s21devWUttXrFih1q1bu+OSAAAApbhleHlSUpJGjRqlc+fOyTAMbdy4UQsXLtTUqVP1+uuvu+OSAAAApbgl0XnggQcUHBysJ598UmfOnNGQIUMUGRmpF154Qffcc487LgkAAFCK2+fROXPmjPLy8tSwYUN3XuY3Yx4dAAB8j8fn0blw4YL+85//6K233lJwcLAk6ciRI8rLy3PXJQEAAJy4penqwIED6t27tw4ePKiCggL98Y9/VO3atTVt2jQVFBRo7ty57rgsAACAE7fU6IwdO1YxMTE6efKkozZHku666y6lp6e745IAAACluKVGZ+3atfr6668VEBDgtL1Zs2Y6fPiwOy4JAABQiltqdOx2u+O1Dxf7+eefVbt2bXdcEgAAoBS3JDo9e/Z0eqeVxWJRXl6ekpOT9ac//ckdlwQAACjFLcPLDx06pN69e8swDO3Zs0cxMTHas2ePGjRooDVr1njVUHOGlwMA4HtcfX67bR6dCxcuaNGiRdq2bZvy8vJ04403aujQoU6dk70BiQ4AAL7HY4lOYWGhbrjhBi1dutQn3mtFogMAgO9x9fld6aOuatSooXPnzlV2sQAAXFFRkbR2rXT0qNSokXTLLZLV6umo4Elu6Yw8atQoTZs2TRcuXHBH8QAAlJKWJjVrJvXoIQ0ZUvxvs2bF2+G/3DKPTkZGhtLT07Vy5Uq1b99eISEhTvvT+KkDAFQSu1164w3p/vulSztjHD4sDRokvf++NHCgZ+KDZ7kl0alTp44G8hMFAHAzu/3yTVMlic8jj0j9+9OM5Y/ckujMnz/fHcUCAFxEXxVnP/9c/HncdpunI0FVc0uiAwDwnLQ0aezY4od7iSZNpBdekAYM8Fxc7nD2rOvHHj3qvjjgvdzSGblz58668cYbSy1dunTRzTffrMTERH3xxRcVKvOf//ynLBaLHnnkEce2c+fOadSoUapfv75q1aqlgQMHKjs7u5LvBgB8g90uzZ9f3Cfl4iRH+rWvyuLFnonNGzRq5OkI4AluSXR69+6tn376SSEhIerRo4d69OihWrVqad++fYqNjdXRo0cVHx+vjz76yKXyMjIy9Morr6hDhw5O2x999FF98sknev/99/Xll1/qyJEjGmC2P1cAwAUlfVVGjCjdIVcq3mYYxX1VyngVoc+qWVOy2aTGjSWLpexjLBYpKqq4+Q7+xy2JzvHjxzVu3DitXbtWM2bM0IwZM7RmzRqNHz9e+fn5WrlypZ588klNmTLlimXl5eVp6NCheu2111S3bl3HdpvNpn//+9+aOXOmbr/9dnXp0kXz58/X119/rW+++cYdtwUAPq+kr4pZWCxSaKg0e/av65ful6RZs/y7j5I/c0ui89577+nee+8ttf2ee+7Re++9J0m69957tXv37iuWNWrUKPXp00fx8fFO2zdv3qzCwkKn7TfccIOio6O1fv36cssrKChQbm6u0wIAvs5ikf79b9eONWNflQEDpA8+KK7ZuViTJsXbqez3X27pjBwUFKSvv/5a1113ndP2r7/+WkFBQZIku93u+Lo87777rrZs2aKMjIxS+7KyshQQEKA6deo4bQ8PD1dWVla5ZU6dOlVPP/20i3cCwAz8YQTSmTPF88i4wqx9VQYMkO68o0jfvbxWZ/YdVc0WjdT+oVtkDTDZNxsV4pZEZ8yYMfrb3/6mzZs3KzY2VlJxP5vXX39dTzzxhCTps88+U6dOncot49ChQxo7dqxWrVp1xYSoIiZNmqSkpCTHem5urqKioiqtfADexZ9GILnC1H1V0tJkHTtWnS7+Zs/w4282ihlu8vbbbxs33XSTUbduXaNu3brGTTfdZLzzzjuO/WfOnDHOnj1b7vlLliwxJBlWq9WxSDIsFothtVqN//znP4Yk4+TJk07nRUdHGzNnznQ5TpvNZkgybDZbhe8RgPcqKjKMefMMw2Ip6Yb762KxFC/vvGMYdrunI60cdrth5OUV31PJ/ZV1z4sXezpSN3Dlm/3BB56OEpXM1ed3pb+9vLKcPn1aBw4ccNp233336YYbbtDjjz+uqKgoXXPNNVq4cKFjFubdu3frhhtu0Pr163XTTTe5dB3eXg6Yz5Vmy72YzVbcmdVM0tKkRx8uUvPDa9VIR3VUjbS/yS2a+YLVfBUbrn6zmzSR9u83X5ulH/PY28tLnDp1Sh988IF++uknjR8/XvXq1dOWLVsUHh6uxpf2FitD7dq11a5dO6dtISEhql+/vmP7/fffr6SkJNWrV0+hoaEaM2aMunXr5nKSAwDr1kkJCZ6OonINUJrusoyVRb824RhqIotekGS2TMdFTI3st9yS6Gzfvl3x8fEKCwvT/v379cADD6hevXpKS0vTwYMH9eabb1bKdf71r3+pWrVqGjhwoAoKCtSrVy+9/PLLlVI2AN9Vkdlyc3LcF0eVu+jtlpZLKustZn27JVMj4wrc0nQVHx+vG2+8UdOnT1ft2rW1bds2XXvttfr66681ZMgQ7d+/v7Iv+ZvRdAWUz1dHK+XnS7VquXZserp0++3ujadK+GsTTkW+2V98QY2Oibj6/HbLPDoZGRn6f//v/5Xa3rhx48sO/QbgeXa7dOxY8asEoqKkHj2kIUOK/23aVFqwoOyZd71JRWbLvfXWqo3N48w2YyBTI+MK3JLoBAYGljkR348//qhrrrnGHZcEUAlKKgXCw4tfJXBpTf/hw9LQodLChZ6Jz1V+OVuuvzbh+OU3GxXhlkSnX79+euaZZ1RYWChJslgsOnjwoB5//HHHCCkAvuvxx33jfUkls+VGRRbpVq3WPVqoW7Va0Y2L/Hu2XDPOGMjUyCiHW/ro2Gw2DRo0SBkZGcrLy1NkZKSysrLUrVs3LVu2TCEhIZV9yd+MPjqoat7c78UwpOXLpT59rnysz3R3SEuTMXasLBdNImc0aSKL2SaRMwzp9GmpTRvpyJGy2xctluIHf2am9/zQVTZv/g+GSuXq89ut8+isW7dO27ZtU15enm688cZS76vyBiQ6qAp2u3T8uPTpp9Lkyc4tB40bS9OnS3feWdzdoLxuBlWhIv06FyyQynilnfe4aARSqYd+yYf89tvFN+HJD72ypaUVj66SnO+75B6p3YBJeGweHbvdrtTUVKWlpWn//v2yWCxq3ry5IiIiZBiGLGb6hQK44EqDYUr6vUhSXp7kRRWel+XVrR9X+tBLEoChQ6U77jDXjIElTThlvfdi1iySHPidSq3RMQxDffv21bJly9SxY0fdcMMNMgxDP/zwg7777jv169dPH374YWVdrlJQowN386VZei9t/bAYRbpFv86uu1a3yLBYvb/1oyIf+rJl5psxUKIJB6bnkRqd1NRUrVmzRunp6erRo4fTvs8//1z9+/fXm2++qWHDhlXmZQGvZrEUN1m50u9l8+biYdyecvEAlncGpmmWxirqotl1D6mJHjFe0NBZA7z7mem3MwZexGr1kU5UgHtV6qirhQsX6oknniiV5EjS7bffrokTJ+qdd96pzEsCXu/MGdeSHKm4FsXj7HYNsM3XBxqkxhclOZLUWIf1gQZpgLHYQ8G5gVe3wQG4WpWa6Gzfvl29e/cud39CQoK2bdtWmZcEfE41OQ91rqZfx2l7/Jlb0uQzYoQsMkr9gqgmQxYZ0iOPePf4cmYMBPBflZro5OTkKDw8vNz94eHhOnnyZGVeEvB6Fz9zByhN+9VMq9VDCzVEq9VD+9VMA5TmHc/c/HzXjvP22XWZRA7Af1VqolNUVKTq1cvv9mO1WnXhwoXKvCTg9SwWKbSWXR/1n6/3y2kOel+D9MHABbJW8/C7FapV4FeCL8yuyyRygN+r1FFX1apVU0JCggIDA8vcX1BQoBUrVqjIi6q8GXUFt/O1YVcrVkh/+tOVj/WZGQPFCCTAhDwy6ioxMfGKxzDiCriMdes8O9TZYpF69iyu8Th8+PKz6/rSCxIZgQT4rUpNdObPn1+ZxQHm4GtDna1W6YUXimfXtVjKnl2Xvi0AfIRbXuoJ4Dfy+LCr/6JvCwCTcOu7rnwBfXTgdr78skX6tgDwUh571xWAS1w81NnXmoPo2wLAx9F0BVQVmoMAoMpRowNUpQEDpDvvpDkIAKoIiQ5Q1WgOAoAqQ9MVAAAwLRIdAABgWiQ6AADAtEh0AACAaZHoAAAA0yLRAQAApuW1ic7UqVMVGxur2rVrq2HDhurfv792797tdMy5c+c0atQo1a9fX7Vq1dLAgQOVnZ3toYgBAIC38dpE58svv9SoUaP0zTffaNWqVSosLFTPnj2Vn5/vOObRRx/VJ598ovfff19ffvmljhw5ogHMLgsAAP7LZ17q+csvv6hhw4b68ssv9fvf/142m03XXHONFixYoEGDBkmSdu3apdatW2v9+vW66aabXCqXl3oCAOB7XH1+e22NzqVsNpskqV69epKkzZs3q7CwUPHx8Y5jbrjhBkVHR2v9+vXlllNQUKDc3FynBQAAmJNPJDp2u12PPPKIbr75ZrVr106SlJWVpYCAANWpU8fp2PDwcGVlZZVb1tSpUxUWFuZYoqKi3Bk6AADwIJ9IdEaNGqXvv/9e77777lWXNWnSJNlsNsdy6NChSogQAAB4I69/qefo0aO1dOlSrVmzRk2aNHFsj4iI0Pnz53Xq1CmnWp3s7GxFRESUW15gYKACAwPdGTIAAPASXlujYxiGRo8erSVLlujzzz9X8+bNnfZ36dJFNWrUUHp6umPb7t27dfDgQXXr1q2qwwUAAF7Ia2t0Ro0apQULFuijjz5S7dq1Hf1uwsLCFBwcrLCwMN1///1KSkpSvXr1FBoaqjFjxqhbt24uj7gCAADm5rXDyy0WS5nb58+fr+HDh0sqnjBw3LhxWrhwoQoKCtSrVy+9/PLLl226uhTDywEA8D2uPr+9NtGpKiQ6AAD4HtPNowMAAFBRJDoAAMC0SHQAAIBpkegAAADTItEBAACmRaIDAABMi0QHAACYFokOAAAwLRIdAABgWiQ6AADAtEh0AACAaZHoAAAA0yLRAQAApkWiAwAATItEBwAAmBaJDgAAMC0SHQAAYFokOgAAwLRIdAAAgGmR6AAAANMi0QEAAKZFogMAAEyLRAcAAJgWiQ4AADAtEh0AAGBaJDoAAMC0TJHopKSkqFmzZgoKClJcXJw2btzo6ZAAAIAX8PlEZ9GiRUpKSlJycrK2bNmijh07qlevXjp27JinQwMAAB7m84nOzJkzNXLkSN13331q06aN5s6dq5o1a2revHmeDg0AAHhYdU8HcDXOnz+vzZs3a9KkSY5t1apVU3x8vNavX1/mOQUFBSooKHCs22w2SVJubq57gwUAAJWm5LltGMZlj/PpROf48eMqKipSeHi40/bw8HDt2rWrzHOmTp2qp59+utT2qKgot8QIAADc5/Tp0woLCyt3v08nOr/FpEmTlJSU5Fi32+3KyclR/fr1ZbFYPBhZabGxscrIyPB0GF7B1z8Lb4zfUzFV1XXddZ3KLLcyysrNzVVUVJQOHTqk0NDQSokLnuONvys85UqfhWEYOn36tCIjIy9bjk8nOg0aNJDValV2drbT9uzsbEVERJR5TmBgoAIDA5221alTx10hXhWr1covrv/y9c/CG+P3VExVdV13Xacyy63MskJDQ73uZwwV542/KzzFlc/icjU5JXy6M3JAQIC6dOmi9PR0xza73a709HR169bNg5FVjlGjRnk6BK/h65+FN8bvqZiq6rruuk5lluuNPxfwLH4mflVZn4XFuFIvHi+3aNEiJSYm6pVXXlHXrl01a9Ysvffee9q1a1epvjsAYDa5ubkKCwuTzWajJgAog083XUnS3XffrV9++UV///vflZWVpU6dOmnFihUkOQD8QmBgoJKTk0s1yQMo5vM1OgAAAOXx6T46AAAAl0OiAwAATItEBwAAmBaJDgAAMC0SHQAAYFokOgBgQqdOnVJMTIw6deqkdu3a6bXXXvN0SIBHMLwcAEyoqKhIBQUFqlmzpvLz89WuXTtt2rRJ9evX93RoQJWiRgcATMhqtapmzZqSpIKCAhmGIf6uhT8i0QEAL7RmzRr17dtXkZGRslgs+vDDD0sdk5KSombNmikoKEhxcXHauHGj0/5Tp06pY8eOatKkiSZMmKAGDRpUUfSA9yDRAQAvlJ+fr44dOyolJaXM/YsWLVJSUpKSk5O1ZcsWdezYUb169dKxY8ccx9SpU0fbtm1TZmamFixYoOzs7KoKH/Aa9NEBAC9nsVi0ZMkS9e/f37EtLi5OsbGxeumllyRJdrtdUVFRGjNmjCZOnFiqjIceeki33367Bg0aVFVhA16BGh0A8DHnz5/X5s2bFR8f79hWrVo1xcfHa/369ZKk7OxsnT59WpJks9m0Zs0atWrVyiPxAp7k828vBwB/c/z4cRUVFSk8PNxpe3h4uHbt2iVJOnDggP761786OiGPGTNG7du390S4gEeR6ACACXXt2lVbt271dBiAx9F0BQA+pkGDBrJaraU6F2dnZysiIsJDUQHeiUQHAHxMQECAunTpovT0dMc2u92u9PR0devWzYORAd6HpisA8EJ5eXnau3evYz0zM1Nbt25VvXr1FB0draSkJCUmJiomJkZdu3bVrFmzlJ+fr/vuu8+DUQPeh+HlAOCFVq9erR49epTanpiYqNTUVEnSSy+9pOeee05ZWVnq1KmTZs+erbi4uCqOFPBuJDoAAMC06KMDAABMi0QHAACYFokOAAAwLRIdAABgWiQ6AADAtEh0AACAaZHoAAAA0yLRAQAApkWiAwAATItEB4BPGj58uPr3739VZaxevVoWi0WnTp267HHp6elq3bq1ioqKrljmihUr1KlTJ9nt9quKDUDlINEB4FbDhw+XxWKRxWJRQECArrvuOj3zzDO6cOHCVZX7wgsvON755G6PPfaYnnzySVmt1ise27t3b9WoUUPvvPNOFUQG4EpIdAC4Xe/evXX06FHt2bNH48aN01NPPaXnnnvuN5VVVFQku92usLAw1alTp3IDLcNXX32lffv2aeDAgS6fM3z4cM2ePduNUQFwFYkOALcLDAxURESEmjZtqgcffFDx8fH6+OOPJUkFBQUaP368GjdurJCQEMXFxWn16tWOc1NTU1WnTh19/PHHatOmjQIDA3Xw4MFSTVcFBQV6+OGH1bBhQwUFBal79+7KyMhwimPZsmW6/vrrFRwcrB49emj//v1XjP3dd9/VH//4RwUFBTm2bdu2TT169FDt2rUVGhqqLl26aNOmTY79ffv21aZNm7Rv377f9oEBqDQkOgCqXHBwsM6fPy9JGj16tNavX693331X27dv1+DBg9W7d2/t2bPHcfyZM2c0bdo0vf7669qxY4caNmxYqszHHntMixcv1htvvKEtW7bouuuuU69evZSTkyNJOnTokAYMGKC+fftq69ateuCBBzRx4sQrxrp27VrFxMQ4bRs6dKiaNGmijIwMbd68WRMnTlSNGjUc+6OjoxUeHq61a9f+ps8HQOWp7ukAAPgPwzCUnp6uzz77TGPGjNHBgwc1f/58HTx4UJGRkZKk8ePHa8WKFZo/f77+8Y9/SJIKCwv18ssvq2PHjmWWm5+frzlz5ig1NVUJCQmSpNdee02rVq3Sv//9b02YMEFz5sxRixYtNGPGDElSq1at9N1332natGmXjfnAgQOO2EocPHhQEyZM0A033CBJatmyZanzIiMjdeDAgQp8OgDcgUQHgNstXbpUtWrVUmFhoex2u4YMGaKnnnpKq1evVlFRka6//nqn4wsKClS/fn3HekBAgDp06FBu+fv27VNhYaFuvvlmx7YaNWqoa9eu+uGHHyRJP/zwg+Li4pzO69at2xVjP3v2rFOzlSQlJSXpgQce0FtvvaX4+HgNHjxYLVq0cDomODhYZ86cuWL5ANyLRAeA2/Xo0UNz5sxRQECAIiMjVb168a+evLw8Wa1Wbd68udSIplq1ajm+Dg4OlsViqdKYSzRo0EAnT5502vbUU09pyJAh+vTTT7V8+XIlJyfr3Xff1V133eU4JicnR9dcc01VhwvgEvTRAeB2ISEhuu666xQdHe1IciSpc+fOKioq0rFjx3Tdddc5LRERES6X36JFCwUEBGjdunWObYWFhcrIyFCbNm0kSa1bt9bGjRudzvvmm2+uWHbnzp21c+fOUtuvv/56Pfroo1q5cqUGDBig+fPnO/adO3dO+/btU+fOnV2+BwDuQaIDwGOuv/56DR06VMOGDVNaWpoyMzO1ceNGTZ06VZ9++qnL5YSEhOjBBx/UhAkTtGLFCu3cuVMjR47UmTNndP/990uS/va3v2nPnj2aMGGCdu/erQULFrg0D0+vXr301VdfOdbPnj2r0aNHa/Xq1Tpw4IDWrVunjIwMtW7d2nHMN998o8DAQJeaxgC4F4kOAI+aP3++hg0bpnHjxqlVq1bq37+/MjIyFB0dXaFy/vnPf2rgwIH6y1/+ohtvvFF79+7VZ599prp160oqHgm1ePFiffjhh+rYsaPmzp3r6Ox8OUOHDtWOHTu0e/duSZLVatWJEyc0bNgwXX/99frzn/+shIQEPf30045zFi5cqKFDh6pmzZoVugcAlc9iGIbh6SAAwJtNmDBBubm5euWVV6547PHjx9WqVStt2rRJzZs3r4LoAFwONToAcAWTJ09W06ZNXXp/1f79+/Xyyy+T5ABeghodAABgWtToAAAA0yLRAQAApkWiAwAATItEBwAAmBaJDgAAMC0SHQAAYFokOgAAwLRIdAAAgGmR6AAAANP6/5FtKwvJnQC4AAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAq21JREFUeJzsnXl8VNX5/z+zZmay7xsJCQlbQggJISQkgCgVERWrdfnWKu7fqrWtuNeqdataK1oV9dvWuv1qtbVqqyioqIFAwhYISwiBEAjZ92WyTCYz9/dHMpdMFnIDd+acO3ner9cYZubc5/mcxZMnZ1UJgiCAIAiCIAiCUDxq1gIIgiAIgiAIeaDAjiAIgiAIwkOgwI4gCIIgCMJDoMCOIAiCIAjCQ6DAjiAIgiAIwkOgwI4gCIIgCMJDoMCOIAiCIAjCQ6DAjiAIgiAIwkOgwI4gCIIgCMJDoMCOIBhiNpvxxz/+EUuWLEFISAh0Oh38/f0RFxeHzMxM3HTTTVi3bh0qKytZSx2XuLg4qFQq8eXJ7NixA7/61a+QkZGBsLAw6PV6eHt7Y/r06bjqqqvw1ltvobOzc8znrVYrwsLCnMpLpVLhtddek+T/q6++wtVXX424uDgYjUYYDAZERUVhzpw5uPzyy/Hoo49i8+bNYz7f0tKCxx9/HPPnz0dAQACMRiPi4+OxZs0a7Ny5U3I5dHV1ITExcUQ+Tpw4IdkGQRAyIxAEwYSysjJh6tSpAoBxX++///6I55cuXeqUpqKiQnaNFRUVTj6WLl06ZtrhefFEqqurhQsvvFBSnf34xz8e084nn3wy6jPz588/o//+/n7h+uuvl+T/ggsuGNVGQUGBEBISMuZzKpVKeOyxxySVxx133DGqDVe0RYIgpKGVN0wkCEIKgiDg2muvxcmTJ8XPQkJCkJqaCh8fHzQ3N6OkpAQtLS0MVU6Miy++GA0NDaxluIzy8nLk5OSgvr7e6fOoqCikpKRAo9GgsrISJSUlsNvtsNvtY9p65513Rv18z549OHjwIObMmTPq9+vXr8f7778vvtdqteKoYW9vL8rLy3H8+HEIY1wBXl1djZUrV6KtrU38LCMjAyEhIdiyZQu6u7shCAKefPJJREVF4X//93/HzMM333yDN954Y8zvCYJgAwV2BMGAffv2oaioSHy/evVqfPzxx9BqtSPS/fOf/0RISIi7JU6Y119/nbUEl2G1WnHJJZc4BXV+fn7461//iquuusopbV1dHd544w0cO3ZsVFuNjY346quvxPc6nQ5Wq1V8/8477+CPf/zjqM++9dZbTv6LioqQkJDglKahoQFffPHFqP4feeQRp6DuySefxKOPPgoAKC0tRUZGBrq6ugAADzzwAK677jr4+PiMsNPe3o6bb74ZAODv7w+VSuVklyAIhjAeMSSIScmHH37oNHW1bt06yc8On4Id6+WYDquoqBB++9vfCpdccokwY8YMITQ0VNDpdIK3t7cwbdo04aqrrhI+//xzJx/Dp2DHeg2dmpUyFdvU1CQ888wzQk5OjhAcHCxotVohICBAmD9/vvDQQw8JlZWVoz43mu2PP/5YOO+88wQ/Pz/BYDAI6enpwnvvvTfq82+//bbT848//rjk8hYEQVi/fr3T82q1Wvjhhx/O+Exvb++on69bt87J1iOPPCKYTCbxfUREhGC1Wkd91mAwiOnmzp07oTx0dnYKRqNRfN5kMgnd3d1OadasWeOk7W9/+9uotoZOB7/33nsj6oemYgmCHRTYEQQDhq+xCg0NFV599VXh6NGj4z470cDuX//6l6T0N998s+jDFYHdt99+e8a1XY5g4+9///uIZ4fbvuGGG8a08dJLL414/lwDu9zcXKfnL7vssgk9P5S5c+eOqKdrrrnG6bPhgbYDPz8/p3S33367sHXr1jGDyKF89913Ts8uXLhwRJrXX3/dKc2NN944Is2nn34qfn/FFVcIgjCyfiiwIwh20FQsQTAgKysLWq0W/f39AAam5+6++24AQEBAANLT07F48WJceeWVSElJcXp26dKlCAkJQV5eHpqamsTPV65cCZPJJL739vZ2ei42NhbR0dEIDAyEWq1GfX099u3bJ04D/u1vf8Oll16Kyy+/HN7e3rjyyivR3d3tNG0YEhKCpUuXiu+Tk5Ml5be0tBSrV68Wp/mA02vTjh49iuPHjwMAuru7ccMNNyA6OtrJz3Dee+89BAUFYf78+Th8+DCqqqrE7373u9/h9ttvdyqLc8Fut6OwsNDps4svvvisbBUVFWH//v3i++zsbMTFxeF//ud/8NFHH4mfv/POO7jkkktGPL948WJs2LBBfP/nP/8Zf/7zn6HVapGUlITs7GysXLkSK1euhF6vd3q2tLTU6X10dPQI+8M/G/5MY2OjuO4uLCwMb7755nhZJgjC3bCOLAlisvLYY49JGhW79NJLhYaGhhHPS90VW19fL5w6dWrU7w4ePOhk45prrnH6Xq5dsddee+2IEa+enh5BEATBZrMJt99+u9P3WVlZZ7Sdnp4uNDc3C4IwMMWYnJzs9H1eXp7T8+cyYtfQ0DCiTjZu3Cj5+aHcfffdTnZeffVVQRAEwWKxCAEBAeLner1ezN9QiouLBR8fn3HbTGxsrLBp0yanZ3//+987pbn++utH2P/222+d0sycOdPp+yuuuEL87rPPPhM/pxE7guAHOseOIBjxxBNP4G9/+xumTp16xnSff/45Vq9ePeZOx/EICwvDqVOncOuttyIlJQX+/v7QaDRQqVQjdl8OH6GRA7vd7jTKBADPP/88DAYDAECtVuP55593GmHasWMHGhsbx7T5zDPPICgoCADg4+OD888/3+n76upqp/c33ngjhIGlJxAEAb/73e/OJUtnVRd9fX344IMPxPcajUbceKHX63HllVeOmdbB3LlzsWPHDqxYseKMZwVWVlbi0ksvdRodlJKHM+Xr//2//4dPPvkEALBmzRqsXr16zLQEQbCDAjuCYMhNN92EiooKFBQU4LnnnsPq1avFgGUoBQUFKCgoOCsf69atw6JFi/DWW2/h4MGD6OjoGPMojvb29rPycSaam5udDuvV6/WYOXOmU5qAgADExsaK7wVBOOMhtwsWLHB67+/v7/TeYrGcg2JngoODR+xWPpsDeD///HM0NzeL788//3yEh4eL7//nf/7HKf1YR6IkJSVh48aNOHnyJN5++23ceuutmD179oh0fX19TgceBwQEOH3f3d094pmhU+UAEBgYCADo7e0VlwrExsbilVdeGVUbQRDsocCOIBijUqmQlZWFBx98EJ999hkaGxvx3//+d8QxE4cPH56w7draWjz44INOn8XExODiiy/GlVde6TRKBJzdSNR4uMJmcHCw03uNRiO7DwdqtRpZWVlOn3355ZcTtjM8UCssLMSUKVPE1w033OD0veNMu7GIiYnBjTfeiL/85S8oKSnBsWPHRqxLHNpmZs2a5fTd0HWJDoaPdDqe6e3tFY8zaWhowLRp0xASEiK+Tp065fRceno6QkJC8OGHH46pnyAI10CBHUEwoL29fdQRE2AgkLj00kvxox/9yOlznU7n9F7KtV2FhYXiBg0AWLVqFU6ePIkNGzbg448/xquvvnrG5+W4GiwkJMQpSO3r60NZWZlTmra2Nqdr01QqFeLi4s7Zt1wMH03bsGED8vLyzvjM0FHD+vp6bNy40en7zs5OVFdXi6+ampoRNoYHg6OlcZCQkIC1a9c6fTa0zSxYsABGo1F8f+DAgRFtcMeOHU7vlyxZMsJPb28vmpubnV7DR4BbW1vR3NyM3t7eMfUSBOEaKLAjCAYcOHAAsbGx+M1vfjPqqExlZeWInZjDd6AO/SUNjBxtAeB08C0AGAwGMVizWCy49957z6hzuI8zBRZjoVarR+wifeihh8TAx2634+GHH0ZfX5/4fWZmJkJDQyfsayzeeecdp7tMJ7rG7rbbbnMa8bLb7eKh0sOpq6vDY489Jh7gCwysTxsaYEvl73//u9Nzy5YtwxVXXIHPP/98xHSzzWbDv//9b6fPhrYZHx8fXH311eL7np4evPDCC+L7kpISp/z4+fmNOHyZIAgFwGrXBkFMZrZu3eq0izAkJERYunSpcNlllwm5ubmCTqdz+j4tLU2w2+1ONu655x6nNKGhocIll1wiXHnllcIDDzwgCMLArla1Wu2Ubs6cOcLFF18sREZGCiqVyum7qVOnjtAaFBTklCY1NVW44oorhCuvvFL46quvxHRn2hV76NAhp0N4AQhRUVHCihUrhGnTpjl9rlarhe+++87p+fHOyHv88cedvn/77bedvj/Xc+wEQRCOHj0qhIeHj9iBGh0dLaxcuVJYtWqVkJKSIpb36tWrxWfnzJnj9MxY59QJwshz7oamTUhIcNo5O3/+fGHVqlXCihUrhIiICKfnVCqVsGfPHifbVVVVTrtvAQgZGRnCRRddNKJ+3nzzTcllQ7tiCYIfKLAjCAbk5+ePe2SF4xUbGyscOXJkhI19+/YJWq121GeGXia/du3aMW3/8Y9/HDewu//++8d83nFchyCMH3xt2rRpRJA4/GU0Gke9PYKHwE4QBgKj5cuXS6q3H//4x4IgCMKuXbucPg8MDBT6+vrG9PHMM884pb/yyivF7xITEyX51mq1TnUzlIKCAiE4OHjMZ1UqlfDoo49OqFwosCMIfqADigmCATk5Odi3bx++/vpr7NixA6WlpaiurobZbIZarUZgYCCSk5NxySWX4Lbbbhv1vs7U1FRs3LgRzz77LPbs2YP29vZRNyr88Y9/xMyZM/H666+jtLQUBoMB8+bNw7333otLL70U99133xm1PvPMM/D398cHH3yA48ePn/W6qQsvvBClpaX4v//7P3z55ZcoLS1FZ2cnTCYTEhMTsXz5ctx5553jHv/CkujoaHzzzTcoLCzEBx98gG3btuHkyZNob2+HTqdDdHQ0UlNTcdFFF4nTnsPXyV1xxRUj1ksO5ZprrsEjjzwivv/888/R0tKCoKAgbN++HRs3bsS2bdtQXFyMkydPoqWlBf39/fDx8UFcXByWLFmC22+/fcRRNg6ysrJQVlaGl19+GZ9//jmOHz8Oi8WC8PBwLFmyBHfffTcyMzPPvbAIgmCCShjtNwFBEARBEAShOGjzBEEQBEEQhIdAgR1BEARBEISHQIEdQRAEQRCEh0CBHUEQBEEQhIdAgR1BEARBEISHQIEdQRAEQRCEh0CBHUEQBEEQhIdAgR1BEARBEISHQIEdQRAEQRCEh0CBHUEQBEEQhIdAgR1BEARBEISHQIEdQRAEQRCEh0CBHUEQBEEQhIdAgR1BEARBEISHQIEdQRAEQRCEh0CBHUEQBEEQhIdAgR1BEARBEISHQIEdQRAEQRCEh0CBHUEQBEEQhIdAgR1BEARBEISHQIEdQRAEQRCEh0CBHUEQBEEQhIdAgR1BEARBEISHQIEdQRAEQRCEh0CBHUEQBEEQhIeg+MDu1KlTOO+885CUlIS5c+fiX//6F2tJBEEQBEEQTFAJgiCwFnEu1NbWor6+HvPmzUNdXR3mz5+PsrIyeHt7s5ZGEARBEAThVrSsBZwrkZGRiIyMBABEREQgJCQELS0tFNgRBEEQBDHpYD4Vu2XLFlx66aWIioqCSqXCZ599NiLN+vXrERcXB4PBgIULF2Lnzp2j2tqzZw9sNhtiYmJcrJogCIIgCII/mAd2XV1dSE1Nxfr160f9/qOPPsLatWvx+OOPo6ioCKmpqVixYgUaGhqc0rW0tOCGG27An//8Z3fIJgiCIAiC4A6u1tipVCp8+umnuPzyy8XPFi5ciAULFuC1114DANjtdsTExODuu+/GQw89BACwWCz40Y9+hNtuuw3XX3/9GX1YLBZYLBbxvd1uR0tLC4KDg6FSqeTPFEEQBEEQxDkgCAI6OzsRFRUFtfrMY3Jcr7Hr6+vDnj178PDDD4ufqdVqLF++HAUFBQAGMnvjjTfi/PPPHzeoA4Bnn30WTzzxhMs0EwRBEARBuIJTp05hypQpZ0zDdWDX1NQEm82G8PBwp8/Dw8NRWloKANi2bRs++ugjzJ07V1yf9/777yMlJWVUmw8//DDWrl0rvm9vb0dsbCxOnToFPz8/12RERo4cOYKZM2eyljEuPOhkocEdPl3lQ067PNQ/wRZqA9LxxLJSSp540Tmejo6ODsTExMDX13dcW1wHdlLIzc2F3W6XnN7LywteXl4jPvfz81NEYNfd3U06OdbgDp+u8iGnXR7qn2ALtQHpeGJZKSVPvOiUqkPKkjGuA7uQkBBoNBrU19c7fV5fX4+IiIhzsr1+/XqsX78eNpsNAJCfnw9vb28sWrQIxcXF6OrqQkBAAGbMmCHuwk1MTITdbsfx48cBAFlZWSgpKUFHRwd8fX2RnJyMwsJCAEB8fDw0Gg2OHTsGAFiwYAGOHTuG1tZWmEwmpKWlYdu2bQCA2NhYGI1GHDlyBACQnp6OkydPorm5GQaDAZmZmdiyZQuAgai9sbERJSUlAIB58+ahpqYGDQ0N0Ol0WLRoEbZu3Qq73Y7IyEgEBwfj4MGDAICUlBQ0Njairq4OGo0Gubm52LZtG/r7+xEWFobIyEgUFxcDAJKSktDe3o7q6moAwNKlS1FYWAiLxYKQkBDExsaiqKgIADBr1ix0d3ejsrISwECwXVdXh7y8PAQGBiIhIQG7d+8GAEyfPh1WqxUnTpwAAGRnZ+PAgQMwm83w9/fHrFmzsGPHDgBAQkICAKC8vBzAwHrL0tJStLe3w8fHBykpKeKUfFxcHHQ6HY4ePQoAyMjIQFNTE/Ly8mAymZCeno78/HyxvE0mkzjqm56ejsrKSjQ1NcHLywtZWVnIy8sDAERHR8Pf318s79TUVNTW1qKhoQFarRY5OTnIz8+HzWZDREQErFar+OycOXPQ3NyM2tpaqNVqLF68GNu3b4fVakVYWBiioqKwb98+sbw7OjpQVVUFAFiyZAl27tyJ3t5eBAcHY+rUqWJ59/b2oqKiQizvnJwc7N27F93d3QgMDERiYiJ27doltlmbzYaKigqxzR46dAidnZ3w8/NDUlKS2Ga7urpQXV0tttnMzEyUlZWhra0N3t7eSE1Nxfbt28Xy1uv1KCsrE8u7oqICzc3NMBqN0Gg0YjnExMTAx8cHhw8fBgCkpaWhqqoKjY2N0Ov1yM7OxpYtWyAIAqKiohAYGIhDhw4BAObOnYv6+nrU19eLbdZR3uHh4QgPD8f+/fsBAMnJyWhtbUVNTQ1UKhWWLFmCgoIC9PX1ITQ0FFOmTMHevXsBALNnz4bZbMapU6cAAIsXL8bu3bvR09OD4OBgxMfHi212xowZ6OvrE9ss733ElClT4Ofnx7yPsNlsYhsYrY8oKioS2yyrPqK8vFwsb3f1EaGhoThw4ACA033EqVOnsHXrVtn6iJkzZ6Knp0f2PmLatGlQq9WS+giz2Yza2tox+4iMjAxs3boVANs+oqamBnl5ecz7iFOnTqGoqGjMPqKrqwtSUcTmiczMTLz66qsABjY7xMbG4he/+IW4eeJc6OjogL+/P9rb27mI2gmCIAiCIIYykViF+XEnZrMZ+/btE/8qqaiowL59+8S/NNauXYu//OUvePfdd3H48GHccccd6Orqwk033cRQNTscf+HwDg86WWhwh09X+ZDTLg/1T7CF2oB0PLGslJInXnTKqYP5VOzu3buxbNky8b1jY8OaNWvwzjvv4JprrkFjYyMee+wx1NXVYd68edi4ceOIDRWThYmsJ2QJDzpZaHCHT1f5kNMuD/VPsIXagHQ8sazGypPdbkdfX5+b1YyNIAjo7e1lLUPWNsDVVKw7GbrGrqysDBs2bFDEGjtgYK0F6/Uz462x27hxI3x8fJiun9m2bRu8vLzcun7GbDbDbDYDcN0aO4PBgLCwMNnXz2i1WsTFxcmyxs7Pz09cG0tr7CbnGjur1Yr29nYAtMZuvDV2Bw8eRGhoqEetsdNoNEhISHDqI44fPw6LxQKtVgu9Xi+eKavVaqFSqWC1WgEAer0eNpsNNpsNKpUKXl5eYvCl0WigVqtHTQsM9I9D02o0GjGQ1Ol0sNvtTmm7u7uhVqtHTSsIAvr7+wEMbLzs6+uDIAhQq9XQarWS0+p0Oqe8AnBKa7Va0dfXB7VajeTkZLF9D19jt2rVKklTsZM2sHOgtDV2zc3NCA4OZi1jXHjQyUKDO3y6yoecdnmof4It1Aak44llNTxPgiCgsrISVqtV0iG77qK/v18MtljhOHy4ubkZAQEBiIyMHJFGUWvsiInh+Muad3jQyUKDO3y6yoecdnmof4It1Aak44llNTxP/f396O7uRmhoKEwmEwwGAxcvQRCYazAajTAajQgLC0NbW5s4oni2UGBHEARBEIRLcQQrer2esRJ+MZlMACBOM58tFNgpjLFu1OANHnSy0OAOn67yIaddHuqfYAu1Ael4YlmNlSfe7mQ3Go2sJQAY0CFX2TDfFcsKpR5QDChj88T27dvh6+vLdGH0rl27YDAY3LowurOzc8TCaLk3T3h5eSE8PJzrzRO+vr5iOdDmicm7ecLRBmjzxJk3Txw4cABhYWEetXlCrVYjMTFR7CNSUlLQ19eHrq4u2Gw2mEwmcaOZXq+HWq0WNz2YTCb09fWhv78fKpUKPj4+6OzsBDCwUUGj0YhpjUYjrFaruBnB19dXTKvVaqHT6dDT0wNgYLOEzWYTR8R8fX1hNpuh0WjEDR3d3d1i2qE7eH18fNDd3Q273T4irZeXFwRBENN6e3ujp6cHdrsdGo0GBoNBPGDYcfOVYzOFt7c3ent7YbFYIAgCBEHAzp07IQiCZxxQzAKlbZ7Iy8vD0qVLWcsYFx50stDgDp+u8iGnXR7qn2ALtQHpeGJZDc+T48ac+Ph4GAwGhsqc6ezslHT/qjt06HS6McuINk94MBqNhrUESfCgk4UGd/h0lQ857fJQ/wRbqA1IxxPLylV5stkFFJ9oxvcHq1F8ohk2u+vHpr788kuoVKoxX9dcc43LNUwEGrFT2IgdQRAEQSgNOUbs8g/X4o1NJWjqPH2gcIivAXesSELu7JFHhMhFT0+PeCajA5vNhptuuglFRUXYvHkzUlNTz9nPmcqIRuw8GMeaG97hQScLDe7w6Sofctrlof4JtlAbkI4nlpXceco/XIunPi5yCuoAoKmzF099XIT8w7VnZdexzu9MGI1GREREiK/Q0FDce++9sgZ1UnRIhTZPKGzzREtLCxobG5kvjB5v88TJkyfR39/PdGF0dXU18vLy3L55wvGsqzZPmM1mVFRUyL4w2lHfcmye6OvrE8uBNk9Mzs0TXV1dYhugzRNn3jxx7Ngx2O12j9o80dbWhtra2nE3T/RabdDr9FCrVegd3FBgMhrR12eF3W6Dl04Do8kbr28881l/6zcexJwobwT4+6GzsxO9Vhu0Gi10Oi16BjdaGLy8oNOonDZPODYtSN08YbVacfvtt+O7777Df//7X0ybNk28ZeJcNk/09vZCrVbT5gk5UNpU7OHDhzF79mzWMsaFB50sNLjDp6t8yGmXh/on2EJtQDqeWFbD8zTWNOOKpzaMaSMzMRRP/U8mik8044H3C8f1+Yfrs5AaN3DbxdUvfoP27pF30m56dJXT+56eHslHnthsNvzsZz/D119/jc2bN2PevHmSnpNCT08PVCoVTcVORka7aoRHeNDJQoM7fLrKh5x2eah/gi3UBqTjiWUlZ55azL3jJ5pAuqHodDpJ6Ww2G66//nqXBHUT0SGFSTsVq1SKi4sVsS2eB50sNLjDp6t8yGmXh/on2EJtQDqeWFZS8/SfB1eM+Z1aPXBgb5CPtM0WQ9O9d/cySc/09PSMe9yJI6jbtGkTvv3221GDupycHKxbtw4LFy7ELbfcgjlz5uC8887DQw89hE2bNgEA/vOf/2DDhg3485//PKoOuYI7CuwIgiAItyHYbGjetQuWhgZ4hYUheMECqDzwuI+JINjtaCosnJRlYtCPH4bMiQ1CiK9hxMaJoYT6GTAnNmhCdqVgs9lwww03iEFdWlraqOkeffRRPPfcc1i8eDHUajXuuece9Pf3i2sv+/v78eSTT+KLL76QRdeZoMBOYSQlJbGWIAkedLLQ4A6frvIhp10e6p9gy2htoHbTJhx88kn01tWJnxkiIjDnsccQuWLskRtPpnbTJlh+9zsUNDSIn3lCmcjZB2jUKtyxIglPfVw0ZpqfX5gEjXriV3Kd6egVu92OG264AZ999hk+/vhjREZGom5I2wWA0NBQaDQaXHTRRXjkkUewYcMGbNy4EcDAzRcxMTE4ceIEvvzyS6xatWrMKWrHrRhyQGvsFMbws3R4hQedLDS4w6erfMhpV6otwWZDU2Ehqv/7XzQVFkKQqWMj2ONoA4LdDktTEyr/9S/svvNOp6AOAHrr67H7rrtQ9d//YjLt5RPsdrFM+oYEdYBnlInc/VTu7Eg8+pN0hPg6B2KhfgY8+pP0sz7H7kzB1K5du/DBBx+gu7sbF198MSIjI51eUVFR4m7VXbt2oaWlBf7+/k5TqpmZmfj+++/xxhtv4P777z8rHRNl0o7YKfm4k6Fb63k97mTnzp2orq5mepRBUVERqqur3XqUQUVFhVhmrjzuRKPRuOS4E6PRKMtxJ11dXWI5jHXcSc3GjbD84x+wt7SI/19qQ0Iw7b77UBcWBsAzjjs5dOAAWvfsgZfFgoS0NBzp74dKrfb4406qq6tRdeoUOm+9FWdkMHDZe889ONLdjYSkJPT394t1k5GRgcNlZehRq8U+onDzZgh2O+Li4gCVCicG2/f8jAwcPXYMZrtd7CO2f/cdYLMhJjYWOr0exwf7k3lpaThx4gTa+/rEPmLr5s2A3Y4pU6bAZDKJ7Ts1LQ1Vp06h2WyGwWBAVlYWfvj2W8BuR1RUFPz9/XF4sD+ZO3cuauvq0NjaCp1Oh5ycHGzNy4Otvx8R4eEICQvDgeJimH/+c0llclSvh9poVORxJ97e3rLeFZs6xQd/vn0RSms60NBqRoC3HumJEbDb+sX7YSd6V2xXVxesVuuox53MmzcPHR0dAM58V2xFRQVuueUW/Pe//8X111+P/fv3IyEhAXa7Hampqbjvvvvwm9/8BgDEI1GGH3fS3d1Nx53IhdKOO1HKnYI86KS7YtnZPZMtwW7HqX//G8UPPTTyS9XAVEraunWIvvRSqFQTn1rhCSVOPQo2G/q7u2Hr7kZ/dzdUGg28Y2PF76u/+ALWjg7xe1t3N2w9Pejv6oIxMhKz7r0XwEAb0Kxfj9Y9e85ZkzE6GssHA1cA2HL55WgfPAtuOPqgIKwYDFoAYPtPf4rmwT8Wh6MxGnHxwdPno+245RY0/PDDmDouHQwKAWD3L36B2q++GjPtygMHoDWZAAB7778fVZ98MmbaM5H5t78hXAF9/nAmy12xPT09uOCCC/Dcc89hyZIl+Ne//oWPP/4YH330EQBg9+7d+OlPf4qSkhJotWOPpcl5V+ykHbFTKqyDJanwoJOFBnf4HO5DrsXocmo/U1D3xfTpYz84ZKQifNky6Di4nPtsOFPw6phmO5fgVRAE2Hp6TgdV3d3QeHnBOy5O/L7yww/RPySNrbt74H1XF3xnzMCMu+8W7X33ox+hr6UFtu5u2Pucz/4KWrAAOR9+KL4/+OST6GtuHlWXX1KSGNgtXboUm3/3u4llTK12Kg/HuINKPXlXDVnb2lhLOCt4+B0ghXMJ6oCBWykco5QAcNVVV+Gqq64S37/++ut44YUXzhjUOXQ4RizPFQrsFEZhYSGysrJYyxgXHnSy0OAOn0N9yDkidK7a7VYrrO3tsHZ2Yu/27ZgVFwdrZyf6Ozpg7exEaE4OfGfMkGyvpagI4UuXorOsDMW/+Q2gVkOt1UKlVkM15Gf0ZZch+pJLAAA9tbUoffFFqDSaUV8h2dkIXzZwDEJfeztOvP++ky3VoA+o1fCbORNB8+cDAGwWC+q//XZEWsdPQ3g4fKZNE8thw6xZY2dsSPAakpOD2i++OD1C5gjEBv8dOG8ept9xx4Dd/n58s2iRGKQNJ/yCC5A5eIyCSqXCwSefHBGkOQhubnYK7KxtbSMDCLUaWpMJmmEjB2FLlqDfbIbG2xtaoxEak2kgndEIQ0SEmK6wsBDzXngB2ydwQXrWe+8hNDt73HRLPvtsxGfi5NOwSajs9993/n5ommFpF7z5JgS7fbjhkc8DSHvxRcz7wx+cbQz5t2bIobcpTz6JOY8+Kr7v7+rCt7m5IzM2Cl6DyxKUBg+/A6RgNpvh4+Mju93y8nJcfPHFuPDCC7F69WpJOsYL/qRCgZ3CcMzL8w4POllocIfP3p4eWJqaUP/997KNCNn7+tDT2AhzRQW8QkLEkbKuEydQ//33AwFaZyesg0Faf2cnrJ2dmPnLXyL8/PMBAPXff4/dg0EIAAw/Jz7liSdgGjKlNx6OQMPa2YnWwbVxoxEwd6747762NlR9+umYadU6nRjYWVtbceSll8ZMG3/DDWJgZ21vx55f/nLMtDFXXYV5zz0HAOgfJegai9aiIhx88klJadVaLazt7RD6+50+1xiN0BiN0Hp7O30eedFFgCAMfD8sCDNOmeKUNuvdd6HW6aAZDNC03t5Q6/Wjtp20P/5Rkl6LxYKghQux8sABCDYbflixAr0NDSOCKQeGyEiEZGZKsj0aotZhmh2j11LGRdUTOEdMM3g1lBS0RiMwJNDT+vrion37XF4mLOHhd4AUXLUaLSEhQVwT624dFNgpjJCQENYSJMGDThYaXO1TsNvReeut+PqMiU6PCPXU1kLo60PkypXwTUwEADRs3YojL70Ea0eHGKDZBzvh7wGkvfQSplx2GQCgo6wMh55+ekxXPbWnL97WDa770Pr4QDAYYAoOhs7XF1pfX+h8fScU1AGnRyp8EhKw4M03YbfZAJsNgs0m/ttusyFgzhzxGUNoKGY/+CCEwXSC3Q6hv3/gp82GoAULxLRaHx/EXn21c5ohaX2HjLqpNBoEZWaetjvMtiE8XExrm8B0Sn93N6JWrTodnJlMA8GVyQSt0TiizJZ+/jnUBsPpdAbDmNOU6WcIWofj74LjaUJCQqBSqcR1ZnMefxy777prIPAa+ktsMBCb8+ijk+bsNpVKBZ2v7+kyGZkAgLLLhIffAVKQa5TsXJFTBx85IiQTO8FfjqzgQScLDTzkeyilf/gDAMA0daoY2Nm6u9E2uLNxOBpvbwiDO8YAwDs2FlGXXAKdn59TkKb19YXOzw9+M2eKaYMzM3HJ0aNQqdVjLkgWBGHCIxX6gABE/OhHkvLrFRKCxNtvl5w29dlnpaUNDkbOP/4hKe1E1gUawsIw/5VXJKefyFQ2a4b/vxC5YgUy1q8ffenAo49yu5nElTjK5MATT8BSXy9+7gllwltfOBZ6vZ61BAADOqxD+t5zYdIGdko+7iQ3N5f5UQbjHXfy+eefIzo6mulxJ1999RXCw8PdftyJ40JpVxx3IkxwesOUlARDfDyONDaiPC8PWVlZqNJqYfzlL+ETEoLEOXNw4NgxqIxGdPT1IXWwnR7Py0NmZiYqLBaYr7gC3t7emD3suBONXo+dZWXA0aOjHneiHhxJGu24E/+bb0bvGYIq1RVXYEt+viKPO7HZbPBZvx5djzwC4QwL33WhobBER4ttzROPO/EanK4U+wiDAbqnn0aqlxdKd+6E1WhESGYm/GbMEMvBnX1EeXm5WN7u6iNCQ0NxYHBH75w5c9AZH4/a225DjNWKmRERONbYCGHaNLRFRMDU3n5WRyLxctyJ43tH2zrX406AgTtVNRqNmNZoNMJqtaJ/cInCRI87aWtrg16vH/W4E7vdLh5PcqbjTry8vCAIgpjW29sbPT09sNvt0Gg0MBgM4nEljv8n6LgTF0LHnbgGHnR64nEn/d3d+ColRXL6rP/3/yQtRgfcd9yJg1E3fkRGKn6kwkHtpk2np9lGmXrMWL/eI/I5Fjz0AUrBE8tqshx3IqcOOu5kkjLrTLvtOIIHnSw0uNqnxmjE/M2bERocLPvCazm1S7EVuWIFIpYv99h7Qyf71CMPfYBS8MSyUkqeeAky5bxSjAI7hdE9gR13LOFBJwsNrvapUqlgEQTnhdcyLUaXU7tUWyqNBiEKOBLhbPH04PVM8NAHKAVPLCul5Mk+/HgbRsipY/Ke+qhQHGsmeIcHnSw0uMOnw4djRGjojkxgYETobKb55NTOQ/3zgiN4jb7sMoRkZU2KoA6gNjARPLGslJKnvjHOenQ3cuqgETuCUDCTeUSIIAiCGAltnlDY5gmbzQaNAn5p86CThQZ3+HSVDznt8lD/BFuoDUjHE8tqeJ543TwhCAIXd1ILggCLxSLL5gmailUYju3svMODThYa3OHTVT7ktMtD/RNsoTYgHU8sK6XkiZe1gHLqoMBOYfDSCMeDB52euHnClT5YbJ4gPBdqA9LxxLJSSp6kbFr48ssvoVKpxnxdM4H7kM9Fh1RojZ3CCAwMZC1BEjzoZKHBHT5d5UNOuzzUP8EWagPS8cSyclWeBJtN1jXFUqbAly1bhtoh1ycCA1PNN910E4qKivCb3/zmrP1PRIdUJu0au6E3T5SVlWHDhg2KuHkiJCQEYWFhzE+VH+/miYKCAthsNqY3T5SUlKC7u9utp8r7+PiIde6Kmycc+gHIfqp8ZGQkvL29JZ0qHxcXB71eL54qP/zmidmzZ4t6R7t5oqqqCo2NjdDr9cjOzsaWLVsgCAKioqIQGBiIQ4cOAYAib55g3UfwcvNESEiI+P/YaH1EUVGR2GZZ9RE83DzR3NyMyspKeHl5ydZH8HDzRHh4OPz9/Z1unjh16hSmTJkCg8FwVjdPNG7ejGN/+MOI69dmPPgggpYtAzDxmyeGppV684RKpcItt9yCb7/9Fp9//jkyMjLO+eaJ/v5+9Pf3o66uDk1NTaPePLFq1SpJa+wmbWDnQGmbJ5RyQjkPOj3x5glX+nD3zROEZ0NtQDqeWFZy3zwh3uQyPGQ5x5tcJnrzhM1mw89+9jN888032Lx5M1JTUyfscywddPMEQRAEQRCKpv8Ma/FUGg00Xl4QbDYcfPLJ0W/ZEQRApcLBJ59ExPLl4rTsWHa1JtNZa3UEdV9//bWsQZ3cUGCnMKZPn85agiR40MlCgzt8usqHnHZ5qH+CLdQGpOOJZSU1T2e6+zrsvPOw8K230Lxrl9O1fCMQBPTW1aF51y7xJpvNS5eir6VlRNJLB6ftHTimRsfDZrPh+uuvF4O6efPmSXpOKl5eXrJtoKBdsQrDsTaAd3jQyUKDO3y6yoecdnmof4It1Aak44llJWeeLA0NsqYbipTVaI6gbtOmTfj2229HBHV79+7FiiHTwP/5z39w++23AxhY3+hYE3rLLbfgpZdeOmsdUqERO4Vx4sQJTJ06lbWMceFBJwsN7vDpKh9y2uWh/gm2UBuQjieWldQ8rRzcSDIajmlVr7AwST6HprtgcHPLePT19Z1x1M5ms+GGG24Qg7q0tLQRaVJSUsTNM/39/XjyySfxxRdfAAAeffRRPPfcc1i8eDHUajXuueeeMXXodDpJmseDAjuCIAiCIJggZc1b8IIFMEREoLe+fvR1dioVDBERCF6wYEJ2x8Nut+OGG27AZ599ho8//hiRkZGoGzYlHBoaCq1Wi5iYGJw4cQJffvklVq1ahcjISADARRddhEceeQQbNmzAxo0bz1mTFGhXrMJ2xfb19UGv17OWMS486GShwR0+XeVDTrs81D/BFmoD0vHEshqeJ9l2xQLOwd057oq12+1Qq0dflbZjxw5kDa7ZGw2VSoW2tjb4+fnh17/+NVJTU7Fu3Tps375d3Gm7a9cuXH311UhLS8Mnn3xyRh19fX10pdhk5MAZhq15ggedLDS4w6erfMhpl4f6J9hCbUA6nlhWcucpcsUKZKxfD0N4uNPnhoiIsw7qAIhn3I3GwoULIQjCmC+73S4GWZmZmbjvvvvw85//XAzqqqurceutt+K7777DiRMnxPMiJ6pjotBUrMJwHOjIOzzoZKHBHT5d5UNOuzzUP8EWagPS8cSyckWeIlesQMTy5bLePCHXTtQZM2YgODgY//u//wtgIFC76qqr8OqrryI+Ph4PP/wwnnrqKXz00Udj6pDr9gkK7BSGv78/awmS4EEnCw3u8OkqH3La5aH+CbZQG5COJ5aVq/Kk0mjEI03kQK5g6vXXX8cLL7wArXYgrDIajeItHABw1VVX4aqrrnK5DoCmYhXHrFmzWEuQBA86WWhwh09X+ZDTLg/1T7CF2oB0PLGslJKns1nvN5Ty8nLMnDkT3t7eWL16NTMdQ6HATmE4zsPhHR50stDgDp+u8iGnXR7qn2ALtQHpeGJZKSVPjjtcz5aEhAQcOXIEr776KlMdQ6HAjiAIgiAIwkOYtGvs1q9fj/Xr18NmswEA8vPz4e3tjUWLFqG4uBhdXV0ICAjAjBkzsHPnTgBAYmIi7HY7jh8/DgDIyspCSUkJOjo64Ovri+TkZBQWFgIA4uPjodFocOzYMQDAggULcOzYMbS2tsJkMiEtLQ3btm0DAMTGxsJoNOLIkSMAgPT0dJw8eRLNzc0wGAzIzMzEli1bAAwM1zY2NoqHIc6bNw81NTVoaGiATqfDokWLsHXrVtjtdkRGRiI4OFjciZOSkoLGxkbU1dVBo9EgNzcX27ZtQ39/P8LCwhAZGYni4mIAQFJSEtrb21FdXQ0AWLp0KQoLC2GxWBASEoLY2FgUFRUBGBhy7+7uRmVlJQAgNzcXFosFeXl5CAwMREJCAnbv3g1g4JoZq9WKEydOAACys7Nx4MABmM1m+Pv7Y9asWeJfegkJCQAGhrqBgR1KpaWlaG9vh4+PD1JSUlBQUAAAiIuLg06nw9GjRwEAGRkZEAQBeXl5MJlMSE9PR35+vljeJpMJpaWlYnlXVlaiqakJXl5eyMrKQt7g4ZbR0dHw9/cXyzs1NRW1tbVoaGiAVqtFTk4O8vPzYbPZEBERgdDQUPHZOXPmoLm5GbW1tVCr1Vi8eDG2b98Oq9WKsLAwREVFYd++fWJ5d3R0oKqqCgCwZMkS7Ny5E729vQgODsbUqVPF8g4ICEBFRYVY3jk5Odi7dy+6u7sRGBiIxMRE7Nq1S2yzNpsNFRUVYps9dOgQOjs74efnh6SkJLHN+vj4oLq6WmyzmZmZKCsrQ1tbG7y9vZGamiquGYmLi4Ner0dZWZlY3hUVFWhubobRaER8fLxYDjExMfDx8cHhw4cBAGlpaaiqqkJjYyP0ej2ys7OxZcsWCIKAqKgoBAYG4tChQwCAuXPnor6+HvX19WKbdZR3eHg4wsPDsX//fgBAcnIyWltbUVNTA5VKhSVLlqCgoAB9fX0IDQ3FlClTsHfvXgDA7NmzYTabcerUKQDA4sWLsXv3bvT09CA4OBjx8fFim50xYwb6+vrENst7HzFlyhT4+fkx7yMiIiLENjBaH1FUVCS2WVZ9RHl5uVje7uwjHDtGHX1ER0cHtm7dKlsfMXPmTPT09MjeR0ybNg1qtVpSH2EymVBbWyv2ESkpKejr60NXVxdsNhtMJpO4wUKv10OtVqO3t1d8tq+vD/39/VCpVPDx8UFnZycAQKfTQaPRiGmNRiOsViv6+/sBAL6+vmJarVYLnU4n7jg1GAyw2WzirRi+vr6w2+3o7OyEVquFXq9H9+AdswaDQTyCBBjoH7u7u2G320ek9fLygiAIYlpvb2/09PSIGyIMBoM4Iuc4DNlisYhpe3t7RV2CIGDnzp0QBMGpj5jIiB6dY6ewc+yqqqowZcoU1jLGhQedLDS4w6erfMhpl4f6J9hCbUA6nlhWw/N0rufYuQpezhDs6+uD3W6nc+wmI+XDLjDmFR50stDgDp+u8iGnXR7qn2ALtQHpeGJZKSVPjpEz1sipgwI7giAIgiAID4GmYhU2Fdvb28vVMPZY8KCThQZ3+HSVDznt8lD/BFuoDUjHE8tqeJ4cU7FxcXEwGo0MlTlzpivF3K2jt7cXJ0+ePOep2Em7eUKplJaWYt68eaxljAsPOllocIdPV/mQ0y4P9U+whdqAdDyxrIbnSafTQaVSobGxEaGhoVAN3vHKmp6eHuaBpiAI6OzsREdHB9Rq9Tmv+aPATmG0t7ezliAJHnSy0OAOn67yIaddHuqfYAu1Ael4YlkNz5NGo8GUKVNQVVUl7njmAV5GSx078mNjY895BJECO4Xh4+PDWoIkeNDJQoM7fLrKh5x2eah/gi3UBqTjiWU1Wp58fHzE42x44dChQ4iPj2ctA4cOHUJsbKwsI5m0xk5ha+x42Zo9HjzoZKHBHT5d5UNOuzzUP8EWagPS8cSyUkqeeNE5ng467sSDcRy2yTs86GShwR0+XeVDTrs81D/BFmoD0vHEslJKnnjRKacOCuwIgiAIgiA8hLNaY9fb24v9+/ejoaEBdrvd6bvLLrtMFmHE6MTFxbGWIAkedLLQ4A6frvIhp10e6p9gC7UB6XhiWSklT7zolFPHhAO7jRs34oYbbkBTU9OI71QqlXj3KuEadDodawmS4EEnCw3u8OkqH3La5aH+CbZQG5COJ5aVUvLEi045dUx4Kvbuu+/GVVddhdraWtjtdqcXBXWux3GBNe/woJOFBnf4dJUPOe3yUP8EW6gNSMcTy0opeeJFp5w6JhzY1dfXY+3atQgPD5dNBEEQBEEQBHHuTPi4k5tvvhk5OTm45ZZbXKXJrSjtuJOuri54e3uzljEuPOhkocEdPl3lQ067PNQ/wRZqA9LxxLJSSp540TmeDpced/Laa6/hk08+wY033ogXX3wRr7zyitOLcC3l5eWsJUiCB50sNLjDp6t8yGmXh/on2EJtQDqeWFZKyRMvOuXUMeHNE//4xz/w9ddfw2Aw4IcffnA6JVmlUuGXv/ylbOKIkbS2trKWIAkedLLQ4A6frvIhp10e6p9gC7UB6XhiWSklT7zolFPHhEfsHnnkETzxxBNob2/HiRMnUFFRIb6OHz8um7CJ8OMf/xiBgYH4yU9+wsS/OzGZTKwlSIIHnSw0uMOnq3zIaZeH+ifYQm1AOp5YVkrJEy865dQx4TV2QUFB2LVrFxISEmQTca788MMP6OzsxLvvvouPP/54Qs8qbY2dzWaDRqNhLWNceNDJQoM7fLrKh5x2eah/gi3UBqTjiWWllDzxonM8HS5dY7dmzRp89NFHE33MpZx33nnw9fVlLcMt5Ofns5YgCR50stDgDp+u8iGnXR7qn2ALtQHpeGJZKSVPvOiUU8eE19jZbDb84Q9/wKZNmzB37twRh+qtW7duQva2bNmCF154AXv27EFtbS0+/fRTXH755U5p1q9fjxdeeAF1dXVITU3Fq6++iszMzIlKJwiCIAiC8GgmHNgdOHAAaWlpAICDBw86fTd0I4VUurq6kJqaiptvvhlXXHHFiO8/+ugjrF27Fm+++SYWLlyIl19+GStWrMCRI0cQFhY2YX9KJzY2lrUESfCgk4UGd/h0lQ857fJQ/wRbqA1IxxPLSil54kWnnDomHNh9//33sjkHgJUrV2LlypVjfr9u3TrcdtttuOmmmwAAb775JjZs2IC//e1veOihhybsz2KxwGKxiO87OjomLpohvCz0HA8edNLmCXZ2eah/gi3UBqTjiWWllDzxolNOHRMO7Iaybds2ZGRkwMvLSy49TvT19WHPnj14+OGHxc/UajWWL1+OgoKCs7L57LPP4oknnhjxeX5+Pry9vbFo0SIUFxejq6sLAQEBmDFjBnbu3AkASExMhN1uF3f/ZmVloaSkBB0dHfD19UVycjIKCwsBAPHx8dBoNDh27BgAYMGCBTh27BhaW1thMpmQlpaGbdu2ARiI1I1GI44cOQIASE9Px8mTJ9Hc3AyDwYDMzExs2bIFANDS0oLc3FyUlJQAAObNm4eamho0NDRAp9Nh0aJF2Lp1K+x2OyIjIxEcHCyOrKakpKCxsRF1dXXQaDTIzc3Ftm3b0N/fj7CwMERGRqK4uBgAkJSUhPb2dlRXVwMAli5disLCQlgsFoSEhCA2NhZFRUUAgFmzZqG7uxuVlZUAgNzcXGzevBnR0dEIDAxEQkICdu/eDQCYPn06rFYrTpw4AQDIzs7GgQMHYDab4e/vj1mzZmHHjh0AIG7QcZzvs3DhQpSWlqK9vR0+Pj5ISUkR20FcXBx0Op14LUtGRgby8vIQHh4Ok8mE9PR0cQ1DbGwsTCYTSktLxfKurKxEU1MTvLy8kJWVhby8PABAdHQ0/P39xfJOTU1FbW0tGhoaoNVqkZOTg/z8fNhsNkRERKCiogJGoxEAMGfOHDQ3N6O2thZqtRqLFy/G9u3bYbVaERYWhqioKOzbt08s746ODlRVVQEAlixZgp07d6K3txfBwcGYOnWqWN5msxlJSUlieefk5GDv3r3o7u5GYGAgEhMTsWvXLrHN2mw2VFRUiG320KFD6OzshJ+fH5KSksQ2297ejvnz54ttNjMzE2VlZWhra4O3tzdSU1Oxfft2sbz1ej3KysrE8q6oqEBzczOMRiO6urrE8o2JiYGPjw8OHz4MAEhLS0NVVRUaGxuh1+uRnZ2NLVu2QBAEREVFITAwEIcOHQIAzJ07F/X19aivrxfbrKO8w8PDER4ejv379wMAkpOT0draipqaGqhUKixZsgQFBQXo6+tDaGgopkyZgr179wIAZs+eDbPZjFOnTgEAFi9ejN27d6OnpwfBwcGIj48X2+yMGTPQ19cntlne+4gpU6bAz8+PeR9RXV0t/m4YrY8oKioS2yyrPqK8vFwsb3f1EaGhoThw4ACA031EQUEBpk2bJlsfMXPmTPT09MjeR0ybNg1qtVpSH9HW1iZ+7yjvoX1ERkYGtm7dCoBtH/HNN98gJiaGeR+xf/9+pKSkjNlHdHV1QTLCOeDr6yuUl5efiwknAAiffvqp+L66uloAIGzfvt0p3f333y9kZmaK7y+44AIhJCREMBqNQnR09Ij0Q+nt7RXa29vF16lTpwQAQnt7u2z5cCU//PADawmS4EEnCw3u8OkqH3La5aH+CbZQG5COJ5aVUvLEi87xdLS3t0uOVc5pxE6Y2EkpLuPbb7+VnNbLy8tlI4zuID09nbUESfCgk4UGd/h0lQ857fJQ/wRbqA1IxxPLSil54kWnnDrOKbBzNSEhIdBoNKivr3f6vL6+HhEREedke/369Vi/fj1sNhsA5UzF2mw2pKSkMJ9mGW8q9vvvv4e/vz/TaZb8/HyYTCa3TrO0tbWht7cXgOumYrVaLaKiomSfZnGkl2Mq1mg0oqWlBQBNxU7Wqdienh5x+oimYs88FVtcXIyIiAiPmooVBAEzZ87kfir222+/RVBQEPM+4tixY0hISGA/Ffv3v/9dMJvNgiAIgs1mE06ePHku5kZMxQqCIGRmZgq/+MUvxPc2m02Ijo4Wnn322XPy5WAiw5s8wMuw8XjwoJOmYtnZ5aH+CbZQG5COJ5aVUvLEi06mU7Fvv/02PvroI5w8eRJ+fn4oKirCPffcA61Wi/j4eHEETCpms1mM/gGgoqIC+/btQ1BQEGJjY7F27VqsWbMGGRkZyMzMxMsvv4yuri5xl+xkQynTyDzoZKHBHT5d5UNOuzzUP8EWagPS8cSyUkqeeNEppw7JV4rZbDZcccUV2LhxI1atWoXp06ejtbUVmzZtQmtrK1599VXcfPPNEw7sfvjhByxbtmzE52vWrME777wDAHjttdfEA4rnzZuHV155BQsXLpyQn7FQ2pViBEEQBEFMLiYSq0gO7P74xz9i3bp1+P777zFz5kzxc7vdjnXr1uGRRx5Bf3//hAM7VgxdY1dWVoYNGzYoYo2dUo47+eijj5gfd7JhwwY67oThcSdq9cCNhbTGbnKusaPjTui4EyUcd/L//t//U8xxJ6tWrZI2CCV1/jc5OVl4//33x/z+D3/4g6BSqaSa4wZaY+caeNBJa+zY2eWh/gm2UBuQjieWlVLyxItOOdfYqc8c9p2mvLz8jNOf999/P+x2u1RzxFkSHR3NWoIkeNDJQoM7fLrKh5x2eah/gi3UBqTjiWWllDzxolNOHZIDO29vbzQ2No75/b59+3DzzTfLIooYG39/f9YSJMGDThYa3OHTVT7ktCvVls0uoPhEM74/WI3iE82w2fk4G1NOJkMeR4OHPkApeGJZKSVPvOiUU4fkwG7p0qV48803R/2urq4O1157Ld59913ZhBGj41jHwTs86GShwR0+h/uQK3CQU7sUW/mHa3HDK9/hgfcL8dyn+/DA+4W44ZXvkH+4VjYdrJkMeRwLHvoApeCJZaWUPPGiU04dko87efzxx5GdnQ2VSoX7778fiYmJaGlpweeff46nn34aU6dOFRelKgGlHlDc0tKCxsZG5gujx9s8UV1djby8PKYLo+vr65GXl+fWhdE9PT3is67cPFFRUYHKykqUNvVjyykBTZ0WsW0H+3hhaawKs0K0E948UV1dLcvmCbvdLpbD8IXRqfPm4dNtpfhwTxOG09TZi6c+LsIVSQbMCtEqdvNEeXk5DtT344syC4bjyOMd58ViwbQgj908YbFYxDYwtI+wCwICYpOw58AR6NGHuXEhmJ6YOKk3TxyvOIHKdjumTJuB2pPHEOktICI8XPGbJ2pra7nfPHHq1Cnk5eUx3zxx4sSJM8YREzmgWPKuWADYsmULbr75ZrEBAAOn4P/qV7/C3XffjalTpypunZ3Sjjtpa2tDQEAAaxnjwoNOFhrc4dPh4/uD1Xju031jpnv0J+nInR05YbtyMJYtuyBg5dNfjvt8sK8X3v/lBdCoVbDZBZh7rVCpALVKBRUAlUoFtWrgp0atglYzMPkgCAIEQEzDAql5DPUz4N27z4dGzUanqxmtDeQfrsUbm0rQ1Nkrfhbia8AdK5Im1FY9BYvVhu2ldfi/b0rQ2tUnfh7s64XbLpiNZSl8rP86G3j4HSAFXnSOp2MiscqEDihesmQJysrKsHPnTlRUVMDPzw/Z2dkICgpCV1cXHn/88YmYI86C2tpaLhrhePCgk4UGd/isra2Fr58/Xvxv8RnTvbGpBKlxIbALAgw6Dbx0GgBAZ48VNa1dsPbbYbXZ0W+zw9pvx4nKUwiLiMTs6EBEB3sDAKpbuvD9gWr0OdINpu23CbDa7Fg+NxoLEsMAAMdq2/HqVwdh7bejq6cHKo1uSHo7frZkOi5fGC8pj82dFhysbEFqXDBqWrpw6xt5Y6b98cJ4/PzCJABAY0cvrn/lOwCO4M4RBA4ETxelxeAXK+cAAMy9Vqx59Tun79Uq1eAzQO6sSNx5UTIAwGqz47Y38gaCS6gA1ZC0UCFtWoioQSqNHb04WNmCrYdrYbML0KhV0GnUp39q1Aj3N+JHqVPEZ344WIN+ux1atRoajQpatRpazUBg62PQYXrk6XU6ta3dADAY+A6kGZpe7eLAd/j/C2P9IeIYwZzoHyKewN1v5eNko3nE582dFjz32T7otGrFlgkPvwOkwItOOXVM+OYJtVqNrKwsZGVlOX3u7e1NgZ0baGhowOzZs1nLGBcedLLQ4A6fDQ0NMOuCYbWdebC9qbMXP/nj1wCAh348D8vmDPz1v/9kM578156xrONXq1LEwK6utRvvbxl7icXMKH8xsLP021Ba3TbkW6tT2p4+G9QqFR68fB6e/2zfGbUDQIt5YFRnvEmFscITAYAw+B8bBmwMXX9otwsw9/aPadfce1q/IAhioDQajvICMKGAqcXci2+Kq9BrHf38z+SYQKfA7o2vD6FtyMjOUBIj/LD+tsXi+4f/vmNMzVOCvPHWXeeJ7+97twDVLV3QDg0sB38G+xrwu2syxLRvbS5FbWsXNGr1YACqgnZw1NTkpcWa8wbOOW1oaECD3R/NZgvUKuD/vj58xrJ49cuDsAvCYMB8ugwd/1o06/T94GU1bWgxj5zmdjyWkRAKzeA5isfrO9A8ZITwdNqBxKlxwdANjvhWNpnR1NHrZGuohtlTAsU/kGpautDY0TvEnnPa6ZH+MOgHfsXWt3WLaR3p7HYBVc1nnl578+sSZM+MUOSoLg+/A6TAi045dUw4sCPYotUqo8p40MlCgzt8arVa/PYfuyb0TP+QINDkpUWYvxE6zcAvZq1GBZ1WjW5zJ0KCAhHse/pqm1B/Iy5Oj4Ve60g78FM3+D4lNkhMGxPig99dnQGtRoUjpSVIS50r+tBp1fA3DdgN9jVI0hzkYxDtfvXbiyEIAwGWXRAG/o2B90N/6QX7GvDR2uUAcDqdAAgY+Ldh8JcyAHgbdPjrHUtFO6ftD/z0MerEtBq1GutuzB60OzK9v0nvpP2mZTPw9vdlkvL4s6XT0We1o98+MBI68HPg31GBJqf08+JC0NnTh367IKax2QdGUiOHpdVr1TDoNAPphm2o0WicA4W2LsuogRIAhPc4B5L7KppQVts+alp/k14M7LRaLT7bcxL7T7aMWw4A0Nbdh2f+vXfM7zc9ukr890fbypFfWjdm2v88dBEGYzX8u/A4vt1fPWbaf977I7H+/rOzAl/sqRwz7Xt3L0N4wEA5f7HnJP5dWDFm2j//fAmmhvoOaN9Xhb9vnfgadMeobmpc8ISfZQ0PvwOkwItOOXXwkSMGKHXzxJQpUxSxeUKv1zPfPOHr6+v2zROzZ892+eaJmTNnAt+NNeLmzD0XTsOsCBNOnihHXl45srKyILRW4tZUzbCF0XZMm5Y8uDC6FHk1pcjMzERrdTnm+QxbGC0AcdGOzRP7UF02UN6VFRXoa26GxmjETy9e4rQwWu/jg6KdA5rnps6Dv0GD9t6xb6nx81Kh5cQBtPqnyrt5YtfA/8vSFkbvwhGcXhjdNMbC6NmDfUTVkdN9RHh/NXz0Kpj7xh5tDDTpEKTpQVjfQJ0vyBy9j8jLqxL7iEXBHWKbHa2PyMvLEzdPXDcbAIyYN28eqqurUd/QALVGh4wFmdi+vQB5eXliH7FqmgDrVCPipyWiqaUFjU0tgEqFWbOTUVpagry8PLGPmBNgQZy3HmFhETB396C1rR02u4ApMbGor6tBXl4eQkJCMHfuXPxQXoikUC1KGsceGR1KkFGFYD8T7HYBFsvACJevry+6uruRl5cn9hG2rmZE+arh5TUQ/FssvRAA+Hj7oKe3B9vytyLAzxcpKSnobWtAhI8aer0eKpUKFosFAgCTyYQ+iwUF27cj2N8b6enp6GyuQ5i3GjqdDmq1Gr0WCyAARqMBfVYrdu3cgRA/I7KystBaX40QkxparRZqjRqWwbReBgP6+/tRtGc3qnz1yMnJQVPdKQQZVdBotNBoNLBYLOizCeiyjl0WDrbt2ou2kzrFbZ6Ii4tTxOYJtVrNxeaJ/v5+FBUVuX/zhCeitM0T+fn5yM3NZS1jXHjQyUKDO3zm5+cjLWMhbnszD82do4+yABNfnC+n9vFs5R+uxVMfF435vSest5oMeTwTQ9vAiqc2SHrmD9dnKXJ06mwoPtGMB94vHDedUsuEh98BUuBF53g6JhKrSD7HjuADpdzFy4NOFhrc4dNms8HboMOdK5LPmO7nFyZNaG2OnNrHs5U7OxKP/iQdIcOmZUP9DB4T8EyGPJ6JoW3gk/svdJriH41QPwPmDJna93TmxAZ5dJnw8DtACrzolFPHpJ2KVSoRERHjJ+IAHnSy0OAOnw4fjsBh+PERoX4G/PzCiR8fIad2KbZyZ0cie2YEDla2oMXciyCfgV9iSlwoPhaTIY9jMbQNOP4QOdMI5kT/EFE6GrXKo8uEh98BUuBFp5w6aCpWYVOxLS0tCAri/y84HnSy0OAOn8N92OyCLIGDnNp5qH+CLaO1gdHOsTvbP0Q8hfzDtVj/1UG0DNnt7AllopQ+gBed4+lw2Tl2BHsOHDiApUuXspYxLjzoZKHBHT6H+9CoVbKswZFTOw/1T7BltDYwmUcwxyJ3diSs9UcQFJfuUWWilD6AF51y6qDAjiAIgnAbcv0h4kmoVVQmhHxM2qnYocedlJWVYcOGDYo47sTPzw9Tpkzh/riTrVu3QqVSMT3upLi4GFar1a3Hneh0OnF7vKuOO4mIiIBer5f9KIPg4GAEBgbKcldsfHy8WGYsjzJgdVcs6yOReLgr1sfHRyyz0fqIoqIisc2y6iO4uSv2+HF4e3vLeiQS6+NOAgMDERoayv1xJ5s3b4ZWq2XeR9TX1yMsLOyMx52sWrVK0lTspA3sHChtjV1ZWRlmzJjBWsa48KCThQZ3+HSVDznt8lD/BFuoDUjHE8tKKXniRed4Oui4Ew+mtraWtQRJ8KCThQZ3+HSVDznt8lD/BFuoDUjHE8tKKXniRaecOiiwUxhqtTKqjAedLDS4w6erfMhpl4f6J9hCbUA6nlhWSskTLzrl1EFTsQqbiiUIgiAIYnJBU7EejGNhKu/woJOFBnf4dJUPOe3yUP8EW6gNSMcTy0opeeJFp5w6KLBTGFarhFujOYAHnSw0uMOnq3zIaZeH+ifYQm1AOp5YVkrJEy865dQxac+xG3rcCTBwAa8Sjjux2+1obGxkfpTBeMeddHR0IC8vj+lRBj09PcjLy3PrUQYmk0l81lXHnej1elRUVMh+lIFarUZ1dbUsx52EhISI5UDHnUzO4058fX3FNkDHnZz5uJPGxkZs3brVo447UalUqK2t5f64k9bWVuTl5THvIxobG1FUVHTG406kQmvsFLbGrr29Hf7+/qxljAsPOllocIdPV/mQ0y4P9U+whdqAdDyxrJSSJ150jqeD1th5MI6/3niHB50sNLjDp6t8yGmXh/on2EJtQDqeWFZKyRMvOuXUQYEdQRAEQRCEh0CBncJISkpiLUESPOhkocEdPl3lQ067PNQ/wRZqA9LxxLJSSp540SmnDgrsFEZHRwdrCZLgQScLDe7w6Sofctrlof4JtlAbkI4nlpVS8sSLTjl1UGCnMBw7oniHB50sNLjDp6t8yGmXh/on2EJtQDqeWFZKyRMvOuXUQYEdQRAEQRCEh0DHnSjsuBNBEKBSqVjLGBcedLLQ4A6frvIhp10e6p9gC7UB6XhiWSklT7zoHE8HHXfiwTgOOeQdHnSy0OAOn67yIaddHuqfYAu1Ael4YlkpJU+86JRTB908obCbJ1paWhRx80R5eTl6e3uZnip/8uRJ9Pb2uvVUeccp5oDrbp4wm80uuXnCUd9y3DzR3d1NN09gct880d7eTjdPSLx5orS0FH19fR5180RbW5sibp44evQoent7mfcRpaWl0Ol0dPOEHChtKvbgwYOYM2cOaxnjwoNOFhrc4dNVPuS0y0P9E2yhNiAdTywrpeSJF53j6aCpWA9m6tSprCVIggedLDS4w6erfMhpl4f6J9hCbUA6nlhWSskTLzrl1EGBncJwDLXzDg86WWhwh09X+ZDTLg/1T7CF2oB0PLGslJInXnTKqYMCO4IgCIIgCA+BAjuFMXPmTNYSJMGDThYa3OHTVT7ktMtD/RNsoTYgHU8sK6XkiRedcuqgwE5h9PT0sJYgCR50stDgDp+u8iGnXR7qn2ALtQHpeGJZKSVPvOiUUwcFdgrDsX2dd3jQyUKDO3y6yoecdnmof4It1Aak44llpZQ88aJTTh0U2BEEQRAEQXgIdI6dws6x6+/vh1bL/7nSPOhkocEdPl3lQ067PNQ/wRZqA9LxxLJSSp540TmeDjrHzoNxnIrNOzzoZKHBHT5d5UNOuzzUP8EWagPS8cSyUkqeeNEppw4K7BRGd3c3awmS4EEnCw3u8OkqH3La5aH+CbZQG5COJ5aVUvLEi045dVBgpzACAwNZS5AEDzpZaHCHT1f5kNMuD/VPsIXagHQ8sayUkidedMqpg9bYKWyNXXd3N0wmE2sZ48KDThYa3OHTVT7ktMtD/RNsoTYgHU8sK6XkiRed4+mYSKzCfsUgI9avX4/169fDZrMBAPLz8+Ht7Y1FixahuLgYXV1dCAgIwIwZM7Bz504AQGJiIux2O44fPw4AyMrKQklJCTo6OuDr64vk5GQUFhYCAOLj46HRaHDs2DEAwIIFC3Ds2DG0trbCZDIhLS0N27ZtAwDExsbCaDTiyJEjAID09HScPHkSzc3NMBgMyMzMxJYtWwAALS0tyM3NRUlJCQBg3rx5qKmpQUNDA3Q6HRYtWoStW7fCbrcjMjISwcHBOHjwIAAgJSUFjY2NqKurg0ajQW5uLrZt24b+/n6EhYUhMjISxcXFAICkpCS0t7ejuroaALB06VIUFhbCYrEgJCQEsbGx4hUos2bNQnd3t7hdOzc3F5999hmio6MRGBiIhIQE7N69GwAwffp0WK1WnDhxAgCQnZ2NAwcOwGw2w9/fH7NmzcKOHTsAAAkJCQCA8vJyAMDChQtRWlqK9vZ2+Pj4ICUlBQUFBQCAuLg46HQ6HD16FACQkZGBDRs2IDw8HCaTCenp6cjPzxfL22QyobS0VCzvyspKNDU1wcvLC1lZWcjLywMAREdHw9/fXyzv1NRU1NbWoqGhAVqtFjk5OcjPz4fNZkNERAQqKipgNBoBAHPmzEFzczNqa2uhVquxePFibN++HVarFWFhYYiKisK+ffvE8u7o6EBVVRUAYMmSJdi5cyd6e3sRHByMqVOniuVtNpuRlJQklndOTg727t2L7u5uBAYGIjExEbt27RLbrM1mQ0VFhdhmDx06hM7OTvj5+SEpKUlss+3t7Zg/f77YZjMzM1FWVoa2tjZ4e3sjNTUV27dvF8tbr9ejrKxMLO+Kigo0NzfDaDSiq6sLavXAhEBMTAx8fHxw+PBhAEBaWhqqqqrQ2NgIvV6P7OxsbNmyBYIgICoqCoGBgTh06BAAYO7cuaivr0d9fb3YZh3lHR4ejvDwcOzfvx8AkJycjNbWVtTU1EClUmHJkiUoKChAX18fQkNDMWXKFHEdy+zZs2E2m3Hq1CkAwOLFi7F792709PQgODgY8fHxYpudMWMG+vr6xDbLex8xZcoU+Pn5Me8jqqur4eXlBWD0PqKoqEhss6z6iPLycrG83dVHhIaG4sCBAwBO9xEFBQWYNm2abH3EzJkz0dPTI3sfMW3aNKjVakl9RFtbm/i9o7yH9hEZGRnYunUrALZ9xCeffIKYmBjmfcT+/fuRkpIyZh/R1dUFqdCIncJG7PLy8rB06VLWMsaFB50sNLjDp6t8yGmXh/on2EJtQDqeWFZKyRMvOsfTQbtiPZjExETWEiTBg04WGtzh01U+5LTLQ/0TbKE2IB1PLCul5IkXnXLqoMBOYTimjnmHB50sNLjDp6t8yGmXh/on2EJtQDqeWFZKyRMvOuXUQYGdwnCsg+AdHnSy0OAOn67yIaddHuqfYAu1Ael4YlkpJU+86JRTBwV2BEEQBEEQHgJtnlDY5gmLxSLuNOMZHnSy0OAOn67yIaddHuqfYAu1Ael4YlkpJU+86BxPB22e8GAcW7x5hwedLDS4w6erfMhpl4f6J9hCbUA6nlhWSskTLzrl1EGBncLo7OxkLUESPOhkocEdPl3lQ067PNQ/wRZqA9LxxLJSSp540SmnDgrsFIYSposBPnSy0OAOn67yIaddHuqfYAu1Ael4YlkpJU+86JRTB62xozV2LoEHnbTGjp1dHuqfYAu1Ael4YlkpJU+86KQ1dpMYx1UjvMODThYa3OHTVT7ktMtD/RNsoTYgHU8sK6XkiRedcuqgwI4gCIIgCMJDoMBOYUybNo21BEnwoJOFBnf4dJUPOe3yUP8EW6gNSMcTy0opeeJFp5w6KLBTGGq1MqqMB50sNLjDp6t8yGmXh/on2EJtQDqeWFZKyRMvOmXtf2WzRLiFY8eOsZYgCR50stDgDp+u8iGnXR7qn2ALtQHpeGJZKSVPvOiUUwcFdgRBEARBEB4CHXeisONOenp6YDQaWcsYFx50stDgDp+u8iGnXR7qn2ALtQHpeGJZKSVPvOgcT8ekO+7kiy++wMyZMzF9+nT89a9/ZS3HpZSVlbGWIAkedLLQ4A6frvIhp10e6p9gC7UB6XhiWSklT7zolFOHVjZLjOjv78fatWvx/fffw9/fH/Pnz8ePf/xjBAcHs5bmEtra2lhLkAQPOllocIdPV/mQ0y4P9U+whdqAdDyxrJSSJ150yqlD8SN2O3fuRHJyMqKjo+Hj44OVK1fi66+/Zi3LZXh7e7OWIAkedLLQ4A6frvIhp10e6p9gC7UB6XhiWSklT7zolFMH88Buy5YtuPTSSxEVFQWVSoXPPvtsRJr169cjLi4OBoMBCxcuxM6dO8XvampqEB0dLb6Pjo5GdXW1O6QzITU1lbUESfCgk4UGd/h0lQ857fJQ/wRbqA1IxxPLSil54kWnnDqYB3ZdXV1ITU3F+vXrR/3+o48+wtq1a/H444+jqKgIqampWLFiBRoaGtyslA+2b9/OWoIkeNDJQoM7fLrKh5x2eah/gi3UBqTjiWWllDzxolNOHczX2K1cuRIrV64c8/t169bhtttuw0033QQAePPNN7Fhwwb87W9/w0MPPYSoqCinEbrq6mpkZmaOac9iscBisYjv29vbAQzsOFECXV1ditDKg04WGtzh01U+5LTLQ/0TbKE2IB1PLCul5IkXnePpcHwn6SATgSMACJ9++qn43mKxCBqNxukzQRCEG264QbjssssEQRAEq9UqJCYmClVVVUJnZ6cwY8YMoampaUwfjz/+uACAXvSiF73oRS960UtRr1OnTo0bSzEfsTsTTU1NsNlsCA8Pd/o8PDwcpaWlAACtVosXX3wRy5Ytg91uxwMPPHDGHbEPP/ww1q5dK7632+1oaWlBcHAwVCqVazIiIwsWLMCuXbtYyxgXHnSy0OAOn67yIZfdjo4OxMTE4NSpU4o4G5JwDTz0AUrBE8tKKXniRed4OgRBQGdnJ6Kiosa1xXVgJ5XLLrsMl112maS0Xl5e8PLycvosICDABapcg0ajUcQvSx50stDgDp+u8iG3XT8/P+ZtgGAHD32AUvDEslJKnnjRKUWHv7+/JFvMN0+ciZCQEGg0GtTX1zt9Xl9fj4iICEaq2HLXXXexliAJHnSy0OAOn67ywUOdEZ4DtSfpeGJZKSVPvOiUUwdXV4qpVCp8+umnuPzyy8XPFi5ciMzMTLz66qsABqZOY2Nj8Ytf/AIPPfQQI6UEQYyF0q7pIwiC8CSYT8WazWYcO3ZMfF9RUYF9+/YhKCgIsbGxWLt2LdasWYOMjAxkZmbi5ZdfRldXl7hLliAIvvDy8sLjjz8+YskDQRAE4XqYj9j98MMPWLZs2YjP16xZg3feeQcA8Nprr+GFF15AXV0d5s2bh1deeQULFy50s1KCIAiCIAi+YR7YEQRBEARBEPLA9eYJgiAIgiAIQjoU2BEEQRAEQXgIFNgRBEEQBEF4CBTYEQRBEARBeAgU2BEE4Tba2tqQkZGBefPmYc6cOfjLX/7CWhJBEIRHQbtiCYJwGzabDRaLBSaTCV1dXZgzZw527959xvudCYIgCOnQiB1BEG5Do9HAZDIBACwWCwRBAP1tSRAEIR8U2BEEIZktW7bg0ksvRVRUFFQqFT777LMRadavX4+4uDgYDAYsXLgQO3fudPq+ra0NqampmDJlCu6//36EhIS4ST1BEITnQ4EdQRCS6erqQmpqKtavXz/q9x999BHWrl2Lxx9/HEVFRUhNTcWKFSvQ0NAgpgkICEBxcTEqKirwwQcfoL6+3l3yCYIgPB5aY0cQxFmhUqnw6aef4vLLLxc/W7hwIRYsWIDXXnsNAGC32xETE4O7774bDz300Agbd955J84//3z85Cc/cZdsgiAIj4ZG7AiCkIW+vj7s2bMHy5cvFz9Tq9VYvnw5CgoKAAD19fXo7OwEALS3t2PLli2YOXMmE70EQRCeiJa1AIIgPIOmpibYbDaEh4c7fR4eHo7S0lIAwMmTJ3H77beLmybuvvtupKSksJBLEAThkVBgRxCE28jMzMS+fftYyyAIgvBYaCqWIAhZCAkJgUajGbEZor6+HhEREYxUEQRBTC4osCMIQhb0ej3mz5+PzZs3i5/Z7XZs3rwZ2dnZDJURBEFMHmgqliAIyZjNZhw7dkx8X1FRgX379iEoKAixsbFYu3Yt1qxZg4yMDGRmZuLll19GV1cXbrrpJoaqCYIgJg903AlBEJL54YcfsGzZshGfr1mzBu+88w4A4LXXXsMLL7yAuro6zJs3D6+88goWLlzoZqUEQRCTEwrsCIIgCIIgPARaY0cQBEEQBOEhUGBHEARBEAThIVBgRxAEQRAE4SFQYEcQBEEQBOEhUGBHEARBEAThIVBgRxAEQRAE4SFQYEcQBEEQBOEhUGBHEARBEAThIVBgRxAEQRAE4SFQYEcQBEEQBOEhUGBHEARBEAThIVBgRxAEQRAE4SFQYEcQBEEQBOEhUGBHEARBEAThIVBgRxAEQRAE4SFQYEcQBEEQBOEhaFkLYI3dbkdNTQ18fX2hUqlYyyEIgiAIgnBCEAR0dnYiKioKavWZx+QmfWBXU1ODmJgY1jIIgiAIgiDOyKlTpzBlypQzppn0gZ2vry+AgcLy8/NjrGZ8jhw5gpkzZ7KWMS486GShwR0+XeVDTrs81D/BFmoD0vHEslJKnnjROZ6Ojo4OxMTEiDHLmZj0gZ1j+tXPz08RgV13dzfp5FiDO3y6yoecdnmof4It1Aak44llpZQ88aJTqg4pS8Zo84TC0Ol0rCVIggedLDS4w6erfMhpl4f6J9hCbUA6nlhWSskTLzrl1KESBEGQzZoC6ejogL+/P9rb27mI2gmCIAiCIIYykViFRuwUxtatW1lLkAQPOllocIdPV/mQ0y4P9U+whdqAdDyxrJSSJ150yqmDAjuFYbfbWUuQBA86WWhwh09X+ZDTLg/1T7CF2oB0PLGslJInXnTKqYMCO4URGRnJWoIkeNDJQoM7fLrKh5x2eah/gi3UBqTjiWWllDzxolNOHRTYKYzg4GDWEiTBg04WGtzh01U+5LTLQ/0TbKE2IB1PLCul5IkXnXLqoMBOYRw8eJC1BEnwoJOFBnf4dJUPOe3yUP8EW6gNSMcTy0opeeJFp5w6KLAjCIIgCILwECiwUxgpKSmsJUiCB50sNLjDp6t8yGmXh/on2EJtQDqeWFZKyRMvOuXUQYGdwmhsbGQtQRI86GShwR0+XeVDTrs81D/BFmoD0vHEslJKnnjRKacOCuwURl1dHWsJkuBBJwsN7vDpKh9y2uWh/gm2UBuQjieWlVLyxItOOXVwG9jZbDY8+uijiI+Ph9FoREJCAp566ikMvShDEAQ89thjiIyMhNFoxPLly3H06FGGql2PRqNhLUESPOhkocEdPl3lQ067PNQ/wRZqA9LxxLJSSp540SmnDm6vFPv973+PdevW4d1330VycjJ2796Nm266Cc888wx++ctfAgCef/55PPvss3j33XcRHx+PRx99FAcOHEBJSQkMBoMkP3SlGEEQBEEQPOMRV4pt374dq1evxqpVqxAXF4ef/OQnuPDCC7Fz504AA6N1L7/8Mn77299i9erVmDt3Lt577z3U1NTgs88+YyvehWzbto21BEnwoJOFBnf4dJUPOe3yUP8EW6gNSMcTy0opeeJFp5w6uA3sFi1ahM2bN6OsrAwAUFxcjPz8fKxcuRIAUFFRgbq6Oixfvlx8xt/fHwsXLkRBQcGYdi0WCzo6OpxeSqK/v5+1BEnwoJOFBnf4dJUPOe3yUP8EW6gNSMcTy0opeeJFp5w6tLJZkpmHHnoIHR0dmDVrFjQaDWw2G5555hlcd911AE4vNAwPD3d6Ljw8/IyLEJ999lk88cQTIz7Pz8+Ht7c3Fi1ahOLiYnR1dSEgIAAzZswQRwkTExNht9tx/PhxAEBWVhZKSkrQ0dEBX19fJCcno7CwEAAQHx8PjUaDY8eOAQAWLFiAY8eOobW1FSaTCWlpaWKEHhsbC6PRiCNHjgAA0tPTcfLkSTQ3N8NgMCAzMxNbtmwBMHCfXGNjI0pKSgAA8+bNQ01NDRoaGqDT6bBo0SJs3boVdrsdkZGRCA4OFg8+TElJQWNjI+rq6qDRaJCbm4tt27ahv78fYWFhiIyMRHFxMQAgKSkJ7e3tqK6uBgAsXboUhYWFsFgsCAkJQWxsLIqKigAAs2bNQnd3NyorKwEAubm56OjoQF5eHgIDA5GQkIDdu3cDAKZPnw6r1YoTJ04AALKzs3HgwAGYzWb4+/tj1qxZ2LFjBwAgISEBAFBeXg4AWLhwIUpLS9He3g4fHx+kpKSIQXxcXBx0Op24xjIjIwM9PT3Iy8uDyWRCeno68vPzxfI2mUwoLS0Vy7uyshJNTU3w8vJCVlYW8vLyAADR0dHw9/cXyzs1NRW1tbVoaGiAVqtFTk4O8vPzYbPZEBERAZPJJD47Z84cNDc3o7a2Fmq1GosXL8b27dthtVoRFhaGqKgo7Nu3Tyzvjo4OVFVVAQCWLFmCnTt3ore3F8HBwZg6dapY3nq9HhUVFWJ55+TkYO/eveju7kZgYCASExOxa9cusc3abDZUVFSIbfbQoUPo7OyEn58fkpKSxDarVqtRXV0tttnMzEyUlZWhra0N3t7eSE1Nxfbt28Xy1uv14h9eGRkZqKioQHNzM4xGI0JCQsRyiImJgY+PDw4fPgwASEtLQ1VVFRobG6HX65GdnY0tW7ZAEARERUUhMDAQhw4dAgDMnTsX9fX1qK+vF9uso7zDw8MRHh6O/fv3AwCSk5PR2tqKmpoaqFQqLFmyBAUFBejr60NoaCimTJmCvXv3AgBmz54Ns9mMU6dOAQAWL16M3bt3o6enB8HBwYiPjxfb7IwZM9DX1ye2Wd77iClTpsDPz495H+Hr6yu2gdH6iKKiIrHNsuojysvLxfJ2Vx8RGhqKAwcOADjdRzQ2NmLr1q2y9REzZ85ET0+P7H3EtGnToFarJfURKpUKtbW1Y/YRGRkZ4sX3LPuI1tZW5OXlMe8jGhsbUVRUNGYf0dXVBalwu8buww8/xP33348XXngBycnJ2LdvH379619j3bp1WLNmDbZv346cnBzU1NQ43bF29dVXQ6VS4aOPPhrVrsVigcViEd93dHQgJiZGMWvs2traEBAQwFrGuPCgk4UGd/h0lQ857fJQ/wRbqA1IxxPLSil54kXneDo8Yo3d/fffj4ceegjXXnstUlJScP311+Oee+7Bs88+CwCIiIgAANTX1zs9V19fL343Gl5eXvDz83N6KQnHX8u8w4NOFhrc4dNVPuS0y0P9E2yhNiAdTywrpeSJF51y6uA2sOvu7oZa7SxPo9HAbrcDGBiijIiIwObNm8XvOzo6sGPHDmRnZ7tVK0EQBEEQBA9wu8bu0ksvxTPPPIPY2FgkJydj7969WLduHW6++WYAA/P3v/71r/H0009j+vTp4nEnUVFRuPzyy9mKdyFJSUmsJUiCB50sNLjDp6t8yGmXh/on2EJtQDqeWFZKyRMvOuXUwe2I3auvvoqf/OQnuPPOOzF79mzcd999+N///V889dRTYpoHHngAd999N26//XYsWLAAZrMZGzdulHyGnRJpb29nLUESPOhkocEdPl3lQ067PNQ/wRZqA9LxxLJSSp540SmnDm4DO19fX7z88ss4efIkenp6UF5ejqeffhp6vV5Mo1Kp8OSTT6Kurg69vb349ttvMWPGDIaqXY9jBxrv8KCThQZ3+HSVDznt8lD/BFuoDUjHE8tKKXniRaecOrgN7AiCIAiCIIiJwe1xJ+6CrhQjCIIgCIJnPOK4E2J0HAcX8g4POllocIdPV/mQ0y4P9U+whdqAdDyxrJSSJ150yqmDAjuFMfRwZZ7hQScLDe7w6Sofctrlof4JtlAbkI4nlpVS8sSLTjl1UGCnMEJCQlhLkAQPOllocIdPV/mQ0y4P9U+whdqAdDyxrJSSJ150yqmDAjuFERsby1qCJHjQyUKDO3y6yoecdnmof4It1Aak44llpZQ88aJTTh0U2CkMxyXPvMODThYa3OHTVT7ktMtD/RNsoTYgHU8sK6XkiRedcuqgwI4gCIIgCMJDoMBOYcyaNYu1BEnwoJOFBnf4dJUPOe3yUP8EW6gNSMcTy0opeeJFp5w6KLBTGN3d3awlSIIHnSw0uMOnq3zIaZeH+ifYQm1AOp5YVkrJEy865dRBgZ3CqKysZC1BEjzoZKHBHT5d5UNOuzzUP8EWagPS8cSyUkqeeNEppw4K7AiCIAiCIDwEulJMYVeK2Ww2aDQa1jLGhQedLDS4w6erfMhpl4f6J9hCbUA6nlhWSskTLzrH00FXinkwvGzNHg8edNJxJ+zs8lD/BFuoDUjHE8tKKXniRScddzKJ4WWh53jwoJM2T7Czy0P9E2yhNiAdTywrpeSJF520eWISExgYyFqCJHjQyUKDO3y6yoecdnmof4It1Aak44llpZQ88aJTTh20xk5ha+y6urrg7e3NWsa48KCThQZ3+HSVDznt8lD/BFuoDUjHE8tKKXniRed4OmiNnQeze/du1hIkwYNOFhrc4dNVPuS0y0P9E2yhNiAdTywrpeSJF51y6qDAjiAIgiAIwkOgwE5hTJ8+nbUESfCgk4UGd/h0lQ857fJQ/wRbqA1IxxPLSil54kWnnDoosFMYVquVtQRJ8KCThQZ3+HSVDznt8lD/BFuoDUjHE8tKKXniRaecOiiwUxgnTpxgLUESPOhkocEdPl3lQ067PNQ/wRZqA9LxxLJSSp540SmnDgrsCIIgCIIgPAQ67kRhx5309fVBr9ezljEuPOhkocEdPl3lQ067PNQ/wRZqA9LxxLJSSp540TmeDo857qS6uho/+9nPEBwcDKPRiJSUFKctwYIg4LHHHkNkZCSMRiOWL1+Oo0ePMlTseg4cOMBagiR40MlCgzt8usqHnHZ5qH+CLdQGpOOJZaWUPPGiU04d3AZ2ra2tyMnJgU6nw1dffYWSkhK8+OKLTqcz/+EPf8Arr7yCN998Ezt27IC3tzdWrFiB3t5ehspdi9lsZi1BEjzoZKHBHT5d5UNOuzzUP8EWagPS8cSyUkqeeNEppw6tbJZk5vnnn0dMTAzefvtt8bP4+Hjx34Ig4OWXX8Zvf/tbrF69GgDw3nvvITw8HJ999hmuvfZat2t2B/7+/qwlSIIHnSw0uMOnq3zIaZeH+ifYQm1AOp5YVkrJEy865dTB7Rq7pKQkrFixAlVVVcjLy0N0dDTuvPNO3HbbbQCA48ePIyEhAXv37sW8efPE55YuXYp58+bhT3/606h2LRYLLBaL+L6jowMxMTGKWWPX29sLg8HAWsa48KCThQZ3+HSVDznt8lD/BFuoDUjHE8tKKXniRed4Oiayxs5tI3ZtbW0ICAiQnP748eN44403sHbtWvzmN7/Brl278Mtf/hJ6vR5r1qxBXV0dACA8PNzpufDwcPG70Xj22WfxxBNPjPg8Pz8f3t7eWLRoEYqLi9HV1YWAgADMmDEDO3fuBAAkJibCbrfj+PHjAICsrCyUlJSgo6MDvr6+SE5ORmFhIYCB0UWNRoNjx44BABYsWIBjx46htbUVJpMJaWlp2LZtGwAgNjYWRqMRR44cAQCkp6fj5MmTaG5uhsFgQGZmJrZs2QIAaGlpQW5uLkpKSgAA8+bNQ01NDRoaGqDT6bBo0SJs3boVdrsdkZGRCA4OxsGDBwEAKSkpaGxsRF1dHTQaDXJzc7Ft2zb09/cjLCwMkZGRKC4uBjAQWLe3t6O6uhrAQMBcWFgIi8WCkJAQxMbGoqioCAAwa9YsdHd3o7KyEgCQm5uLTz75BNHR0QgMDERCQoK4NnL69OmwWq3i1u7s7GwcOHAAZrMZ/v7+mDVrFnbs2AEASEhIAACUl5cDABYuXIjS0lK0t7fDx8cHKSkpKCgoAADExcVBp9OJaywzMjKwYcMGhIeHw2QyIT09Hfn5+WJ5m0wmlJaWiuVdWVmJpqYmeHl5ISsrC3l5eQCA6Oho+Pv7i+WdmpqK2tpaNDQ0QKvVIicnB/n5+bDZbIiIiEBFRQWMRiMAYM6cOWhubkZtbS3UajUWL16M7du3w2q1IiwsDFFRUdi3b59Y3h0dHaiqqgIALFmyBDt37kRvby+Cg4MxdepUsbzNZjOSkpLE8s7JycHevXvR3d2NwMBAJCYmYteuXWKbtdlsqKioENvsoUOH0NnZCT8/PyQlJYlttr29HfPnzxfbbGZmJsrKytDW1gZvb2+kpqZi+/btYnnr9XqUlZWJ5V1RUYHm5mYYjUZ0dXVBrR5Y6RETEwMfHx8cPnwYAJCWloaqqio0NjZCr9cjOzsbW7ZsgSAIiIqKQmBgIA4dOgQAmDt3Lurr61FfXy+2WUd5h4eHIzw8HPv37wcAJCcno7W1FTU1NVCpVFiyZAkKCgrQ19eH0NBQTJkyBXv37gUAzJ49G2azGadOnQIALF68GLt370ZPTw+Cg4MRHx8vttkZM2agr69PbLO89xFTpkyBn58f8z6iuroaXl5eAEbvI4qKisQ2y6qPKC8vF8vbXX1EaGiouJ7K0UcUFBRg2rRpsvURM2fORE9Pj+x9xLRp06BWqyX1EW1tbeL3jvIe2kdkZGRg69atANj2ER9//DFiYmKY9xH79+9HSkrKmH1EV1cXJCO4gOeee0748MMPxfdXXXWVoFarhaioKGHfvn2SbOh0OiE7O9vps7vvvlvIysoSBEEQtm3bJgAQampqnNJcddVVwtVXXz2m3d7eXqG9vV18nTp1SgAgtLe3S80eU3744QfWEiTBg04WGtzh01U+5LTLQ/0TbKE2IB1PLCul5IkXnePpaG9vlxyruGTzxJtvvomYmBgAwDfffINvvvkGX331FVauXIn7779fko3IyEgkJSU5fTZ79mzxL5CIiAgAQH19vVOa+vp68bvR8PLygp+fn9NLSTj+QuUdHnSy0OAOn67yIaddHuqfYAu1Ael4YlkpJU+86JRTh0sCu7q6OjGw++KLL3D11VfjwgsvxAMPPCAO/45HTk6OOO3goKysDFOnTgUwMEQZERGBzZs3i993dHRgx44dyM7OliknBEEQBEEQysElgV1gYKA4L71x40YsX74cwMBOVpvNJsnGPffcg8LCQvz+97/HsWPH8MEHH+DPf/4z7rrrLgCASqXCr3/9azz99NP473//iwMHDuCGG25AVFQULr/8cldkiwsca0l4hwedLDS4w6erfMhpl4f6J9hCbUA6nlhWSskTLzrl1OGSzRNXXHEFfvrTn2L69Olobm7GypUrAQB79+5FYmKiJBsLFizAp59+iocffhhPPvkk4uPj8fLLL+O6664T0zzwwAPo6urC7bffjra2NuTm5mLjxo1c7HAhCIIgCIJwNy457sRqteJPf/oTTp06hRtvvBFpaWkAgJdeegm+vr649dZb5XZ51ijtSjFetmaPBw866bgTdnZ5qH+CLdQGpOOJZaWUPPGiU87jTlwyFavT6XDffffhT3/6kxjUAQPTqzwFdUrEsf2ed3jQyUKDO3y6yoecdnmof4It1Aak44llpZQ88aJTTh0uu1Ls/fffR25uLqKionDy5EkAwMsvv4z//Oc/rnI5KWhvb2ctQRI86GShwR0+XeVDTrs81D/BFmoD0vHEslJKnnjRKacOlwR2joOFV65ciba2NnHDREBAAF5++WVXuJw0+Pj4sJYgCR50stDgDp+u8iGnXR7qn2ALtQHpeGJZKSVPvOiUU4dL1tglJSXh97//PS6//HL4+vqiuLgY06ZNw8GDB3HeeeehqalJbpdnjdLW2PX19UGv17OWMS486GShwR0+XeVDTrs81D/BFmoD0vHEslJKnnjROZ4O5mvsKioqnNbWOfDy8prYtRjECBzX4/AODzpZaHCHT1f5kNMuD/VPsIXagHQ8sayUkidedMqpwyWBXXx8vHi/3VA2btyI2bNnu8IlQRAEQRDEpMcl59itXbsWd911F3p7eyEIAnbu3Il//OMfePbZZ/HXv/7VFS4nDXFxcawlSIIHnSw0uMOnq3zIaZeH+ifYQm1AOrGxU1F8ohkt5l4E+RgwJzYIGrWKtaxzQin1z4tOOXW4JLC79dZbYTQa8dvf/hbd3d346U9/iqioKPzpT3/Ctdde6wqXkwadTsdagiR40MlCgzt8usqHnHZ5qH+CLdQGzoxdENDR3YcdRxvwt81H0NbdL34X7OuF2y6YjeyZ4fDSaaBSKS/IU0r986JTTh0uO+7kuuuuw9GjR2E2m1FXV4eqqirccsstrnI3aTh69ChrCZLgQScLDe7w6Sofctrlof4JtlAbGBu7IGDl01/imnXfYt3n+52COgBo7rTguc/2YfXzm2CxSruGkzeUUv+86JRTh8sCu/7+fnz77bd4//33YTQaAQA1NTUwm82uckkQBEEQHoXNLvvBFYSH45LjTk6ePImLLroIlZWVsFgsKCsrw7Rp0/CrX/0KFosFb775ptwuzxqlHXfS1dUFb29v1jLGhQedLDS4w6erfMhpl4f6J9hCbeA0giCgp8+GVrMFLV0WtJot2F/ZjM93nRz32ed/thDz4kPcoFJelFL/vOgcTwfz405+9atfISMjA62treJoHQD8+Mc/xubNm13hctJQXl7OWoIkeNDJQoM7fLrKh5x2eah/gi2ToQ302+xo6ujF0dp27Dhaj417K/HB1qM4Xt8hpik4Uo/Vz2/Cj/+wCTe//gPue7cAz/y7SFJQBwCtXRZXyXcpSql/XnTKqcMlmye2bt2K7du3jzhsLy4uDtXV1a5wOWlobW1lLUESPOhkocEdPl3lQ067PNQ/wRaltgFBEGDu7UeruRctZgtazBa0dlkwf1oo4sJ8AQC7jjXghf8Uo727b1Qb/iY9poUPjKoYvTTiOjmjXoNAHy8EmPQoqWqTpCfQ2+vcM8UApdQ/Lzrl1OGSwM5ut4vXiA2lqqoKvr6+rnA5aTCZTKwlSIIHnSw0uMOnq3zIaZeH+ifYMlYbsNkFHKxscfvRHn39toEgbfDV0mXB3NggxIYO/E4qOt6El77Yj1azBVabfcTzv7xYIwZ2XjqNGNSpVSoE+ugR6O2FIB8vBPp4ISro9JTarOhAvH3XeQj08YJRP/Art7evH6uf3yRJd3Js0DnlmxVK6QN40SmnDpessbvmmmvg7++PP//5z/D19cX+/fsRGhqK1atXIzY2Fm+//bbcLs8apa2xs9ls0Gg0rGWMCw86WWhwh09X+ZDTLg/1T7DF0QYcx3oAwI6jDXjn+yNoMZ+eXjyXoz0cth0BW4vZglnRAYgJGbh3s/hEM1798gBauyww9/aPeP7ui+fgkvlTAQAHTjbjvvcKxe98DFoE+RgQ6OOFQG8v/Ch1CjISQgEAPX39qGvtRqCPF/xMeqgneByJIAiwWG0oOFKP5z7bN2a63/4kHYtnR07INi8opQ/gRed4OiYSq7gksDt16hQuuugiCIKAo0ePIiMjA0ePHkVISAi2bNmCsLAwuV2eNUoL7PLy8rB06VLWMsaFB50sNLjDp6t8yGmXh/on2JKXl4fFS5Zg5dNfSn7mPw+ugEGvRU9fv9Po2rQIP0QPjoIdqGzBm5sOocVsQVtXH+zDfoX9YuUcXJoxVUx737unr2rSadTiqFqgtxcuSotB1oxwAEC3pR+VTZ0I9B74Xq91zy/7/MO1ePm/e9HZdzofoX4G/PzCJOQqNKgDlNMH8KJzPB0TiVVcMhUbExOD4uJifPTRRyguLobZbMYtt9yC6667zmkzBUEQBEE4uP3NPLR3W9E77Oy2X6xMFgM7ADhWd3pzggqAn0mPIJ/BqVDv02u7p4X74vnrFyLIx4AgHy94e2nHHBE0eWkxKzpQ3gxJIHd2JKz1RxAUl+JRN08Q7JA9sLNarZg1axa++OILXHfddbjuuuvkdjGpiY2NZS1BEjzoZKHBHT5d5UNOuzzUPy+wWlPmCnqtNjS298Dca0Vnj3XgZ68V5sF/L06KRNKUgeCoRx+M6//0Hbx0GsmH7Na394r/Nug0CPIdGFnzNZwO1uLDfPHktRlisOZv0kOrGf2AB28vHebF8X9USNzUqYiPC2YtQ1aU0gfwolNOHbIHdjqdDr29veMnJM4KXhZ6jgcPOmnzBDu7PNQ/D+QfrsUbm0rQ1Hm6TwzxNeCOFWym2Wx2O8y9/fDSaWDQDUw11rV2Y+exhhFBmiN4u37pDOTMigAA7D3ehN/9c/eY9iMCjGJgZzIZnPIthesWT8cFc6MRNGSjwXB8DDosnB4+Ibu8Y/TyQlNhISwNDfAKC0PwggVQcbDu61xQSh/Ai045dbhkKvauu+7C888/j7/+9a/Qal3iYtJSWlqK8HD+OzUedLLQ4A6frvIhp10e6p8ldkHAN8VVWPf5/hHfNXX24qmPi/DQ5fNw3pyoCd8DarML6HIEYYOBWGevFbOjAxAeMPDLoaSqFR8XHBe/dwRp3X0DGwgeWJ2KC+ZOAQCcaOzE+o2HxvTX1NEj/tvPpIO3lxY+Rh18DbrTPwdfiZH+YlpLcxVeXJOFe98tHM3sqMydGuQ05ToZqN20CXseeQTCkOMuDBERmPPYY4hcsYKhsnNDKX0ALzrl1OGSqGvXrl3YvHkzvv76a6SkpIw4TfmTTz5xhVuCIAjmOO4BHY/nPtuH5JhAtPdY0dHTN2KkzNxrxar5UzF9MFjaergWL32+H12Wkbs7gYFgzRHYdXT3YVtp3Zi+u/tOT42G+xuRMzMcvkY9fIyngzRH4BYXevqIquSYIHzygLRgQ69RITHCf/yEQ1Dq0R5ng2C349S//43ihx4a8V1vfT1233UX0tatQ/Sll044+CcmNy4J7AICAnDllVe6wvSkJz09nbUESfCgk4UGd/h0lQ857fJQ/6xoHDLCNR6f7arAvwtPjPl9SmyQGNjpNGqnoM6g08B3MBDzNergbdCJ300L98MvViafDtKGBGw+Bp3TmrT4cD88dnXGBHIojfT0dHjpNPjPgwOBoJSjPXRjrJXzNAS7HV9Mn36GBAM7ZPfecw/Cly2DToHnvyqlD+BFp5w6XBLY8XROnadRWVmJ5ORk1jLGhQedLDS4w6erfMhpl4f6l5POHitONZvR0tmLZrMFzZ2DtxJ09qK504I7LkoSF+nvq2iWbFetUiPE1+AcfA2Z3owPP32swdypwfjrHUvFIO5MQVCYvxGXZsSddX7lwNEGDINr5ZalREOnVY9Yc+gJR3ucCXt/P2q+/BKWxkZYmpoGfjY2Sn6+pagI4RwcxzFRlNIH8KJTTh20AE5hNDU1sZYgCR50stDgDp+u8iGnXam2WO4Y7bfZ0TIYpDkCtebBwK3FbMF1ixORHDMwNVhYVo8//rd4TFv1badH6UL9DJI1ZCSE4tblsyWlNXlpYfLykWybNaO1gdzZkcieGaH4XcKCzYbajRthaWpCryNgcwRtTU0IysjA/D/9CQCgUqux7/77IfSPPoU+Hta2NhmVuw8efgdIgRedcupwSWCXlpY26poAlUoFg8GAxMRE3HjjjVi2bJlkm8899xwefvhh/OpXv8LLL78MAOjt7cW9996LDz/8EBaLBStWrMDrr7/OxUJIV+HlpYx7A3nQyUKDO3y6yoecdqXYctWOUUfAJo6omXvR0mlBs7kXl8yfihlRAQCA7w/WnDFYW5oUKQZ2oX4GhPsbEeTrhSAfA4J9vRDsY0DQ4M9pQ0bWHLtCpeDJa8rGagNqwY7ouqMIGdwBqo5ZAID9DlDBZkPdt9+KAdrwgC1o/nykv/TSQGK1GkX33gvBah3VVk9trfhvlVqNiB/9CCqNBl6hoTCEhkLr64sDjz4qSZcXRwf6TwQefgdIgRedcupwyc0TDz/8MN544w2kpKQgMzMTwMCGiv379+PGG29ESUkJNm/ejE8++QSrV68e196uXbtw9dVXw8/PD8uWLRMDuzvuuAMbNmzAO++8A39/f/ziF7+AWq3Gtm3bJGtV2s0TBKF0zrRj1MFoO0b7bXa0dlnQ3GlBi3lgCrSlsxeLkyLFwOqHQzV47pO9GKtTu+eSFFyUNnBeVNHxJjz6j50I8jUg2McLQb4D56IF+w4EbnNigpzu/JTKZLgu6myp3bQJB598Er11pzd2uHIHqGC3o/7778XpT0eg1jv4PjA9HekvvjiQVhDwZVIS7H19o9oKTE9H7r/+Jb7fdeedUKnV8AoJEQM2r5AQeIWEwBARAcMZAjJBENBvNuOHFSvQ29AgrqkbjiEyEsvz8hR/9Alx7jC/eaKpqQn33nsvHh32F8nTTz+NkydP4uuvv8bjjz+Op556atzAzmw247rrrsNf/vIXPP300+Ln7e3teOutt/DBBx/g/PPPBzCwtm/27NkoLCxEVlaW/BnjAF6uPxkPHnROlivF5JrOdMeVYhPZMZo5PQzeBh0Ky+rx0hf70d7VN2rAFh5gFAM7f5MeAgCtWnU6UBsStE0fchxHalwwPv/Nygnf8zkeKpUKBr120q4pc+BoA4Ldjr6WFtR//70sO0AFux0NW7Y4TX06fvY2NiJw7lykDQZrUKmw5xe/GDNY8wo5fXixSqVC6JIlUKlU8AoNHXg5ArXQUBiGzQQteP31CZbIaVQqFXS+vpjz+OPYfdddoyUAAMx59FHFBnU8/A6QAi865dThksDun//8J/bs2TPi82uvvRbz58/HX/7yF/zP//wP1q1bN66tu+66C6tWrcLy5cudArs9e/bAarVi+fLl4mezZs1CbGwsCgoKxgzsLBYLLJbTF1B3dHSMmo4glABPB+D29dvQ0mlBZ68VFa39wKEap6M7liRFOp1zNh4lVa1YkBgGg06Dtq6BX8xqlUqc/hwYXfNCdPDpdWfJMYH4aO1ySRezu2Ndl6esKTtbxt39CTjtAO03m9FvNjuvWWtshH9KCtJeeGEgvUqF3XfeCfuQfnwoev/TbUylUiE0NxcAxJE18WdoKIwREU7PZv7f/51lTs+OyBUrkLF+/ejn2D36qKLPsSPY4ZLAzmAwYPv27UhMTHT6fPv27TAYBhYW2+128d9j8eGHH6KoqAi7du0a8V1dXR30ej0CAgKcPg8PD0dd3djnNz377LN44oknRnyen58Pb29vLFq0CMXFxejq6kJAQABmzJiBnTt3AgASExNht9tx/PhxAEBWVhZKSkrQ0dEBX19fJCcno7Bw4DDO+Ph4aDQaHDt2DACwYMECHDt2DK2trTCZTEhLSxOnjGNjY2E0GnHkyBEAA9ueT548iebmZhgMBmRmZmLLli0AALVajcbGRpSUlAAA5s2bh5qaGjQ0NECn02HRokXYunUr7HY7IiMjERwcjIMHDwIAUlJS0NjYiLq6Omg0GuTm5mLbtm3o7+9HWFgYIiMjUVw8sOYoKSkJ7e3tqK6uBgAsXboUhYWFsFgsCAkJQWxsLIqKigAMBNTd3d2orKwEAOTm5qKrqwt5eXkIDAxEQkICdu8eOK1++vTpsFqtOHHiBAAgOzsbBw4cgNlshr+/P2bNmoUdO3YAABISEgAA5eXlAICFCxeitLQU7e3t8PHxQUpKCgoKBi74jouLg06nw9GjRwEAGRkZ6OvrQ15eHkwmE9LT05Gfny+Wt8lkQmlpqVjelZWVaGpqgpeXF7KyspCXlwcAiI6Ohr+/v1jeqampqK2tRUNDA7RaLXJycpCfnw+bzYaIiAj4+fmJz86ZMwfNzc2ora2FWq3G4sWLsX37dlitVoSFhSEqKgr79u0Ty7ujowNVVVUAgCVLlmDnzp3o7e1FcHAwpk6dKpa3wWhE8eGjyNt/AhvKRo5EOA7AvWyWF1Znz4LdbkdFRYXYZg8dOoTOzk74+fkhKSlJbLN6vR4nTp7C8ePl0KhVyMzMROG+EhysbIVNrYNfUBiOVpxCb78Alc6AbqsdC8PtmBakRUZGBj7LP4j3dg5ZAHxgr5Muc1M1ksOkdzk7i/YjMXg+YG7ALelG+Bu1+NGyxdi+bRtstn6EhwcjPDwc+/fvR14FkJycjNbWVtTU1EClUmHJkiUoKChAX18fQkNDMWXKFOzdO6Bp9uzZMJvNOHXqFABg8eLF2L17N3p6ehAcHIz4+Hixzc6YMQN9fX1im51oH3HowAG07tkDL4sFYWlp2FrRD5Va7bI+YsqUKfDz83N5HzF79my01dejurwcQm8v0mbPxqEjR2ALD0dISAgCAwPx9QMPSK5vAGOuO+vFwIiGo49Qz5wJld0O/ylToAsORpvNBrW/P5KyslA92Pc4+oien/0MABA+vI+YPRvHysvRWl7u1j4iNDQUBw4cADDQR3TGx8P68MPwb27GzIgIHGtshDBtGtoiImBqbz+rPmLmzJno6ekR++ScnBzs3bsX3d3dCAwMRGJiovh7NTExETabTVIfMW3aNKjVarHNZmZmoqysDG1tbfD29kZqaiq2b98OANBqtaitrUVZWdlAeWdkoKKiAs3NzTAajcjIyMDWrVsBDNwv7+Pjg8OHDwMYWKdfVVWFxsZG6PV6ZGdnY8uWLRAEAVFRUQgMDMShQwOHas+dOxf19fWor68X26yjvMPDw8U+Ahi9j+jo6EBeXh7TPqKkpAQtLS0oKioaM47o6uoa63+bEbhkjd3TTz+N3//+97jtttuwYMECAAPr5P7617/iN7/5DR555BG89NJL+PLLL/HNN9+MauPUqVPIyMjAN998g7lz5wIAzjvvPMybNw8vv/wyPvjgA9x0001Oo2/AQENbtmwZnn/++VHtjjZiFxMTo5g1do2NjQgNDWUtY1x40MlCg6t9Sp3KdPD8dZnoFwYuQw/yGfhD6nBVKzYUVZ6+67OnD+ZeKzq6+2C1CfjtlelYnDQw2relpBbP/LtoTPu/WpWCi9NPr1n73Ue74GvUw6BTIdDHePoYD6MOubMikBDuh9XPb5Km/WcLMS+e/3s+z4S715RJwd7fD6G/H5rBP6wFmw0NW7eKo2WOl3Xwp9/MmZh2000Dae12fLtkyUCari7AbneyHbZ0KRb+7W8ABv5f2HX++bB1d0vW5jt9OvySk+EVHDywZs0xshYZCZ9p02QqAf7gob+UG6XkiRed4+lgvsbut7/9LeLj4/Haa6/h/fffBzDwF8Rf/vIX/PSnPwUA/PznP8cdd9wxpo09e/agoaHB6dA+m82GLVu24LXXXsOmTZvQ19eHtrY2p1G7+vp6RAwbXh+Kl5cXN7tgzoaSkhIu1gOMBw86WWjgId9DefDvA38lDg3WGjt68U1x1ZjPdPScHgUMDzAiIyHU6SBcX6MevoP/HrobNC0+GP99eCUAx3qR7BG2BUHAJ/dfiNvezENzpwUqux1R9eUw9XSg2+iHmvAECGo1Qv0MSJmq3EvRXXGrgGOtmrWz0zkI6+pCv9kMU2wswpYsAQD0d3ej6J57YOvqEgM0x8vW04PoSy9F+uAmNEEQsPOWW8b0G3beeWJgp1KrYW1rg63n9PEuKo0GWh8faH18oA88vSO4pKQEsVddhYp335WUPwBIfvxxhGaPbDeeDm/9hhwoJU+86JRTh8vOsbvuuutw3XXXjfm90Wg84/MXXHCBOFzt4KabbsKsWbPw4IMPIiYmBjqdDps3bxZvuThy5AgqKyuRPQk7BmJyoAJw7yJvdPlMxZtfl4yb3s+oQ4ifETrt6cNsE8L9cPP5MwcDNb0YsJUUF2H5ebkwep3uFmZGBeCZn2ZK0yYhQFGpVPA26HDnimT8/cW3sXjHv+Hb3SZ+32kKwNaFV+K6e29S7Dq0idwqELRgAao+/thphGzoK/yCCzBr7VoAgLW9HV8vXDim2ejLLhMDO7VOh/pvvx0zrdVsFv+t1moRmJYGtV4vBmhaHx/oBn96Dxspy/nnP6ExGsV0GoNhzLpPfvRRzLrvPgg2m6QdoCGZ0toaQRBj47LArq2tDR9//DGOHz+O++67D0FBQSgqKkJ4eDiio6PHfd7X1xdz5sxx+szb2xvBwcHi57fccgvWrl2LoKAg+Pn54e6770Z2drbH7ogFBtZvKAEedLLQ4GqfFqsNL27vAjB+UAcAj1yZPmI6MzrYG9fkJI5IG2pMc7qW6lw4UzkIdjtiD+bj4u/fGrHL1ae7DRd//xbiLpsDYZZr78i09/ejr7UVtp6egVdvr9O/feLj4TdrFgDA0tSE4++8M2bayIsuwrQbbwQA9NTUSNbQumcPjgyOnI2G74wZ4r+1g3duDw2+hgZhAYNLVoCBwG7u738Prck0kMbXF1pvbzFY0w67vzv3448la/ZPSpKULjU1FSqVClrTwP214g5Qlco5uPOAHaDnCg/9pdwoJU+86JRTh0sCu/3792P58uXw9/fHiRMncOuttyIoKAiffPIJKisr8d5778ni56WXXoJarcaVV17pdECxJ1NbWztiwwiP8KCThQYWPseazgQmdgCunNrHsjV8NGt42OZ4P/SOTGtnJzqPHBkRTDl+BmdmIjAtDQBgrqhA6bp1YwZgCbfeioTBacfOsjJsufTSMfOQ+POfi4Fdf1cXjr3xxphpHemAgalNqdgtFkz9n/8Rgy0xCBsM1oxRUWJatV6PS44ehUot7T7VqddcI1mHKxjeBhw7QEddczjJd4Dy0F/KjVLyxItOOXW4JLBbu3YtbrzxRvzhD3+A75DLiy+++GJxjd3Z8MMPPzi9NxgMWL9+PdavX3/WNpVGQ0MDZs+WdgURS3jQyUKDq3166TS4L8cbi3NzUXCkHv/807tjTmf+9N6bJnSp+rlqF+z2gSnFjg7U7t6N0PZ29Hd2wtrRAWtHB0IWLYLveEdfDMFxR2Z7SQkKztBvzLr/fjGw6zebUfvl2JtLhl7PpDEaAZUKGqMRGoNh4Kfj3yaTU1ClDwxE/I03jp7WaIRPfPzptBPonA1RUZg7uJREClKDOh4YrT1FrliBiOXL0bxrFyyDN08EL1gwaUfqHPDQX8qNUvLEi045dbgksNu1axf+b5TzgKKjo894FAkxPlqtMq735UEnCw2u9qlSqWDUaaDqaENC6fYzTmfGT3A6U6NWo6+tbSBYGdwx2V1djaaCAlg7OtA/GKBZOzoGFvB3diLx5z8X13XVffMNdt95p2ivYJj9lKeegikmRnJeHUGYztcX3lOnjgimHD/9hkxXGqOjMefxx8cMwIbeBuAdFzcwAiahfHR+fpgj8QoorY8PLtq3b9KvKRvr/wWVRoMQD14uczbw0F/KjVLyxItOOXW4JEdeXl6jHvxbVlbGxbZiJZOTk8NagiR40MlCg6t9CnY7Wm+8EV8P+exM05mCzQbBakVIdrYYVDXv3Inyv/71dJDW0YH+wZ2WmwCk/+lPiL7kEgBA+8GDKH7wwTH1RA2mAwYCMABQe3lB5+cHra8vdH5+0A3+NElYWzsUxx2Z/klJOP+776Q9ExSE+BtukJTWVev3RtwqMEnXlPHQBygFTywrpeSJF51y6nBJYHfZZZfhySefxD//+U8AAx1dZWUlHnzwQXEHK3F25OfnI3fwJHWe4UEnCw085Hso++67D8BAsOYI7PpaW1G/efOYz/QP2TFpjIpC2NKlA4Gan58YqDmCtqEL9oMyM3FxSQk0Xl5jloMgCJNmNGuyrynj7f8FnvHEslJKnnjRKacOlwR2L774In7yk58gNDQUPT09WLp0Kerq6pCdnY1nnnnGFS4nDTabjbUESfCgk4UGV/u09faOn2gI3vHx8I6LczpfzH/OHMx95pmBIG3wpfX1xa6DB7F0xQqo9XoxbUBKinjg7HiotVpgcDphrHKYbKNZk3lNGQ99gFLwxLJSSp540SmnDpcEdv7+/vjmm2+wbds2FBcXw2w2Iz093eleV+LsONPhyzzBg04WGnjI91BSnnpqxIGvpuhoTL322hFpo/r6nIK6c2G8cphMo1mTdU0Zb/8v8IwnlpVS8sSLTjl1yB7Y2e12vPPOO/jkk09w4sQJqFQqxMfHIyIiAoIguPRcqsmAUtYo8qCThQZX+9QYjcjasgUBfn6yT2fKqV2Krck8mjUZ4KEPUAqeWFZKyRMvOuXUIeveeUEQcNlll+HWW29FdXU1UlJSkJycjJMnT+LGG2/Ej3/8YzndTUqG38bBKzzoZKHB1T5VKhVKjh0TpzMHPxyeCFCpJjydKad2qbYco1nRl12GkKwsCuo8CB76AKXgiWWllDzxolNOHbIGdu+88w62bNmCzZs3Y+/evfjHP/6BDz/8EMXFxfj222/x3XffyXY4MUFMdhzTmYbwcKfPDRERyFi/3qOmMwmCIAhpqISJHJM+DhdeeCHOP/98PDTKxdcA8Pvf/x55eXnYtGmTXC7PmY6ODvj7+6O9vR1+fn7jP8CY5uZmBAfzfzk6DzpZaHCHz+E+BJtNlulMObXzUP8EW6gNSMcTy0opeeJF53g6JhKryDpit3//flx00UVjfr9y5UoUFxfL6XLS0dzczFqCJHjQyUKDO3wO9yHXdKac2nmof4It1Aak44llpZQ88aJTTh2yBnYtLS0IHzYtNJTw8HC0trbK6XLSUVtby1qCJHjQyUKDO3y6yoecdnmof4It1Aak44llpZQ88aJTTh2yBnY2m+2M12JoNBr09/fL6XLSoVbIXZE86GShwR0+XeVDTrs81D/BFmoD0vHEslJKnnjRKacOWdfYqdVqrFy5El5eXqN+b7FYsHHjRm4OBASUt8aOIAiCIIjJBbM1dmvWrEFYWBj8/f1HfYWFheEGifc4EqOzfft21hIkwYNOFhrc4dNVPuS0y0P9E2yhNiAdTywrpeSJF51y6pD1gOK3335bTnPEKFitVtYSJMGDThYa3OHTVT7ktMtD/RNsoTYgHU8sK6XkiRedcurgY3KZkExYWBhrCZLgQScLDe7w6Sofctrlof4JtlAbkI4nlpVS8sSLTjl1UGCnMKKiolhLkAQPOllocIdPV/mQ0y4P9U+whdqAdDyxrJSSJ150yqmDAjuFsW/fPtYSJMGDThYa3OHTVT7ktMtD/RNsoTYgHU8sK6XkiRedcuqgwI4gCIIgCMJDoMBOYSQlJbGWIAkedLLQ4A6frvIhp10e6p9gC7UB6XhiWSklT7zolFMHBXYKo6Ojg7UESfCgk4UGd/h0lQ857fJQ/wRbqA1IxxPLSil54kWnnDoosFMYVVVVrCVIggedLDS4w6erfMhpl4f6J9hCbUA6nlhWSskTLzrl1EGBHUEQBEEQhIcg65ViSkRpV4oJggCVSsVaxrjwoJOFBnf4dJUPOe3yUP8EW6gNSMcTy0opeeJF53g6mF0pJifPPvssFixYAF9fX4SFheHyyy/HkSNHnNL09vbirrvuQnBwMHx8fHDllVeivr6ekWL3sHPnTtYSJMGDThYa3OHTVT7ktMtD/RNsoTYgHU8sK6XkiRedcurgNrDLy8vDXXfdhcLCQnzzzTewWq248MIL0dXVJaa555578Pnnn+Nf//oX8vLyUFNTgyuuuIKhatfT29vLWoIkeNDJQoM7fLrKh5x2eah/gi3UBqTjiWWllDzxolNOHbLeFSsnGzdudHr/zjvvICwsDHv27MGSJUvQ3t6Ot956Cx988AHOP/98AAN31c6ePRuFhYXIyspiIdvlBAcHs5YgCR50stDgDp+u8iGnXR7qn2ALtQHpeGJZKSVPvOiUUwe3I3bDaW9vBwAEBQUBAPbs2QOr1Yrly5eLaWbNmoXY2FgUFBSMacdisaCjo8PppSSmTp3KWoIkeNDJQoM7fLrKh5x2eah/gi3UBqTjiWWllDzxolNOHdyO2A3Fbrfj17/+NXJycjBnzhwAQF1dHfR6PQICApzShoeHo66ubkxbzz77LJ544okRn+fn58Pb2xuLFi1CcXExurq6EBAQgBkzZohz34mJibDb7Th+/DgAICsrCyUlJejo6ICvry+Sk5NRWFgIAIiPj4dGo8GxY8cAAAsWLMCxY8fQ2toKk8mEtLQ0bNu2DQAQGxsLo9EoriFMT0/HyZMn0dzcDIPBgMzMTGzZsgUA0NLSgtzcXJSUlAAA5s2bh5qaGjQ0NECn02HRokXYunUr7HY7IiMjERwcjIMHDwIAUlJS0NjYiLq6Omg0GuTm5mLbtm3o7+9HWFgYIiMjUVxcDGDgsMT29nZUV1cDAJYuXYrCwkJYLBaEhIQgNjYWRUVFAAYC6u7ublRWVgIAcnNz8fnnnyM6OhqBgYFISEjA7t27AQDTp0+H1WrFiRMnAADZ2dk4cOAAzGYz/P39MWvWLOzYsQMAkJCQAAAoLy8HACxcuBClpaVob2+Hj48PUlJSxCA+Li4OOp0OR48eBQBkZGTgq6++Qnh4OEwmE9LT05Gfny+Wt8lkQmlpqVjelZWVaGpqgtf/b+/uY6qq/ziAvy/IvTyoQCAw5MEHgiAVCISY2X40GvqHm2nWJgtxatPEtlCcrpbaH5lzlTkVnRW20rRmmtPCGkX4gOPBx6GiMgQqwUeQJy94ub8/muf3Y1j3VOee7/cc36+t7cfh3u/n/f2e787v473nXmw2PP300/jll18AACNHjoS/v7+y3omJibh27RquX7+OIUOGYNKkSTh69CgcDgfCwsLQ0NAAHx8fAMC4ceNw69YtXLt2DR4eHpg8eTKOHz+Ovr4+hISEIDw8XPkzMgkJCbh7967ykfdnn30WlZWVuHfvHoKCghAdHa2sd2dnJxISEpT1njRpEk6dOoXu7m4EBgYiJiYGVVVVyp51OBxoaGhQ9mxtbS06OjowfPhwJCQkKHu2vb0dKSkpyp5NS0vDpUuX0NbWBj8/PyQmJuL48ePKelutVly6dElZ74aGBty6dQs+Pj7o6uqCh8cf/26MjIzE0KFDceHCBQBAcnIyfv31V9y4cQNWqxUZGRkoLy+H0+lEeHg4AgMDUVtbCwCYMGECWltb0draquzZB+sdGhqK0NBQnD17FgDw5JNP4s6dO/j9999hsVjw7LPPoqKiAr29vRgxYgQiIiJw6tQpAEB8fDw6OzvR3NwMAJg8eTKqq6vR09ODoKAgjB49WtmzsbGx6O3tVfas7NeIiIgIDB8+XPg14rfffoPNZgPw8GvEyZMnlT0r6hpRX1+vrLde14gRI0bg3LlzAP53jaioqMCYMWM0u0bExcWhp6dH82vEmDFj4OHhoeoa0dbWpvz+wXr//zUiNTUVR44cASD2GvHtt98iMjJS+DXi7NmzGD9+/J9eI/7/NjSXnAawcOFCZ3R0tLO5uVk5tnPnTqfVah302IkTJzqXL1/+p2Pdu3fP2d7ervzX3NzsBOBsb293S3atlZWViY6gigw5RWTQo6a7amg5rgznn8TiHlDPjGtllDnJktNVjvb2dtW9ivSv2OXn5+PgwYMoLy9HRESEcjwsLAy9vb1oa2sb8Kpda2srwsLC/nQ8m82m/CvSiOLi4kRHUEWGnCIy6FHTXTW0HFeG809icQ+oZ8a1MsqcZMmpZQ5p77FzOp3Iz8/Hvn378NNPP2H06NEDfp+SkgIvLy+UlpYqx+rq6tDU1ISMjAy94+qmp6dHdARVZMgpIoMeNd1VQ8txZTj/JBb3gHpmXCujzEmWnFrmkLaxW7x4Mb744gvs2rULw4YNQ0tLC1paWpTJ+/v7Y968eSgoKMDPP/+MmpoazJ07FxkZGab9RCwA5Z4J2cmQU0QGPWq6q4aW48pw/kks7gH1zLhWRpmTLDm1zCHtW7FFRUUAgP/85z8DjhcXFyMvLw8A8OGHH8LDwwMzZ86E3W5HdnY2tmzZonNSIiIiIjnwT4oZ7E+K3b9/H0OGSNuPK2TIKSKDHjXdVUPLcWU4/yQW94B6Zlwro8xJlpyucpjiT4rRwz34KLbsZMgpIoMeNd1VQ8txZTj/JBb3gHpmXCujzEmWnFrmYGNnMN3d3aIjqCJDThEZ9KjprhpajivD+SexuAfUM+NaGWVOsuTUMgcbO4MJDAwUHUEVGXKKyKBHTXfV0HJcGc4/icU9oJ4Z18ooc5Ilp5Y5eI+dwe6x6+7uhq+vr+gYLsmQU0QGPWq6q4aW48pw/kks7gH1zLhWRpmTLDld5eA9dib24M/AyE6GnCIy6FHTXTW0HFeG809icQ+oZ8a1MsqcZMmpZQ42dkREREQmwcbOYGJiYkRHUEWGnCIy6FHTXTW0HFeG809icQ+oZ8a1MsqcZMmpZQ42dgbjcDhER1BFhpwiMuhR0101tBxXhvNPYnEPqGfGtTLKnGTJqWUONnYG09DQIDqCKjLkFJFBj5ruqqHluDKcfxKLe0A9M66VUeYkS04tc7CxIyIiIjIJft2Jwb7uxG63w2aziY7hkgw5RWTQo6a7amg5rgznn8TiHlDPjGtllDnJktNVDn7diYnV1taKjqCKDDlFZNCjprtqaDmuDOefxOIeUM+Ma2WUOcmSU8scbOwMpqOjQ3QEVWTIKSKDHjXdVUPLcWU4/yQW94B6Zlwro8xJlpxa5mBjZzBGeLsYkCOniAx61HRXDS3HleH8k1jcA+qZca2MMidZcmqZg/fY8R47t5AhJ++xEzeuDOefxOIeUM+Ma2WUOcmSk/fYPcJOnDghOoIqMuQUkUGPmu6qoeW4Mpx/Eot7QD0zrpVR5iRLTi1zsLEjIiIiMgk2dgYzZswY0RFUkSGniAx61HRXDS3HleH8k1jcA+qZca2MMidZcmqZg42dwXh4GOOUyZBTRAY9arqrhpbjynD+SSzuAfXMuFZGmZMsOTW9/mo2EuniypUroiOoIkNOERn0qOmuGlqOK8P5J7G4B9Qz41oZZU6y5NQyBxs7IiIiIpPg150Y7OtOenp64OPjIzqGSzLkFJFBj5ruqqHluDKcfxKLe0A9M66VUeYkS05XOfh1JyZ26dIl0RFUkSGniAx61HRXDS3HleH8k1jcA+qZca2MMidZcmqZg42dwbS1tYmOoIoMOUVk0KOmu2poOa4M55/E4h5Qz4xrZZQ5yZJTyxymaOw2b96MUaNGwdvbG+np6aisrBQdyW38/PxER1BFhpwiMuhR0101tBxXhvNPYnEPqGfGtTLKnGTJqWUOw99jt2fPHuTm5mLr1q1IT0/Hhg0b8PXXX6Ourg4hISEun2+0e+z6+vrg5eUlOoZLMuQUkUGPmu6qoeW4Mpx/Eot7QD0zrpVR5iRLTlc5Hql77D744AMsWLAAc+fORUJCArZu3QpfX198+umnoqO5xfHjx0VHUEWGnCIy6FHTXTW0HFeG809icQ+oZ8a1MsqcZMmpZY4hmo0kQG9vL2pqarBy5UrlmIeHB7KyslBRUfHQ59jtdtjtduXn9vZ2AH90w0bQ1dVliKwy5BSRQY+a7qqh5bgynH8Si3tAPTOulVHmJEtOVzke/E7Nm6yGbuxu3rwJh8OB0NDQAcdDQ0Nx8eLFhz5n7dq1WLNmzaDjkZGRbslIREREpIWOjg74+/v/5WMM3dj9EytXrkRBQYHyc39/P27fvo2goCBYLBaBydSZOHEiqqqqRMdwSYacIjLoUdNdNbQa9+7du4iMjERzc7Mh7lsl95DhGmAUZlwro8xJlpyucjidTnR0dCA8PNzlWIZu7IKDg+Hp6YnW1tYBx1tbWxEWFvbQ59hsNthstgHHAgIC3BVRc56enob4P0sZcorIoEdNd9XQetzhw4cL3wMkjgzXAKMw41oZZU6y5FSTw9UrdQ8Y+sMTVqsVKSkpKC0tVY719/ejtLQUGRkZApO5z+LFi0VHUEWGnCIy6FHTXTVkOGdkHtxP6plxrYwyJ1lyapnDFF93MmfOHGzbtg1paWnYsGEDvvrqK1y8eHHQvXdE5H5G+wohIiIzMfRbsQDw8ssv48aNG3j77bfR0tKCpKQklJSUsKkjEsRms2HVqlWDbnkgIiL3M/wrdkRERET0B0PfY0dERERE/8PGjoiIiMgk2NgRERERmQQbOyIiIiKTYGNHREREZBJs7IhIN21tbUhNTUVSUhLGjRuH7du3i45ERGQq/LoTItKNw+GA3W6Hr68vurq6MG7cOFRXVyMoKEh0NCIiU+ArdkSkG09PT/j6+gIA7HY7nE4n+G9LIiLtsLEjItXKy8sxbdo0hIeHw2KxYP/+/YMes3nzZowaNQre3t5IT09HZWXlgN+3tbUhMTERERERKCwsRHBwsE7piYjMj40dEanW1dWFxMREbN68+aG/37NnDwoKCrBq1SqcPHkSiYmJyM7OxvXr15XHBAQE4MyZM2hoaMCuXbvQ2tqqV3wiItPjPXZE9I9YLBbs27cP06dPV46lp6dj4sSJ2LRpEwCgv78fkZGRWLJkCVasWDFojNdeew3PPfccXnzxRb1iExGZGl+xIyJN9Pb2oqamBllZWcoxDw8PZGVloaKiAgDQ2tqKjo4OAEB7ezvKy8sRFxcnJC8RkRkNER2AiMzh5s2bcDgcCA0NHXA8NDQUFy9eBAA0Njbi1VdfVT40sWTJEowfP15EXCIiU2JjR0S6SUtLw+nTp0XHICIyLb4VS0SaCA4Ohqen56APQ7S2tiIsLExQKiKiRwsbOyLShNVqRUpKCkpLS5Vj/f39KC0tRUZGhsBkRESPDr4VS0SqdXZ24sqVK8rPDQ0NOH36NB577DFERUWhoKAAc+bMQWpqKtLS0rBhwwZ0dXVh7ty5AlMTET06+HUnRKRaWVkZMjMzBx2fM2cOduzYAQDYtGkT1q9fj5aWFiQlJWHjxo1IT0/XOSkR0aOJjR0RERGRSfAeOyIiIiKTYGNHREREZBJs7IiIiIhMgo0dERERkUmwsSMiIiIyCTZ2RERERCbBxo6IiIjIJNjYEREREZkEGzsiIiIik2BjR0SkUl5eHqZPn/6vxigrK4PFYkFbW9tfPq60tBTx8fFwOBwuxywpKUFSUhL6+/v/VTYiMj42dkRkOnl5ebBYLLBYLLBarYiJicE777yD+/fv/6txP/roI+Vv4rrb8uXL8dZbb8HT09PlY6dMmQIvLy/s3LlTh2REJDM2dkRkSlOmTMG1a9dw+fJlLF26FKtXr8b69ev/0VgOhwP9/f3w9/dHQECAtkEf4ujRo6ivr8fMmTNVPycvLw8bN250YyoiMgI2dkRkSjabDWFhYYiOjsaiRYuQlZWFAwcOAADsdjuWLVuGkSNHws/PD+np6SgrK1Oeu2PHDgQEBODAgQNISEiAzWZDU1PToLdi7XY7Xn/9dYSEhMDb2xvPPPMMqqqqBuT47rvvEBsbCx8fH2RmZuLq1asus+/evRvPP/88vL29lWNnzpxBZmYmhg0bhuHDhyMlJQXV1dXK76dNm4bq6mrU19f/swUjIlNgY0dEjwQfHx/09vYCAPLz81FRUYHdu3fj7NmzmDVrFqZMmYLLly8rj+/u7sa6devw8ccfo7a2FiEhIYPGXL58Ofbu3YvPPvsMJ0+eRExMDLKzs3H79m0AQHNzM2bMmIFp06bh9OnTmD9/PlasWOEy65EjR5CamjrgWE5ODiIiIlBVVYWamhqsWLECXl5eyu+joqIQGhqKI0eO/KP1ISJzGCI6ABGROzmdTpSWluLw4cNYsmQJmpqaUFxcjKamJoSHhwMAli1bhpKSEhQXF+Pdd98FAPT19WHLli1ITEx86LhdXV0oKirCjh07MHXqVADA9u3b8eOPP+KTTz5BYWEhioqKMHbsWLz//vsAgLi4OJw7dw7r1q37y8yNjY1KtgeamppQWFiIJ554AgDw+OOPD3peeHg4Ghsb/8bqEJHZsLEjIlM6ePAghg4dir6+PvT392P27NlYvXo1ysrK4HA4EBsbO+DxdrsdQUFBys9WqxUTJkz40/Hr6+vR19eHSZMmKce8vLyQlpaGCxcuAAAuXLiA9PT0Ac/LyMhwmb2np2fA27AAUFBQgPnz5+Pzzz9HVlYWZs2ahbFjxw54jI+PD7q7u12OT0TmxcaOiEwpMzMTRUVFsFqtCA8Px5Ahf1zuOjs74enpiZqamkGfOB06dKjyv318fGCxWHTN/EBwcDDu3Lkz4Njq1asxe/ZsHDp0CN9//z1WrVqF3bt344UXXlAec/v2bYwYMULvuEQkEd5jR0Sm5Ofnh5iYGERFRSlNHQAkJyfD4XDg+vXriImJGfBfWFiY6vHHjh0Lq9WKY8eOKcf6+vpQVVWFhIQEAEB8fDwqKysHPO/EiRMux05OTsb58+cHHY+NjcUbb7yBH374ATNmzEBxcbHyu3v37qG+vh7Jycmq50BE5sPGjogeKbGxscjJyUFubi6++eYbNDQ0oLKyEmvXrsWhQ4dUj+Pn54dFixahsLAQJSUlOH/+PBYsWIDu7m7MmzcPALBw4UJcvnwZhYWFqKurw65du1R9D152djaOHj2q/NzT04P8/HyUlZWhsbERx44dQ1VVFeLj45XHnDhxAjabTdVbvURkXmzsiOiRU1xcjNzcXCxduhRxcXGYPn06qqqqEBUV9bfGee+99zBz5ky88soreOqpp3DlyhUcPnwYgYGBAP74pOrevXuxf/9+JCYmYuvWrcqHM/5KTk4OamtrUVdXBwDw9PTErVu3kJubi9jYWLz00kuYOnUq1qxZozznyy+/RE5ODnx9ff/WHIjIXCxOp9MpOgQREQ1UWFiIu3fvYtu2bS4fe/PmTcTFxaG6uhqjR4/WIR0RyYqv2BERSejNN99EdHS0qr//evXqVWzZsoVNHRHxFTsiIiIis+ArdkREREQmwcaOiIiIyCTY2BERERGZBBs7IiIiIpNgY0dERERkEmzsiIiIiEyCjR0RERGRSbCxIyIiIjIJNnZEREREJvFf8zif2urm0DEAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -2938,8 +3007,10 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m24:09:03T20:09:40 | INFO | line:771 |mth5.mth5 | close_mth5 | Flushing and closing 8P_CAS04_NVR08.h5\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:40 | INFO | line:771 |mth5.mth5 | close_mth5 | Flushing and closing 8P_CAS04_NVR08.h5\u001b[0m\n"
+ "\u001b[1m2026-01-18T11:08:43.604008-0800 | INFO | aurora.pipelines.process_mth5 | process_mth5_legacy | line: 230 | type(tf_cls): \u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:43.707984-0800 | INFO | aurora.pipelines.process_mth5 | process_mth5_legacy | line: 233 | Transfer function object written to CAS04_RRNVR08.zrr\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:43.934128-0800 | INFO | mth5.mth5 | close_mth5 | line: 896 | Flushing and closing 8P_CAS04_NVR08.h5\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:44.114611-0800 | INFO | mth5.mth5 | close_mth5 | line: 896 | Flushing and closing 8P_CAS04_NVR08.h5\u001b[0m\n"
]
}
],
@@ -2954,9 +3025,15 @@
" )"
]
},
+ {
+ "cell_type": "markdown",
+ "id": "fdf2334f",
+ "metadata": {},
+ "source": []
+ },
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 19,
"id": "2ee6e117-c7e1-40ba-9981-5f2a189e404a",
"metadata": {},
"outputs": [
@@ -2966,7 +3043,7 @@
"MT( station='CAS04', latitude=37.63, longitude=-121.47, elevation=335.26 )"
]
},
- "execution_count": 20,
+ "execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
@@ -2979,23 +3056,24 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": 20,
"id": "763704e0-ceed-43be-ad70-82e7709d7758",
"metadata": {},
"outputs": [],
"source": [
- "archived_z_file = pathlib.Path(f\"CAS04bcd_REV06.zrr\")"
+ "archived_z_file = pathlib.Path(f\"CAS04bcd_REV06.zrr\")\n",
+ "archived_z_file = pathlib.Path(f\"USMTArray.CAS04.2020.edi\")\n"
]
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": 21,
"id": "e711cde6-6e35-4335-a1ef-e022f6af7839",
"metadata": {},
"outputs": [],
"source": [
- "from aurora.transfer_function.plot.comparison_plots import compare_two_z_files\n",
- "z_file_path = \"CAS04_RRNVR08.zrr\""
+ "from aurora.transfer_function.compare import CompareTF\n",
+ "z_file_path = pathlib.Path(\"CAS04_RRNVR08.zrr\")\n"
]
},
{
@@ -3003,9 +3081,15 @@
"id": "500c63da-86c7-42bc-948f-561473982c2f",
"metadata": {},
"source": [
- "# To compare with the archived file, we need to set the coordinate system to geographic\n",
+ "## Compare with archived TF \n",
+ "\n",
+ "Transfer functions for this site can be accessed via IRIS' website. \n",
+ "The specific TF for CAS04, stored as an `edi` file is [here](https://ds.iris.edu/spudservice/emtf/18633652/edi).\n",
+ "\n",
+ "A copy of the file is stored here as `USMTArray.CAS04.2020.edi`.\n",
+ "\n",
+ "When comparinf TFs, care should be taken to use the same coordinate system. Aurora's default representation will be in the geographic coordinate frame, this can be seen in the zfile header:\n",
"\n",
- "The TF will be output with a header like this:\n",
"\n",
"```\n",
"TRANSFER FUNCTIONS IN MEASUREMENT COORDINATES\n",
@@ -3022,7 +3106,7 @@
" 5 103.20 0.00 CAS04 Ey\n",
"```\n",
"\n",
- "To remove the rotation, we can use a variety of tools, but another way is just to overwrite the orientations:\n",
+ "Legacy stored z-files on IRIS had been rotated, and had header:\n",
"\n",
"```\n",
"TRANSFER FUNCTIONS IN MEASUREMENT COORDINATES\n",
@@ -3039,12 +3123,12 @@
" 5 90.00 0.00 CAS04 Ey\n",
"```\n",
"\n",
- "This is why we set angle1=13.2 degrees in the comparison plotter."
+ "To remove the rotation, we can use a variety of tools, but in this tutorial, we use the archived edi file, which is also in the original measurement coordinates.\n"
]
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": 22,
"id": "f5901d39-cacc-4c3f-9a1b-fd2fb33458e9",
"metadata": {},
"outputs": [
@@ -3053,7 +3137,7 @@
"output_type": "stream",
"text": [
"CAS04_RRNVR08.zrr\n",
- "CAS04bcd_REV06.zrr\n",
+ "USMTArray.CAS04.2020.edi\n",
"CAS04_RRNVR08\n"
]
}
@@ -3066,22 +3150,22 @@
},
{
"cell_type": "code",
- "execution_count": 24,
- "id": "e3a85530-c001-45b3-a550-1f57548deb1d",
+ "execution_count": 23,
+ "id": "3af2de6a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m24:09:03T20:09:41 | INFO | line:86 |aurora.transfer_function.plot.comparison_plots | compare_two_z_files | Sacling TF scale_factor1: 1\u001b[0m\n"
+ "\u001b[1m2026-01-18T11:08:45.198478-0800 | INFO | mt_metadata.transfer_functions.io.zfiles.zmm | _fill_dataset | line: 871 | Rotating transfer functions to measurement coordinates according to the channel metadata.\u001b[0m\n"
]
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABsMAAAUzCAYAAACQYFlXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd3SUxf7H8c8mIaTTm0IIgoAUIaGjSFGwYTdgxaCAHbg2lIsUO1aIChaQKIqKWPCiF0W6CkIISFMQJIQuUlI2wSSb/f2R3+5l07P12eX9OmePeWbnmfnOZMKes19nHpPVarXK4BYtWqSrr75aJpNJVqtVwcHB+uWXX5SQkODr0AAAAAAAAAAAAGBgQb4OoCr2799v/9lkMunqq68mEQYAAAAAAAAAAIBK+UUy7Pjx45Ik2ya2AQMG+DIcAAAAAAAAAAAA+Am/SIZFRUU5XDdq1MhHkQAAAAAAAAAAAMCf+EUyLC4uzuE6OzvbN4EAAAAAAAAAAADAr4T4OoCq6Natm0wmk/16z549PowGAAAAAAAAAAAA/sIvdoY1adJEvXv3tj8zbPHixT6OCAAAAAAAAAAAAP7AL5JhkvTYY49JkqxWqzZs2KAVK1b4NiAAAAAAAAAAAAAYnslq227lB2644QZ9+eWXMplMOuecc7RmzRrVr1/f12EBAAAAAAAAAADAoPxmZ5gkzZkzRwkJCbJarfrzzz918cUXa8eOHb4OCwAAAAAAAAAAAAblV8mwmJgYLV26VIMGDZLVatWWLVuUkJCge++9V+vXr1dRUZGvQwQAAAAAAAAAAICB+NUxiTZWq1XTpk3TxIkTZTabZTKZJEkRERFq3ry56tSpoxo1ajjVtslk0tKlS90ZLgAAAAAAAAAAAHwkxNcBOOPAgQPasWOHrFarTCaTbPk8s9ms7du325Nj1WVrDwAAAAAAAAAAAIHB75Jhs2bN0tixY5WXl2cvI4EFAAAAAAAAAACAsvhVMuyVV17RY489Zt8JVjIJ5ocnPgIAAAAAAAAAAMCD/CYZ9ssvv+ixxx6T5JgEsyXAatWqpdjYWEVHRzv9vDAAAAAAAAAAAAAEFr9Jhj3++OMOz/SyWq1q2LChHnnkEd1www1q0aKFjyMEAAAAAAAAAACA0ZisfnC2YEZGhuLi4mQymewJsQsuuED/+c9/VKtWLV+HBwAAAAAAAAAAAIMK8nUAVbFmzRqH65iYGH3++eckwgAAAAAAAAAAAFAhv0iGHThwwP6zyWRSYmKiGjRo4MOIAAAAAAAAAAAA4A/8Ihl26tQpScXPCZOkHj16+DIcAAAAAAAAAAAA+Am/SIaVPA6xdu3avgkEAAAAAAAAAAAAfsUvkmHnnnuupOIjEiXp+PHjvgwHAAAAAAAAAAAAfsIvkmE9e/ZUSEiI/Xrr1q0+jAYAAAAAAAAAAAD+wi+SYTExMbr88stltVpltVr1n//8x/78MAAAAAAAAAAAAKA8JqufZJXWr1+vXr162ZNgb731lkaOHOnjqOBJ+fn5Wr9+vdauXatff/1VO3bsUEZGhk6ePKnCwkLVqlVLzZo1U7du3ZSYmKhLLrnEfpQmAAAAAAAAAACA5EfJMEl68skn9eyzz8pkMikiIkJLly5V9+7dfR0WPGTkyJGaNWtWlet36dJFs2fPVqdOnTwYFQAAAAAAAAAA8Cd+cUyizdNPP60RI0bIarXKbDbr4osv1nvvvefrsOAhJfO00dHR6tSpk/r166d+/fqpTZs2Cgr63xLesGGD+vTpo59//tnboQIAAAAAAAAAAIPyq51hNsnJyRo3bpz++ecfmUwmtW7dWsOHD9dFF12kVq1aqU6dOgoODvZ1mHDRmDFjtG/fPg0ePNj+uy3pr7/+0vTp0zV16lRZLBZJUvPmzbVt2zZFRkZ6O2QAAAAAAAAAAGAwfpMMKy+5ZQvfXc+KMplMKiwsdEtb8J5Zs2Y5PENuzpw5SkpK8l1AAAAAAAAAAADAEPzmmESr1VrqJRUnr0wmU5nvO/uC/xkxYoRatmxpv16+fLkPowEAAAAAAAAAAEbhN8kw6X+JL9urovececG/JSQk2H8+fPiwDyMBAAAAAAAAAABGEeLrAKqDXVvGcvToUa1fv167d+9WVlaWatSooXr16qldu3bq2rWratSo4dV4Tj/eMiYmxqt9AwAAAAAAAAAAY/KbZNikSZN8HYJhHD9+XKmpqfbXhg0blJGRUaqep5KHCxYs0PTp0/XTTz+V20d0dLSGDBmixx57TK1bt/ZIHKcrKCjQmjVr7Ne9e/f2eJ8AAAAAAAAAAMD4TFa2Wxne1q1b9c0332jDhg1KTU3Vnj17qnSfu3+1Bw4c0K233qqVK1dW+Z7Q0FBNmDBBEyZM8OhRlI899pheeuklSVL9+vW1Y8cO1a1b12P9AQAAAAAAAAAA/0AyzA+MHTtW06dPr/Z97vzV7ty5U/369dOhQ4ecuv/mm2/W3LlzFRwc7JZ4CgsLdfToUf3yyy+aMWOGlixZIkkKDw/X119/rUsuucQt/QAAAAAAAAAAAP/mN8ckwneOHTumgQMHlpkI69Kli6655hq1aNFCeXl52rlzp+bNm6eDBw861Pv444/VsGFDTZs2zek4wsLC9M8//5T5nslk0qBBg/TKK6+offv2TvcBAAAAAAAAAAACC8kwPxYaGqoOHTqoa9eumj9/vk6ePOmRfkaNGlXqmWTR0dH68MMPdfXVV5eq/9xzz+m5557T5MmTHcqnT5+uSy+9VJdffrnbY+zXr58eeOABtWvXzu1tAwAAAAAAAAAA/8UxiX5g7NixevPNN9WuXTt17drV/urUqZNCQ0MlSXFxcdq7d6/Dfe741S5ZskSDBg1yKAsNDdVPP/2krl27Vnjv9OnTNXbsWIeyVq1a6bffflNISPXzsFdffbXy8/MlSf/8848OHz6snTt3qqioyF6nZ8+e+uSTT9S8efNqtw8AAAAAAAAAAAJPQCbDJk+ebN/JZDKZNHv2bB9H5JpDhw6pdu3aCg8PL7eOp5JhF110kVavXu1Q9uyzz2r8+PFVun/QoEH253nZvP/++xo2bJjLsUnFRzi+++67evrpp5WbmytJio2N1fr169WwYUO39AEAAAAAAAAAAPxXQCbD4uPjtXnzZlmtVplMJlksFl+H5HGeSIZt27ZNHTp0cCirX7++Dhw4YN+RVpkNGzaU2kHWs2dPrVmzxqXYyuqnX79+ysnJkSTddtttmjt3rlv7AAAAAAAAAAAA/ifI1wF4SgDm+Lzuk08+KVU2fPjwKifCJKlLly7q0qWLQ9natWu1Z88el+Mr2c/pu9U++eQTHT9+3K19AAAAAAAAAAAA/xOwyTCTyeTrEPze4sWLS5XdeOON1W6nrHvKattVQ4YMsf9cWFio1NRUt/cBAAAAAAAAAAD8S8Amw+Aas9mstLQ0h7KIiAglJCRUu60+ffqUKiv5HDJ3aNasmcP133//7fY+AAAAAAAAAACAfyEZhjJt2rRJRUVFDmVdu3ZVSEhItdvq1q2batSo4VC2YcMGl+IrS2ZmpsN17dq13d4HAAAAAAAAAADwLyTDUKbff/+9VFmrVq2cais0NFRNmzZ1KNu9e7cKCwudaq88JXebtWzZ0q3tAwAAAAAAAAAA/0MyDGVKT08vVda8eXOn24uNjXW4tlgsysjIcLq9kvLz8/XMM8/Yr1u2bKk2bdq4rX0AAAAAAAAAAOCfqn/mHc4Ihw8fLlVW8plc1VHWvUeOHNE555xTZv0vvvhCGzdu1IMPPqiGDRtW2PbBgwc1fPhwbdy40V72xBNPOB2rzV9//aWjR49W656srCylpqYqJiZGtWvXVrNmzVSzZk2XYwEAAAAAAAAAwJ/9888/2rdvn/26b9++XnvcEckwlOn48eOlyqKiopxur6x7jx07Vm79rKwsPfPMM3r++efVp08fXXDBBerQoYPq16+v8PBwZWdn688//9Tq1au1cOFC5eXl2e+99tprdeeddzodq82MGTM0ZcoUl9sBAAAAAAAAAACOvvrqK11zzTVe6YtkGMpkNptLlYWHhzvdXln35ubmVnqfxWLRihUrtGLFikrrmkwmjRgxQm+++aZMJpMzYQIAAAAAAAAAgADDM8NQpoKCglJlYWFhTrdXVjIsPz+/3Pp9+vTR6NGjq/Tcr5o1ayoxMVGrVq3SO++8oxo1ajgdJwAAAAAAAAAACCwBuzPMarX6OoSA48puq7Lureh31LJlS02fPl1S8ZGNmzdv1p9//qm///5b+fn5ioqKUp06dXTeeefp/PPPdylRV5777rtPiYmJ1bpn+/btGjJkiP36iSeeUJMmTdSxY0eXdtYhcOTl5WnLli32a9ZG9QT6/PnT+IwWq6/i8Va/nuzHE20bbX3AOFgbrgn0+fO38RkpXj4HjdW+kdYGjIf14bxAnzt/G5+R4vVlLIHwWcjnILxp+/btDo84atasmdf6Dshk2D333KPDhw/7Ogy/VtbuqtOfy1VdZd0bGhpapXvr1q2rfv36qV+/fk7374yGDRuqYcOGLrXRpEkTxcbGKiEhQTExMW6KDP4sKytLmZmZ9mvWRvUE+vz50/iMFquv4vFWv57sxxNtG219wDhYG64J9Pnzt/EZKV4+B43VvpHWBoyH9eG8QJ87fxufkeL1ZSyB8FnI5yB8qWbNml7rKyCTYXfffbevQ/B7ERERpcrcnQyLjIx0uj0AAAAAAAAAAICqCMhkGFxXr169UmU5OTlOt1fWvWX1EajMZrOvQ4BBlFwLrI3qCfT586fxGS1WX8XjrX492Y8n2jba+oBxsDZcE+jz52/jM1K8fA4aq30jrQ0YD+vDeYE+d/42PiPF68tYAuGzkM9BeJMrG25cZbLycK2AEBcXp7179zqUufKrnTBhgp599lmHsqeeekpPPvmkU+31799fK1ascCjbvXu3zjnnHGdD9KmUlBSlpKSUKjebzUpNTbVfJycnKzY21ouRAQAAAAAAAABgPBkZGRo9erT9euvWrWrfvr1X+mZnmKS0tDSHnUsXXXSRD6MxhhYtWpQqK5lsq46MjAyH6+DgYL9OEqWnp2vlypW+DgMAAAAAAAAAAFTC75Jh69at088//6xff/1Ve/fu1bFjx5SXl6fQ0FBFRUWpSZMmat26teLj43XxxRerQYMGlbZ51113afPmzZIkk8mkwsJCTw/D8Nq0aVOqbNeuXU61lZ+fr3379jmUtWzZUiEhfrf87OLi4tS3b99S5SV3hgEAAAAAAAAAAN/yi2xERkaGXn/9dc2bN0+HDx92eK/kUYAmk8nh5x49euiee+7R0KFDFRoaWm4fnBbpKD4+XkFBQSoqKrKXpaamqrCwsNpJrNTUVBUUFDiUJSQkuCVOX0lKSlJSUlKp8m3btqlDhw6lyrt3767IyEgvRAajM5vNWrdunf2atVE9gT5//jQ+o8Xqq3i81a8n+/FE20ZbHzAO1oZrAn3+/G18RoqXz0FjtW+ktQHjYX04L9Dnzt/GZ6R4qxKL1Wq1v9wpNzdXGzZssF936dJFERERbu3D0/24u21vzQl8w2Qy2V/OSEtLc3NEVWfoZFhWVpYmTpyomTNnqrCwsNx/rEwmk/290+tYrVatXbtWa9eu1aRJk/TCCy9oyJAhlbYBKTIyUvHx8Q7/cJnNZm3cuFHdunWrVls//vhjqbIz7SjKyMhIxcTE+DoMGBBrwzWBPn/+ND6jxeqreLzVryf78UTbRlsfMA7WhmsCff78bXxGipfPQWO1b6S1AeNhfTgv0OfO38ZnpHhtsRQVFSknJ0dZWVnKycnxyHe/FovF4WSyEydOKCsry6/6cXfb3poT+I7JZFJUVJRiYmIUFRWloKCgKt8bHh7uwcgqVvUovWzt2rXq1KmTXn/9dRUUFMhqtTpkHUtmIMt7z5bxT09P180336zrr79eJ06c8PHo/MNll11WqmzBggXVbqese8pqGwAAAAAAAABcVVRUpH379unAgQPKzs5mEwTgRlarVdnZ2Tpw4ID27dvncLqckRkyGfbZZ59pwIAB2rt3r0MSzOb0ba3lvWxKJsYWLlyo+Ph4bd++3RdD8ys33XRTqbI5c+YoPz+/ym1s3LhR69evdyjr0aOHWrRo4XJ8AAAAAAAAAHA6WyIsNzfX430FBQUpOjra/qrODhmj9OPutr01JzCG3Nxcv0mIGe6YxK+++kq33HKLLBZLqQSYJEVFRalXr17q3bu3zj77bNWtW1e1atVSTk6OMjMztXv3bm3cuFG//PKLjh49KkkOu8esVqsyMjJ04YUX6uuvv9aFF17o/UH6iQ4dOujCCy90OObw6NGjeu211zRu3LgqtfHEE0+UKrv33nvdFiMAAAAAAAAA2OTl5XklEQagWG5urnJycgxzVGp5DJUM27JlS7mJsB49eujhhx/Wddddp+Dg4ErbKioq0ooVK/TRRx/po48+Un5+vsMOs5MnT+rKK6/Ud999Z+8DpU2YMKHUkYaTJk3SwIEDlZCQUOG9b7zxhn1+bc455xzdcsstbo/T6Mxms69DgEGUXAusjeoJ9Pnzp/EZLVZfxeOtfj3ZjyfaNtr6gHGwNlwT6PPnb+MzUrx8DhqrfSOtDRgP68N5gT53/jY+I8Vbsu/MzEz798u2V4MGDRQVFeXwnbM7FBUVOSTeIiIiPLITypP9uLttb80JfMNqtSonJ0dHjx51OKnv77//rtL9eXl5Ho6wfCarQbJABQUF6tSpk37//Xf7P0pWq1W1a9fWO++8oxtvvNHptvfv36+nn35as2bNcii3Wq2qU6eOQkNDdeTIEUnFu8csFovzA/GRuLg47d2716HMXb/aa6+9VgsXLnQoi4mJ0YcffqirrrqqVP2CggK98MILmjhxYqn3Fi1apCuvvNItcflSSkqKUlJSSpWbzWalpqbar5OTkxUbG+vFyAAAAAAAAIAzV4MGDWQymRQREaHg4GDVrl1bUVFRvg4LCCg5OTk6efKkLBaLcnNzZbVa7Sf1VSQjI0OjR4+2X2/dulXt27f3ZKh2htkZ9tprr9kTYbbnhLVv317ffPONy8mEpk2b6u2339Ytt9yiO++8U3v27LH/XwEnTpxweKaYUV1xxRU6ePBgue+X9V7nzp0rbPPbb7/VWWedVWnf7777rjZs2KD9+/fby7KysnT11Vera9euuuaaa9SiRQvl5eXpjz/+0EcffaQDBw6UaueBBx4IiESYJKWnp2vlypW+DgMAAAAAAADA/zv9ZDDbbqSwsDBfhgQEJNvfle3vzB9yLIZIhuXl5emll15y2KYaGxur77//Xk2aNHFbP3379lVaWpquuuoq/fjjjw6/IHdvkXW37du3l9r5VZlff/21wvfz8/Or1E6DBg30/fffa8CAATp8+LDDe6mpqQ47ocozZMgQTZs2rUr9+YO4uDj17du3VHnJnWEAAAAAAAAAvM/2fa/Rv/cF/JE//n0ZIhn28ccf69ixY/bEVHBwsL788ku3JsJsatWqpSVLlujGG2/UN9984/B/C6B85513ntatW6dbbrlFP/74Y5Xvq1GjhsaPH6+JEycG1NmwSUlJSkpKKlW+bds2dejQoVR59+7dFRkZ6YXIYHRms1nr1q2zX7M2qifQ58+fxme0WH0Vj7f69WQ/nmjbaOsDxsHacE2gz5+/jc9I8fI5aKz2jbQ2YDysD+cF+tz52/iMFG/JWCIjIxUUFGT/LjIqKkohIZ75Gtx2RJyN7WhGf+rH3W17a07gW4WFhfa/sejoaElS27ZtK/1dp6WleTy28hgiGTZ//nxJsu/QuuOOOyo94s8VNWvW1Pz583XhhRdq06ZNHusn0DRr1kyrVq3SZ599punTp2vNmjXlbnuMiopSYmKiHnvsMbVt29bLkRpPZGSkYmJifB0GDIi14ZpAnz9/Gp/RYvVVPN7q15P9eKJto60PGAdrwzWBPn/+Nj4jxcvnoLHaN9LagPGwPpwX6HPnb+MzUrxBQUEOX8gHBwd7LRnjrb482Y+72/bm/MN7Tj9tz/b7jY6OrjTxHB4e7vHYyuPzZFhhYaFWr17tcJ7khAkTPN5veHi4vv76a51//vk6efKkx/tzVXp6uq9DkFS87XHIkCEaMmSI/vrrL61bt05//vmnsrKyFBISovr16+u8885Tt27dFBoa6utwAQAAAAAAAADAGc7nybDNmzcrLy/PnkVs166d4uLivNL32WefrZdffll33XWXV/oLNA0bNtTgwYN9HQYAAAAAAAAAGNK+fftkMpnUtGlTX4cCnNF8ngzbvXu3/WeTyaRBgwZ5tf/hw4crPDxc//zzj1f7BQAAAAAAAAAEthdeeEEmk0lvvPGGr0MBzmg+T4YdOnRI0v/OmGzWrJnXY7jpppu83icAAAAAAAAAIHDt27dPs2bNkiQ9/vjj7A4DfMjnyTCz2exw3ahRIx9FAnhOyXWOM1fJtcDaqJ5Anz9/Gp/RYvVVPN7q15P9eKJto60PGAdrwzWBPn/+Nj4jxcvnoLHaN9LagPGwPpwX6HPnb+MzUrwl+y4qKpIkBQUFSZIsFov9ET3uZrFYKrx+/vnnlZ+fb/85OTnZI/24wt1tezJWGIfFYpHVapX0v7+57OxsBQcHV3hfXl6ex2Mrj8lqi9hHXnjhBY0fP744GJNJc+fO1S233OLLkIBKpaSkKCUlpVS52WxWamqq/To5OVmxsbFejAwAAAAAAAA4M5lMJjVo0ECSFB0dLUlq0qRJpV/Qe8L+/fvVpUsXezIsNDRUaWlpOvvss70eC+BuFovFfupfdna2JOno0aOqLN2UkZGh0aNH26+3bt2q9u3bey7Q0/h8Z1hkZKTD9ZEjR3wUCVB16enpWrlypa/DAAAAAAAAAGBA06ZNsyfCJCk/P1/Tpk3TSy+95MOogDNXkK8DsGXCbVtVMzIyvNp/UVGRXnzxRT311FP2F1CZuLg49e3bt9Sra9euvg4NAAAAAAAAgA/t379fc+fOLVX+wQcf6MCBAz6IyDUnT57U3LlzNXz4cPXu3VstWrRQ48aN1bFjR40YMULr168v997zzz9fderU0bx588qtc99996lOnTq67777Sr03ePBg1alTRy+88IIKCgr0xhtvqH///mrevLnq1KmjH3/80aH+jz/+qKSkJLVr106NGjVSy5Ytdc011+ijjz4q98jG6vThylxUV0FBgd566y1ddNFFio2NVf369dWqVSslJSVp165dbuvnTOHznWHnnnuu/Wer1arvv//eq/1Pnz5djz/+uMO5sRMnTvRqDPA/SUlJSkpKKlW+bds2dejQoVR59+7dS+2CxJnJbDZr3bp19mvWRvUE+vz50/iMFquv4vFWv57sxxNtG219wDhYG64J9Pnzt/EZKV4+B43VvpHWBoyH9eG8QJ87fxufkeItGUtkZKSCgoLszwyLiopSSIhnvga3WCzKzc21X0dERCg4OFgzZsxw2BVmk5+frxkzZlT72WHl9eMOVWn71Vdf1dNPPy1JCg4OVkxMjKTipN/+/fv1xRdf6NVXX9WDDz5Yqj3b7yEsLMx+dGVJNWrUsP+3ZB1bLEVFRbrmmmu0Zs0ahYSEKDo6WiaTSeHh4fZ7Hn74YU2fPl1S8eabWrVqKTMzU6tWrdKqVav0+eef64svvnCpj+rMhSt27typm266SZs3b5YkxcTEKCQkRMeOHdPChQu1YsUKrVmzRq1bt3apH2cVFhbaf7e2uWnbtm2l6zItLc3jsZXH58mw9u3bKyoqyv6gw99//127du1Sq1atPN73H3/8oSeffFImk8l+lqWnHqaIM1tkZKT9H0bgdKwN1wT6/PnT+IwWq6/i8Va/nuzHE20bbX3AOFgbrgn0+fO38RkpXj4HjdW+kdYGjIf14bxAnzt/G5+R4g0KCnL4Qj44ONhrzwwLDg7WwYMHNXv27HLrzJo1S0888YSaNm3qUj+eGlNZbTdt2lSTJk3SVVddpY4dOyo0NFRWq1Xp6emaPn26kpOT9cgjj6hv3746//zzy2y35O/ldLbv5E0mU6k6tvdmzpwpSZozZ46GDh2q8PBwHTt2zH7PG2+8YU+EjRo1SlOmTFHjxo1lNpv17rvv6tFHH9Xy5ct1zz336JNPPnGqj+rORXx8fNUmvYQdO3aoT58+OnbsmG644QY999xzat26tQoLCzVv3jyNGDFCmZmZevzxx7Vw4UKn+nCV1Wq1z5ttbqKjoytNPIeHh3s8tvL4/JjEoKAgDRgwwOHBas8884zH+83MzNTVV19tz1KTBAMAAAAAAAAAuOKFF14oc1eYTX5+vl544QUvRuS6UaNGafLkyerSpYtCQ0MlFX+f3qJFC02bNk333XefLBaL3nzzTY/FkJOTo3nz5ikpKcmeUKlXr57q1q2rvLw8TZo0SZJ088036+2331bjxo0lFSdqx44dq1dffVWS9Omnn2rDhg3V7sPG03NRUFCgxMREHTt2TKNGjdKCBQvsu79CQkI0bNgwjRkzRpL07bffKi8vz6l+zkQ+T4ZJ0k033SRJ9h1aH374oVJTUz3WX25urq699lrt2LHDYVcYAAAAAAAAAADO2Ldvn2bNmlVpvXfffVf79+/3QkTeceWVV0pSqed3uVP79u111VVXlfnekiVLdPz4cUnS5MmTy6xz3333qUmTJpJU7vPLKuqjqlydizlz5mjLli2Ki4sr9zjNwYMHSyo+qjA9Pd2pfs5EhkiG3XDDDTrrrLMkFSfEioqKdP3113vkYYLHjh1T//79tWrVKoftlwAAAAAAAAAAOOvFF1+scFeYjT/uDvvzzz/1yCOPqEuXLqpdu7aCg4NlMplkMpl0xRVXSJJHE3wXXHBBue/ZNtY0a9as3GdoBQcHa8CAAQ71q9PH6Tw5F2+99ZYkacyYMapZs2aZdU4/kpSNPlVniGRYjRo1NGHCBIfndu3fv1+DBg1SRkaG2/pZtmyZEhISlJqa6rBIWDAAAAAAAAAAAGft37+/wmeFleRPu8O+/PJLtWvXTq+88orS0tKUmZmpqKgoNWzYUI0aNVKdOnUkSWaz2WMxNGzYsNz3/vrrL0nS2WefXWEbtue02epXpw8bT87FwYMHtXHjRknSNddcU269w4cP239u1qxZtfs5UxkiGSZJd999t7p162a/NplM+u2339SpUyfNnz/fpbb379+vUaNGadCgQdq3b5/Dw93q1aunxo0bkxADAAAAAAAAADhl2rRpVdoVZuMvu8OOHTumpKQk/fPPPxowYIBWrFih3NxcZWZm6siRIzp8+LA+++wzj8cRHBzs8z48PRc//fSTJKlu3bpq0aJFufVsO9tat26t6Ohop/s704T4OgAbk8mkTz75RF26dFFmZqa9LDMzUzfffLNeffVVPfLII7r++usVFFR5Ds9qtWrFihX66KOP9OGHH6qgoMAhCWa1WlWnTh19//33Gj58uEM2FXA3T/5fEfAvJdcCa6N6An3+/Gl8RovVV/F4q19P9uOJto22PmAcrA3XBPr8+dv4jBQvn4PGat9IawPGw/pwXqDPnb+Nz0jxluy7qKhIkuzfIVssFo89JsdisUgq3owxd+7cat//7rvv6tFHH7XvWKqsn/KuXVFZ24sWLVJWVpbq1Kmjr776ShEREaXqHTx4sNz7bQmm3NzccuM+efKkpOLv7EvWsW1iKSoqKvf++vXrSyr+PVQ0N/v27ZMkNWjQwKFeVfqQXJ+Lyqxfv16S1KRJkwrvXbhwoSTpsssus9fLzMzUueeeq9jYWK1fv96+5nNycjRgwADt379fq1ev1pQpU/Tpp5/q5MmTCg8Pd2j3/fff11133aXFixfrkksuqTBWi8XiMG+SlJ2dXWlCMS8vr8L3PckwyTBJatGihb7++mtdeumlOnXqlKTihJjVatW6des0dOhQRUVFqVevXrrgggt09tlnq27duoqJiZHZbFZmZqZ2796ttLQ0rV27Vn///bckORy/aLtu1KiR/vvf/6pz584O/QBVkZKSopSUlFLl5X3wr1u3zsMRwV+xNlwT6PPnT+MzWqy+isdb/XqyH0+0bbT1AeNgbbgm0OfP38ZnpHj5HDRW+0ZaGzAe1ofzAn3u/G18RorX9v2cbcdMTk6Ox3cVVXdXmE1+fr6eeeYZvfTSS9W6Lzc3t9p9Odv2rl27JEmtWrWSxWJRdnZ2qXsWL15c7v21atWSJO3evbvMe4uKiuxJoIKCglJ1bMme/Pz8Mu+XpHbt2kkqToZt3LhRrVq1KlXHYrFo+fLlkqROnTo5tFWVPqTqz0VFbZXFtuPr5MmT5d67evVqbdiwQSaTSTfffLO9XlBQkMaMGaNJkybp448/1lVXXaXCwkLddNNN2rlzp77++ms1bNhQnTp10rx58/TTTz+pR48e9nbNZrMmTJigQYMGqUePHpXGbrFYHJJgttgqy7G487FY1WWoZJgkXXjhhVq8eLGuvfZae0bYlqiyWq3Kzs7WkiVLtGTJkgrbOX3ST8/8W61WtW/fXosWLVLz5s09MgYEvvT0dK1cudLXYQAAAAAAAADwIWd3hdl88MEHGjt2bKXPu/KVmJgYScWJoFOnTiksLMzh/S1btmjBggXl3t+hQwdt3LhR33zzjSZMmFBql97HH3/ssJvKGf3791fdunV1/PhxvfDCC5o1a1apOnPmzNGhQ4ckSTfccINT/bg6F5X59ddfJUkHDhzQ9u3b7Uk+m7///lujR4+WJN1yyy1q27atw/sjR47UW2+9palTp+rKK6/UmDFjtHLlSn3yySeKj4+XJHXp0kWStGnTJodkWHJyso4ePaqnnnrK6fiNzjDPDDtdnz599Msvv6hr164Ou7psL1tirKLX6fUl2cvvvfderV+/nkQYXBIXF6e+ffuWenXt2tXXoQEAAAAAAADwEmd3hdnk5+dr2rRp7gvIzQYMGKCgoCCdOHFCo0aNsieu8vPz9eWXX+r6669XVFRUuffbEk87duzQ2LFjdfz4cUlSVlaWZsyYoYceekh16tRxKcbw8HCNGzdOkvT555/rX//6l/766y9JxTvV3n77bY0fP16SdN1119lPi6suV+eiIhkZGfa5iYmJ0ahRo/T7779LkgoLC/Xdd99p0KBBSk9PV5s2bfTss8+WaiM8PFyPPvqotm3bpuuuu07z5s3T66+/rosvvthep2PHjqpZs6Y2btxoLzt48KDeeOMN3XHHHWrTpo1T8fsDk9XAZwNaLBa9+eabevrpp3Xs2DFJqvb5rrbhde/eXa+88oouuOCCUnXi4+O1efNmexLNnWeu4syybds2dejQwX6dnJys2NhYde/eXZGRkT6MDEZhNpsdjg5gbVRPoM+fP43PaLH6Kh5v9evJfjzRttHWB4yDteGaQJ8/fxufkeLlc9BY7RtpbcB4WB/OC/S587fxGSne02MxmUyKi4tTUFCQ/ZlhLVu2VEiIZw5IS09PV7t27VxKhklSaGiodu7cWe6zwywWi8PxgxEREW47+rEqbT/xxBMORznWqlVLubm5KigoUIsWLfTUU0/p9ttvlyT9888/pdq766679OGHH9rLateuraysLBUVFemBBx5QVlaWPvjgAw0bNkzvvfeeQ98DBgzQqlWr9OSTT2rSpEkVjuXhhx/W9OnTJRWvhdq1ays7O1uFhYWSpH79+unLL7+0H6HpTB/VmQtbv1Xx1Vdf6cYbb1Tjxo319NNPa+TIkZKK5yovL0///POPpOKdXV9++aXOOuusMtspLCxU8+bNdeTIET399NN64oknStW54IILlJmZqa1bt0qShg8froULF2rHjh1q0KBBleItLCzU7t27Jf3vmWFnn312pesyLS1N/fv3t19v3bpV7du3r1KfrjLcMYmnCw4O1ujRozVy5Eh98MEH+vDDD7VmzRr75FYmKipKV155pUaNGuUwwYC3RUZG2rfRAqdjbbgm0OfPn8ZntFh9FY+3+vVkP55o22jrA8bB2nBNoM+fv43PSPHyOWis9o20NmA8rA/nBfrc+dv4jBRvUFCQwxfywcHBHntmWOPGjbVt2zb7dVRUlNN9RUdHV/leT46prLZffPFFdezYUW+88Ya2bNmigoICtWrVStddd50ee+wxh11GJe8NDg7W+++/r27dumnOnDnasWOHioqKdMEFF+jBBx9UYmKikpKSJBUnsEreb9scU/L3WpZp06bpmmuu0ZtvvqmffvpJx44dU3R0tDp37qzbb79dw4YNK7ON6vThylxUxHZfQkKCRowYoVq1aumVV17R9u3bVaNGDcXHx2vYsGEaOXJkhcndN954Q0eOHJEk1alTp8wYevXqpeTkZOXm5uqPP/7Qhx9+qOeff16NGzeucry2jUWnjzM6OrrSxHN4eHiV+3A3QyfDbMLDw3X33Xfr7rvv1rFjx7R27Vpt2rRJ6enp+uuvv5SXl6egoCBFRUWpUaNGatOmjeLj49WrV68qZf1tRygCAAAAAAAAAFAVYWFhql+/vv26Ogktf3P77bfbdzyV1K9fP/v362WduhYUFKTRo0fbn3dVUkpKilJSUsp8b8WKFdWKs3///tXeGFPdPqo6F9WRlpYmSfZneyUmJioxMbFabcyfP1//+te/9NBDD2n16tV65plnNHz4cEVERDjU69Gjh4qKipSWlqZJkyapefPmGjt2bLVj9jd+kQw7Xb169XTllVfqyiuvdFub//3vf13eygoAAAAAAAAAAFBdJZNh1bVixQoNGzZMQ4YM0csvv6zvvvtOl19+uaZPn17qqMSePXtKkiZOnKhVq1bp448/Vs2aNV0bgB8I8nUARtCkSRM1b97c/gIAAAAAAAAAAPC0AwcO2I82dCYZtmXLFl177bXq2bOn3n//fZlMJl122WXq3bu3XnzxRZ04ccKhflxcnBo2bKhVq1apR48eGjp0qFvGYXQkwwAAAAAAAAAAAHzAtiusVq1aatGiRbXu3bdvny6//HI1bdpUX331lcMOr6efflonT57U1KlTS93XrVs3SdKrr75qf/ZXoPO7YxIBAAAAAAAAAAACgS0Z1rlz52onppo1a6b9+/eX+d6AAQPKfH5ZTk6OfvnlFyUmJqp3797VD9hPsTMMAAAAAAAAAADAByZNmiSr1aoVK1Z4pb/JkycrJyenzB1jgYydYQAAAAAAAAAAAAHq+PHj+u6777R+/XpNmzZNL730UrWPZPR3JMMALzCbzb4OAQZRci2wNqon0OfPn8ZntFh9FY+3+vVkP55o22jrA8bB2nBNoM+fv43PSPHyOWis9o20NmA8rA/nBfrc+dv4jBRvyb6LiookSUFBxYeiWSwWjz0TyWKxVHjtD/24u21vzQmq57vvvtMtt9yixo0ba8KECRo7dqxLvxuLxWI/gtH2N5edna3g4OAK78vLy3O6T1eZrGUdGgmgQikpKUpJSSlVbjablZqaar9OTk5WbGysFyMDAAAAAAAAzkwmk0kNGjSQJEVHR0uSmjRpUukX9ACqx2Kx6NChQ5KKk2CSdPTo0TKfUXa6jIwMjR492n69detWtW/f3nOBnoadYYAT0tPTtXLlSl+HAQAAAAAAAAAAKkEyDHBCXFyc+vbtW6q85M4wAAAAAAAAAADgWyTDACckJSUpKSmpVPm2bdvUoUOHUuXdu3dXZGSkFyKD0ZnNZq1bt85+zdqonkCfP38an9Fi9VU83urXk/14om2jrQ8YB2vDNYE+f/42PiPFy+egsdo30tqA8bA+nBfoc+dv4zNSvCVjiYyMVFBQkP2ZYVFRUQoJ8czX4BaLRbm5ufbriIgIjxzJ6Ml+3N22t+YEvlVYWGj/G7MdSdq2bdtKf9dpaWkej608JMMAL4iMjFRMTIyvw4ABsTZcE+jz50/jM1qsvorHW/16sh9PtG209QHjYG24JtDnz9/GZ6R4+Rw0VvtGWhswHtaH8wJ97vxtfEaKNygoyOEL+eDgYK8lY7zVlyf7cXfb3px/eI/VapXJZJIk++83Ojq60sRzeHi4x2MrT5DPegYAAAAAAAAAAAA8jGQYAAAAAAAAAAAAAhbJMAAAAAAAAAAAAAQskmEAAAAAAAAAAAAIWCTDAAAAAAAAAAAAELBIhgEAAAAAAAAAACBgkQwDAAAAAAAAAABAwPKbZFhhYaGvQwAAAAAAAAAAAICf8ZtkWLNmzfTkk08qIyPD16EAAAAAAAAAAADAT/hNMuzIkSN67rnn1LJlS11zzTVavHixr0MCAAAAAAAAAACAwflNMszGYrFo0aJFuvLKK3XOOefoxRdf1N9//+3rsAAAAAAAAAAAAGBAIb4OoLpMJpOsVqskKT09XU888YQmTpyoG264Qffcc4/69Onj4wiB0sxms69DgEGUXAusjeoJ9Pnzp/EZLVZfxeOtfj3ZjyfaNtr6gHGwNlwT6PPnb+MzUrx8DhqrfSOtDRgP68N5gT53/jY+I8Vbsu+ioiJJUlBQ8T4Qi8Uik8nkkb4tFkuF1/7Qj7vb9tacwLcsFos9T2P7m8vOzlZwcHCF9+Xl5Xk8tvKYrLaIDa5z587avHmzJDn842UL31bWrl073Xvvvbr99tsVHR3t/UBxRkhJSVFKSkqpcrPZrNTUVPt1cnKyYmNjvRgZAAAAAAAAcGYymUxq0KCBJNm/G27SpEmlX9B7NKb9+yWTSdazz/ZZDChmsVj01ltv6dNPP9Xu3buVm5srSfrwww915ZVX+jg6/2KxWHTo0CFJxUkwSTp69KgqSzdlZGRo9OjR9uutW7eqffv2ngv0NH6zM2zTpk1au3atZsyYoQULFujUqVMymUz2JJhtkrdt26YHH3xQ48aN06233qq7775b8fHxvgwdASg9PV0rV670dRgAAAAAAAAADCxs2jTJZFLeSy/5OpSANG/ePGVkZOjCCy/UhRdeWGHdJ554Qu+++64kKTQ0VA0bNpQk1axZ0+Nxwvf8JhkmST179lTPnj01bdo0zZkzR2+//bZ27dolqfRuMbPZrHfffVfvvvuuunXrpvvuu09Dhw5lYcMt4uLi1Ldv31LlJXeGAQAAAAAAADgzmfbvV+jcuZKkU2PHsjvMA+bNm6effvpJkipMhmVnZ9tP+poyZYoefPBBjx2fCWPyq2SYTd26dfXwww/r4Ycf1pIlSzRz5kwtWrRIhYWFZe4WW7dundavX6+HHnpISUlJuvvuu3Xuuef6cgjwc0lJSUpKSipVvm3bNnXo0KFUeffu3RUZGemFyGB0ZrNZ69ats1+zNqon0OfPn8ZntFh9FY+3+vVkP55o22jrA8bB2nBNoM+fv43PSPHyOWis9o20NmA8rA/nBfrc+dv4jBRvyVgiIyMVFBRkf2ZYVFSUQkI88zW4xWKxH7UnSREREQ5HMppmzJApP1+SFD1jhqzJyR7pxxXubtuTsZbF1nZoaGiFj036/fffVVBQIEkaM2aMoqKiPBbTmaCwsND+N2ab97Zt21b6u05LS/N4bOXxy2TY6QYOHKiBAwfq0KFDeueddzRr1iwdOHBAkhySYlarVcePH9drr72m1157TQMGDNC9996ra665xqdnxuLMEBkZqZiYGF+HAQNibbgm0OfPn8ZntFh9FY+3+vVkP55o22jrA8bB2nBNoM+fv43PSPHyOWis9o20NmA8rA/nBfrc+dv4jBRvUFCQw/e9wcHBXvv+16Gvffuk2bP/F9esWdITT0hNm7q3Hzdzd9uenn9bDqDk772kf/75x/5zrVq1PBbPmcJqtdrn3jbv0dHRlSaew8PDPR5beYJ81rObNWnSRJMmTdLevXv1+eefa9CgQZL+90uxvWyJsWXLlikxMVGxsbGaPHmyPYEGAAAAAAAAAIBLXnhB+v9dYZKKf37hBd/F4wbp6ekaO3as2rdvr6ioKEVERKht27YaM2aMMjIyyrxnwIABMplMmjx5sgoLC/Xaa68pPj5eUVFRatiwoa699lr9+uuv9vq5ubl65pln1KFDB0VGRqpevXoaOnSodu/e7dBuSkqKTCaTVq5cKan46MPT8wAmk0np6en2ev369bPfe3qd08urq6CgQNOnT1d8fLxiYmIUEhKiBg0aKDExUTt37nS6XXhGwCTDbIKCgnTddddp8eLF2rlzpx5++GHVrVvXngQrmRQ7dOiQnn76abVo0ULXX3+9lixZ4ushAAAAAAAAAAD81b590qxZpcvffVfav9/78bjBRx99pLZt22r69Onavn27CgsLJUk7duxQcnKyOnTooO+//77c+wsKCnTZZZfpoYce0vbt2yVJR48e1cKFC3XhhRcqNTVVx44d04UXXqgnn3xSu3fvtp/2Nn/+fPXu3dsh4RYeHq5GjRqpRo0akop3JzZq1MjhFRwcbK9Xp04d+72n16lbt65T87Fz50517dpVY8eO1aZNm2QymRQSEqK///5bCxYsUPfu3UmIGUzAJcNO17JlS7300ks6cOCAPvjgA/Xu3btUUsyWGCssLNTChQt12WWX6dxzz9XLL7+sY8eO+XoIAAAAAAAAAAB/UnJXmI2f7g5bsmSJhg0bJovFoscee0x79uxRXl6ezGazfv/9dyUmJio7O1uJiYnl7hCbMWOGNm3apM8++0w5OTnKzs7WunXrdM455ygnJ0djxozRyJEjdeLECX333Xcym83KycnRDz/8oAYNGuivv/7S+PHj7e0NHTpUhw8fVu/evSVJjzzyiA4fPuzwatasmb3eF198Yb/39Dqnl1fVjh071Lt3b23evFk33HCDduzYoczMTOXk5Oj9999XjRo1lJmZqUcffbTabcNzAjoZZhMaGqrbbrtNP/74ozZt2qR7773X4QF5JXeL7d69W+PGjVNsbKxGjRqlbdu2+TB6AAAAAAAAAIBfKG9XmI2f7Q4rKirS/fffr6KiIr355puaOnWq4uLi7N+pt2nTRvPnz9fVV1+trKwsTZs2rcx2Tp48qa+++ko33nijatSoIZPJpG7duundd9+VJP38889avHixlixZokGDBikoKEhBQUG6+OKL9cL/JxC/+OILFRQUeGvoZSooKFBiYqKOHTumUaNGacGCBWrdurUkKSQkRMOGDdOYMWMkSd9++63y8vJ8GS5Oc0Ykw053/vnn67rrrlPPnj1ltVolyf7fkrvF8vLyNHv2bHXq1Em333679u7d68vQAQAAAAAAAABGVt6uMBs/2x22atUq/fHHH6pfv75GjBhRbr1hw4ZJUrlHJV544YW68MILS5X37dtXNWvWlCTdeOONatWqVak6l156qSQpLy9Pf/zxR7XH4E5z5szRli1bFBcXp+Tk5DLrDB48WJJUWFio9PR0L0aHioT4OgBvOXHihObMmaO3335bu3btcnjPZDJJKp0Us5VZrVbNmzdPX3/9tV5//XX7HzYAAAAAAAAAAJIq3xVm8+670uOPS02bej4mF/3000+SpMzMTJ111lnl1sv//wRgeRtKunfvXmZ5cHCw6tevrwMHDqhbt25l1mnUqJH95xMnTlQpbk956623JEljxoyxJ/FKiomJsf9syznA9wI+GbZ27VrNnDlTCxYs0KlTpxwW3+kJL5PJpEsuuURdu3bVRx99pH379pWqk52dreHDhys7O1v333+/9wcDAAAAAAAAADAk04svVrwrzMa2O+yNNzwflIsOHjwoqfh4wCNHjlRav7xjAaOjo8u9JyQkpMI6tvdtcfjKwYMHtXHjRknSNddcU269w4cP239u1qyZx+NC1QTkMYlms1nvvPOO4uPjdcEFF+jDDz9UXl6ePel1+lGI0dHReuCBB7R9+3Z9//33eu6557Rnzx4tXLhQl1xySandYlarVY888oh2797t41ECAAAAAAAAAIzAtH+/TLNnV/0GP3l2mMVikST16NHDfopaRa/CwkIfR+w5tl1ydevWVYsWLcqtl5qaKklq3bp1hUlAeFdAJcO2bt2q+++/X2eddZbuvfde/frrr/Y/wtOTWVarVeedd57efPNNHThwQMnJyWrTpo29naCgIF111VX6/vvv9csvv6hr164OO8ry8/Pt2yEBAAAAAAAAAGe2sGnTZKrKrjAbP3l2WOPGjSWVf/zhmWTDhg2SpCZNmlRYb+HChZKkK664wl6WmZmpevXqKT4+3iHXkJOToy5duqhRo0bavXu3brvtNoWEhJS5wy4lJUUmk0k//PCDO4ZzxvH7ZFhBQYE++ugj9enTR506ddJbb72l7OzsMneBBQUF6brrrtPSpUu1detW3XvvvYqMjKyw/W7duunnn3/WZZddZm/TarVq2bJlXhohAAAAAAAAAMCoTPv3K3Tu3Orf6Ae7wy644AJJxUf/2XY8GUlQUHGKwxvP5kpLS5MkZWVllVtn+fLl2rBhg0wmk0aOHGkvr1Wrlh5//HFt2rRJX375pSSpsLBQN954o3bu3KlvvvlGLVu2VI8ePWSxWOzHMdqYzWb9+9//1pVXXqlLLrnEA6MLfH6bDPvzzz81btw4nX322Ro2bJh+/vnncneB1a9fX+PHj9eePXv0+eefq3///tXqKzg4WK+99ppDGcckAgAAAAAAAACqvSvMxg92h/Xv31+tWrWSJP3rX/9SfiXjPH78uDfCsouJiZEknTx50uN92ZJh+/bt09atW0u9f/ToUY0YMUKSlJSUpHbt2jm8/8ADD+iss87SlClTVFRUpJEjR2rp0qVasGCBunbtKqn4OEpJpRKPL774ov766y+99NJLbh/XmcKvkmFWq1ULFy7UZZddptatW+vll1/W33//XeZzvaxWq7p3764PPvhA+/bt0zPPPKOmTZs63XebNm1Ur149+3VOTo7L4wEAAAAAAAAA+C+nd4XZGHx3WEhIiN566y2FhIToxx9/1EUXXaSlS5eqoKDAXufPP//UW2+9pW7dumnmzJleja9Dhw6SpG+//VYHDhzwWD979+7VsWPHJBXv8rr11lu1fft2ScU7vL755hv16tVLf/75p84777xSm2skKTw8XBMnTtTmzZs1cOBApaSkaPbs2br00kvtdTp37qyaNWs6JMMOHDigl19+WaNGjdJ5553nsTEGOr9Jhj311FNq3ry5rr/+ei1ZskRFRUUOu8Ck4mRZzZo1dccdd2jdunVau3atbrvtNoWGhrolhrPOOsv+sze2XQIAAAAAAAAAjMvpXWE2frA77OKLL9Znn32m6Oho/fLLL7rkkksUGRmp+vXrKywsTC1bttS9996r1NRU+3f13nLHHXcoLCxMu3btUmxsrBo3bqy4uDjFxcVpvxuTjLZdYY0bN9arr76qzZs3q3379qpTp46ioqI0ePBg7d69W126dNEPP/ygWrVqldnOXXfdpUaNGmnZsmV69tlnNWzYMIf3Q0NDFR8fr/Xr19vLxo8fr5CQEE2ePNlt4zkT+U0ybPLkyTpw4EC5RyHGxsbq+eef1759+zRnzhz7tkJ3sp0/CgAAAAAAAAA4w+3b59quMBuD7w6TpGuvvVa7du3SpEmT1L17d0VFRenkyZOqWbOmOnXqpBEjRujLL7/UI4884tW4zj33XC1fvlxXX321GjRooGPHjmnv3r3au3evCgsL3dbPhg0bJEkJCQm68847NX/+fPvzvWrUqKGePXtqxowZWrt2rcOmmpLefPNNHTlyRJLKTZj17NlTO3fuVHZ2ttLS0jR37lyNHz9eDRo0cNt4zkQhvg6guk7fBSYVZ6UfeOABXXXVVR5PVtkSbwAAAAAAAACAM1yDBsrats1+GRUVpeDgYOfaio52U1Ce07BhQ02ePLnCHUoWi0X//POP/XrZsmWVzkl6enqlfVf0vXzPnj21cOHCCu/v16+fS9/t23aGxcfHS5ISExOVmJhYrTbmz5+vf/3rX3rooYe0evVqPfPMMxo+fLgiIiIc6vXo0UNFRUVKS0vTpEmT1Lx5c40dO9bp2FHM75JhVqtV0dHRuuOOO3T//ferTZs2Xut706ZNXusLgcVsNvs6BBhEybXA2qieQJ8/fxqf0WL1VTze6teT/XiibaOtDxgHa8M1gT5//jY+I8XL56Cx2jfS2oDxsD6cF+hz52/jM1K8JfsuKiqS9L9TviwWi8eO7rPUqCFr/fr/u46IkJxNhkmSxVJOsaXCa1e4u21PxupLtmRYp06dnBrTihUrNGzYMCUmJmrq1Kn67rvvNHjwYL322mt6/PHHHep269ZNkvTkk09q9erV+uijjxQSEmKoubRYLPbkou1vLjs7u9LEZ15ensdjK4/J6idbnYKCgnTeeefp/vvv17BhwxQVFeXrkHAGS0lJUUpKSqlys9ns8HDD5ORkxcbGejEyAAAAAAAA4MxkMpnsR8lF//9OqyZNmji/WwuQdPDgQbVv316StHHjRsXFxVXr/m3btumKK65Qx44d9fnnn6tmzZqSpEsvvVQ7duzQpk2bVLt2bYd7WrduraNHj6pr1676/vvvvf4stspYLBYdOnRIUnESTJKOHj1a6e67jIwMjR492n69detW+9x6mt/sDFu6dKn69+/v6zAAScVbd1euXOnrMAAAAAAAAAAAHvTrr79KkmJiYtS8efNq3bt//34NGTJEZ511lj766CN7IkyS/v3vf+uaa67RtGnTSh09GR8fr++//17PPPOM4RJh/spvkmEkwmAkcXFx6tu3b6nykjvDAAAAAAAAAAD+a/PmzZKkjh07Vjsx1bRpU2077blyp7vooot04sSJUuU5OTnasGGDrr32WvXo0aP6AaNMfnNM4lNPPWX/uXHjxho1apTb2n7nnXd0+PBh+/XEiRPd1jbOLNu2bVOHDh3s17ZjErt3767IyEgfRgajMJvNWrdunf2atVE9gT5//jQ+o8Xqq3i81a8n+/FE20ZbHzAO1oZrAn3+/G18RoqXz0FjtW+ktQHjYX04L9Dnzt/GZ6R4T4/FZDIpLi5OQUFB9meGtWzZUiEhntkTYrFYlJuba7+OiIjwyJGMnuzH3W17a04C2aOPPqqZM2dqy5YtatGiha/DKVNhYaF2794t6X/PDDv77LMr/V2npaU5bHzimMQyTJ482Z517dSpk1uTYTNnzrRndyWSYXC/yMhIxcTE+DoMGBBrwzWBPn/+ND6jxeqreLzVryf78UTbRlsfMA7WhmsCff78bXxGipfPQWO1b6S1AeNhfTgv0OfO38ZnpHiDgoIcvpAPDg72WjLGW315sh93t+3N+fdnx48f13fffaf169dr2rRpeumll9SqVStfh1Uuq9Vqz9fYfr/R0dGVJp7Dw8M9Hlt5/CYZZuOpjWy2djl/EwAAAAAAAAAAeMuSJUt0yy23qHHjxpo4caIefvhhX4cUcPwuGeYpJpPJY4k2AAAAAAAAAACAsgwdOlRDhw71dRgBLcjXAQAAAAAAAAAAAACeQjJMxQ/1s/HUwxQBAAAAAAAAAADgfSTDJGVmZtp/joqK8mEkAAAAAAAAAAAAcKczPhmWlZWl/fv3269r167tu2AAAAAAAAAAAADgVmd8Muy9996T1WqVJJlMJrVp08bHEQEAAAAAAAAAAMBdDPOArIyMjCrXzc/P1759++xJrOqwWCzKycnRn3/+qW+//VZz5syRyWSS1WqVyWRSfHx8tdsEAAAAAAAAAACAMRkmGRYXFyeTyVRhHVvy67ffflNcXJxb+rUlwWwSExPd0i4AAAAAAAAAAAB8zzDJMElV3unlzI6w8tgSYSaTSQMHDlTnzp3d1jYAAAAAAAAAAAB8y1DJsIp2hp2eAKtsB1l1Wa1WtW/fXnPmzHFruwAAAAAAAAAAAPAtQyXDfLEzrG3btrrzzjt1//33Kzw83G3tAgAAAAAAAAAAwPcMkwyraFeW1WrVnXfeKZPJJKvVqtjYWE2ZMsWpfkJCQhQdHa06deqoQ4cOqlOnjrMhAwAAAAAAAAAAwOAMkwy74447Knz/zjvvlFR8RGLdunUrrQ8AAAAAAAAAAAAYJhlWFe48HhEAAAAAAAAAAACBz2+SYafvBIuNjfVhJAAAAAAAAAAAAPAXfpMMq+iZYgAAAAAAAAAAAEBZgnwdAAAAAAAAAAAAAOApfrMzDAAAAAAAAAAAf5CWlqZZs2Zp06ZNysnJUVRUlDp37qwRI0YoISHB1+EBZxySYQAAAAAAAAAAuEFqaqoefPBBrV27ttR7a9as0cyZM9WrVy8lJyera9euPogQODNxTCIAAAAAAAAAAC5atGiR+vTpU2Yi7HRr1qxRnz59tGjRIi9FBsCnO8NWrVpVZvlFF11U5bqeUFb/AAAAAAAAAACUZePGjbrpppt06tSpKtU/deqUEhMTtXr1asPvEDtx4oS++OILfffdd/rtt9904MAB5ebmqlGjRrrgggs0evRo9ezZs8x7W7Zsqb1792rOnDlKSkoqs05SUpLef/993XHHHUpJSXF4r1+/flq5cqUmTZqkf//730pOTtbHH3+sXbt2KTMzU8uXL1e/fv3s9VesWKE333xTP//8s/7++29FR0erU6dOuu222zRs2DAFBweX6r86fbgyF9VVUFCgGTNmKCUlRbt371Zubq7q1Kmjfv366dlnn1Xr1q3d0s+ZwqfJsH79+slkMjmUmUwmFRYWVqmuJ5TXPwAAAAAAAAAAZRk3blyVE2E2p06d0ujRo/Xzzz97KCr3mD59uqZMmSJJCg4OVkxMjCQpIyNDGRkZ+uSTTzRt2jSNHj3aYzGcOnVK/fr1088//6yQkBBFR0eXyhc89NBDeu211yQVf89fq1YtnTx5UsuWLdOyZcv04Ycf6quvvlJ0dLTTfXhrLnbu3KnExERt3rxZkhQTE6OQkBD9/fffWrBggZYsWaJ169aREKsGQzwzzGq1eqQuYBRms9nXIcAgSq4F1kb1BPr8+dP4jBarr+LxVr+e7McTbRttfcA4WBuuCfT587fxGSlePgeN1b6R1gaMh/XhvECfO38bn5HiLdl3UVGRJCkoqPgJQRaLxWObLCwWiyRp06ZNWr9+vVNtrFmzRuvXr1dCQkKl/ZR37YqqtN24cWM9+eSTGjx4sDp27KjQ0FBZrValp6fr9ddf1+uvv66HHnpIvXv31vnnn19mP0VFReXGbfvO32q1lqpje+/NN9+UJM2ePVtDhgxReHi4jh07JpPJJIvFojfffNOeCBs5cqQmTZqkxo0by2w2a9asWRo3bpyWLVumESNGaN68eU71Ud25iI+PL2fWK7Zjxw5ddNFFOnbsmK6//no988wzat26tQoLC/Xxxx9r1KhRyszM1COPPKIvv/zSqT5cZbFY7PNm+5vLzs4uc+fd6fLy8jweW3lMVh9ml4KCghz+IbJarQ4Lq6K6nlBR/8DpUlJSSm3ZlYo/fFNTU+3XycnJio2N9WJkAAAAAAAAwJnJZDKpQYMGkmTf/dOkSZNKv6B31cMPP6z33nvP6fvvuusuvfzyy26MyLseffRRzZo1S7fffruSk5Md3jv//PO1b98+vfnmm7rlllvKvP++++7Txx9/rJtvvlkzZsxweG/w4MH66aefJEnz5s3T5ZdfXur+vLw8tW/fXidOnNANN9ygWbNmlarzzjvvaNy4cZKk5cuXq3PnztXqo6oqmouqKCgoUL9+/bR9+3bdcccdmjZtWqk6Tz75pN544w2FhIQoIyND4eHhTsfrLIvFokOHDkkqToJJ0tGjRyvdzJSRkeGwa27r1q1q37695wI9TZBXeqmA1Wq1v6pT1xMvoKrS09O1cuXKUq/TE2EAAAAAAAAAAt+WLVt8er+vDRo0SJK0du1aj/XRtm3bcpNUy5cv14kTJyRJjz/+eJl17rrrLjVu3FiStGDBgmr3UVWuzsVHH32k7du3KzY2VlOnTi2zzmWXXSZJKiwsVEZGhnOBnoF8ekzi8uXLPVIX8LS4uDj17du3VHnJnWEAAAAAAAAAApurx0Tm5OS4KRLPSU9P1+zZs7V69Wrt2bNHOTk59uPxbA4ePOix/nv06FHue5s2bZIknX322WrVqlWZdYKDg9WnTx999tln2rhxY7X7OJ0n52LOnDmSpHvuuUc1a9Yss87pzzxjk0/V+TQZVlYywR11AU9LSkpSUlJSqfJt27apQ4cOpcq7d++uyMhIL0QGozObzVq3bp39mrVRPYE+f/40PqPF6qt4vNWvJ/vxRNtGWx8wDtaGawJ9/vxtfEaKl89BY7VvpLUB42F9OC/Q587fxmekeEvGEhkZqaCgIPszw6KiohQS4pmvwS0Wi3Jzc10ee61atRwSHOX1YxMREeG2ox+r0vZXX32lW2+9Vf/884+9LCYmRmFhYTKZTMrPz9eJEydkNpsVERHh0J7t9xAWFlbuGGvUqGH/b8k6tljOPvvscu/PzMyUJDVt2rTCeYyLi5MkHT9+3KFeVfqwqc5cVNZWSQcPHtTmzZslSYmJieXen5WVZf+5bdu21e7HHQoLC+2/W1v/bdu2rXRdpqWleTy28vg0GQacKSIjIxUTE+PrMGBArA3XBPr8+dP4jBarr+LxVr+e7McTbRttfcA4WBuuCfT587fxGSlePgeN1b6R1gaMh/XhvECfO38bn5HiDQoKcvhCPjg42OPPDOvYsaPWr1/v9P3x8fHVitGTYyrZ9rFjx3TnnXfqn3/+0YABAzRx4kR1797d4TlVS5cu1SWXXGK/vywlfy+nM5lM9v+WrGN7r0aNGk7dXzKG08dZnT4k981FeWxHK9atW7fcHW6S7DvbWrdurdq1a1erD3exWq32ebONMzo6utLEsy+eb2bj82eGAQAAAAAAAADgr4YNG+bS/XfddZebInG/b7/9VllZWapTp47+85//qG/fvqUSGocPHy73flty5NSpU+XWse3sclbDhg0lSfv376+wnu19W/3qcnUuKrNhwwZJUpMmTSqst3DhQknSFVdcYS+77bbbFBISory8vFL1U1JSZDKZ9MMPPygzM1P16tVTfHy8wxGLOTk56tKlixo1aqTdu3c7PQYjIxkGAAAAAAAAAICTOnXqpG7dujl1b69evZSQkODmiNxn3759kqQ2bdooIiKizDo//PBDuffXqVPHoZ2SioqKlJqa6lKMXbt2lVSc7Nq5c2eZdSwWi5YvXy5JTv+uXJ2LytiOEDz9GMSSli9frg0bNshkMmnkyJH28h49eshisZR6HprZbNa///1vXXnllbrkkktUq1YtPf7449q0aZO+/PJLScVHHt54443auXOnvvnmG7Vs2dLpMRgZyTAAAAAAAAAAAFwwdepUhYWFVeuesLAwJScneygi96hVq5YkaefOnWXu7tq0aZPmzZtX7v3nn3++JOnLL7902Ilk8/7771e6o6syAwcOVL169SRJkydPLrPO22+/rYMHD0qSbr75Zqf6cXUuKmNLhu3bt09bt24t9f7Ro0c1YsQISVJSUpLatWtnf69Hjx6SVCqx+OKLL+qvv/7SSy+9ZC974IEHdNZZZ2nKlCkqKirSyJEjtXTpUi1YsMCeWAxEfpMMKyoq8nUIAAAAAAAAAACUEh8fr08++aTKCbGwsDB99tlnhk8+DBo0SEFBQTp+/LhuvfVWHThwQJKUn5+v+fPna9CgQYqOji73/qFDh0qSfvvtN40aNUrHjh2TVLz76bXXXtM999yjunXruhRjeHi4PQn28ccf65577tGRI0ckSbm5uUpOTtbYsWPt8XTp0sWpflydi4rs3bvXPje1atXSrbfequ3bt0sq3rn1zTffqFevXvrzzz913nnn6bXXXnO4v3PnzqpZs6ZDMuzAgQN6+eWXNWrUKJ133nn28vDwcE2cOFGbN2/WwIEDlZKSotmzZ+vSSy91KnZ/4TfJsGbNmmn8+PHlbnMEAAAAAAAAAMBXBg8erNWrV6tXr14V1uvVq5dWr16twYMHeyky55177rl69NFHJUlffPGFmjZtqtq1aysqKkpDhw5VVFRUhbvbLr74Yt1+++2SpFmzZql+/fqqU6eO6tSpo4ceekh33323rrrqKpfjfOCBB/Svf/1LUvEusCZNmqhu3bqqVauWxowZo4KCAvXv31/vvvuu0324OhcVse0Ka9y4sV599VVt3rxZ7du3V506dRQVFaXBgwdr9+7d6tKli3744Qf7LjWb0NBQxcfHa/369fay8ePHKyQkpMzdcnfddZcaNWqkZcuW6dlnn3X5uXf+wG+SYYcOHdLUqVN13nnn6YILLtB7772nnJwcX4cFAAAAAAAAAICk4udX/fzzz9qwYYPuu+8+9e7dWx07dlTv3r113333acOGDfr5558NvyPsdC+88II++OADde/eXeHh4SooKFCrVq00fvx4bdy4UWeddVaF96ekpGj69Onq3LmzwsPDVVRUpAsuuEDz58936zGRr776qpYtW6YbbrhBjRo1Uk5OjqKjo9W/f3+99957WrJkidM7t2xcnYvybNiwQZKUkJCgO++8U/Pnz7c/B6xGjRrq2bOnZsyYobVr15bbR8+ePbVz505lZ2crLS1Nc+fO1fjx49WgQYNSdd9880377rmSibVAFeLrAKrLarVq7dq1Wrt2rUaPHq0bb7xRw4cPV9++fX0dGgAAAAAAAAAASkhIUEJCgq/DcJvbb7/dvsOrpH79+tmfB2axWEq9HxQUpNGjR2v06NFl3p+SkqKUlJQy31uxYkW14uzfv7/69+9frXuq20dV56I6bDvD4uPjJUmJiYlKTEysVhs9evRQUVGR0tLSNGnSJDVv3tx+POTp5s+fr3/961966KGHtHr1aj3zzDMaPny4IiIiqh23P/GbnWE2JpNJVqtVVqtVubm5mjt3rgYMGKCWLVvqmWee0b59+3wdIgAAAAAAAAAAQJWUTIY5o2fPnpKkiRMnauXKlXr++edVs2ZNhzorVqzQsGHDNGTIEL388st66qmndPjwYU2fPt354P2E3yTD2rRpY0+CmUwm+8tWtmfPHk2aNEktWrTQoEGD9Mknn+iff/7xddgAAAAAAAAAAABlOnDggP3IQleSYXFxcWrYsKFWrVqlHj16aOjQoQ7vb9myRddee6169uyp999/XyaTSZdddpl69+6tF198USdOnHBpHEbnN8mw3377TT///LNGjBihmJiYchNjRUVFWrp0qW699VY1adJE999/v8ND4wAAAAAAAAAAAIzAtiusVq1aatGihUttdevWTVLx89NMJpO9fN++fbr88svVtGlTffXVVw47xp5++mmdPHlSU6dOdalvo/ObZJhUvM3vnXfe0aFDhzR37lxdcskl9iSYpFK7xU6ePKm33npLPXv2VMeOHfXaa6/p6NGjPh4FAAAAAAAAAADA/5JhnTt3dkhgVVdOTo5++eUXJSYmqnfv3g7vNWvWTPv379fWrVtVu3Zth/cGDBggq9WqF154wem+/YFfJcNswsLCdOutt+r777/Xnj17NGXKFJ1zzjkVHqO4bds2PfLII2ratKmuu+46ff3112U+zA8AAAAAAAAAAMAbJk2aJKvVqhUrVrjUzuTJk5WTkxPwO7yc5ZfJsNM1a9ZMTz75pP744w+tXLlSSUlJioyMLDcxVlBQoK+//lrXXXedmjZtqscee0zbt2/39TAAAAAAAAAAAACq7Pjx4/r444/10EMP6dVXX9Uzzzzj8lGLgcrvk2Gn69Onj9577z0dPnxYc+bMUd++fSWp3GMUjxw5oldeeUUdO3ZUjx499M477ygrK8uXQwAAAAAAAAAAAKjUkiVLdMstt+jjjz/WxIkT9fDDD/s6JMMKqGSYTUREhO644w4tX75cu3bt0pNPPqnY2NgKj1FMTU3Vvffeq7POOsvX4QMAAAAAAAAAAFRo6NChslqtOnTokCZPnuzrcAwtIJNhp2vRooWmTJmiPXv2aOnSpbr11lsVHh5eKjEmFe8gy8vL83HEAAAAAAAAAAAAcJeAT4adrn///po7d64OHz6sd955R71797YfoQgAAAAAAAAAAIDAE+LrAHwhKipKt99+u8LDw3XixAn99ttv9t1hAAAAAAAAAAAACBxnXDJs7dq1SklJ0aeffqqsrCxfhwMAAAAAAAAAAAAPOiOSYYcOHdIHH3yg999/Xzt27JAkh+MR2RUGAAAAAAAAAAAQmAI2GVZQUKCvvvpKc+bM0ZIlS1RUVFRuAsxW3rFjRw0fPtzrsQIAAAAAAAAAAMAzAi4ZtmHDBs2ZM0effPKJTpw4Iel/ya6yEmB16tTRzTffrDvvvFMJCQneDxgAAAAAAAAAAAAeExDJsL/++ksffvihUlJStG3bNknlH4NotVoVFBSkgQMH6s4779S1116r0NBQr8cMAAAAAAAAAAAAz/PbZJjFYtF//vMfzZkzR4sXL1ZhYWGlxyC2bNlSw4cP17Bhw9S0aVOvxwzn5ObmavXq1Vq2bJnS0tL0+++/6++//5ZUvLOvbdu26tOnj5KSktSiRQsfRwsAAAAAAAAAAIzE75Jhv/76q1JSUjRv3jx7QqSiYxAjIyOVmJio4cOHq0+fPt4PGE47cuSIxowZo0WLFslsNpdZ59ChQzp06JCWL1+uZ555RiNHjtTLL7+sqKgoL0cLAAAAAAAAAACMyG+SYcnJyUpJSdGvv/4qqeJjECXpwgsv1PDhwzVkyBBFRkZ6N1i4xb59+/Tpp5+WKo+Li1OTJk0UGhqqPXv2KCMjQ5JUVFSkt99+Wxs2bNDSpUsVExPj7ZABAAAAAAAAAIDB+E0ybOzYsTKZTBXuAjv77LM1bNgwDR8+XK1atfJJnHA/k8mkvn37avjw4br00kvVqFEjh/dTU1P14IMPau3atfbrUaNG6ZNPPvFFuAAAAAAAAAAAwECCfB1AdZlMJntSzGq1KjQ0VImJifr222+1d+9ePfvssyTCAkRQUJCuv/56bd68WcuXL9ewYcNKJcIkqWvXrlq5cqX69u1rL/v000+1adMmL0YLAAAAAAAAAACMyG92htnYdoHFx8dr+PDhuvXWW1WnTh0fRwVPSEhI0Oeff16luqGhoXr77bfVtm1be9kXX3yhzp07eyg6AAAAAAAAAADgD/wqGVa3bl3deuutuvPOO3X++ef7OhwYTJs2bXTuuefqjz/+kCT99ttvPo4IAAAAAAAAAAD4mt8kwxYsWKCrrrpKNWrU8HUoOM3Ro0e1fv167d69W1lZWapRo4bq1aundu3aqWvXrl7/fdWrV8+eDMvKyvJq3wAAAAAAAAAAwHj8Jhl2/fXX+zoEQzl+/LhSU1Ptrw0bNigjI6NUPduxku62YMECTZ8+XT/99FO5fURHR2vIkCF67LHH1Lp1a4/EUdLevXvtPzds2NArfQIAAAAAAAAAjM1isWj69OmaO3eudu7cqdzcXEnSl19+qWuvvda3wcHj/CYZdqbbunWrvvnmG23YsEGpqanas2ePT+I4cOCAbr31Vq1cubLSutnZ2Zo9e7bmzp2rCRMmaMKECTKZTB6Lbe3atTp06JD9umfPnh7rCwAAAAAAAADgWykpKUpPT1e/fv3Ur1+/CuuOHTtWb7zxhiQpNDRUjRo1kiSFhYV5OkwYAMkwPzFr1ixNnz7dpzHs3LlT/fr1c0g4VUV+fr4mTpyo3377TXPnzlVwcLBH4nv++eftP4eFhbGbEAAAAAAAAAACWEpKin3jRkXJsOzsbL399tuSpBdffFGPPPKIRzduwHhIhqFKjh07poEDB5aZCOvSpYuuueYatWjRQnl5edq5c6fmzZungwcPOtT7+OOP1bBhQ02bNs3t8X300Uf6+uuv7dcPPvigmjRp4vZ+AAAAAAAAAKAyaWnSrFnSpk1STo4UFSV17iyNGCElJPg6ujPP77//roKCAknSvffeSyLsDEQyzM+FhoaqQ4cO6tq1q+bPn6+TJ096pJ9Ro0aVeiZZdHS0PvzwQ1199dWl6j/33HN67rnnNHnyZIfy6dOn69JLL9Xll1/utti2bNmiu+++237dpk0bTZo0yW3tAwAAAAAAAEBVpKZKDz4orV1b+r01a6SZM6VevaTkZKlrV+/Hd6ayPR9MkqKionwYCXzFp8mwVatWlVl+0UUXVbmuJ5TVvxGEhISoXbt26tq1q/3VqVMnhYaGSpK+++47jyTDlixZoi+++MKhLDQ0VMuWLVPXcv7FrlGjhiZNmqTatWtr7NixDu+NHj1av/32m0JCXF9++/fv15VXXimz2SxJCg8P1yeffKLIyEiX2wYAAAAAAACAqlq0SLrpJunUqYrrrVkj9ekjffaZNHiwd2Jzh/T0dE2bNk1LlizR3r17VVRUpNjYWF166aV6+OGHFRsbW+qeAQMGaNWqVZo0aZImTJig119/XR988IH++OMPRUREqHfv3poyZYo6deokqThp9eqrr+qTTz7Rnj17FBYWpksuuUTPPfecWrZsaW83JSVFw4cPt19PmTJFU6ZMceh7z549WrFihUM9SQ67wvr27asVK1Y4NR8FBQWaMWOGUlJStHv3buXm5qpOnTrq16+fnn32WbVu3dqpduEZPk2G9evXr9R2RJPJpMLCwirV9YTy+ve1cePG6fnnn1d4eLjX+3766adLlU2aNKncRNjpxowZo2+++UZLliyxl+3atUvz5s3TsGHDXIrr77//1qBBg7Rv3z5JxcnCTz/9VJ07d3apXQAAAAAAAACojo0bg3XTTUGVJsJsTp2SEhOl1av9Y4fYRx99pLvuukv//POPJKlmzZoKCgrSjh07tGPHDs2ZM0cLFizQxRdfXOb9BQUFuuyyy7R06VKFhoaqRo0aOnr0qBYuXKilS5dq+fLlatGihQYOHKiNGzcqLCxMJpNJx48f1/z587VixQqtX7/ennALDw9Xo0aNdPz4cRUUFCgyMrLUjq/g4GB7vfz8fJ04cUKS1KhRI3udunXrOjUfO3fuVGJiojZv3ixJiomJUUhIiP7++28tWLBAS5Ys0bp160iIGUiQrwOQJKvV6vCqTl1PvIyoSZMmPkmEbdu2TatXr3Yoq1+/vh555JEqt/H888+XKps5c6ZLcZ08eVKDBg3Sb7/9JkkKCgrS3LlzddVVV7nULgAAAAAAAABU17hx4Tp1qnqbOU6dkkaP9lBAbrRkyRINGzZMFotFjz32mPbs2aO8vDyZzWb9/vvvSkxMVHZ2thITE0s9asdmxowZ2rRpkz777DPl5OQoOztb69at0znnnKOcnByNGTNGI0eO1IkTJ/Tdd9/JbDYrJydHP/zwgxo0aKC//vpL48ePt7c3dOhQHT58WL1795YkPfLIIzp8+LDDq1mzZvZ6p598dnqdkieiVcWOHTvUu3dvbd68WTfccIN27NihzMxM5eTk6P3331eNGjWUmZmpRx99tNptw3MMkQwzmUxV3vVlq+uJF0r75JNPSpUNHz7cfjRjVXTp0kVdunRxKFu7dq327NnjVEzZ2dm67LLLtHHjRknFa2L27Nm66aabnGoPAAAAAAAAAJy1aVOw1q937hC2NWuktDQ3B+RGRUVFuv/++1VUVKQ333xTU6dOVVxcnP079TZt2mj+/Pm6+uqrlZWVpWnTppXZzsmTJ/XVV1/pxhtvVI0aNWQymdStWze9++67kqSff/5Zixcv1pIlSzRo0CAFBQUpKChIF198sV544QVJ0hdffKGCggJvDb1MBQUFSkxM1LFjxzRq1CgtWLDAvvsrJCREw4YN05gxYyRJ3377rfLy8nwZLk7j82RYdXZknYk7wnxt8eLFpcpuvPHGardT1j1ltV0Zs9msK6+8Ur/88ou9bMaMGUpKSqp2WwAAAAAAAADgqrlzq75xoCyzZ7spEA9YtWqV/vjjD9WvX18jRowot57tkTjff/99me9feOGFuvDCC0uV9+3bVzVr1pRU/B1yq1atStW59NJLJUl5eXn6448/qj0Gd5ozZ462bNmiuLg4JScnl1ln8P8/CK6wsFDp6elejA4V8ekzw5YvX+6RunAPs9mstBL/W0JERIQSEhKq3VafPn1Kla1evVr33ntvlds4deqUrr76aodjG1977TXdc8891Y4HAAAAAAAAANxhy5Zgl+7ftMk9cXjCTz/9JEnKzMzUWWedVW69/Px8SdLevXvLfL979+5llgcHB6t+/fo6cOCAunXrVmad05/xZXvul6+89dZbkqQxY8bYk3glxcTE2H9mE45x+DQZ1rdvX4/UhXts2rRJRUVFDmVdu3ZVSEj1l023bt1Uo0YNh22sGzZsqPL9+fn5uu6667Rs2TJ72QsvvKCxY8dWOxYAAAAAAAAAcBez2bVH8GRnuykQDzh48KCk4uMBjxw5Umn98o4FjI6OLvce2/fN5dU5/ftoXx6TePDgQfuje6655ppy6x0+fNj+c7NmzTweF6rG58ckwrh+//33UmVlbVOtitDQUDVt2tShbPfu3SosLKz03sLCQg0dOtThWMUpU6Zo3LhxTsUCAAAAAAAAAO4SGena7p8K8kQ+Z7FYJEk9evSo0qOIqvJ9r7+y7ZKrW7euWrRoUW691NRUSVLr1q0rTALCu0iGoVxlnWfavHlzp9uLjY11uLZYLMrIyKjwHovFottuu01fffWVvWz8+PGaOHGi03EAAAAAAAAAgLt07Ghx6f7Ond0Thyc0btxYUvnHH55JbCedNWnSpMJ6CxculCRdccUV9rLbbrtNISEhZe6cS0lJkclk0g8//KDMzEzVq1dP8fHxDkcs5uTkqEuXLmrUqJF2797tjuGccXx6TCKM7fTtnDaubOss694jR47onHPOKbO+1WrViBEj9Omnn9rLHnnkET377LNOx1Adf/31l44ePVqte3bt2lVmudlsdkdICAAl1wJro3oCff78aXxGi9VX8XirX0/244m2jbY+YBysDdcE+vz52/iMFC+fg8Zq30hrA8bD+nBeoM+dv43PSPGW7Nv22JegoOJ9IBaLRSaTa8cYlse2a2rYsHy9917Zz4+qiqQkiywV5NMsJd4see2Kytru2bOnpOLvin/55Rd17dq1Wu3ZFBUVVRp3VepYLBaHOrbfbcnyiuJydv5sybCsrKxy21i+fLk2bNggk8mkO++8016vW7du+uijj5SamqrevXvb65vNZv373//WFVdcof79+0uSHnvsMT3++OP6/PPPdd1116mwsFA33HCDdu7cqR9++EFxcXFuXQPOsFgs9mSd7W8uOztbwcEVPz+vvGM0vcFvkmFPPfWU/efGjRtr1KhRbmv7nXfecUj8sOuo2PHjx0uVRUVFOd1eWfceO3as3PqfffaZUlJS7NehoaHasmWLLrvssir116hRI73//vvVjtNmxowZmjJlitP3n27dunVuaQeBh7XhmkCfP38an9Fi9VU83urXk/14om2jrQ8YB2vDNYE+f/42PiPFy+egsdo30tqA8bA+nBfoc+dv4zNSvLbkmO14upycnEq/oHdVp04WdetWqPXrq/91e7duhTr33JxqPTcsNze32v0423bXrl11zjnn6M8//9TYsWO1cOFChYaGlnv/iRMnVKdOHfu1LWmTn5+v7HIGaUumnDp1qtw6Nnl5eQ51IiIiJElHjx6t8N7TkzCV9VGetLQ0SdK+ffv0yy+/qF27dg7v//333xo5cqQk6ZZbblGzZs3sfXXo0EGS9PPPP6tjx472e55//nn99ddfmjhxor3usGHDNH36dE2ePFkDBgzQgw8+qGXLlumTTz5RmzZtnI7fnSwWi0MSTJJWr17tsJutLJWdFOdJfpMMmzx5sj3L26lTJ7cmw2bOnKnNmzfbr0mGFSvr/+gIDw93ur2y7q3oH+6S7+Xn5+u7776rcn+uHOkIAAAAAAAAAFU1dWqerrgiSqdOVX0XWliYVVOn+m6nTFWEhITo1Vdf1Y033qi1a9fqyiuv1IQJE9S7d2/VqFFDUvHjdpYtW6YPP/xQV1xxhR555BGvxXfeeefp22+/1ZIlSzR69GidddZZHuknIyPDvnkkJiZGo0aN0qxZs9S2bVsVFhZq6dKleuKJJ5Senq42bdqUOt2sY8eOqlmzpjZu3GgvO3jwoN544w3dcccdatOmjb08PDxcjz76qB566CFdd911WrVqlWbOnKmLL77YI2M7U/jdM8Mqyyy60q6n2vZXBQUFpcrCwsKcbq+sZFh+fr7T7QEAAAAAAACAEcTHWzRnjllhYVX7jjkszKo5c8yKj/ftcXdV0bdvX6WkpCg6Olqpqam69tprdfbZZ6tly5Zq3Lix4uPj9fDDDzskerzl5ptvVlhYmP7880917NhRbdq00fnnn6/zzz9fBw4ccFs/ts00jRo10rPPPqtt27apV69eiouLU9OmTXXTTTdpz5496ty5s7788kvVqlXL4f7Q0FCdf/75DnP09NNPKzg4WI8//nip/m6//XY1bNhQq1at0oQJE3TTTTe5bSxnKr/ZGeZpJpOJZFgVuHK+bln3VjTnSUlJSkpKcro/V913331KTEys1j27du3StddeW6q8e/fuioyMdFNk8Gdms9nh6ADWRvUE+vz50/iMFquv4vFWv57sxxNtG219wDhYG64J9Pnzt/EZKV4+B43VvpHWBoyH9eG8QJ87fxufkeItGUtkZKSCgoLszwyLiopSSIhnvga3WCwOp1tdf32oWrQo0tixQVq7tvzvUXv2tGratCJ17Vq1U7hK9hMREeG2ox+r2vZNN92kAQMGaObMmVq8eLF27dqlzMxMRUZGqm3bturatauuuOIKDRo0SIWFhfb7bG2Fhobaj64syfa7CgsLK7eOTXh4uEOdzp0764cfftDUqVO1bt06HTt2zN7/6e2dvlGjsj7Ksn37dklSQkKC7r33XjVo0ECvvvqqfvvtN9WoUUOdO3fW7bffrhEjRpS73nr16qU33nhDkvTHH3/o008/1bPPPqsWLVqUqpucnKy//vpLktSwYUOnYvakwsJC++/NFlvbtm0rXZe2oyZ9gWQYymXb5no6Vx5wV9a9FZ0v62sNGzZUw4YN3dJWZGSkYmJi3NIWAgtrwzWBPn/+ND6jxeqreLzVryf78UTbRlsfMA7WhmsCff78bXxGipfPQWO1b6S1AeNhfTgv0OfO38ZnpHiDgoIcvpAPDg72+DPDTu+rR49grVkjpaVJs2dLmzZJ2dlSdLTUubN0111SQoJJkvMxeXJMFbXdpEkTPfXUU3rqqafKvd9isTg802rZsmWVxpqenl5pXBVtqrjgggv09ddfV3j/xRdf7NJmmE2bNkkqToYFBwdr6NChGjp0aLXa6NWrl5KTk/Xrr79q0qRJat68uR566KFS8zN//nw9/PDDeuihh7R69Wo999xzuuuuu+zPRzMCq9Vq3/xiiz86OrrSxLMrj2FyFckw/e8hfpI89n8J+KOy/rjcnQwz8v/hAgAAAAAAAADOSEgofiEw2HY0xcfHO91Gz549JUkTJ07UqlWr9PHHH6tmzZoOdVasWKFhw4ZpyJAhevnll/Xdd9/p8ssv1/Tp0/XEE084PwCQDJOkzMxM+89RUVE+jMRY6tWrV6osJyfH6fbKuresPgKR2Wz2dQgwiJJrgbVRPYE+f/40PqPF6qt4vNWvJ/vxRNtGWx8wDtaGawJ9/vxtfEaKl89BY7VvpLUB42F9OC/Q587fxmekeEv2XVRUJOl/R+9ZLBaXHv1SkdM3WZR17Q/9uLttb82JNx04cEBHjhyRJJ1//vlOj6lZs2b254B1795dN954o0NbW7Zs0bXXXqsePXrovffeU1FRkQYOHKhevXrpxRdf1MiRI1WnTh23jMlVFovFvtPO9jeXnZ1d6S5AVzbbuMpk9ZMHZQUFBdmf69W5c2e3nS2ZlZVlX0BWq1UtWrTQ7t273dK2t8XFxWnv3r0OZa78eidMmKBnn33Woeypp57Sk08+6VR7/fv314oVKxzKdu/erXPOOcfZEH0mJSVFKSkppcrNZrNSU1Pt18nJyYqNjfViZAAAAAAAAMCZyWQyqUGDBpL+9xyjJk2aeO2YRASm//73v7rlllsUExOj9PR0l5KrQ4cO1ffff6/FixerR48e9vL9+/fr0ksvVUxMjBYvXqxatWrZ31u1apWuueYajRkzRpMnT3ZlKG5jsVh06NAhSbIfi3n06NFK8xEZGRkaPXq0/Xrr1q1q37695wI9zRm/M+y9996zn29pMpnUpk0bX4dkGGU9uK9ksq06MjIyHK6Dg4P9NlGUnp6ulStX+joMAAAAAAAAAIAHbd68WZLUsWNHlxJhOTk52rBhg3331+maNm2qbdu2lXnfRRddpBMnTjjdL4oZJhlWMlFSkfz8fO3bt8+pXU8Wi0U5OTn6888/9e2332rOnDn2HWcmk8mlMz8DTVmJwV27djnVlu13drqWLVv67TPa4uLi1Ldv31LlJXeGAQAAAAAAAAD817hx4zRu3DiX25k6darMZrNhdnedaQyTiYiLi6s0q2pLfv3222+Ki4tzS7+2JJhNYmKiW9oNBPHx8QoKCrKf+SlJqampKiwsrHYSKzU1VQUFBQ5lCX78BMmkpCQlJSWVKt+2bZs6dOhQqrx79+6KjIz0QmQwOrPZrHXr1tmvWRvVE+jz50/jM1qsvorHW/16sh9PtG209QHjYG24JtDnz9/GZ6R4+Rw0VvtGWhswHtaH8wJ97vxtfEaKt2QskZGRCgoKsj8zLCoqymP/Q77FYlFubq79OiIiwiNHMnqyH3e37a058RfHjx/X999/r/Xr1+vNN9/U1KlTy/z+2N8UFhba/8ZsR5K2bdu20t+1ux5/5QzDJMOkqj/fyp2PObMlwkwmkwYOHKjOnTu7rW1/FxkZqfj4eG3YsMFeZjabtXHjRnXr1q1abf3444+lyi666CKXY/QXkZGRiomJ8XUYMCDWhmsCff78aXxGi9VX8XirX0/244m2jbY+YBysDdcE+vz52/iMFC+fg8Zq30hrA8bD+nBeoM+dv43PSPEGBQU5fCEfHBzstWSMt/ryZD/ubtub829Ey5Yt02233abGjRtr4sSJevTRR30dklucvsnI9vuNjo6uNPEcHh7u8djKE+Sznstge25XWa+q1qvuSyr+xbVr105z5szxxbAN7bLLLitVtmDBgmq3U9Y9ZbUNAAAAAAAAAEAgGDp0qKxWqw4dOsTxiD5mqGSY1Wot91XVetV9tWnTRi+++KLWrVunJk2a+GjkxnXTTTeVKpszZ47y8/Or3MbGjRu1fv16h7IePXqoRYsWLscHAAAAAAAAAABQEcMck1jRriyr1ao777xTJpNJVqtVsbGxmjJlilP9hISEKDo6WnXq1FGHDh1Up04dZ0M+I3To0EEXXnihwzGHR48e1WuvvVblhwY+8cQTpcruvfdet8UIAAAAAAAAAABQHsMkw+64444K37/zzjslFR+RWLdu3Urrw30mTJhQ6kjDSZMmaeDAgUpISKjw3jfeeEPfffedQ9k555yjW265xe1xGpnZbPZ1CDCIkmuBtVE9gT5//jQ+o8Xqq3i81a8n+/FE20ZbHzAO1oZrAn3+/G18RoqXz0FjtW+ktQHjYX04L9Dnzt/GZ6R4S/ZdVFQkqfjZYZJksVhKPYbHXSwWS4XX/tCPu9v21pzAtywWi/1EP9vfXHZ2dqXPh8vLy/N4bOUxWUueQWhQtn+8JKlz585KS0vzYTTGFBcXp7179zqUuevXe+2112rhwoUOZTExMfrwww911VVXlapfUFCgF154QRMnTiz13qJFi3TllVe6JS5fSUlJUUpKSqlys9ms1NRU+3VycrJiY2O9GBkAAAAAAABwZjKZTGrQoIEkKTo6WpLUpEmTSr+gB1A9FotFhw4dklScBJOKT5SrLB+RkZGh0aNH26+3bt2q9u3bey7Q0xhmZ1hlTt8JdqYmF6644godPHiw3PfLeq9z584Vtvntt9/qrLPOqrTvd999Vxs2bND+/fvtZVlZWbr66qvVtWtXXXPNNWrRooXy8vL0xx9/6KOPPtKBAwdKtfPAAw/4fSJMktLT07Vy5UpfhwEAAAAAAAAAACrhN8mwip4pdqbYvn17qZ1flfn1118rfD8/P79K7TRo0EDff/+9BgwYoMOHDzu8l5qa6rAbqjxDhgzRtGnTqtSf0cXFxalv376lykvuDAMAAAAAAAAAAL7lN8kw+N55552ndevW6ZZbbtGPP/5Y5ftq1Kih8ePHa+LEiQ7HXfqzpKQkJSUllSrftm2bOnToUKq8e/fuioyM9EJkMDqz2ax169bZr1kb1RPo8+dP4zNarL6Kx1v9erIfT7RttPUB42BtuCbQ58/fxmekePkcNFb7RlobMB7Wh/MCfe78bXxGirdkLJGRkQoKCrJ/DxkZGakaNWp4pG+LxaLc3Fz7dUREhEeOZPRkP+5u21tzAt/Kz8+3/43ZjiQ977zzKv3+35ePvyIZhmpp1qyZVq1apc8++0zTp0/XmjVryj0HNCoqSomJiXrsscfUtm1bL0dqLJGRkYqJifF1GDAg1oZrAn3+/Gl8RovVV/F4q19P9uOJto22PmAcrA3XBPr8+dv4jBQvn4PGat9IawPGw/pwXqDPnb+NzyjxWq1WBQcHO3whn5ubq7p163ql/+DgYK8kfjzZj7vb9tacwLvy8vJkMpkkFf+OTSaTatWqZS8rT3h4uDfCK9MZkww7fvy4Fi9erM2bNyszM1MNGjRQp06dNHjwYNWsWdPX4VVJenq6r0OQVPwgyiFDhmjIkCH666+/tG7dOv3555/KyspSSEiI6tevr/POO0/dunVTaGior8MFAAAAAAAAcIYICwtzeDTMX3/9Jan4f9x396lVFotFFovFfl1YWFjuxgGj9uPutr01J/CNoqIi5eTk2P+ubKKioipNhPmaXyXDdu7c6XB9zjnnKCSk8iE8//zzeu655xy2Z9rUqlVLr7zyioYPH+62OM8kDRs21ODBg30dBgAAAAAAAAAoIiLCIRlmtVp15MgRHTlyxO19Wa1WFRUV2a+DgoI8khDwZD/ubttbcwJjMcLO0Mr4TTLs559/Vp8+fezXZ599dpV2St1///166623ys0+nzx5UiNGjND27dv10ksvuStcAAAAAAAAAICXhYeHKz8/v8yNEQDcLyIiQlFRUb4Oo1Lu3RfqQQsWLJDVarUntUaNGlXpttYvvvhCM2fOlFR8tF95L6vVqldffVXvv/++x8cBAAAAAAAAAPCMoKAgNWvWTBERER7vq6ioSNnZ2fbX6Tui/KUfd7ftrTmBMURERKhZs2ZuP4LUE/xmZ9jy5cvtiStJuvHGGyusb7Va9e9//7tUWUmnJ8TGjRun66+/XtHR0e4LHJBkNpt9HQIMouRaYG1UT6DPnz+Nz2ix+ioeb/XryX480bbR1geMg7XhmkCfP38bn5Hi5XPQWO0baW3AeFgfzgv0ufO38Rkp3vJiqVWrlkJDQ5WXl6e8vDyPPLeqZKLHk8kwT/Xj7ra9NSfwHZPJpPDwcPsrJyenyvfm5eV5MLKKmax+8PQ6s9ms2rVrq6ioSFarVS1atNDu3bsrvOe///2vrrzySnuiy2Qy6bLLLtPzzz+vtm3b6tChQ5o2bZqmT5/uUOeVV17R2LFjvTMw+K2UlBSlpKSUKjebzUpNTbVfJycnKzY21ouRAQAAAAAAACiJ51YB7uFKSikjI0OjR4+2X2/dulXt27d3R1iV8oudYTt37pTFYrHv4urWrVul93z88cf2n233/Oc//7Fv12vevLlee+01hYaG6qWXXrInxObNm0cyDJVKT0/XypUrfR0GAAAAAAAAgCrwgz0hADzIL5Jh6enpDtdVyRR+++23Dju+Jk6cWOa5lRMnTtQ777yjrKwsSdKGDRuUnZ3NUYmoUFxcnPr27VuqvOTOMAAAAAAAAAAA4Ft+kQw7fPiwJNkTW02aNKmw/ubNm3X8+HH71tf69evr8ssvL7NuZGSkLr30Us2fP9/h/gsuuMBN0SMQJSUlKSkpqVT5tm3b1KFDh1Ll3bt3V2RkpBcig9GZzWatW7fOfs3aqJ5Anz9/Gp/RYvVVPN7q15P9eKJto60PGAdrwzWBPn/+Nj4jxcvnoLHaN9LagPGwPpwX6HPnb+MzUry+jCUQPgv5HIQ3paWl+axvv0iG5ebmOlzHxMRUWP/HH3+0/2wymXT55ZdXeCZsQkKCQzJs165dJMPgVpGRkZWuW5yZWBuuCfT586fxGS1WX8XjrX492Y8n2jba+oBxsDZcE+jz52/jM1K8fA4aq30jrQ0YD+vDeYE+d/42PiPF68tYAuGzkM9BeFJ4eLjP+i59bqABnTp1yuE6JKTiHJ7tmDrbObD9+vWrsH7Tpk0drjMzM6sZIQAAAAAAAAAAAIzIL5JhJbOFOTk5Fdb/8ccfHXaC9enTp8L6YWFhkmS/p7L2AQAAAAAAAAAA4B/84phE2zZKW7Jq79695dY9cOCAdu3aZa9br149tWzZssL2zWazw3WNGjVcCRcAAMDv7N5dS0uWNNdzz0UoL0+KipI6d5ZGjJASEnwdHQAAAAAAgPP8IhnWvHlzh+v169eXW3fRokX2n00mk3r37l1p+ydPnpRUfKyiyWRSdHS0c4ECAAD4mbS0II0b10c7dtQt9d6aNdLMmVKvXlJystS1qw8CBAAAAAAAcJFfHJPYqVMn+89Wq1XLli3TsWPHyqz7/vvv2+tJUt++fSttf8+ePQ7XjRs3djZUAAAAv7FokXT55ZFlJsJOt2aN1KdPcX0AAAAAAAB/4xc7wxo2bKh27drpt99+kyTl5eXp4YcfVkpKikO9L7/8UmvXrpXJZLInw6644opK29+4caPD9TnnnOOewIH/V/IoTpy5Sq4F1kb1BPr8+dP4jBarr+LxVr+e6CctLUiJiZE6dcpUeWVJp05JiYlW/fe/ZiUkFFVY12jrA8bB2nBNoM+fv43PSPHyOWis9o20NmA8rA/nBfrc+dv4jBSvL2MJhM9CPgfhTXl5eT7r22S1ZY0M7rnnntOECRPsiS6TyaSLL75Yd955p+rVq6cff/xRL7/8sk6dOmV/v0uXLlq3bl2F7RYWFqpevXrKycmR1WpVSEiIMjMzFR4e7qWRwR+lpKSUSsZKxf+4p6am2q+Tk5MVGxvrxcgAAKia8o5GrEybNsc1depqD0QEAAAAAAACWUZGhkaPHm2/3rp1q9q3b++Vvv1iZ5gk3X///Zo+fbr+/vtve0Js6dKlWrp0qb2OLQlm89hjj1Xa7vLly5WdnW2/r2PHjiTCUKn09HStXLnS12EAAOCUXbtqOZUIk6QdO+pq9+5aatky081RAQAAAAAAeIbfJMNq1aqlN954QzfddJMkORyFaGNLaJlMJl1yySW68cYbK233iy++kPS/RFrv3r3dHDkCUVxcXJnPoyu5MwwAACP64YfmLt/fsuVmN0UDAAAAAADgWX6TDJOkxMREZWZm6sEHH9Q///zjsAtMkj051r17d3388ceVtpeTk6OPP/7YIbE2aNAg9weOgJOUlKSkpKRS5du2bVOHDh1KlXfv3l2RkZFeiAxGZzabHY5vZW1UT6DPnz+Nz2ix+ioeb/Xr7n6eey7CpXiOH2+m/v3rlfu+0dYHjIO14ZpAnz9/G5+R4uVz0FjtG2ltwHhYH84L9Lnzt/EZKV5fxhIIn4V8DsKb0tLSfNa3XyXDJGnEiBG66KKL9OKLL+rrr7/W33//Lal4N1inTp00fPhw3XPPPQoNDa20rffee09ZWVn267CwMA0cONBjsePMFRkZqZiYGF+HAQNibbgm0OfPn8ZntFh9FY+3+nW1H1efV5ubG1Kt/o22PmAcrA3XBPr8+dv4jBQvn4PGat9IawPGw/pwXqDPnb+Nz0jx+jKWQPgs5HMQnuTLR1T5XTJMklq3bq1Zs2ZJKt7dlZ2drbp166pmzZrVaqdbt2768ssv7de1atVSWFiYW2MFAAAwmqgo1+6PjnZPHAAAAAAAAN7gl8mw00VFRSnKyW90evXq5eZoAAAAjK9zZ2nNGtfuBwAAAAAA8BdBvg4AAAAA3jVihGv333WXe+IAAAAAAADwBpJhAAAAZ5iEBKlnT+fu7dWr+H4AAAAAAAB/QTIMAADgDPT661J1H5UaFiYlJ3smHgAAAAAAAE8hGQYAAHAG6tpV+uwzKSzMWqX6YWHF9bt29XBgAAAAAAAAbkYyDAAA4Aw1eLD03/+a1abN8Qrr9eolrV5dXB8AAAAAAMDfhPiy81WrVpVZftFFF1W5rieU1T/gCrPZ7OsQYBAl1wJro3oCff78aXxGi9VX8XirX0/206aNWVOnrtPu3bX0ww/NdfTo2crLC1ZUlFUdOxbp9tvz1blzkSQpK8v38cK/sTZcE+jz52/jM1K8fA4aq30jrQ0YD+vDeYE+d/42PiPF68tYAuGzkM9BeFNeXp7P+jZZrdaqnY3jAUFBQTKZTA5lJpNJhYWFVarrCeX1D5wuJSVFKSkppcrNZrNSU1Pt18nJyYqNjfViZAAAAAAAAAAAGE9GRoZGjx5tv966davat2/vlb59ujPMpjr5OB/m7gC79PR0rVy50tdhAAAAAAAAAACAShgiGWbb8VWVRJcnd4eRaENVxcXFqW/fvqXKS+4MAwAAAAAAAADAG3bvrqUlS5prz55aOnUqWGFhFrVokamBA/eqZctMX4fnUz5PhrErDP4oKSlJSUlJpcq3bdumDh06lCrv3r27IiMjvRAZjM5sNmvdunX2a9ZG9QT6/PnT+IwWq6/i8Va/nuzHE20bbX3AOFgbrgn0+fO38RkpXj4HjdW+kdYGjIf14bxAnzt/G5+R4vVlLIHwWcjnoLFs2rRJH3zwgbZs2SKz2azIyEh17NhRw4YNU+fOncu9Ly0tSI89Fqb160unfHbsqKvFi1uoe/dCTZ16SgkJRR4cQcXS0tJ81rdPk2HLly/3SF3AaCIjIxUTE+PrMGBArA3XBPr8+dP4jBarr+LxVr+e7McTbRttfcA4WBuuCfT587fxGSlePgeN1b6R1gaMh/XhvECfO38bn5Hi9WUsgfBZ6MnPwbS0NM2aNUubNm1STk6OoqKi1LlzZ40YMUIJCQn2e9LSpFmzpE2bpJwcKSpK6txZGjFCOq1aQElNTdWDDz6otWvXlnpv3bp1mj17tnr16qXk5GR17drV4f1Fi6TEROnUqYr7WLcuRJdfHqXPPpMGD3Zn9FUXHh7um47l42RYWcfMuaMuAAAAAAAAAADwvYoSPWvWrNHMmTPVq1cv3XPPLM2c2U5lVNOaNdLMmVKvXlJyslQiH+TXFi1apMTERJ2qJJu1Zs0a9enTR5999pkG/382KzW1aokwm1OniuuvXh1Yc1gVQb4OAAAAAAAAAAAABJ7FixerT58+ZSbCTrdmTV3dcUeLMhNhjvWkPn2Kd0MZQVqadN99Uu/e0vnnF//3vvuKy6siNTW1Sokwm1OnTikxMVGpqamSpAcfrHoi7H9tSKNHV++eQEAyDAAAAAAAAAAAuNWuXbt0xx13VCHR00XSZ5KqdoSebXfT/+eDfCI1tXiXWpcuxTvW1qyRtmz53w62Ll2KE2OVxfjggw9WORFmc+rUKY0ePVobNqjS5GF51qypesIuUJAMAwAAAAAAAAAAbvXuu+9WMdHzuqqaCLPx5e6mRYuKd6e5uottw4YNle6YK7/tNXrhhaNO3Wsze7ZLt/sdkmEAAAAAAAAAAMBtdu3apR07dlShZoKkXk714YvdTc4+o6usHWKzXcxGrV6d7dL9mza5dLvfIRkGAAAAAAAAAADc5ocffqhizbtc6sfbu5vc+YyuTS5mo7Kzi1y836Xb/U6IrwPwluPHj2vx4sXavHmzMjMz1aBBA3Xq1EmDBw9WzZo1fR0eAAAAAAAAAABukZYmzZpVvPsnJ0eKipI6d5ZGjJASEjzf/549e6pYs7NL/Xhzd5M7ntF1+tzn5OS4GJFr90dHu9i9n/GrZNjOnTsdrs855xyFhFQ+hOeff17PPfeccnNzS71Xq1YtvfLKKxo+fLjb4gQAAAAAAAAAwNtSU4t3L5WVtFmzRpo5U+rVS0pOlrp29VwcVXtWmCRFudSPN3c3uboLbfZsx2RYVJRrY4+O/lO5uZ2dvr+z87f6Jb85JvHnn3/WeeedZ39dcsklCgqqPPz7779fEyZMkNlsltVqLfU6efKkRowYoUcffdQLowAAAAAAAAAABKq0tDTdd9996t27t84//3z17t1b9913n9K88HCrRYukPn0q3720Zk1xvUWLPBdLWFhYFWv6z+4mV3ehlby/s4vZqIsu2ll5pQrc5doJlX7Hb5JhCxYssCewJGnUqFGVJsO++OILzZw5U5JkMpnKfVmtVr366qt6//33PT4OAAAAAAAAAID/SEuT7rtP6t1bOv/84v/ed5+0adP/vp/etWuXLrnkEnXp0kUzZ87UmjVrtGXLFq1Zs0YzZ85Uly5d1Lt3b6WmpnokxtRUKTGx6s+zOnWquH5ammdSBC1atKhizU0u9ePN3U2unmpYchfbiBEjXGrv8ccHqWdP5+7t1cs7x2Uaid8kw5YvXy6TyWS/vvHGGyusb7Va9e9//7tUWcmXJHtCbNy4cco+054aBwAAAAAAAAAoJTW1OGnQpUvx8YJr1khbtvzvuMG+faM0blwfLVx4QOPHj9f69esrbG/NmjXq06ePFnlgS9aDD1Y9EWZz6pQ0blxVd3BVz8CBA6tYc5ZL/Xhzd5OLpxqW2sWWkJCgnk5ms3r16qWEhAS9/rpU5U14/y8srPiYzDONXzwzzGw2a+vWrfbruLg4tW3btsJ7Fi9erB07dtgTXSaTSZdffrmef/55tW3bVocOHdK0adM0ffp0e5Lt6NGjmj17tsaOHevJ4eAMZDabfR0CDKLkWmBtVE+gz58/jc9osfoqHm/168l+PNG20dYHjIO14ZpAnz9/G5+R4uVz0FjtG2ltwHhYH84L9Lnzt/EZKV5PxbJ4cYjuuCNcp06ZKqy3Y0dd7dgxXNK3kr6ptN1Tp04pMTFR//3vf5VQxa05lY1x48YgrV3rXKZm3boQ7d5dSy1bZpbZdnXZ7m/ZsqXatGmjHTt2VHLHRklrJPWqdl/duxeqVatcZWVV+1antGsXpjVrQl24P19ZWY4Zy+eff16XX355NZ6xVnwE5XPPPaesrCy1bi29/37V1mrxvVa9/36eWrcu9Nq8nS4vL8/7nf4/k9W2PcrANm7cqC5dutiTVomJifrkk08qvGfYsGH68MMP7fd069ZNP//8c6mjFceNG6eXXnrJnjTr2rWr1q1b55mBIGCkpKQoJSWlVLnZbHbY6pycnKzY2FgvRgYAAAAAAADAFbt21db48RcqPz+4GnflSeojaUOVardp00ZTp051JrxS3nrrfC1eXNVjCUu7/PI9uvvuzW6J5XS7du3S+PHjlZ+fX0nNLpJWSwqvctuhoRY999yPatXqpAsRVs/u3bX08MP9nL7/lVdW2JOOp1u/fr1eeumlKsyTFBoaqkcffVTdunVzKN+1q7befbejduyoW+69bdoc18iRW7w6ZyVlZGRo9OjR9uutW7eqffv2XunbL3aGpaenO1xXZXK+/fZbh11hEydO/D/27j0uqjr/H/jrCMIQoKViF800LTUvISAJG6mVbbrubptRu5Vliu6KC9Wa6bc1LWsVd3UtktCAxEu7bRi1+7O11C4u5qAOI3nJpSQN0FTMTS4yjsD8/hjPxMDA3M7M+Zzh9Xw85iHncM7nvD9nPszgvHl/Pg7XGFu0aBHeeOMN1FxOg5aUlKC2thaR/lx5jzTn+PHj2Llzp9phEBERERERERERkcJycka4mQgDrImcTAA/cenosrIylJeXY+DAge6G18axY929PL+b1zE4MmjQIMybN8+FRE8JgGQABXAlIRYS0oR58/b5PakzcOB5DB58rsOEU3sGDz7nMBEGWAt5li5dipycnA4r6QYPHoyZM2di0KBBbb43aNAPWL68COXl3bFjxw04dqwbGhqCERbWiAEDanD33d+2e/3OQhPJsFOnTgGALbF17bXXdnj8gQMHcO7cOVtVWK9evTBx4kSHx4aHh+OnP/0p3nnnHbvzf/IT1160qHPq378/xo4d22Z/68owIiIiIiIiIiIi0o6jR7t7lOywSgQwCtap/5zbsWOHIskwk8ndxJ29hgbfpQlcT/Qcxb33vosPP5wkdHXTzJkH3a4aDAlpwsyZBzs8ZtCgQVi+fDnKy8uxY8cOHDt2DA0NDQgLC8OAAQNw9913uzRWBg48j4EDla/yCwSaSIZduHDBbrtbt44z1bt27bJ9La8VJifGHImJibFLhh09epTJMOrQtGnTMG3atDb7Dx8+jOHDh7fZHx8fj/DwcD9ERqKrr6+3m4qVY8M9gX7/tNQ/0WJVKx5/XdeX1/FF26KNDxIHx4Z3Av3+aa1/IsXL90Gx2hdpbJB4OD48F+j3Tmv9cyfe0tJSbNiwAQcPHkR9fT3Cw8MxYsQIPPbYY4iOjvZrLK74f/9P52VEMwD83qUjz507h/Hjxzs9zlkfr776Cnz7rduB2oSFNbbbtrscxTp+/HjMnDkTpaWl2LhxIw4ePIi6ujpERERgxIgRmDp1qm0sLFkClJbWYePGEBw82AV1dRIiIiwYMaIZU6eaER0dDGvCUR3jxwPXX3/RzTW6LuLee12Lefz48UhJSfE2TGEZjUbVrq2JZFjrxeOCgzsOW67MkSvJxo0b1+Hxffv2tds+f75zlwuS8sLDw50mcalz4tjwTqDfPy31T7RY1YrHX9f15XV80bZo44PEwbHhnUC/f1rrn0jx8n1QrPZFGhskHo4PzwX6vdNa/xzFazAYkJaWhuLi4jbH7927F3l5eUhISEBmZibi4uJ8Gos7vvzS2wiiXT7ywoULHsXauo+xsUCL/JPbBgyoabdtb7Vs74477sAdd9zh9Jw77rA+2gpRLC5vPPggcOONQHo6oNe3f1xCApCZKSEu7gr/BSe4sDDX14VTWttFtATU+gbV1dV1ePyuXbvsKsGSkpI6PF6ns2b75XOctU9EREREREREREREjm3ZsgVJSUkoLr4IIAvA5wC+uPxvFuTKHr1ej6SkJGzZskW1WFvz/qPhSNePjHT92I54W0h0991elJV1UnFxwO7dQEkJkJoKJCYCI0ZY/01Nte7fvdt6HIlBE5VhcuZYTlZ920HN54kTJ3D06FHbsT179nQ6l2Z9fb3ddteuXb0Jl4iIiIiIiIiIiKhTMhgMmDJlGczmTwAkODgiEUAqgN0A0mEylSA5ORlFRUWKVoh5KiLC2xZqXT5SiWkiASAmBhgzBnBQhOdUfHwjBg7kTGmeiomxPkh8mqgMu+GGG+y29+3b1+6xLf+KQJIkJCYmOm3/hx9+AGCdVhFQLiNPRERERERERERE1Jk8+ujbMJt3wHEirKVEAEUAfgaTyYT09HTfB+cC7/NTpS4fOWPGDG8vZvPaa4DOzeXOdDpg+XKT8wOJAoAmkmG33nqr7WuLxYJPPvkE33//vcNj169fbzsOAMaOHeu0/WPHjtltX3PNNZ6GSkRERERERERERNQpbdx4BGVlLwFwdV2gMAAFAGKh1+thNBp9F5yLvJ1yEMhz6aiEhATEKFhSFBcHFBS4nhDT6azHx8Q0KxYDkcg0kQzr3bs3brnlFtt2Q0MD5s6d2+a49957D8XFxXbrhU2aNMlp+/v377fbvvHGG72IloiIiIiIiIiIiMg7RqMRqampSExMxMiRI5GYmIjU1FQhEkbtmTcvFK4nwmRhADIBAHl5riWSfEmectAzuwHsd3qUTqdDZmampxdp1+TJQFERkOCkKC8hwXrc5MmKh0AkLE2sGQYADz/8MBYuXAhJkmCxWLBx40acPHkS06dPR8+ePbFr1y6sWLHC9n1JkhAbG4vBgwd32G5jYyOMRqPtvKCgINx0001+6hURERERERERERHRj44ePYrnntuML79MAPAogN8BqANQCr0+F9nZ2UhISEBmZqYQa2zJSkqA06c9LTJIBDAKpaWlCkbkuddeA5KSAJNbMwg2AHA+1aNOp0NBQYHPnru4OGD3bsBoBPLygNJSoLYWiIy0TgE5YwbXuKLOSTPJsDlz5uDVV1/F2bNnbYmrjz/+GB9//LHtGDkJJnv22Wedtvvpp5+itrbWdt6IESMQFubuXy8QEREREREREREReeef/zyBdet+AqDtrFjWhFEqgN3Q69Nx++23Y/PmzZgsSHmP90VdM1Bbu1aJULwmTzmYnOxaQiwkpAmPPvohDh0Kwt697R/nzyRmTAyTXkQtaWKaRADo3r07Vq9ebduWE2ItH3JCS5Ik3H333XjggQectltYWAjgx0RaYmKibzpARERERERERERE1I5//asZ69Y9AcDZHH2JAIpw8eLdmDJlCgwGgx+ic877oq5oREZGKhCJMlydcnDw4HNYunQXfvGLLti+fTtKSkps01uOGDHCNr1lSUkJdu/eLVQ1H1FnopnKMABITk7G+fPnkZaWhosXL9pVgQHWhBYAxMfH4+9//7vT9urq6vD3v//dllgDgHvuuUf5wImIiIiIiIiIiIjaYTR2wbp1EwHoXDwjDEABzOYkTJ8+HQcOHPBhdK6pq/O2hUhER0crEIlynE05+NBDdfjf/4rszomJiUEMS7KIhKOpZBgApKSk4I477sCf//xn/Otf/8LZs2cBWKvBbr31VjzxxBP43e9+h5CQEKdtvfnmm6ipqbFt63Q6TJgwwWexExEREREREREREbU2Z04zLBZXE2GyMACZOHjwJzAajaonYCIivG2hFjNmzFAiFMW1N+VgTU0zPv3U//EQkfs0lwwDgJtvvhm5ubkArNVdtbW16NGjB0JDQ91qZ/To0Xjvvfds2927d4dO5+6bDhEREREREREREZFnSkqAL7/s5uHZiQBGISMjA++8846SYbktOhrQ6z0//+qrTyEmZopi8RARtaTJZFhLERERiPDwzw4SnE34SkRERERERERERORDeXnetjADRUUvKxGKV1JSgOxsz89fsWKocsEQEbWi+WQYERERERERERERkbeMRiNyc3NRWlqKuro6REREIDo6GikpKT6dgrC01NsWou2WglFLTAwwZgxQXOz+uUOGnMOjj96ifFBERJcxGUZERERERERERESdlsFgQFpaGoodZHH0ej2ys7ORkJCAzMxMxMXFKX79ujpvW4hUIgxFvPYakJQEmEyunxMa2oyNG3v4LigiIgBd1A6AiIiIiIiIiIiISA1btmxBUlISiosvAsgC8DmALy7/mwVgFABrUiwpKQlbtmxRPAYPV4BpoRbdunm65piy4uKAggJAp3PteJ0O2Ly5C3yQYyQishNwlWFNTU04d+4cGhoaAAD9+vVTOSIioL6+Xu0QSBCtxwLHhnsC/f5pqX+ixapWPP66ri+v44u2RRsfJA6ODe8E+v3TWv9Eipfvg2K1L9LYIPFwfHjOF/fOaDRiypRlMJs/AZDg4IhEAKkAdgNIh8lUguTkZGzdulXRaRNvuUUHvT7EixZKMWbMGL9OldjR83HHHcDWrV0wf74Oe/e2//FzfHwjli83ISamGd6ErubPVSC8F/J9kPxJztuoQbJYLBbVrq6AgwcP4v3338dnn32G/fv34/z587bvSZKExsbGds89f/48mpqabNsREREICfHmjYc6i/z8fOTn57fZX19fD4PBYNvOzMxkQpaIiIiIiIiISEBz5mzFiROrAIS5cHQDgGQAH2Dw4MFYvny5YnGUl3fH3LnjvGghBitXPoqBAwcqFZJiysu7Y8eOG3DsWDc0NAQjLKwRAwbU4O67v8XAgeedN0BEAaWiogLp6em27UOHDmHYsGF+ubZmK8NKS0uxcOFCbN261bbP3bxeeno6Nm3aZNueOXMm1qxZo1iMFLiOHz+OnTt3qh0GERERERERERF54NNPa91IhOHycQUAklBWVoLy8nLFkk8DB57H4MHnUFbmybpZu3HDDeeETIQB1r4NHHhA7TCIiLS5ZtjatWuRkJCArVu3wmKx2JJgkiTZHq6YN28eANjaeOedd3Dx4kWfxU2Bo3///hg7dmybhy8WUSUiIiIiIiIiImXl58fC9USYLAxAJgBgx44disYzc+ZBBAdfcvOsBgQF/QFpaWmKxkJEFIg0Vxn28ssvY/HixXYJMMC+KszVZNjw4cNx11132d68zp8/j3//+9/41a9+pXDUFGimTZuGadOmtdl/+PBhDB8+vM3++Ph4hIeH+yEyEl19fT327t1r2+bYcE+g3z8t9U+0WNWKx1/X9eV1fNG2aOODxMGx4Z1Av39a659I8fJ9UKz2RRobJB6OD88pee/27++C8+cjPIwkEcAonDt3DuPHj/ewjbbi4+vxv/+VYPnyWDQ2dnXhjAYEBz+Mt976A+69917F4nCVSGNZzVgC4b2Q74PkT0ajUbVrayoZ9u6779oSYS2TYDfddBMmTpyIAQMG4K9//SuqqqpcbvOhhx7Cjh07bO199NFHTIaR4sLDw9GtWze1wyABcWx4J9Dvn5b6J1qsasXjr+v68jq+aFu08UHi4NjwTqDfP631T6R4+T4oVvsijQ0ST2cYH0ajEbm5uSgtLUVdXR0iIiIQHR2NlJQUxMTEeNyuN/fuH//w+LKXzcCFC2sVf+5Gjz6NjIzdeO21m/Dtt9d1cORujBiRizff/KMwsxSJNJbVjCUQ3gv5Pki+FBbmbkWucjSTDLtw4QJ+//vf2xJhFosF3bp1w+uvv46HH37Ydlx+fr5bybBf/epX+N3vfofm5mZYLBZ8/PHHvgifiIiIiIiIiIio0zAYDEhLS0NxcXGb7+n1emRnZyMhIQGZmZl+T+iUlnrbQjQiIyMViKStQYN+wKuv7sNVV92F1asbUFRUg5oaC4BadOv2DZKSvsaCBfcgJuZNn1yfiChQaSYZtnr1apw+fdqWCIuMjMR//vMfjBw50qt2e/TogaFDh+Lw4cMAgG+++QY1NTXMVhMREREREREREXlgy5YtSE5Ohslk6vA4vV6PpKQkFBQUYPLkyX6KDqir87aFSERHRysQSfuio5vxzjtRAKJa7B3l02sSEQWyLmoH4KqNGzfaEmGSJGHVqlVeJ8JksbGxdmuOHTlyRJF2iYiIiIiIiIiIOhODwdAiETYKQBaAzwF8cfnfLLRM6phMJiQnJ8NgMPgtxghPlwuzqcWMGTOUCIWIiPxEE8mwU6dO2Sq3AKBfv36YNm2aYu3fcsstdtvl5eWKtU1ERERERERERNRZpKWlwWQaBmA3ACOAVACJAEZe/jf18v7PAcQCsCbE0tPT/Rajt0VdV199yqv1zoiIyP80kQzbt2+f7WtJkjBx4kR06aJc6FdddZXd9g8//KBY20RERERERERERJ1BSUkJiot7AigCkODk6MTLx/0MgHXKRKPR6NsAL0tJ8e78FSuGKhMIERH5jSaSYWfOnAEA21SGo0YpOz/ulVdeCcCaaAOA2tpaRdsnIiIiIiIiIiIKdMuWbQdQACDMxTPCLh9vrRDLy8vzTWCtxMQAY8Z4du6QIefw6KO3OD+QiIiEoolk2NmzZ+22e/TooWj7Fy9etNtWsuqMiIiIiIiIiIioM/joo8lwPREmCwOQCQAoLS1VOKL2vfYaoNO5d05oaDM2blT2c0kiIvIPTWR9QkND7batC3Aq59y5cwB+rDzr2bOnou0TEREREREREREFspISoK5uuIdnJwIY5dfZmuLigIIC1xNiOh2weXMXxMX5Ni4iIvINTSTDoqKi7LZbV4p56/Dhw3bbTIYRERERERERERG5zvsZDmcgMjJSiVBcNnkyUFQEJDhZ3iwhwXrc5Mn+iYuIiJQXrHYArrj66qsB/Lim1/79+xVt/7PPPoMkSbbKsIEDByraPhERESmoshKQJKBvX7UjISIiIiLyC6PRiNzcXJSWlqKurg4RERGIjo5GSkoKYmJi1A4PAOD9DIfRiI7+UoFI3BMXB+zeDRiN1oReaSlQWwtERgLR0cCMGdY1xoiISNs0kQwbPXo0goKC0NzcDIvFgo8//hgWi8WWHPPGrl278NVXX9na6tGjB4YP97Skm4iIiHwuI8OaDFu9Wu1IiIiIiIh8ymAwYPr013Dw4G0AHgXwOwB1AEqh1+ciOzsbCQkJyMzMRJzK8/fV1XnbQiRmzJihRCgeiYlh0ouIKJBpYprE7t27Iz4+3la5dfLkSbz33nuKtL1o0SIAsCXXxo0bp0i7RERE5AOVlUBuLpCTA1RVqR0NEREREZHPrFpVhPj4Jhw8uB5AKqzrao28/G8qACOAz6HXm5GUlIQtW7aoGC0QEeHd+ZGREKbKjYiIAo8mkmEAMGXKFACwTWf49NNPe72o5gsvvGCbIlH2xBNPeNUmERER+VBGBmA2Wx8ZGWpHQ0RERETkE6tWfY0//CEOFsttTo5MBFAEk+kuJCcnw2Aw+CM8h6KjvTv/pz+9RpE4iIiIHNFMMiw1NRXXXnutbbuqqgqTJk1CTU2N2201Nzfj6aefxksvvWRLrkmShFtvvRWTJk1SMmwiIiJSilwVJmN1GBEREREFIIMBmDu3H4AwF88IA1AAk2kY0tPTfRhZx1JSvDv///6vtzKBEBEROaCZZJhOp8OLL75oS1xZLBbs3r0bw4YNw6ZNm2A2m522UV1djbVr12Lw4MHIzMy0TbsIWCvOMvgX5kREROKSq8JkrA4jIiIiogA0fXodLJZQN88KA5AJvV4Po9Hoi7CciokBxozx7NyEBK7XRUREvqWZZBgApKSkYPr06XYJsRMnTuDxxx9H7969ceedd6KiosIuyfXwww/j3nvvxdChQ3HNNdcgNTUV5eXldm1IkoTnnnsO99xzj4q9IyIiona1rgqTsTqMiIiIiAJISQlw8KCni28lAhiFvLw8JUNyy2uvATqde+fodEBmpm/iISIikmkqGQYAa9aswcSJE21JLDmhVVNTg507d+KHH36wHWuxWPCPf/wD27dvR1lZGSwWi915sl//+tdYsmSJCr0hIiIil7SuCpOxOoyIiIiIAoj3eawZKC0tVSASz8TFAQUFrifEdDrr8XFxvo2LiIhIc8mw4OBgbNmyBc8//7xdZZec3GpZFSZvtzym9XEvvPAC3nrrLf92goiIiFzXXlWYLCcH0okT/ouHiIiIiMhHvM9jRaO2tlaBSDw3eTJQVGSd+rAjCQnW4yZP9k9cRETUuWkuGQZY1/d68cUXUVRUZKsSc5T0cpQAkx/jxo1DUVERFi1apHJviIiIqEPtVYXJzGaErlrlv3iIiIiISNOMRiNSU1ORmJiIkSNHIjExEampqaqttdVSXZ23LUQiMjJSiVC8EhcH7N5tnfYxNRVITARGjLD+m5pq3b97NyvCiIjIf4LVDsAbCQkJ+OCDD3D48GFs3rwZO3fuRHFxMUwmU5tjJUlCdHQ0JkyYgF/+8pdITExUIWIiIiJyi7OqsMu6rl8P3W23wdSrlx+CIiIiIiItMhgMSEtLQ3FxcZvv6fV6ZGdnIyEhAZmZmYhTKUsT4elyYTa1iI6OViASZcTEWB9ERERq03QyTDZs2DAMGzYMANDc3Izvv/8e33//Pf73v/8hLCwMvXr1QlRUFEJDQ1WOlIiIiNzirCrsMslsxk2FhTg4a5YfgiIiIiIirdmyZQuSk5NhMg0FkAUgGkAEgDoApQByAeyHXq9HUlISCgoKMFmF+fuiowG93psWSjFjxgyFoiEiIgocmpwmsSNdunRBVFQUhgwZgoSEBERHR6Nv375MhBEREWmNi1Vhshu2bYPu7FkfBkREREREWmQwGDBlyjKYTJ8AMAJIBZAIYOTlf1Mv7/8cQCxMJhOSk5NhMBj8HmtKinfnjxixDzEsxSIiImoj4JJhREREFCBcrAqTBTU24qbCQh8GRERERERa9Oijb8Ns3gEgwcmRiQCKAPwMJpMJ6enpvg+ulZgYYMwYz86VpGK8+ebvlQ2IiIgoQATENIlEoquvr1c7BBJE67HAseGeQL9/Wuqfr2OVqqoQkZsLyc3zbti2DV/ff7/f7p2/njNfXscXbWtpLJN/cWx4J9Dvn9b6J1K8asUSCO+DvmhfpLFBwN///jXKyl4CEObiGWEACgAkQa/X4z//+Y+ia3C5Mj6WLeuCiRPDYTK589twA/70p1rcfPNtqKmp8TJKMQX6z5bW+idSvGrGEgjvhXwfJH9qaGhQ7dqSxWKxqHZ1AdXX1yM8PFztMEhw+fn5yM/Pb7O/vr7ebhqFzMxM9OvXz4+REREFhpFr12LA1q0enfvNpElcO4yIiIiIAACPP34zzp8f6sGZuwH8BBMnTsRvf/tbpcNyat++q/GXv4yG2Rzk9FhJMuGJJ7biF7/gBFBERCS2iooKu8rrQ4cOYdiwYX65NivDLmtoaEBmZiZWrlyJM2fOqB0OCe748ePYuXOn2mEQEQUkXXU1+m3f7vH5cnWYqVcvBaMiIiIiovLycmzfvh3Hjh2DyWSCTqfDgAEDMGHCBAwcOFDt8No4erS7h4kwwDpl4igcO3ZMyZBcNnr0aSxdugs5OSNQVtaj3eNuuOEk0tK+xqBBTIQRERF1pNMnwy5evIisrCz8+c9/RnV1tdrhkEb0798fY8eObbO/dWUYERG57+bCQgQ1Nnp8vrx2GKvDiIiIiJRx9OhR5OTkoKysrM33ysrK8OGHH2Lw4MGYOXMmBg0apEKEju3YcYOXLcxAQ8NfFInFE4MG/YDly4tQXt4dO3bcgGPHuqGhIRhhYY0YMKAGd9/9LQYOPK9afERERFrSaadJNJvNWLNmDZYvX45Tp05Bvg2SJKGpqUnl6EirDh8+jOHDh9u25WkS4+PjOf0mAbAmTPfu3Wvb5thwT6DfPy31z1exSlVViBg1CpLZ7FU7lpAQ1JWWwtKnj9cxdcRfz5kvr+OLtrU0lsm/ODa8E+j3T2v9EyletWIJhPdBX7Qv0thQwocffojHH38cJtNQACkAogFEAKgDUAogF8B+AIBOp8P69etx7733qhNsKxMmXIG9e735O/DPcdttc7Ft2zbFYgq08eFPgX7vtNY/keJVM5ZAeC/k+yD5k9FoxPjx423bnCbRhy5duoScnBwsW7YMJ0+etEuCddK8IPlBeHg4unXrpnYYJCCODe8E+v3TUv8Ui/XGG4GqKrdPq62txa5du2zbt99+OyKvuw7Q6byPyQ3+es58eR1ftK2lsUz+xbHhnUC/f1rrn0jxqhVLILwP+qJ9kcaGuwwGA6ZOfRVm8ycAEhwckQggFdb1tdJhMpXg8ccfR1FREeLi4vwaqyMNDd62EInY2FhNjbfOJNDvndb6J1K8asYSCO+FfB8kXwoLC1Pt2sInw86fP4///ve/OHv2LGpqahAZGYmBAwdi6FD35nxuampCXl4eli5disrKSrskGBEREQlCp/MogWUJDYW5e/cft3v18nsijIiIiCjQPPro2zCbdwBw9sFVIoAiAMkwmT5Aeno6du/e7fsAnYiI8LaFWsyYMUOJUIiIiEhlQibDmpqasHbtWmzcuBEGgwHNzc1tjrnqqqvw8MMPY8GCBbjuuus6bK+goADPPfccvvnmG4dJMHnfyJEj8cILLyjXESIiIiIiIiIiDdq48QjKyl6C80SYLAxAAYAk6PV6GI1GxMTE+C5AF0RHA3q95+dfffUpxMRMUSweIiIiUk8XtQNo7cCBAxg6dCjS0tKwd+9eNDU1wWKxtHmcO3cOWVlZGDJkCP7xj384bKuiogITJkzAr3/9a5SXl8NisUCSJFsiTG5r2LBheOedd1BaWor77rvPj70lIiIiIiIiIhLPvHmhcD0RJgsDkAkAyMvLUzokt6WkeHf+ihXuzUpERERE4hIqGVZcXIxx48bh6NGjtkSVnLxy9LBYLKirq8PDDz/cJiH2wQcf4NZbb8Unn3zSJgkGWBNhQ4YMwd///nccOHAADzzwgL+7S0REREREREQknJIS4PTpGz08OxHAKJSWlioYkWdiYoAxYzw7d8iQc3j00VuUDYiIiIhUI0wyrL6+Hr/5zW/www8/2CW8OtIyKZaSkoITJ04AAN5++2386le/wvnz522JMJnFYsGgQYOwceNGHD58GA899BDXDSMiIiIiIiIiusz7oq4ZqK2tVSIUr732mvtLyYaGNmPjxh6+CYiIiIhUIUwy7KWXXsK3337bJjElV4hFRkbi2muvRVhYmG1fSxcuXMBLL72EQ4cOYdq0aWhsbGwzJeKAAQOQn5+PI0eO4JFHHmESjIiIiIiIiIh8zmg0IjU1FYmJiRg5ciQSExORmpoKo9GodmgOeV/UFY3IyEgFIvFeXBxQUOB6QkynAzZv7oK4ON/GRURERP4lRDLs0qVLePPNNx1OY7hhwwacOXMGP/zwA6qqqlBXV4ejR48iIyMDvXr1sqv8evvtt/HUU0/BbDbbJcEiIyPxyiuv4MiRI3jsscfQpYsQ3SYiIiIiIiKiAHb06FEkJMxBbGwxsrMfhV6/BgcProFe/yiys4sRGxuLxMREGAwGtUO1U1fnbQuRiI6OViASZUyeDBQVAQkJHR+XkGA9bvJk/8RFRERE/hOsdgAA8OGHH+Ls2bO2KQ8lScKUKVOwadMmhIaGtjn+xhtvxLPPPoupU6fi3nvvxaFDhwAANTU1+PTTT23tAMD48eOxYcMG9OnTx699IiIiIiIiIqLO65//PIH8/J/AYpnr4LuJAFIB7IZen46kpCQUFBRgsiBZmIgIb1uoxYwZM5QIRTFxccDu3YDRaJ0GsrQUqK0FIiOB6GhgxgzrGmNEREQUmIRIhun1ervtgQMHYsOGDQ4TYS1de+21KCwsxK233oqGhga7JJgkSfj1r3+NDRs2ICgoyGexExEREREREZFYjEYjcnNzUVpairq6OkRERCA6OhopKSmI8UPG41//asa6dU8ACHNyZCKAIphMyUhOTkZRURHiBJifLzoaaPVRjVuuvvoUYmKmKBaPkmJimPQiIiLqjISYL3D//v0AYKsKmzt3LsLCnP3CaDVw4EA8/PDDdkkwABgyZAjy8/OZCCMiIiIiIiLqJAwGA0aOfFzVaQmNxi5Yt24inCfCZGEACmAyDUN6errP4nJHSop3569YMVSZQIiIiIgUIkQyrLy83G69sJ///OdunX/ffffZvpYTagsWLEDXrl2VCpGIiIiIiIiIBLZqVRHi45tw8OB6WKcgTAQwEj9OSWgE8Dn0ejOSkpKwZcsWn8QxZ04zLBadm2eFAciEXq+H0Wj0RVhuiYkBxozx7NwhQ87h0UdvUTYgIiIiIi8JkQw7f/687euePXviuuuuc+t8R4uyuptQIyIiIiIiIiJtWrXqa/zhD3GwWG5zcqQ8LeFdSE5OVrxCrKQE+PLLbh6enQhgFPLy8pQMyWOvvQbo3MzphYY2Y+PGHr4JiIiIiMgLQiTDampqbF/36OH+L009e/a027722mtx5ZVXehsWEREREREREV1mNBqRmpqKxMREjBw5EhMmTMCaNWtQXl6ualwGAzB3bj+IMC2h93msGSgtLVUgEu/FxQEFBa4nxHQ6YPPmLhBgyTMiIiKiNoLVDgAALl68aJsm8YorrnD7/NDQULvtq666SpG4iIiIiIiIiDq7TZu+xDPPHMHp09cC+B2AOgClAHIBfIgPP/wQgwcPxpo1azBu3Di/xzd9eh0slgg3z5KnJfyJoskn75uKRm3tWgUiUcbkyUBREZCeDuj17R+XkABkZoKJMCIiIhKWEMkwpXGtMCIiIiIiIiLvGAzAo4/+D2VltwBovQaUvA7XbgDpKCsrwcSJE1FQUIDJkyf7LcaSEuDgQXcTYTLrtIQbN25ULOa6Om9biERkZKQSoSgmLg7YvRswGq2Vb6WlQG0tEBkJREcDM2ZY1xgjIiIiEllAJsOIiIiIiIiIRGM0AsuWVaOoqBa1tc0A6hAZ+Q2Sksrwf//3U8QIlFHYsgV44IFmXLzobOYV6xpcQDJMpg+QnJyMoqIixPmpREiJaQkPHlQuGRbhaV7OptbhuugiiIlh0ouIiIi0S4g1w4iIiIiIiMh/Wq/9lJiYiNTUVBiNRrVDc4tW+mEwACNH1iE2Fti8OQqnT9+ICxcG4cKFaJw+fT82b/4/xMaaMHLkdBgMBrXDhcEAJCcDFy+6+pGBdQ0uIBYmk0nxdbg6osS0hHXel3P92Fq0ty2UYsaMGQpEQkREREQtMRlGRERERETUSRgMBiQkJCA2NhbZ2dnQ6/U4ePAg9Ho9srOzERsbi8TERCESMh0xGAwYOfJxxMYWIzv7Uej1a3Dw4Bro9Y8iO7tYqH5s2QL85CdNLkzll4iDB7OQmLgUW7Zs8Uts7UlLA0wmd8+yrsEFAHq93m8JSSWmJYzwvpzLJiXFu/NHjNgnVIUgERERUaBgMoyIiIiIiKgT2LJlC5KSklBcfBFAFoDPAXxx+d8sAKMAWBMZSUlJqidk2rNqVRHi45tw8OB6WNesSgQwEj+uYWUE8Dn0erPq/TAYrFMNms1BLp4RhkuX3sKUKctUS+SVlADFxZ6ebV2DCwDyvJ+/0CVKTEs4YsQIJUIBYJ1GcPToRo/OlaRivPnm7xWLhYiIiIh+JNyaYUePHsWdd96pWhuSJOHjjz/26vpERERERBSYjEYjcnNzUVpairq6OkRERCA6OhopKSlCV3MYDAZMmbIMZvMnABIcHCEnknYDSIfJVOL3tZ9csWrV1/jDH+JgrULqiHUdK5MpWdV+pKW5M9WgLAxm81+Qnp6O3bt3+ySujiixBhfwe5R6P3+hS6KjAb3emxZKMXXqVPzvf/9TKCLgz3824ac/DXMjCQoADVi58hLi4sYoFgcRERER/Ui4ZFh9fT127tzp0bkWi8WrNiwWCyRJ8ujaREREREQUuAwGA6ZPfw0HD94G4FEAvwNQB6AUen0usrOzkZCQgMzMTKGSR7JHH30bZvMOuJpEApJhMn2gWkLGEYMBmDu3H4BQF8+wrmNlMiWp0g9vK6z0ehOMRqPfk6xKrMEFALW1td425JKUFCA72/PzR4zYh+joqfj0008Viykmphnz5u3DX/4y2qWEmCRdxMqVVXj66STFYiAiIiIie8JNk2ixWDx6eNsGERERERGRI1qals+RjRuPoKzsJThPhMmsSSQg1q9rPzkzfXodLBZXE2Ey6zpWavRDiQorf0012JISa3ABQGRkpNexuCImBhjjYTGVL6clHD36NJYu3YXBg891eNzIkXXYuzcUTz99k0/iICIiIiIroZJhkiSp9iAiIiIiImpNnpbPYrnNyZHytHx3ITk5WbX1nhyZNy8UrifCZNYkEuC/tZ86UlICHDzo6eJQ1nWs/N0PJSqs/DXVYEtKrMEFANHR0d425LLXXgN0OnfPkqcl9F0l56BBP2D58iLs3FmH1FQgMREYMcL6b2qqdVx/8UUEBCwmJSIiIgo4wkyTyOosak91dTUMBgP27dtn+/fUqVO2769btw7Tpk1TL0AiIiIicspoNOL111/Hrl27YDKZoNPpcPvttyM1NVXYtba0Ni2fIyUlwOnTN3p4tjWJpEZCpjUlqqxKS/+mRCguU6LCyl9TDbakxBpcADBjxgwFonFNXBxQUAAkJwMmk/Pj/T0tYXR0M+64wy+XIiIiIqJ2CJEMO3bsmNohkIBOnTqFMWPG4Ntvv1U7FCIiIiLykMFgQFpaGoodLJ5UVlaGvLw8Ydfask7L526ZjDwt309UWe+pNSWSSLW1a5UIxStKVFn5ux9KVFj5a6rBlrxdgwuw/kz7e+xPngwUFQHp6R0n80aOrENeXgTi4jgtIREREVFnIkQy7IYbblA7BBKQyWRiIoyIiIhIw1555T945pkjaGpaCSACQB2sVSO5APbbjtPr9UhKSkJBQQEmT56sSqytKTUtn9rJMCWSSGokZFpTosrK3/1QosLKn1MNyuQ1uBzkr12wGzrdEWRmFikdlkvi4oDduwGj0ZoILi0FamuByEjr8zFjBhAT43WWkoiIiIg0SIhkGJEzUVFRiI2NRVxcHEaPHo1f/vKXaodERERERO0wGKxVVQcP3gGg9dxgiQBSAewGkA6gBID1D6GSk5NRVFQkRIWYFqflc0SJJJIaCZnWlKiy8nc/lKiwmjEjV6lw3PLaa0BSkmtTDv6oASEh81BQUKD6z3BMjPVBRERERCRjMoyE1aNHDxQUFGD06NGsHiQiIiLSiC1b5HV7nGUvEgEUAUgG8AEAa0JMlLW2tDgtnyNKJJH8ufZTe5SosvJ3P7ytsEpI0KlWWejuGlxAA/r0eRqbNv0J48aN83F0RERERETu66J2AETt6datGx544AEmwoiICIB1yqPUVCAxERg50vpvaqp1P1Gg0Po4Nxjc+fAcsK6vVQAg1rZHr9fDKECHtTgtnyPeFkNdffUp1ad6BKxVVt4YMWKfKv147TUgNLTZzbOsFVaZmZk+iclV8hpcCQkdH3fllV/iqacKkZU1UYixQkRERETkCCvDiIiISGgGA5CW5vgv6/V66xRU8fFX4MEHr8SgQT/4PT4iJbgyzhMSgMxMa8WGqNLS3J1WDbAmxDIB/MS2R4S1trQ4LZ8j3k7Vt2LFUOWC8YI3VVaSVIw33/y98kG5IC4O2Ly5C6ZMaYLZHOTCGQ3o2vURvPvu/6k+1SDgfA2uhx6qw//+9zWsawISEREREYmLyTDyWHV1Nfbt24fy8nLU1NSga9eu6NmzJ2655RbExcWha9euaodIREQa9+N0ax0ft3dvMEpLb8e8efswevRp/wRHwjEajcjNzUVpaSnq6uoQERGB6OhopKSkqJ5Y6Yir41yvt67hU1BgrdgQTUmJp9PBAdYpE0cB2A8AKPV+jkKvaXFaPke8SSINGXIOjz56i/JBecjTdaxWrryEuLgxvgrLqcmTgc8/D7q8jl5HSaPdGDEiF2+++ZwQibCW2luDq6amGZ9+6v94iIiIiIjcxWSYBp07dw4Gg8H2KCkpQUVFRZvjLBaLT66/efNmvPrqq/j888/bvUZkZCQefPBBPPvss7j55pt9EgcREQU2d6dbM5uD8Je/jMbSpbswfrxvYyOxGAwGpKWlodjBp/16vR7Z2dlISEhAZmamcB8wuzvOTSbggQeasWtXF+EqxPLyvG1hBgBr9U5tba23jXnN24oq67R8c5QLyAueJJFCQ5uxcWMP3wXlAXfXsZKki1i5sgpPP53k++CciIsDDhyIgNEIZGRUo6ioBjU1FgC16NbtGyQlfY0FC+5BTMybaodKRERERBSQmAzTgEOHDuGDDz5ASUkJDAYDjh07pkocJ06cwCOPPIKdO3c6Pba2thZ5eXnYuHEjFi5ciIULF0KSJD9ESUREgcKT6dbM5iDk5IzAzJm+iYnEs2XLFiQnJ8PkZLDo9XokJSWhoKAAkwUqq/JknF+82AVTp57DkSNiJSq8L+aKtn0lwlpbWp2WzxF3k0g6HVBQIF7CFfhxHav09I4r90aOrENeXgTi4m7yX3AuiIkB3nknCkBUi72j1AqHiIiIiKjT6KJ2AORcbm4uFixYgIKCAtUSYV999RVGjx7tUiKsJbPZjEWLFuGRRx5BU1OTj6IjIqJA4810a2VlPVBayl9xOgODweBSIkxmMpmQnJwMg8Hg48hc4804/+9/e2DTpi+VDchLdXXetvBjAkyEtbYAa0WVTufuWfK0fGJlkuQkUkJCx8clJFiPEyhn3Ia8jlVJCZCaCiQmAiNGWP9NTbXu/+KLCCGTeUREREREpA5WhpFT33//PSZMmIDvvvuuzfdiY2Pxy1/+EgMGDEBDQwO++uor/O1vf8PJkyftjvv73/+O3r1745VXXvFT1EREpGXeTre2cWMI7rhDmVgUUVkJSBLQt6/akQSUtLQ0lxNhMpPJhPT0dOzevdtHUbnO23H+zDNHhFrPKaKjpZBc8uPUiCKstQVoe1o+R+QkktFoHX+lpUBtLRAZaV0jbcYMx+tCiaq9dayIiIiIiIhaYzJMw0JCQjB8+HDExcXhnXfewQ8//OCT68yaNavNmmSRkZHYtGkTfvGLX7Q5funSpVi6dCleeOEFu/2vvvoqfvrTn2LixIk+iZOIiAKHt9OtHTwoWGVYRoY1GbZ6tdqRBIySkhKHa4S5Qq/Xw2g0IkblT9G9HeenT18jRD9k0dEdT1vnXCkAICEhQZg+Adqfls8RJpGIiIiIiKizYTJMI4KDg3HLLbcgLi7O9rj11lsREhICAPjoo498kgzbvn07CgsL7faFhITgk08+aXfql65du2Lx4sW48sor8dRTT9l9Lz09HUeOHEFwMIceERG1z9vp1urqBFqnsrISyM21fr1gAavDFJLnZVlVXl6e6gkXJaYVzMtbq3o/ZCkpQHa2Ny3kQafTITMzU6mQFONaRZXXpXFERERERETkI8xIaMD8+fOxbNkyhIWF+f3aL730Upt9ixcvdmkNhCeffBIffPABtm/fbtt39OhR/O1vf8Njjz2maJxERBRYvJ1uLSLCokwgSsjIAMzmH79mdZgiSr0sq/L2fCUoMa2gCP2QxcQAY8Z4ug7abuh0R1BQUCDcWlstsaKKiIiIiIhImwSbQ4gcufbaa1VJhB0+fBhFRUV2+3r16oVnnnnG5TaWLVvWZl+2d38yTEREnUB0tHfnjxjRrEgcXmtZFQYAOTlAVZV68QSQOi/Lqmpra50f5GPejnOgVIh+tPTaa4BO5+5ZDRgxIhdFRUWYPHmyL8IiIiIiIiKiTo7JMGrX22+/3WbfE088YZua0RWxsbGIjY2121dcXIxjx455HR8REQWulBTvzp861axMIN5qWRUGWL/OyFAvngAS4WVZVWRkpEKReM7bcQ7kCdGPluLigIIC1xNiQUFmrFp1AgcOvCl0RRgRERERERFpG5Nh1K4PP/ywzb4HHnjA7XYcneOobSIiIpk83ZonBg8+h+hoASrDWleFyVgdpohoL8uqvD1fCTExwNVXf+Ph2bsB7BeiH61NngwUFQEJCR0fN3jwOezYYcZTTw3yT2BERERERETUaTEZRg7V19fDaDTa7bviiis8WqA9KSmpzb7W0y8SERG15sl0ayEhTZg586BvAnJX66owmeDVYVJVlSaSdSlellXNmDFDoUi8s2KFGUCDm2c1AEgHIE4/WouLA3bvBkpKgNRUIDERGDECuO22RkyceAwrV36G5cuLEBMjQOKaiIiIiIiIAh6TYeRQaWkpmpvtP5yIi4tDcHCw222NHj0aXbt2tdtXUlLiVXxERBT43J1uLSSkCfPm7cOgQT/4NC6XtFcVJhO4Oix01Sqhk3WymJgYjPGwfDAhIcGjP/DxhUcfHYLBg5+H6wmxBgDJAEqE6kd7YmKArCzg88+BAweAbdsu4Le/PYCBA8+rHRoRERERERF1IkyGkUP//e9/2+wbNMizKWxCQkLQt29fu33l5eVobGz0qD0iIuo8XJ1uLT6+EUuX7sLo0af9E5gz7VWFyQStDtNVV6Prhg1CJ+taeu2116Bzs3xQp9MhMzPTRxF5ZtOmXyMk5G5Ypz7syG4ASQA+ELIfRERERERERKJiMowcOn78eJt9N9xwg8ft9evXz267qakJFRUVHrdHRESdR3vTrSUmWrdLSoDt2y+IUREGOK8KkwmYcLq5sBCS2Sxssq61uLg4FBQUuJwQ0+l0KCgoQFxcnI8jc09cXBzefff/oNPdBSAGQBaAzwEcuPxv1uX9PwFQImw/iIiIiIiIiETl/px3KlmyZInt62uuuQazZs1SrO033ngDp06dsm0vWrRIsba1quX9kF1//fUet+fo3NOnT+PGG2/0uE1fO3PmDKqrq9065+jRow7319fXKxESBYDWY4Fjwz2Bfv+01D81Yh00CFi2TJx42ruubskShHRUFSYzm2FesgSmFSs8uo5S5LZ01dXot327bb8lJwd1c+bA0qePx222t62kO+64A1u3bsX8+fOxd+/edo+Lj4/H8uXLERMTg5qaGp/F4yn7fvy+3eNE74czWnqdE1Gg3z+t9U+keEV6H9TidZRuX6SxQeLh+PBcoN87rfVPpHjVjCUQ3gv5Pkj+1NDg7prZypEsFotFtau7oUuXLpAkCQBw6623wmg0Ktb2qFGjcODAAdt2U1OTYm37S//+/fHtt9/a7fPmqZ0yZQoKCwvt9r3zzjtITk72qL3Zs2djzZo1dvv+3//7f5g8eXKH582cORMbN25ss//ixYu2r4ODgxEUFNTmmLKyMq+q2V544QW8+OKLHp8PAJmZmW2q4oiIKHDpqqtx9+zZCHJxKuCm4GDsWLMGpl69fByZcyPXrsWArVthBJALoBTAuchI4LrrMGDAAEyYMAEDBw5UN0gnysvLsWPHDhw7dgwNDQ0ICwvDgAEDcPfddwsfe0uB0g8iIiIiIiKilioqKpCenm7bPnToEIYNG+aXa2umMkzmq9yd3K6ccOvsHGXsw8LCPG7P0bkXLlxwet6lS5fsEl+ONDY2Olx/TCN5XiIiCiA3Fxa6nAgDgKDGRtxUWIiDCla8e0JXXY0z27bhYQDFLb9RWwuUlaGsrAwffvghBg8ejJkzZ3q8jqivDRw4MCCSRYHSDyIiIiIiIiJRcM2wy5gEs3fp0qU2+9xdoL4lR8kwsytTSBEREWlE62kGXXXDtm3QnT3rg4hcV7lmDcY1NdknwhwoKyvDc889h3379vklLiIiIiIiIiIiJWiuMozU403C0NG5rlRu5efnIz8/3+PreiM1NdXtaSGPHj2K++67r83++Ph4hIeHKxQZaVl9fb3dmjYcG+4J9Punpf6JFqta8bS8rrtVYbKgxkaM37Onw7XDfNk//fvvI62kBCYXjzebzVi5ciW2bt2KmJgYh8eINj5IHBwb3gn0+6e1/okUrwjvg768rq+vo3T7Io0NEg/Hh+cC/d5prX8ixatmLIHwXsj3QfInJZe/cheTYbBfIyw4mLcEALp27dpmnzeL2zk6NyQkxOP2/KF3797o3bu3Im2Fh4ejW7duirRFgYVjwzuBfv+01D/RYvV3PJ5WhclC1q9HyKJFQN++Lh2vZP8Wz5vnciJMZjKZ8Nxzz2H37t0uHS/a+CBxcGx4J9Dvn9b6J1K8asXir+v6+jpKty/S2CDxcHx4LtDvndb6J1K8asYSCO+FfB8kX/JmKSZvcZpEAOfPn7d9HRERoWIk4rjiiiva7FM6Gca/CCAiokDhaVWYjdkMZGQoF5CLSj74AHvOnPHoXL1er+pfdBERERERERERuarTl0HV1NSgqqrKtn3llVeqF4xAevbs2WZfXV2dx+05OtfRNQJVfX292iGQIFqPBY4N9wT6/dNS/0SLVa146uvrva4Kk1lyclA3Zw4sffo4vE5H2556Y948r87Pzs7GypUr2+wXbXyQODg2vBPo909r/RMpXjXfB/1xXV9fR+n2RRobJB6OD88F+r3TWv9EilfNWALhvZDvg+RP3hTceEuyuLJwkwC6dOkCSZJgsVgQHR2t2F8iv/LKK/jDH/5gW9Pqpz/9Kf79738r0rY/9e/fH99++63dPm+e2oULF+JPf/qT3b4lS5bg+eef96i98ePH47PPPrPbV15ejhtvvNHTEFXV3lpm9fX1MBgMtu3MzEz069fPj5EREZG/dTGbEazQL3ONYWFo9tM0wrrqarwwcyaKvWhjyJAhyFChoo2IiIiIiIiItKeiogLp6em27UOHDmHYsGF+ubYwlWEVFRUuH2s2m1FZWelRsqepqQl1dXX45ptv8O9//xvr1q2zJdkkScKoUaPcbjMQDRgwoM2+1sk2d7R+foOCgjSdJDp+/Dh27typdhhERCSA5pAQmAVfB9ORmwsL4e3f56n5F11ERERERERERK4SJhnWv39/W3VWe+Tk15EjR9C/f39FrisnwWTJycmKtKt1gwcPbrPv6NGjHrUlJy9bGjhwIIKDhRl+buvfvz/Gjh3bZn/ryjAiIiIRyVM7ertSqpoL3xIRERERERERuUqobISrlV5KzuwoJ8IkScKECRMQHR2tWNtaNmrUKHTp0gXNzc22fQaDAY2NjW4nsQwGAy5dumS3LyYmRpE41TJt2jRMmzatzf7Dhw9j+PDhbfbHx8cjPDzcD5GR6Orr67F3717bNseGewL9/mmpf6LFqlY8/rqu0tfRzZ2LoMZGRAPQexHX7bffjvHjx7fZL9r4IHFwbHgn0O+f1vonUrx8HxSrfZHGBomH48NzgX7vtNY/keJVM5ZAeC/k+yD5k1LLX3lCqGRYR5VhLRNgzirI3GWxWDBs2DCsW7dO0Xa1LDw8HKNGjUJJSYltX319Pfbv34/Ro0e71dauXbva7Lvjjju8jlFLwsPD0a1bN7XDIAFxbHgn0O+flvonWqxqxeOv63p1ncpKYMMGAEAKgGwv4pg9e7ZLcYg2PkgcHBveCfT7p7X+iRQv3wfFal+ksUHi4fjwXKDfO631T6R41YwlEN4L+T5IvqTmDDNdVLuyAxaLpd2Hq8e5+xg8eDD+/Oc/Y+/evbj22mtV6rmY7r333jb7Nm/e7HY7js5x1DYRERH5QUYGYDYDAGIAjPGwmYSEBM1XehMRERERERFR5yBMZVhHVVkWiwXTp0+HJEmwWCzo168fXnzxRY+uExwcjMjISFx11VUYPnw4rrrqKk9DDni//vWv8ac//clu37p16/DSSy8hJCTEpTb279+Pffv22e277bbbMGDAAMXiJCIiIhdVVgK5uXa7XgOQBMDkRjM6AJl//KOCgRERERERERER+Y4wybDHH3+8w+9Pnz4dgHWKxB49ejg9nrw3fPhw3H777XbTHFZXV2PVqlWYP3++S2383//9X5t9s2fPVixGIiIickNUFFBVZbdrcG0t5q9ejWWrV8Pcao1PR3Q6HQpycxF3112+ipKIiIiIiIiISFHCJMNc0Xq6RPK9hQsXtpnScPHixZgwYYLTqZFWr16Njz76yG7fjTfeiIcffljxOEVXX1+vdggkiNZjgWPDPYF+/7TUP9FiVSsef11X0euEhtq31diIUWPHYmmfPsjJyUFZWVm7p8bHx2P58uWIiYlBjdlsm27Rp/FSQOHY8E6g3z+t9U+kePk+KFb7Io0NEg/Hh+cC/d5prX8ixatmLIHwXsj3QfKnhoYG1a4tWTSSYXriiSdsX3szTWKg6t+/P7799lu7fUo9tffddx/++c9/2u3r1q0bNm3ahJ///Odtjr906RIyMjKwaNGiNt/bsmULfvaznykSl5ry8/ORn5/fZn99fT0MBoNtOzMzE/369fNjZERERN4pLy/Hjh07cOzYMTQ0NCAsLAwDBgzA3XffjYEDB6odHhERERERERFpVEVFBdLT023bhw4dwrBhw/xybc1UhnW0plhnMGnSJJw8ebLd7zv6XnR0dIdt/vvf/8Z1113n9No5OTkoKSlBVYtplWpqavCLX/wCcXFx+OUvf4kBAwagoaEBX3/9Nd566y2cOHGiTTu///3vAyIRBgDHjx/Hzp071Q6DiIhIcQMHDmTSi4iIiIiIiIgCimaSYZ3dl19+2abyy5kvvviiw++b25naqLWoqChs27YNd955J06dOmX3PYPBYFcJ1Z4HH3wQr7zyikvX04L+/ftj7Nixbfa3rgwjIiIiIiIiIiIiIiJ1MRlGLhk6dCj27t2Lhx9+GLt27XL5vK5du+K5557DokWL0KVLFx9G6F/Tpk3DtGnT2uw/fPgwhg8f3mZ/fHw8wsPD/RAZia6+vh579+61bXNsuCfQ75+W+idarGrF46/r+vI6vmhbtPFB4uDY8E6g3z+t9U+kePk+KFb7Io0NEg/Hh+cC/d5prX8ixatmLIHwXsj3QfIno9Go2rWZDCOXXX/99fjPf/6DgoICvPrqq9Dr9e2uSxYREYHk5GQ8++yzGDJkiJ8jFU94eDi6deumdhgkII4N7wT6/dNS/0SLVa14/HVdX17HF237474YjUBuLlBaCtTVARERQHQ0kJICxMT49NLkBdFeO7Qm0O+f1vonUrx8HxSrfZHGBomH48NzgX7vtNY/keJVMxYh3wsrKwFJAvr2Vb5tFdojbQsLC1Pt2kyGacTx48fVDgEAIEkSHnzwQTz44IM4c+YM9u7di2+++QY1NTUIDg5Gr169MHToUIwePRohISFqh0tERC4wGo3Izc1FaWkp6urqEBERgejoaKSkpCCGWQQSnMEApKUBxcVtv6fXA9nZQEICkJkJxMX5Pz4iIiIiIiJVZWRYk2GrV6sdCZGqAiIZdvbsWZSVleH8+fM4f/48Ll265FV7jz32mEKRBbbevXtj8uTJaodBREQeMhgMSEtLQ7GDLIJer0d2djYSEhKQmZmJOGYRSEBbtgDJyYDJ1PFxej2QlAQUFAD81YWIiIiIiDqNykrrFBoAsGCBy9VhRIFIs8mwvXv3Ijc3Fx999BGqqqoUbZvJMCIiCnRbtmxBcnIyTE6yCHq9HklJSSgoKOAfQJBQDAbXEmEyk8l6fFERK8SIiIiIiKiTyMgAzOYfvxakOqyyshKSJKFvICXn3JyOkvyvi9oBuOu7777DL37xCyQkJCAvLw+VlZWwWCyKPYiIiAKdwWBwKREmM5lMSE5OhsFg8HFkRK5LS3M9ESYzmYD0dN/EQ0REREREJJSWVWEAkJMDKFxU4qmMjAxkZGQ4P7CyUpiYncrIsD4UUllZqXgRUGenqcqwo0ePIikpCWfOnLElriRJUqx9JsPIV+rr69UOgQTReixwbLgn0O+fv/qXmprqciJMZjKZMGfOHGzfvh2AeM+FWvH467q+vI4v2vb1fdm/vwuKiyM8OlevB/7znzpERzcrGhO5RrTXDq0J9Puntf6JFC/fB8VqX6SxQeLh+PBcoN87rfVPpHjVjEXk90LdkiUIkavCAMBshnnJEphWrPC67Y44a6+qqgq5l5N0c+bMQZ8+fdptS7dkCSBJbWIWjVRVhYjLfaqbMweWDvrkqiVLlkCSJKwQvO/uamhoUO3akkUjGaALFy5g+PDhOH78OAD7JJiSXZAkCU1NTYq1R4EpPz8f+fn5bfbX19fbVU5kZmaiX79+foyMiKhjR48exTPPPOPx+StXrsTAgQMVjIjIfWvWjMSHHw7w+PyJE4/ht789oGBERERERERE4tBVV+Pu2bMR1Nhot78pOBg71qyBqVcvlSID1q5di61btwIAJk2ahFmzZjk8Tu4DANVjdmbk2rUYcLlP30yahIPt9MlV1dXVmH2572vWrEEvgfvuroqKCqS3mLLl0KFDGDZsmF+urZnKsJUrV+L48eNtkmB9+vTBQw89hPj4eAwcOBDdu3dH165dVYyUOoPjx49j586daodBROS2HTt2eH0+k2GktmPHunt5fjeFIiEiIiIiIhLPzYWFbRJhABDU2IibCgu9TtZ4qrq62jbjDABs27YN999/v8NkT8s+qBmzM7rqavRr0acbtm3D1/ff71XyrrCwEI2X+15YWNhuwpDco5lk2Ouvv25LhFksFnTp0gUvv/wy5s2bh+BgzXSDAkT//v0xduzYNvtbV4YREYnm2LFjqp5PpASTKcir8xsa+LsjERERERG5T1ddbZ22T+BKndbJmdaUSNZ4qmWSBwAaGxsdJnt8kWDyldaJR28Tju4kDMk9mvgk4IsvvsDp06chSRIsFgskScIrr7yC3//+92qHRp3UtGnTMG3atDb7Dx8+jOHDh7fZHx8fj/DwcD9ERqKrr6/H3r17bdscG+4J9Pvnj/55+wckQUFBGD9+vHDPhVrx+Ou6vryOL9r29X25+uor8O23np9/zTXhGD9+vGLxkOtEe+3QmkC/f1rrn0jx8n1QrPZFGhskHo4PzwX6vdNa/0SK15+x6ObOtVvDqqNrV1VVQZKkDtfEcpU7fdTNneuwKkwW1NiI8Xv2uNQHJWOtqqrCxx9/3Ob4HTt2YMWKFXb3qXUfWscsCqmqChEO+jRgxw5ErVjh0dphc+fObZMw3LNnT8CsHWY0GlW7tiaSYYcOHbLbHjZsGBNhpCnh4eHo1o1TMlFbHBveCfT754v+edte9+7dHbYh2nOhVjz+uq4vr+OLtpVuMzYWaPF/Kw/ODxZqvHZmor12aE2g3z+t9U+kePk+KFb7Io0NEg/Hh+cC/d5prX8ixeuzWCorgQ0bAAAhixYBfft2eO2srCxIkoTVq1crHkq7fWwRY0dC1q93qQ9KkNvLysqC2Wxu832z2YysrKwf71M7fegoZtVkZQEO+iSZzYjMygLcfO4rKyuxwUHf169fj0WLFqGvO32vrAQkSaz7BSAsLEy1a3dR7cpuqK6utn0tSRJ+9atfqRgNERGRdkVHR6t6PpESUlK8O3/GDGXiICIiIiKiTiQjw5r4MJutX3egsrISubm5yMnJQVVVlZ8CxI8xOuNCH5Qk34/22N2n9vrg55idqqwEOugTcnIAN5/7jIyMdhOGGe72PSNDrPslAE0kwxoaGgBY1woDgEGDBqkZDhERkWaleJlFmMEsAgkgJgYYM8azcxMSrOcTERERERG5rHXiw0miQ05qeJTE8JSz5ExrHiRrPNVekkdmu08+SDD5jLPEo5vJO7cShs4bs95Hke6XADSRDLvqqqvstnU6nUqREBERaVtMTAzGeJhFSEhIQAyzCCSI114D3P2VUKcDMjN9Ew8REREREQWw1omPDhIdrZMafqsOc7UqTOanSquqqqoOkzyynJwc1C1cqGiCyWdcTTy6kYxyOWHoWmMuVzF2JppIhg0ZMgSAdYpEwH7aRCIiInLPa6+95vYfluh0OmQyi0ACiYsDCgpcT4jpdNbj4+J8GxcREREREQWY9hIfOTmQTpxos7t1UsMv1WHuVoXJ2umDklatWtVhkkfW22xG6KZNzhsUodpJ4ekonVWFyVxKrLpZxdiZaCIZNmbMGFxxxRW27X379qkYDRERkbbFxcWhoKDA5YSYTqdDQUEB4phFIMFMngwUFVmnPuxIQoL1uMmT/RMXERERERG1Ulmp3Q/kO1jDKnTVKrtd7VVB+bw6zN2qMJmDPiipuroaGzZscOnYBQC6Njc7P1DtaicfTEfprCpM5lJi1Y0qxs4mWO0AXKHT6ZCcnIz169cDALZu3Qqz2YyQkBCVIyNyTX19vdohkCBajwWODfcE+v3zZ//uuOMObN26FfPnz8fevXvbPS4+Ph7Lly9HTEwMampqVInVFWrF46/r+vI6vmjbn8/HzTcDH34IlJZ2wcaNITh4sAvq6iRERFgwYkQzpk41Izra+h+qFkOYVCLaa4fWBPr901r/RIqX74NitS/S2CDxcHx4LtDvndb65268uiVLUFdfj9PPP48+ffqoGos7pKoqROTmQmrn+13Xr4futttg6tULAPDnP//ZYVLDbDZjyZIlWLFihUdxdNRHZzE607oPSr4PFhYWupTk6QvAnRXOLTk5qJszBxaFx5IrdEuWIMTN6SjNS5bA1M5z7+o0krKcnBzMmTPH4c9Re2NBzfvVWkNDg2rXliwWi0W1q7vhm2++wfDhw3Hx4kUA1mzpvHnzVI6KOqv8/Hzk5+e32V9fXw+DwWDbzszMRL9+/fwYGRGR+8rLy7Fjxw4cO3YMDQ0NCAsLw4ABA3D33Xdj4MCBaodHREREREREGqarrsbds2ejuakJM8aNw5Qnn1Q7JJeNXLsWA7Zu7fCYbyZNwsFZs1BdXY3Zs2ejsbHR4XHBwcFYs2YNel1OOvkzRmfkPijJ2f1oaTWAOW6274uYnZHHcpALfWqpKTgYO9assSUcW1q7di22uvn8TZo0CbMc9L2jsaDG/XKkoqIC6enptu1Dhw5h2LBhfrm2JirDAODGG2/EX/7yF6SlpUGSJDz//PMYPXo0xo0bp3Zo1AkdP34cO3fuVDsMIiJFDBw4kEkvIiIiIiIi8ombCwsR1NiIIABjPvsMZx95RPGEkC/oqqvRb/t2p8fdsG0bvr7/fhQWFnaY+GlsbERhYaHDJIavY3RG7oOjZI2nnN0PmbtVYTJfxOyMPJbdFdTYiJsKC9sko6qrq7Hdg+dv27ZtuP/+++1+jpyNBTXul2g0kwwDgDlz5uDEiRO2OTQnTZqEFStWIDU1Ve3QqJPp378/xo4d22Z/68owIiIiIiIiIiKizqr1B/QzLBbMfOstTVSHuZr4CGpsRN+33sL2oiKnxzpKYnjD3L07tuXlKdJWY1iYIu0A7iV5FgAI9eAa7SWYfMXbxKOjZJSrCcPWHCVWnY1Xf98vEWlmmsSW3njjDTz11FMwmUyQJAk33ngjpk+fjrFjx+Kmm25Cjx49EBQUpHaY1AkdPnwYw4cPt23L0yTGx8cjPDxcxchIFPX19XbrM3FsuCfQ75+W+idarGrF46/r+vI6vmhbzfEhVVXhu1On0HTttYqvRUDeE+21Q2sC/f5prX8ixcv3QbHaF2lskHg4PjwX6PdOa/1zNV7d3LkIabUeUnaXLhh36JBiv6/74t5JVVWIGDUKkotrQ12SJAywWHDChWNnzpzp9tphWvo/YX19PWbMmOHS1H99ARyFZ8kwALCEhKCutNQva2E5GsvuMs+caVs7rKqqCqNGjXJpTTVHQkJCUFpaij59+rg8Xv15v9pjNBoxfvx42zanSXTAUXJLkiRYLBaUl5dj4cKFilxHkiSPsrFEHQkPD0e3bt3UDoMExLHhnUC/f1rqn2ixqhWPv67ry+v4om2/Ph9ZWTD+5z8oGDsWq1ev9s81yWOivXZoTaDfP631T6R4+T4oVvsijQ0SD8eH5wL93rXsX2VlJSRJQt++fVWOqn0On4/KSmDDhjbHTm9uxkvLl+Pl/Hz/xeKurCzAjSRFV4sFCwCkuXDs+vXrsWjRIq+eT5H/T1hVVeXzqjCZZDYjMisL8PX//doZy+4KWb8eIYsWAX37Iisry+NEGACYzWZkZWVZ/9/r4nj12/3qQJiCFYju0kwyzFEBmyRJkCSp3e8TERERUSdSWQlLbi7GmM14oqwMVQsWCP2BQYcqK3Hyu+/QfN112u0DERERESkiIyMDkiRp74+9MjIcfkAfCqDPxo2oevllMX/XrawEPKgAmgkgA3BaHWY2m5GRkaG959NFvXr1Ql6LqRtvv/12REZGtjmuy4kT6HHbbW4lHR3KyQEWLAB8OZaiooCqKmXaioxEZWUlcr2sMgOAnJwc/PGxx3CtO235434JSjPJMAC2xJe733MVE2pEREREGpaRAclsRiiAP1y6pO3/YGZk4GtWuBERERF1eif37MG/33gDJyQJC7T0x15OEkrTm5vx0sKFPqsO80o7STxnQgGXq8NycnK09Xy6QafToXv37rbtXr16Oa40i4xUNMHkUzqd9aGQqKgoVCnU96uef9698Wo2W8d4J/x/pqaSYUxWEREREZFDl6vC5D+Pmglg6BtvaLM6LJAq3IiIiIjIK1+npGBuYyPSAG39sZeThJKw1WEeVoXJWB3mBoUTTFqi0+mgU6LvlZXAunXun9dJq8M0kwxbvHix2iEQERERkaguV4XJNF0dFkgVbkREREQaJMoaXSf37MGYQ4cwBtYEyxtvvKGNaiIXE0pCVod5WBUmY3UY+ZWn47WTVocxGUZERERE2taqKkymyeqwQKpwIyIiItKiykqsWbgQ5yMjVf+DpK9TUnDd5a8XAEjTyh9KufgBvXDVYV5WhclYHUZ+4e147YTVYV3UDoCIiIjEUFlZqdic1UR+1aoqTNayskozOqhw07TKSuXWAyAiIiLyodqFC9F30ybk5OSo+v+jU/v2YcyhQ7btmQD6wFodJvT/29z8gH56czPWLFzow4DcEBVl/Z31zBmnjxP796NP166IAto8+gI46+Il1R5npGFeVjHaqsM6Ec1UhhEREZFvZWRkQJIk/lUaaUs7VWEyTVVWBVKFW2sZGYAkAUuXqh0JERERUfsqK6HbtAnTm5vxJ5Wrdk6kpeHmFtu26fdErw5z8wN6oarD3FjDqmdkJEpPnEBtbS127dpl23/77bcjMjLSrcu6ezyRUlWMna06jMkwIj+or69XOwQSROuxwLHhnkC/f2r2r6qqCrmXf5GaM2cO+vTp0+Hxoj0XasXjznWrqqogSZLTe+vtdURo25/Ph27JEoQ4WZj7D5cuYcmSJVixYoXP4lBCe33RUh8ckaqqEHH59aXhiSdQXV0NSZLQq1cv1V87tEa0116laa1/IsWrhfdBka+jdPsijQ0SD8eH5/xx7xqffRY9mpsBWBNPc3NyXPr/kRJa9udCWRnuPXKkzTHy9HtvvPGG3+Jqj6PnQ/69r70/VGvP9OZmPP/ss1i4Zo1isfhDaGgoGhsb0b17d9u+sLAwhIaGutWO2WyG2UkCUUv/J+TrnB+EhkJy8BrhCUtICFBTo0hbrmhoaPDbtVqTLBaLRbWrE2lUfn4+8h0s7llfXw+DwWDbzszMRL9+/fwYGRGRZ9auXYutW7cCACZNmoRZs2apHFHgWbt2LSRJ4r1VkK66GnfPno2gxsYOj7sIYHBQEJ5fuxa9evXyT3BuctYXLfShPSPXrsWAy68v30yahN9bLPxZICIiIuHoqqtx56xZ6Hr5o9KLAAYCuFWF/x8FpadjckWFw++tBpAGMf/f1vL3Pne9LkkIzcnR3O+6ROSeiooKpKen27YPHTqEYcOG+eXaXDOMyAPHjx/Hzp072zxaJsKIiLSiuroa27dvt21v27YNZ8+6OsM5uUK+x7y3yrq5sNBpIgywVlY909SEwsJC3wflIWd90UIfHNFVV6Nfi9eXG7Ztw5fbtvFngYiIiIRz/Vtv2RJhwI/TEvr795YLZWWY0E4iDPhx7bCPPvpIqN+nWv/e564ZFgt2vvWWghEREdkLuGRYU1MTqqurUVFRgYoO3jiIvNG/f3+MHTu2zSMuLk7t0IiI3FZYWIjGFh/CNzY2au4Dd9HJ95j3Vjnu/md7JoDDgn1gIHO1LyL3oT2tk3xBjY14pqlJ8z8Luupq1JeVaeq5ICIiovbpqqtx086dbfbPBHC1n39viczKQkeT7MlJuibB/lDK1T9Ua08ogDGffcbfr4jIZzQ/TeLBgwfx/vvv47PPPsP+/ftx/vx52/ckSbL7cK+18+fPo6mpybYdERGBkJAQn8ZLge3w4cMYPny4bVueJjE+Ph7h4eEqRkaiqK+vx969e23bHBvuCfT7p0b/qqqqMGrUqDbzk4eEhKC0tLTdOehFey7UiseV67a+x87urafX8ZQv2vbH86GbOxchbi4YvBrAgZkzhVt3y52+iNoHR6SqKkSMGgWp1euLPOXQ6eBgFBcX46abblIlPm/o5s7Frt278fZPfuLX50K0116laa1/IsUr8vugFq6jdPsijQ0SD8eH53x57xp/+1v0ePtth99bDWCuB7/Du6u+vh6fbdyI++fP7zAZBvz4+9SZrl3xxRdfqLJ2WMvnQ1ddjXvmzGnze5+7LgJ4/je/cXvtMDV/rgLhvZDvg+RPRqMR48ePt237c5rEYL9cxQdKS0uxcOFC2/omAOBuXi89PR2bNm2ybc+cORNrPFyokagj4eHh6Natm9phkIA4NrwT6PfPH/3LyspyuFCv2WxGVlYWVq9e7VI7oj0XasXj6Lqt77G799bV6yjFF20r3mZlJSwbNrh92kwAQ/PzUbNoEfr27atcPN5wsy9C9qE9WVmAg9cX+a+Z0xobsXbtWrzxxht+D80rl5+zn5jNSPn6a1WfC9Fee5Wmtf6JFK9I74NavI7S7Ys0Nkg8HB+eU+zeVVbi0jvvtPvtmQAyFPgd3hXOqsJktt+nLl3yS1zOmLt3x1cff4w777wT5kuXvGrr4ubNSP/zn736/UrNn6tAeC/k+yD5UlhYmGrX1uQ0iWvXrkVCQgK2bt0Ki8ViS4JJkmR7uGLevHkAYGvjnXfewcWLF30WNxERkUgqKyuR20E1Sk5ODqqqqvwYUeBp7x7z3nopI8OjvzoNBfCHS5eQkZGhfEyecrMvQvbBkcpKoIPXF3mti/Xr12vvZ+Hyc6aZ54KIiEgElZWAoO/5tQsXomtzc7vflxNPvv4d/tS+fR2uFdaa/PvUG2+8ofrvU80hIbjq5ptReuIEvjxzxqtH+YkT6NWrl6r9IaLApLlk2Msvv4zU1FRcvHgRFovFlvySE1ruVIcNHz4cd911l237/Pnz+Pe//+2LsImIiISTkZHhsCpMZjabhfuQ12g0IjU1FYmJiRg5ciQSExORmpqK0tJStUNzqL17LOK91YzKSljcnB6xpZkA/i3ABwYAPO6LUH1oT0aGw6owmfyhkuZ+Flo9Z5p4LoiIiESQkYHahQvFe8+srISuxaxR7ZkJIMrHv7ecSEtzqSpMJv8+dUmQP87R6XSIiopS5KHT6dTuDhEFIE0lw959910sXry4TRJs0KBBSE9Px6pVq3D99de71eZDDz0EALZqso8++kjxuImIiETjrCpMJkoFk8FgQEJCAmJjY5GdnQ29Xo+DBw9Cr9cjOzsbY8eOxfz583H06FG1Q7Vh5Z2PeFgVJhOqmieQKtxaclIVJpP/mllTPwutnjPhnwsiIiIRXP7dQLdxI9YsXKh2NHacVYXJfF0ddnLPHiQeOeL2eSJVhxERiU4zybALFy7g97//vS0RZrFYEBkZiU2bNqGsrAyvvPIKnnzySfTo0cOtdn/1q18hKCgIgHW6xI8//tgX4RMREQnFWVWYTISqjS1btiApKQnFxcUdHldWVobnnnsO+/bt81NkHdNi5Z3wvKwKkwlRzRNIFW6tOakKk2muOqyd50zo54KIiEgEl3836NrcjD4bN4rznuliVZjMl9VhX6ekuFUVJhOtOoyISGSaSYatXr0ap0+ftkuE/ec//8HDDz/sVbs9evTA0KFDbdvffPMNampqvA2XiIhIWK5WhcnUrNowGAxITk6GyWRy6Xiz2Yy//OUvMBqNPo6sY1qrvNOMqChcPHoUZ7/80qtH7ZdfYk95ubprEQRShVtLLlaFyTRVHdbOcybsc0FERCSCVr8bTG9uFqY6zNWqMJmvqsNO7tmDMYcOeXw+q8OIiFyjmWTYxo0bbYkwSZKwatUqjBw5UpG2Y2Nj7dYaO+JBWTIREZFWuFoVJlOzaiMtLc3lRJjMbDZj/vz5PorINVqqvGtPZWWleP+Z1umgu/569Bo61OtH1PXXq7cWQSBVuLXmYlWYTDPVYU6eMyGfCyIiIhG0+t0gFBCjOszNqjCZL6rDeq9b51FVmEz+fWrq1Knq/rEXEZHgNJEMO3XqFA4fPmzb7tevH6ZNm6ZY+7fccovddnl5uWJtExERicTdqjCZGlUbJSUlTqdGbM/evXtVqw7TUuVdRzIyMsROTmhZIFW4teRmVZhME9VhTir5tFwdJmTim4iIAkM7vxuIUB3mblWYTPHqsMpKBK1b53UzMwF8unEjzp49631MREQBKljtAFzRcu0PSZIwceJEdOmiXB7vqquustv+4YcfFGubiIhIJO5Whcnkqo3Vq1f7ICrH8vLyvD4/JiZGoWhc52nlnT/vrTMtE3oLFixA3759VY4owFyucFOpLs133KwKk8kfKqUJ+LMAwFYVJjk5bCaAoW+8gSqN/cxkZGRAkiTx7jsREWlfO78b2KrDXn5ZnfdMD6vCZDMBZCj1e8vlP5Kqq6tDXV0d9uzZY/vWbbfdhoiICJeb2hMRgUhR/kiKiEhAmqgMO3PmDADYpjIcNWqUou1feeWVAKyJNgCora1VtH0iIiIRtFex1BfWqgxn/F21UVpaqur5nqiqqtJM5V1H5ISe8FPXkTg8rAqTCV0d5uL6blqsDpPfF4S870RE5JBmKnqd/G6gZnWYp1VhMkWrw1pMA95j8GDrH0xdfvQYPFg704ATEWmAJpJhrUt8e/TooWj7Fy9etNtWsuqMiIhIFO1VLC24/HDG34mRuro6r85X449bVq1a5VXlnQhaJ/T4ITm5xMOqMJmwa4e5ub6b1tYOY+KbiEh7NDOVtZPfDVRbO6yyEhFvv+11M3NCQnBy715xpqsmIiKnNJH1CQ21X0bSZDIp2v65c+cA/Fh51rNnT0XbJyIiUltHVWEp+LEqwxl/JkbcmRLEkcjISIUicU11dTU2bNjg8fmiJJ1aJ/T4ITk55WVVmEzI6jAXq8JkWqoOa/2+INR9JyIihzRT0evi7waqVIdFRUGqqgLOnPHqIVVVoefgwazEIiLSEE2sGRYVFWW3rfRikIcPH7bbZjKMlFZfX692CCSI1mOBY8M9gX7/fNm/0NBQHDlypM3+nosXI/TyfPmHp07F9y+84LStkJAQvzwXt9xyC/R6vVfn19TUKBhRWy37XVhY6FFVmMxsNmPJkiVYsWJFh9dxtO2Nlm21l9DLycnBnDlz0KePKynTwP9ZpVZCQyG1eH1ZtGgRNr31lkdN1aLjnwV/kqqqEJ6T4/ZfD8prhx1x42fGVUr+bC1ZsgS9zWZYAJyAGPdda68dIsWrViz+uq6vr6N0+yKNDRKPN+NjyZIltt831X7N7ohuyRKEuDjFcJ+NG3Fk/nyX3jMV+9lq9Uf3HjObvaqMb01rrx0ixatmLIHwXsj3QfKnhoYG1a4tWeRyKIHt2LED99xzj21Nr6lTpyI/P9/hsaNGjcKBAwdgsVggSRKampqctj9kyBB8/fXXtnO++OILDB8+XMkuUIDJz893OAbr6+thMBhs25mZmejXr58fIyMicp2uuhp3z56NoMZGAEBTcDB2rFkDkyBTfZSXl2Pu3Lken79y5UoMHDhQwYjaV11djdmzZ6Px8r30VHBwMNasWaPadCtr167F1q1bHX5v0qRJmDVrlp8jIq0JlJ8FABi5di0GtPPz4MxqAFsF/pmRn6dXGhthAZB2eb8I952IiBxr/R4r6mt26/9jOHMRwMzx4zHlySd9GxgREQmhoqIC6enptu1Dhw5h2LBhfrm2JirDRo8ejaCgIDQ3N8NiseDjjz+2Ja68tWvXLnz11Ve2tnr06MFEGDl1/Phx7Ny5U+0wiIi8cnNhod1/UoMaG3FTYSEOCvLh7cCBAzF48GCUlZW5fe7gwYP9lggDgO7duyMvL0+RtsLCwhRpx13V1dXYvn17u9/ftm0b7r//fuE+cCGxBMLPAmD9IK9fBz8PzswEsOKjj3BW0J+ZwsJCXNPYiJTL2xmwVoc1NjaisLBQ2CQeEVFnJr92yxW9or5mt/4/hjOhAMZ89hnOPvKIkO+ZREQUODSxZlj37t0RHx9vW9Pr5MmTeO+99xRpe9GiRQBgS66NGzdOkXYpsPXv3x9jx45t84iLi1M7NCIil7T3Qe8N27ZBp/B0xN6YOXMmQkJC3DonJCQEM2fO9FFE7V+ze/fuijzc7a9SCgsLO6zmkT9wIepIIPwsAO5/kNdaKIBnmpqE/JmRE98LYI0zFMCCFt/ftm2b4tPSExGRd1q+dov8mu3pH5PMsFiw08MplomIiFylicowAJgyZQr0ej0kSYLFYsHTTz+NCRMmIDIy0uM2X3jhBXz22We2NgHgiSeeUCpkCmDTpk3DtGnT2uw/fPiww8rC+Ph4hIeH+yEyEl19fT327t1r2+bYcE+g3z9/9k83d67DD3qDGhsxfs8emJysP+CvWMePH4/rr78ejz/+OEwmk9PjQ0JCMG/ePDz88MN+GRv+ug++vE59fT0++OCDDqvCZDt27MCKFSucrukQ6D+r5DktjA2pqgrhO3Z43c5MAH/dvh03u/Az4yol7t/cuXPtqsLkWFtWh+3Zs0eVdWi0MD5aEiletWIJhPdBX7Qv0tgg8XgyPlq/dovwmu1Ie//HcCYUQMLOnbg5K6vD98xA/9nSWv9EilfNWALhvZDvg+RPRqNRtWtrJhmWmpqKlStX4tSpUwCAqqoqTJo0CR988AG6devmVlvNzc2YO3cuMjMzbYkwSZJw6623YtKkSb4Inzq58PBwt8cpdQ4cG94J9Pvns/5VVgIbNrT77ZD16xGyaBHQt6/LTfryuXjwwQdx4403Ij09HXq9vt3jBg8ejJkzZ2LQoEGqjQ1/XVfp6zirCpOZzWZkZWVh9erVbrUf6D+r5Dkhx8aNN8JUXo66ujqvm9oTEYHIqCjodDoFAmvL3ftXWVmJDRs24K+wfvAok6vD5LXD1q9fj0WLFqGvG+8DviDk+OiASPHyfVCs9kUaG2SvsrISkiSp+nrnbHw4eu0W8TXb2f8xnJne3IyXli/Hyw7WZ29PoP9saa1/IsWrZiyB8F7I90HyJTWnw9dMMkyn0+HFF1/ErFmzbAms3bt3Y9iwYVi2bBkefPBBp1OpVFdXo7CwECtWrMA333xjt+6YJEnIyMjwR1eIiIjUlZEBmM3tf99sth7jZsLDl+Li4rB7924YjUbk5eWhtLQUtbW1iIyMRHR0NB566CH873//UztMTaqqqnKpKkyWk5ODBQsWqP+BC5Gv6HTQXX89fJO+UldGRgZ6m812VWGyltVhZrMZGRkZbie+1STCB9pEpD0ZGRmQJEno1ztHr91CvmY7+z+GE6EA+mzciKqXX+ZrORER+YQm1gyTpaSkYPr06bYklsViwYkTJ/D444+jd+/euPPOO1FRUWGb8hAAHn74Ydx7770YOnQorrnmGqSmpqK8vNyuDUmS8Nxzz+Gee+5RsXdERER+UFkJ5OY6Py4nB6iq8n08boqJiUFWVhY+//xzHDhwAJ9//jmysrIQHR2tdmiatWrVKpeqwmTyBy5EpC2VlZXIzc21rRXWWuu1w3JyclAl4PtAezIyMvjaRERukV8XRX69a++1W7jXbFf/j+HE9OZmrFm4UIGAiIiI2tJUMgwA1qxZg4kTJ9qSWHJCq6amBjt37sQPP/xgO9ZiseAf//gHtm/fjrKyMlgsFrvzZL/+9a+xZMkSFXpDRETkZ67+xaZcHUYBTZ52x12qf+BCRG7rqCpMNhOAvFKLlhLfWvhAm4jEs+aPf0SU2Sz0652zil5hXrOjonBizx706doVUYDHj74AMv/2N76WExGRT2guGRYcHIwtW7bg+eeft6vskpNbLavC5O2Wx7Q+7oUXXsBbb73l304QERGpwd2/2BS0OoyUk5GRAbMH09mo/oELEbnFWVWYTLhKAxfJr2V8bSIiV1VWVuL6t96yveaJ+HqnqYpenQ49hwxB6YkT+PLMGa8e5SdOoFevXur0g4iIAprmkmGAdX2vF198EUVFRbYqMUdJL0cJMPkxbtw4FBUVYdGiRSr3hoiIyE/cncef1WFeMxqB1FQgMREYOdL6b2qqdb/a5A9YPCXih0ZE5JgrVWEyoSoNXFBZWYkPc3JsMfO1iYhcseaPf8QTzc221zwRX++0VtGr0+kQFRWlyEOnC8SVO4mISG2aTIbJEhIS8MEHH+DgwYNYvHgxxo0bh9DQULukl/wAgOjoaMybNw+7du3CJ598gsTERJV7QERE5CeezuPP6jCPGAxAQgIQGwtkZwN6PXDwoPXf7Gzr/sRE63Fq8bQqTKb2By5E5BpXq8JkQlUauCAjIwN/uHTJFjNfm4jIGbkqLBT2r3kivd4FekUvERGRGjSdDJMNGzYMixcvxieffIK6ujqcPn0aX375JT7//HMYjUZUVFTgwoULMBqNWL58OZNgRETU+bhbFSZjdZjbtmwBkpKA4uKOj9Prrcdt2eKfuFrytipMxg9ciMTnTlWYTKRKg47IVWEpsI+Zr01E1BG5KkwmYnVYIFf0EhERqSUgkmEtdenSBVFRURgyZAgSEhIQHR2Nvn37IjTUlb+DJCIiCkCeVoXJWB3mMqOxC5KTAZPJteNNJiA52f8VYlFRUaiqqsKZM2dQXl6O9evX2x7l5eU4c+aMS4+qqiqu6UAkMHerwmRaqTSQq8JaV3fww2Aiak/LqjCZaNVhgV7RS0REpJZgtQNwxZdffonNmzfbtiVJwvz58xESEqJiVERERBrhaVWYTK4OW71auZgC1LPP6lxOhMlMJiA9Hdi92zcxOaLT6WxrMYSGhqJ79+627/Xq1QvdunXzXzBE5DNRUVE4uWcPetx2m9vvA3NCQvCbvXvRfN11AIDIyEhfhOgxuSrsry32zQSQAeAErB8GL1iwAH379lUnQBdUVlZCkiShYyQKNGv++EcsalEVJrO9flxOpq9W8fdeTyt65dc/swB9ICIiEpEmKsM+/fRTvPDCC3jxxRfx4osv4sMPP2QijIiIyBXeVoXJWB3m1NGj3bFvn2d/Z6TXA0ajwgERUaen0+nQMycHkgd/ECGZzeiZk4OoqChERUXZEuiiaFkVJtNadVhGRobwMRIFEkdVYTJRqsMCvaKXiIhITZpIhp0/fx4AYLFYAAATJ05UMxwiIiLtiIqyJrHOnPHuUVUFcDq8Du3YcYNX5+flKRQIEZEsQKfJbblWWGtaWTtM/sBb5BiJOlJZWam5sdt6rbDWRFg7TK7oTfXgD8DnhITgbGkpp7ImIiJqhyaSYcHB9n9lzWkkiIiIXKTTWRNiSjwEqwoQzbFj3Z0f1IHSUmXiICKyUWqaXME4qgqTaaU6LCMjA2azWegYiTqitcrGjqrCZCJUhwVyRS8REZHaNJEM69Gjh912WFiYSpEQEREROWYyBXl1fm2tQoEQEQEBO01uR1VhMtGrw+SqMJmIMRJ15OSePdiak6OpseusKkymenVYgFb0EhERiUATybCbbroJACBJEgDgzJkzaoZDRERE1IZO1+TV+ZGRCgVCRAQE7DS5HVWFyUSvDsvIyEBvs9mWsBMxRqKOfJ2Sgj9cuqSZsetKVZhM9eqwAK3oJSIiEoEmkmHx8fEIDf3x15Z9+/apGA0RERFRWwMGnPfq/OhoZeIgIgIQkNPkulIVJhO1OkyuCluAHz9wB8SK0RVaXC+KlHFyzx6MOXTI9jOmhbHralWYTLXqsACt6CUiIhJFsPND1BcWFoaJEyfi/fffBwBs3boVDQ0NnC6RNKO+vl7tEEgQrccCx4Z7Av3+aal/osWqVjwtrzNhwrf48MMBHrf10EN1qKlx/EGNL/vni7ZFGx8kDo4N7wT6/XPWvyVLljitCpPJ1R1psH6gvWTJEqxYsUKpUB3G58rzsWTJEvQ2m20JvQwAJxSI0d9jY8mSJZAkCS+++KJfruvr/indfnvtSVVVgCTB0qePo9M0oeyJJzD+8tcLAKT56OdLKVVVVS5Xhclavn7k5ORgzpw56KPgc9bueAsNhXTkiCLXsISEADU1irQlks7+PigakeJVMxZ/XVtL/ycUaWyQeBoaGlS7tmSxWCyqXd0Ner0et99+u2170aJFWLx4sYoRUWeWn5+P/Pz8Nvvr6+thMBhs25mZmejXr58fIyMiIjXNn5+EsrIezg9sZfDgc1i+vMgHERERBYbq6mr86Xe/w3+bmlz+UPsigIGwJpuCg4OxZs0a9FJxysfq6mrMnj0brzQ2Ys7lfath/cAdECNGV8j9ACB8vLrqakCSYBIkxpFr1+KCyYTiRx4R+r6150JZGe6fP9/2Myj/jJ0WeOy++8oryPnsM7eSYYD968ekSZMwa9Ys5YMjIiLqhCoqKpCenm7bPnToEIYNG+aXa2timkQASEhIwOzZsyHn7v70pz+hsLBQ5aioszp+/Dh27tzZ5tEyEUZERJ3PzJkHERLi3tphISFNmDnzoI8iIiIKDIWFhXjGjUQYYL/2T2Njo+r/fywsLMQ1jY120zy2nM5RhBhdUVhYiMbGRk3Ee3NhIW4SJEZddTX6bd+Omz/7DDvfekvtcDwSmZVl9zMo/4yJOhaqq6uRsHOn24kwwP71Y9u2bTh79qyCkREREZEaNJMMA4BXXnkFP//5z2GxWNDY2IiHHnoI8+fPx4ULF9QOjTqZ/v37Y+zYsW0ecXFxaodGREQqGjToB8ybt8/lhFhISBPmzduHQYN+8G1gREQaVl1djSPbtrm0VlhrLZNNan6gXV1dje3bt2MB4DCZIBP9Q/cLZWX4cts227bI8crJpxu2bYNOgBhvLixEUGMjulosGPPZZ8Let/ZcKCvDhIqKNvvlnzERx8I1ly5hVlCQx+fPDg5GwapVyMvLQ7du3RSMjIiIiNSgmWkSZc3NzVi0aBGWL1+OpqYmSJKEyMhIPPTQQxg/fjxiYmLQu3dvdOvWDV26aCrXRwHg8OHDGD58uG1bniYxPj4e4eHhKkZGoqivr8fevXtt2xwb7gn0+6el/okWq1rxtHddo7EL5s/XYe/e9pdnjY9vxPLlJsTEOF/Q3Zf980Xboo0PEgfHhncC/f611z+TyYTQuXPRfdMmj9o9P3Uqvn/hBQBAREQEdDqdEuG69XzMnTsXH+bm4ijQpkql5XRsADBz5ky311/y19goGTMGh48csU3tCNhPIeer63rSP93cuQjJzQUAnHv4YQRnZyvavjvxjunTB71/8hNIZjMA63P+/G9+g4Vr1nh8DX8rGTMG49tZz0qe7tOTsetLLceAp8wzZ8Lkg/UGA/m13JcC/d5prX8ixatmLP66tpb+TyjS2CDxGI1GjB8/3rbtz2kS2/+ERjBBDv6aR5IkWCwW1NTUIDc3F7le/pIjt9nY2Oh1O0QthYeH8y/JyCGODe8E+v3TUv9Ei1WteOTrjhsH7NkDGI1AXh5QWgrU1gKRkUB0NDBjBhATEwwgwqvr+IIv2hZtfJA4ODa8E+j3T+5ft/PngXfe8bid7v/4B7ovXQr07atgdG2193xUVlZiw4YN+CvaJsKAH6vD5ATT+vXrsWjRIvT1Il5fjI2Te/Yg8cgRJALIwI/Ju23btuH+++9Hr169/DYmnV6nshLYsMG2Gfn22+i6fLnLY0Dpfly1dq0tEQZYn/MB//gHav78Z6+eZ3+Rn/v2zIR1TCgxdhXTagx4KmT9eoQsWuTT149Afy33pUC/d1rrn0jxqhmLMO+FArUt0tgg9YWFhal2bc2UTlksljYPwJq8kpNiSj2IiIiIlBATA2RlAZ9/Dhw4YP03K8u6n4iIXJSRAbRIJLjNbLa2oZKMjAz0Nps7nOax5XSOZrMZGSrG256vU1IQirZTOwq5XlSrMdO1uRl1CxeqEoquuhpdHSRlpjc3Y41KMblLfu7bI48JocZuVBRQVQWcOePdo6oK6NVL7d4QERGRAjSTDAN+THzJj46+58mDiIiIiIiIBFJZCSgwAwhycqwfavtZZWUlcnNz26wV1lrrBFNOTg6qVIi3PSf37MGYQ4ds2y2Td4Bg60W1M2ZCN25UZQzcXFhoVxVmiwdAn40bhXqeHWn93LdHHhPCjF2dzpoQU+Kh0NSqREREpC5NJcOUrP5iRRgREREREZHgNF7d4UpVmEzk6rDWlUFCV4e1U0moRnWYrroa/bZvb/f7WqgOc1YVJhOyOoyIiIioBc2sGbZ48WK1QyAiIiIiIiJ/0uk0W5UhV4W1t1ZYa63XDsvJycGCBQtUX3+pvcogeZ2olmuHnThxQt01QZxUEoZu3Ai8/LLP14+T3VxYiKAO1iS3VYe9/LLqz7MjrlaFyeQxIcrYJSIiImqJyTAiIiIiIiIihblTFSZrmWCSK2xWr17tmwBd9HVKCq5zsL918q6xsRGrVq3CG2+84b/gWnOyvpxcHRaRn+/zUJxVhcmmNzfjpYUL8bIfYnJXe899e2xjQpCxS0RERNSSpqZJJCIiIgKsf20vxHoUREREDri6Vlhroq0d5qwyqPXaYevXr1cvXhfXl/PXshK73wABAABJREFU2mHOqsJs8UDMtcPcrQqTCbd2GBEREdFlTIYRERGR5mRkZHA9CiIiElZUVBRO7tmD1JAQt8+dExKCs6WlOHPmDKqqqtBLhbXOZM7Wi2qdvFN1vSgnVWEyf6wdJlVVuVQVJhNx7TBX1wprjWuHERERkaiYDCMiIiJNkf/ann9xTEREotLpdOiZkwPJheRMa5LZjJ45OYiKikJUVBR0Kq2Z5mplUOvqMFXen12sCpP5ujosdNUql6rCbMdDrOowT6vCZKwOIyIiIhExGUZERESakpGRAbPZzL84JiIicbmZnGkjJ8cvU/l1xNXKICGqw1ysCpP5tDqsshJdN2xw+zSRqsN6r1vnUVWYLBTA19Onq17ZSERERNQSk2FERESkGXJVmIx/cUxEREJyMznThtlsbUMl7lYGqVod5mHi0WfVYRkZHlUEClMdVlmJ4HXrvG4mbNMmRF28qFplIxEREVFrTIYRERGRZshVYTJWhxERkXC8rQqTqVgd5u56UapWh3mYePRJdZiXz70Q1WFRUdZxd+aMd4+qKoBVYURERCSQYLUDICIiInJF66owWU5ODubMmaNCRERERA7IyQQlREYq044bPF0vaiaADAAnLm/n5ORgwYIF6Nu3r5Lh2fMy+RS6cSPw8stAt27KxONlRaCtOuzll3173zqi01kfRERERAEm4JJhFy5cwPnz53Hp0iWP2+jXr5+CEREREZESWleFycxmM1atWoWf/exnKkRFRETUisaTCb3XrfPog4JQAIenToV55UrbvkhfJ/O8TD7ZqsMyM72PRaGKwOnNzXhp4UK8nJ/vfUxEREREZKPpZNj58+fx97//Hbt27UJxcTEqKyvR2NjoVZuSJHndBhERESmrvaow2fr163HbbbdxkXYiIiJveLleVLd//APS0qWAP6qaFEo+hW7cCNP8+d7HExWFE3v2ID4+HmYv/jgXAC7+7W/4nZrVYUREREQBSJPJsLq6Ojz33HPIz89HfX09AMBisagcFREREflKe1VhMrPZjMLCQsyaNcuPUREREQUYLyutJLPZ2sbq1QoG1Y7L01GeOHHCqwRUSFAQPr540ft4dDr0HDIEpSdOoLa2Frt27bJ96/bbb3e7Ss7nVXVEREREnYzmkmEHDx7EAw88gKNHj9oSYJIkQZIkr9tmQo2IiEg8zqrCZNu2bcP999/P6jAiIiJPKFRphZwcYMEC31eHXZ6OcukLL+CkN5VYly7hr6+/rsh0yzqdDjqdDqGhoejevbttf69evdBNqXXJiIiIiMgjmkqGnThxAvfccw9Onz4NALYEmKtJrNYJMya/iIiIxOesKkzW2NjI6jAiIiJPXa60cke7FVB+qmpy9Q9mnOF0y0RERESBT1PJsIceeginT5+2S4Jdf/31SE5Oxk033YSlS5eiqqoKFosFkiThzTffRENDA86dO4dvvvkGer0eR44cAfBjYqx79+5YuHAhf+klIiISkLsfcsnVYUREROSmy5VW7rCEhsLcogLK0qsX4McKqKioKFS5mcBzpLa2FiUlJQpERERERESi0kwybPv27di9ezckSbIlu6ZPn46srCyEhoYCANasWWP3i/Djjz/epp1Dhw5h5cqV2LBhAyRJwvnz57Fy5Up88MEHGDVqlN/6Q0RERM65WhUmk6vDkpOTfRgVERERiUCeltBboaGhCAkJUSAiIiIiIhJVF7UDcNUrr7xi+1qSJEyYMAG5ubm2RJirhg8fjnXr1uGjjz5Cz549IUkSTp06hbvuugv//e9/FY6aiIiIPOXp1Efbtm3DiRMnfBARERERERERERFpkSaSYU1NTdi5c6etKgwAVq1a5VWbd999Nz788ENERkZCkiT88MMPmDJlChobG5UImYiIiLzkblWYrLGx0evfE4iIiIiIiIiIKHBoIhlmNBpx4cIF23ZsbCyGDh3qdbsxMTH405/+ZJt28b///S/eeOMNr9slIiIi73haFSZbv369ImuIEBERERERERGR9mkiGVZeXm77WpIk3H777S6d50qV1+zZs3HdddcBACwWC15//XXPgiQiIiLFeFoVJjObzcjIyFAwIiIiIiIiIiIi0qpgtQNwxf/+9z8AsFVwDRkyxOFxkiTZbZtMJkRERHTYdpcuXfDLX/4S2dnZAIAjR46goqIC/fr1UyByIqv6+nq1QyBBtB4LHBvuCfT7p6X++TLWqqoqr6rCZDk5OZgzZw769OmjQFSO+es58+V1fNG2lsYy+RfHhncC/f5prX8ixatWLIHwPuiL9kUaGyQejg/PBfq901r/RIpXzVgC4b2Q74PkTw0NDapdW7LIi3AJbNmyZfjjH/8IwJrw+tvf/oaHHnqozXFJSUn4/PPPbcedPHkSV199tdP2s7OzMWfOHNt57733Hn7xi18o2AMKNPn5+cjPz2+zv76+HgaDwbadmZnJxCoRkZvMZrNivxyFhYUhJCREkbaIiIiIiIiIiMhzFRUVSE9Pt20fOnQIw4YN88u1NVEZ1vpDrOBgx2FHRkbabVdVVbmUDIuKirLb/vbbb92MkDqb48ePY+fOnWqHQUQUkEJCQpjAIiIiIiIiIiIixWgiGdatWze77draWofHXXXVVXbbx48fR2xsrNP25b8+l6dZbK99Iln//v0xduzYNvtbV4YREREREREREREREZG6NJEMk6eZk5NV8hpirQ0dOtTuOL1ejylTpjht/8svvwTw45pkYWFhXsdMgW3atGmYNm1am/2HDx/G8OHD2+yPj49HeHi4HyIj0dXX12Pv3r22bY4N9wT6/dNS/0SLVa14/HVdX17HF22LNj5IHBwb3gn0+6e1/okUL98HxWpfpLFB4uH48Fyg3zut9U+keNWMJRDeC/k+SP5kNBpVu7YmkmFDhgyx2y4rK3N43IgRI2xfWywWbNmyBStWrHDa/nvvvQdJkiAvn9arVy8voiVqKzw8vE2FIxHAseGtQL9/WuqfaLGqFY+/ruvL6/iibdHGB4mDY8M7gX7/tNY/keLl+6BY7Ys0Nkg8HB+eC/R7p7X+iRSvmrEEwnsh3wfJl9QsROqi2pXdcMMNN9hNgShXcrWWlJSErl272ra//vprvP322x22nZ2dja+++spuX3R0tOfBEhERERERERERERERkTA0kQwDrIkui8UCi8UCg8GAixcvtjmmR48euOeee2zTHVosFvz2t7/FP//5T4dtrlmzBk8++aRtWkUAuOaaa+wqzIiIiIiIiIiIiIiIiEi7NDFNIgDcdddd+Ne//gUAuHjxIv7zn/9gwoQJbY576qmn8MEHHwCwrh1WW1uL+++/H8OGDUNSUhJ69OiBs2fPYseOHfjmm2/sEmeSJCEtLc2v/SIiIiIiIiIiIiIiIiLf0Uwy7P7778dTTz1l23777bcdJsPuuusuJCcno6CgAJIk2RJdhw4dwuHDh23HyeuDyVVhkiRh8ODBSE9P921HiIiIiIiIiIiIiIiIyG80M01inz59kJiYaJsq8Z133kFtba3DY3Nzc3HbbbfZJbzkpJj8kPcB1sRY7969UVhYiCuuuMJvfSIiIiIiIiIiIiIiIiLf0kwyDACKiorQ3NyM5uZm1NbWIjIy0uFxkZGR2LZtG6ZPnw4AbRJgLZNgFosFd9xxB/bu3YshQ4b4rS9ERERERERERERERETke5qZJtFdkZGRyM3NxVNPPYV//OMf2L59OyorK3H27FmEh4fj2muvRVJSEh588EHceeedaodLREREREREREREREREPhCwyTDZ8OHDMXz4cLz00ktqh0JERERERERERERERER+pqlpEomIiIiIiIiIiIiIiIjcwWQYERERERERERERERERBSwmw4iIiIiIiIiIiIiIiChgMRlGREREREREREREREREAYvJMCIiIiIiIiIiIiIiIgpYwWoHoITTp09jx44dKC4uRklJCc6cOYMffvgBtbW1iIyMxJVXXonevXsjNjYWY8aMwd13342rr75a7bCJiIiIiIiIiIiIiIjIxzSdDNu1axcyMzPxz3/+E42Njbb9FovF9vW5c+dw7tw5HDt2DHv27MHrr7+O4OBg3HfffUhLS8Ptt9+uRuhERERERERERERERETkB5qcJrGmpgYzZszA2LFj8e677+LSpUuwWCy2hyRJbR4tv3/p0iVs3rwZY8eORUpKCmpqatTuEhEREREREREREREREfmA5pJhx44dQ3R0NPLz89tNfgGwS34BaDc5tm7dOowaNQrffvutmt0iIiIiIiIiIiIiIiIiH9DUNInHjx/H+PHjUVFRAQC2xBfw49SIwcHBGDBgALp3747w8HDU19fj/PnzOH78OC5dumQ7r2XS7NixYxg7diw+++wz9O/f37+dIiIiIiIiIiIiIiIiIp/RVDLsscceQ0VFRZskWN++fTF16lTcf//9GDFiBEJCQtqce+nSJRw4cADvvvsuNm3ahKqqKrsqsYqKCjz++OPYuXOnP7tEREREREREREREREREPqSZaRLz8vKwa9cuu4quoKAgvPDCC/j666/xpz/9CbGxsQ4TYQDQtWtXxMbGYunSpTh69ChefPFFBAdbc4Fym7t27cK6dev80yEiIiIiIiIiIiIiIiLyOc0kw7Kzs21fWywWhIWF4b333sOiRYsQGhrqVlshISF4/vnn8f7779uda7FYkJWVpVjMREREREREREREREREpC5NJMO++eYbGI1G25SGkiTh5Zdfxs9+9jOv2p04cSKWLl1qaxMA9u/fj2PHjikRNhERERGMRiNSU1ORmJiIkSNHIjExEampqTAajWqHRkRERERERETUKWgiGfbFF1/YbV9//fV4+umnFWn7ySefRL9+/ez27d+/X5G2iYiIqPMyGAxISEhAbGwssrOzodfrcfDgQej1emRnZyM2NhaJiYkwGAxqh0pEREREREREFNA0kQw7efKk7WtJkjBlyhTF2pbbs1gstn3fffedYu2Tcvbu3YvU1FQMGzYMV155JSIjIzFkyBA8/vjj+Pjjj9UOj4iIyGbLli1ISkpCcXFxh8fp9XokJSVhy5YtfoqMiIiIiIiIiKjz0UQy7Pz58wBgS1gNGTJE0fbl9uSpEmtqahRtn7xz4cIFzJ49G7fddhuys7Px5Zdf4vz586irq0NZWRk2bNiAu+++G1OmTMG5c+fUDpeIiDo5g8GA5ORkmEwml443mUxITk5mhRgRERERERERkY9oIhnWrVs3u+0rr7xS0fbl9uRkW0REhKLtk+eampqQnJyMNWvW2PZdccUViIuLw5gxY+zGRmFhIe655x5cuHBBjVCJiIgAAGlpaS4nwmQmkwnp6ek+ioiIiIiIiIiIqHPTRDJs4MCBAH6s3Dp9+rSi7Z85c8bh9Uh9L774Iv7973/btmfNmoWqqirs27cPer0eJ0+exMKFC23fLykpwezZs9UIlYiICPv373c6NWJ79Ho9jEajwhEREREREREREZEmkmG33XYbgoKCbNv79u1TtP2W7XXp0gVjxoxRtH3yzHfffYeVK1fatqdOnYq1a9fiqquusu0LDw/HSy+9ZJcQ27hxI7744gu/xkpERARY34O8kZeXp1AkREREREREREQk00QyrEePHrjzzjthsVhgsVjwz3/+U7F1vWpqavD+++9DkiRIkoRx48ahR48eirRN3nn11VdtUx5eccUVeOWVV9o99vnnn8f1118PwDrd5fLly/0RIhERkZ2DBw96dX5paakygRARERERERERkY0mkmEA8NxzzwGwTpVYW1uLuXPnKtLuM888g5qaGtt6YfJ1SH2FhYW2rx988MEOk5QhISF44oknbNtbtmyB2Wz2aXxERESt1dfXe3V+bW2tQpEQEREREREREZEsWO0AXDV27Fikpqbi9ddfhyRJePPNN3H11Vfj5Zdf9rjNRYsWITc317YW2W9/+1uMHz9eqZADXnV1Nfbt24fy8nLU1NSga9eu6NmzJ2655RbExcWha9euHrf91Vdf4euvv7Zt33vvvU7PmThxIpYsWQLA+mHizp07MWHCBI9jICIicld4eLhX50dGRioUCRERERERERERyTSTDAOAzMxMnD17Fu+88w4AYNmyZSguLkZmZiZuueUWl9s5cuQInnzySXz88ccArNPqPfjgg3jttdd8ErfSzp07B4PBYHuUlJSgoqKizXFytZvSNm/ejFdffRWff/55u9eIjIzEgw8+iGeffRY333yz29doveZXQkKC03NiYmIQEhJiqwj74osvmAwjIiK/GjFiBPbu3evx+dHR0coFQ0REREREREREADSWDOvSpQvefvttjB49Gs8//zxMJhM+/fRTjBgxAmPGjMF9992H2NhYDB48GN27d0d4eDjq6+tx/vx5fPXVVygpKcH7778PvV4PwJosCgsLw5IlSxSbdtEXDh06hA8++AAlJSUwGAw4duyYKnGcOHECjzzyCHbu3On02NraWuTl5WHjxo1YuHAhFi5caKvAc8WRI0dsX4eEhNjWA+uIfFx5eXmbNoiIiPzhscceQ15ensfnz5gxQ8FoiIiIiIiIiIgI0FAyLCgoqM0+SZJslUnFxcUoLi52qS35HEmSYDKZ8Oyzz+LZZ591Kx5JktDY2OjWOZ7Kzc3Fq6++6pdrteerr77CuHHj8N1337l1ntlsxqJFi3DkyBFs3LjR4fPoyPHjx21f9+3b1+VEWr9+/WzJsJZtEBER+UN0dDTGjBnj8u8kLSUkJCAmJsYHURERERERERERdW6aSYa1Nx2fnCRxZ0pAT87pzL7//ntMmDDBYSIsNjYWv/zlLzFgwAA0NDTgq6++wt/+9jecPHnS7ri///3v6N27N1555RWXrllTU2P7unv37i7H2q1bN9vXtbW1Lp9HRESklNdeew1JSUkwmUwun6PT6ZCZmenDqIiIiIiIiIiIOi/NJMMAdFgd5M4UfN6cA4iTRAsJCcHw4cMRFxeHd955Bz/88INPrjNr1qw2a5JFRkZi06ZN+MUvftHm+KVLl2Lp0qV44YUX7Pa/+uqr+OlPf4qJEyc6vWZ9fb3ta51O53KsYWFhtq/r6upcPo+IiEgpcXFxKCgoQHJysksJMZ1Oh4KCAsTFxfkhOiIiIiIiIiKizkdTyTBRklBqCA4Oxi233IK4uDjb49Zbb0VISAgA4KOPPvJJMmz79u0oLCy02xcSEoJPPvmk3Q/tunbtisWLF+PKK6/EU089Zfe99PR0HDlyBMHBHQ+9S5cu2b52dmxLLY81m80un0dERKSkyZMno6ioCOnp6ba1Sh1JSEhAZmYmE2FERERERERERD6kmWTY4sWL1Q5BNfPnz8eyZcvsqp785aWXXmqzb/HixS59aPfkk0/igw8+wPbt2237jh49ir/97W947LHHOjz3iiuusH3tzjRTLY+NiIhw+TwiIiKlxcXFYffu3TAajcjLy0NpaSlqa2sRGRmJ6OhozJgxg2uEERERERERERH5AZNhGnDttdeqct3Dhw+jqKjIbl+vXr3wzDPPuNzGsmXL7JJhAJCdne00GdYykdXQ0ODy9S5cuOCwDSIiIrXExMQw6UVEREREREREpKIuagdA4nr77bfb7HviiSdsUzO6IjY2FrGxsXb7iouLcezYsQ7P69Wrl+3r7777zuXrnTp1yvZ1z549XT6PiIiIiIiIiIiIiIgCE5Nh1K4PP/ywzb4HHnjA7XYcneOo7ZYGDx5s+/r777+3q/jqSGVlpe3rIUOGuBghEVHnZDQCqalAYiIwcqT139RU634iIiIiIiIiIqJAwWQYOVRfXw9jq09Dr7jiCo+meUpKSmqzr/X0i63dcsstdtulpaVOr3PixAlUV1fbtocOHepagEREnYzBACQkALGxQHY2oNcDBw9a/83Otu5PTLQeR0REREREREREpHVMhpFDpaWlaG5uttsXFxeH4GD3l5kbPXo0unbtarevpKSkw3Pi4+Oh0+ls27t27XJ6ndYJtjvuuMONKImIOoctW4CkJKC4uOPj9HrrcVu2+CcuIiIiIiIiIiIiX2EyjBz673//22bfoEGDPGorJCQEffv2tdtXXl6OxsbGds8JDw/HXXfdZdt+6623nF6n5TEjRozAjTfe6EG0RESBy2AAkpMBk8m1400m6/GsECMiIiIiIiIiIi0LiGTY6dOn8dZbbyEtLQ2JiYkYNGgQevXqhdDQUPTq1QuDBg1CYmIi0tLS8NZbb+H06dNqhyy848ePt9l3ww03eNxev3797LabmppQUVHR4TlPPPGE7esDBw7g//2//9fusUajEVu3bnV4LhERWaWluZ4Ik5lMQHq6b+IhIiIiIiIiIiLyB/fnvBPIrl27kJmZiX/+8592VUYWi8X29blz53Du3DkcO3YMe/bsweuvv47g4GDcd999SEtLw+23365G6MI7depUm33XX3+9x+05Ovf06dMdVm/df//9iImJsa1d9tvf/hY33XQThgwZYnfcyZMn8cgjj6CpqQkA0KdPH8yePdvjWGVnzpyxW4PMFV9++aXd9nfffQfAmqwLCwvzOibSvoaGBrtEMMeGewL9/vmyf0eOdEFx8RUenavXA+vXX8CQIT9Onyvac6FWPP66ri+v44u2RRsfJA6ODe8E+v3TWv9Eipfvg2K1L9LYIPFwfHgu0O+d1vonUrxqxhII74V8HyR/av35+cWLF/12bU0mw2pqavD0008jPz8fgH3yCwAkSWpzTstjLl26hM2bN2Pz5s144okn8Ne//hXdunXzacxac+7cuTb7IiIiPG7P0bnff/99h+dIkoTc3FzcfvvtuHDhAr777jvcdtttSE1NRVJSEoKCgrBv3z6sXr3aVu0XFBSEnJwcu/XGPPX666/jxRdf9KqNZcuWeR0HEZEIpk1TOwIiIiIiIiIiIgoklZWViImJ8cu1NJcMO3bsGO666y58++23tgSXs+SXJEltjpG/v27dOnz66af45JNPvJoGMNDU19e32edNBt/RuRcuXHB63qhRo/D222/jN7/5Derr61FTU4OMjAxkZGS0OTY4OBhZWVmYOHGix3ESEREREREREREREVFg0dSaYcePH8f48eNx/PhxWCwWuySXxWKBxWJBUFAQBg0ahLi4OIwdOxZxcXEYNGgQgoODbccAPybILBYLjh07hrFjxzpcJ6uzunTpUpt93lRbOUqGmc1ml879+c9/jv379+Pee+9Fly6Oh2xiYiJ2796NWbNmeRwjEREREREREREREREFHk1Vhj322GOoqKiwq/KyWCzo27cvpk6divvvvx8jRoxASEhIm3MvXbqEAwcO4N1338WmTZtQVVVllxCrqKjA448/jp07d/qzS5riqALPm3NbT2/ZkZtuuglbt27FyZMnsWvXLpw4cQJNTU3o06cP4uPjMXDgQI9ja09qaiqSk5PdOqempgYGgwG1tbX44x//aNv//vvvY9CgQUqHSBo1bdo0GAwGxMXF2aZ7JdcF+v3TUv9Ei1WtePx1XV9eR+m2jx49ivvuu8+2zfdBakm01w6tCfT7p7X+iRQv3wfFaZ/vg+SMSK8dWhPo905r/RMpXjVjCYT3Qr4Pkr9cvHgRjz32GA4fPoxhw4Zh7Nixfru2ZpJheXl52LVrl10lWHBwMBYuXIj58+cjNDS0w/O7du2K2NhYxMbG4oUXXsDy5cvx8ssvo7Gx0ZYQ27VrF9atW4cnnnjCH10SWteuXdvsa2ho8Lg9R+c6Slo6c9111+HBBx/0OA539O7dG71793b7vISEBBw+fNguGTZo0CAMGzZMyfBIw8LDw23/cly4L9Dvn5b6J1qsasXjr+v68jq+7gPfB6kl0V47tCbQ75/W+idSvHwfFLd9vg9SayK9dmhNoN87rfVPpHjVjCUQ3gv5Pkj+1KtXL9u/V155pd+uq5lpErOzs21fWywWhIWF4b333sOiRYucJsJaCwkJwfPPP4/333/f7lyLxYKsrCzFYtayK664os0+pZNh8ossERERERERERERERGRr2giGfbNN9/AaDTaKrgkScLLL7+Mn/3sZ161O3HiRCxdutTWJgDs378fx44dUyJsTevZs2ebfXV1dR635+hcR9cgIiIiIiIiIiIiIiJSkiaSYV988YXd9vXXX4+nn35akbaffPJJ9OvXz27f/v37/z979x0eVbX1cfw3SSAJSegQ6aAgIDV0okiToliwUEXKFRARKYqKqBQbEX2lCALSAiooKOWKBZAmCAihCQICIpDQIZQkEEIm8/4RZm4mk56ZTMn38zx5bmbP2Xuvc+bE4c6atbddxnZnwcHBNm1RUVE5Hi8yMjJLcwAAAAAAAAAAANiTWyTDzpw5Y/ndYDDo6aefttvY5vFMJpOl7ezZs3Yb311VqVLFpu3kyZM5Hu/UqVNWj729vW2SkAAAAAAAAAAAAPbm4+wAsuLatWuSZFnOsEaNGnYd3zyeeanE69ev23V8d1S9enWbtmPHjuVorISEBJvKsHvuuUc+Pm5x+wF217dvX7Vq1UqVK1d2dihuydOvnzudn6vF6qx48mpeR87jaq8lPBv3W+54+vVzt/NzpXh5H3Tt8YGUuN9yztOvnbudnyvF68xYPOG90JVeS3g+Z91vBlPKkigXNW3aNA0dOlRScsLqm2++UZcuXew2/tKlS9WtWzfL+JMnT9bLL79st/HzQuXKlW0qt3Lz0sbFxalw4cJKSkqytAUEBOjq1avZTmJt3bpV999/v1Vb9+7dtXjx4hzH5+r++usv1a5d2/L4wIEDqlWrlhMjAgAg7/A+CADIz3gfBADkZ7wPwlW5xTKJ99xzj6T/VW6dP3/eruNfuHAhzfnys4CAAIWEhFi1xcXF5Wg/tS1btti0PfjggzmODQAAAAAAAAAAIKvcIhnWtGlTeXt7Wx7v3LnTruOnHM/Ly0vNmjWz6/juqmPHjjZt3333XbbHSatPWmMDAAAAAAAAAADYm1skw4oXL642bdrIZDLJZDJp5cqVdtvX6/r161qxYoUMBoMMBoNatWql4sWL22Vsd9e9e3ebtvnz5yshISHLY+zZs8cmedm0aVNVqVIl1/EBAAAAAAAAAABkxi2SYZI0evRoSclLJcbExOjVV1+1y7gjR47U9evXLftrmeeBVLt2bT3wwANWbRcvXtSkSZOyPMabb75p0/biiy/mOjYAAAAAAAAAAICscJtkWMuWLTV48GBL0mrevHl6++23czXmmDFjNGfOHEtV2AsvvKDWrVvbI1yPkdY1Hjt2rHbv3p1p32nTpmn16tVWbXfffbd69uxpt/gAAAAAAAAAAAAy4uPsALJj6tSpunTpkpYsWSJJmjBhgrZv366pU6fqvvvuy/I4hw4d0rBhw7Ru3TpJkslkUteuXfXZZ585JG531qFDBz3xxBNauXKlpe3WrVtq3bq1vvrqKz322GM2fW7fvq2wsDCNGTPG5rmpU6eqQIECDo3ZFZQqVUpjx461egwAQH7B+yAAID/jfRAAkJ/xPghXZTCZS63cyP/93//pnXfeUXx8vAwGgySpWbNm6ty5sxo2bKjq1aurSJEiCggIUFxcnK5du6YjR45o165dWrFihbZt2yYpOQnm7++vd999127LLjrKI488ojNnzqT7/MGDB3X79m2rtnr16mU45k8//aSyZctmOvfFixfVoEEDRUVF2TzXqFEjPfHEE6pSpYpu3rypo0eP6uuvv9bp06dtjh0yZAgJRwAAAAAAAAAAkKfcJhnm7e2dZrs5fHNSLCty0ic1g8GgxMTEHPfPrsqVK+vkyZN2HfPff/9V5cqVs3TsoUOH1KZNG507dy5Hc3Xt2lWLFi1K93UEAAAAAAAAAABwBLfZM8xkMqX5Y97vK73n7dUnrZ/8pGbNmtqxY4ceeOCBbPUrUKCAxo4dq8WLF5MIAwAAAAAAAAAAec5tkmGSLEmslD8ZPZfeT076pNU/v6lQoYJ+++03ffvttwoNDc3wWgQGBqpfv376888/NW7cOHl5udWtBgAAAAAAAAAAPITbLJPoaskUg8Ego9Ho7DCc6sKFC9qxY4eOHz+u69evy8fHRyVLllTNmjXVuHFjFSxY0NkhAgAAAAAAAACAfM7H2QFk1dixY50dAlIpXbq0Hn30UWeHAQAAAAAAAAAAkC63qQwDAAAAAAAAAAAAssu11h4EAAAAAAAAAAAA7IhkGAAAAAAAAAAAADwWyTAAAAAAAAAAAAB4LJJhKezcuVODBg1ydhgAAAAAAAAAAACwE4PJZDI5Owhnio6O1pdffqm5c+fqr7/+kiQZjUYnRwUAAAAAAAAAAAB78HF2AM6yevVqzZ07V//97391+/ZtmXOCBoPByZEBAAAAAAAAAADAXvJVMuzEiROaN2+eFixYoKioKEmySoLl8yI5AAAAAAAAAAAAj+PxybCEhAR9//33mjt3rjZu3CiTyWSV9KISDAAAAAAAAAAAwHN5bDJsz549mjt3rhYvXqyrV69KUrpLIZrbK1asqGeffTZP4wQAAAAAAAAAAIDjeFQy7OrVq/r66681d+5c7du3T5LSrQIztxcpUkRdunRRr1699OCDD+ZtwAAAAAAAAAAAAHAoj0iGrVu3TnPnztWKFSt069atTBNgBQoU0COPPKJevXrpscceU8GCBfM8ZgAAAAAAAAAAADie2ybDoqKiNH/+fM2fP18nT56UlH4VmPm5EiVK6L333lPXrl1VvHjxPI0XAAAAAAAAAAAAec9gSplBcnG3b9/WihUrNHfuXK1bt05JSUmZVoEZDAbL7/Xr19fu3bvzNmgAAAAAAAAAAAA4jZezA8iK/fv3a/jw4Spbtqy6d++utWvXymg0ymQyyWAwWH6k/yXBWrdurfDwcMsxAAAAAAAAAAAAyH9cdpnEmJgYLVq0SHPnztWuXbskpb8Morm9WrVq6t27t5577jlVrFhRktS3b9+8CxoAAAAAAAAAAAAuxeWSYZs2bdLcuXO1bNky3bx5M9MEWNGiRdWtWzf17t1bzZs3z/N4AQAAAAAAAAAA4LpcIhl29uxZhYeHa968eTp+/Lgk6z2/UjKZTPL29laHDh3Up08fPf744/L19c3zmAEAAAAAAAAAAOD6XCIZVqFCBZlMpkyrwOrWras+ffro2WefVenSpfM8TgAAAAAAAAAAALgXl0iGJSUlyWAwpJkAK126tHr27Kk+ffqoXr16zgoRAAAAAAAAAAAAbsglkmEpmUwmeXl56emnn1bv3r318MMPy9vb29lhAQAAAAAAAAAAwA15OTuAtJhMJv3555/6888/dfbsWWeHAwAAAAAAAAAAADdlMKXcqMtJvLy8bJZIND82GAx68MEH1bdvXz399NMKCAjI0dgmk0n169fX7t277Ro7AAAAAAAAAAAAXJdLVIZVqlRJJpPJsk+YORFmMpmUlJSkTZs2qV+/frrrrrvUu3dv/frrr84MFwAAAAAAAAAAAG7CJZJh//77r9auXatu3bqpYMGClsSYwWCwVHWZTCbFxcXp66+/VocOHVShQgWNHj1ahw4dcnb4AAAAAAAAAAAAcFEusUxiSleuXNFXX32lefPmad++fZJks4Simbm9QYMG6tu3r7p3764SJUpYjccyiQAAAAAAAAAAAPmXyyXDUtq9e7fmzJmjxYsX69q1a5IyTowVKFBAHTt2VJ8+ffTYY4/Jx8eHZBgAAAAAAAAAAEA+5tLJMLP4+Hh99913mjdvnjZt2mRZQtEsrWqxYsWKqVu3bpoxYwbJMAAAAAAAAAAAgHzKLZJhKR0/flxz587VggULdObMGUmZL6NobiMZBgAAAAAAAAAAkL+4XTLMLCkpSb/88ovmzJmjH3/8Ubdv37ZKikmyqiAzmUzy9fXVk08+qV69eqljx47y8vJyRugAAAAAAAAAAADII26bDEvp4sWLWrBggebNm6fDhw9LyrxarFSpUurevbueffZZNW7cOG8DBgAAAAAAAAAAQJ7wiGRYStu2bdOcOXO0dOlSxcbGSso8MVatWjU999xzevbZZ1W5cuU8jRcAAAAAAAAAAACO43HJMLO4uDh98803mjdvnrZt2yZJaS6jaGZ+LjQ0VJs3b867QAEAAAAAAAAAAOAwHpsMS+nw4cOaM2eOvvrqK124cEFS+okxg8Ego9GY5zECAAAAAAAAAADA/vJFMswsMTFR//3vfzVv3jytXr1aRqPRZglFkmEAAAAAAAAAAACeI18lw1I6c+aM5s+fr/nz5+v48eOWdpJhAAAAAAAAAAAAniPfJsNS2rhxo+bOnavvv/9et27dIhkGAAAAAAAAAADgIUiGpXDt2jUtWrRIL774orNDAQAAAAAAAAAAgB2QDAMAAAAAAAAAAIDH8nJ2AAAAAAAAAAAAAICjkAwDAAAAAAAAAACAxyIZBgAAAAAAAAAAAI9FMgwAAAAAAAAAAAAei2QYAAAAAAAAAAAAPBbJMAAAAAAAAAAAAHgskmEAAAAAAAAAAADwWCTDAAAAAAAAAAAA4LFIhgEAAAAAAAAAAMBjkQwDAAAAAAAAAACAxyIZBgAAAAAAAAAAAI9FMgwAAAAAAAAAAAAei2QYAAAAAAAAAAAAPBbJMAAAAAAAAAAAAHgskmEAAAAAAAAAAADwWCTDAAAAAAAAAAAA4LFIhgEAAAAAAAAAAMBjkQwDAAAAAAAAAACAxyIZBgAAAAAAAAAAAI9FMgwAAAAAAAAAAAAei2QYAAAAAAAAAAAAPBbJMAAAAAAAAAAAAHgskmEAAAAAAAAAAADwWCTDAAAAAAAAAAAA4LFIhgEAAAAAAAAAAMBjkQwDAAAAAAAAAACAxyIZBgAAAAAAAAAAAI9FMgwAAAAAAAAAAAAei2QYAAAAAAAAAAAAPBbJMAAAAAAAAAAAAHgskmEAAAAAAAAAAADwWCTDAAAAAAAAAAAA4LFIhgEAAAAAAAAAAMBjkQwDAAAAAAAAAACAxyIZBgAAAAAAAAAAAI9FMgwAAAAAAAAAAAAei2QYAAAAAAAAAAAAPJaPswMAPMnVq1e1adMmy+MKFSrI19fXiREBAAAAAAAAAOB8t27dUmRkpOVxy5YtVbRo0TyZm2QYkAPh4eEKDw+3ab906ZL++uuvvA8IAAAAAAAAAAA3smLFCj3xxBN5MhfJMCAHTpw4YVUBBgAAAAAAAAAAXBPJMCAHKleurJYtW9q0UxkGAAAAAAAAAIBrMZhMJpOzgwA8xe7du9WwYUPL4zfffFNlypRRnTp15O/v78TI4Cpu3ryp/fv3Wx5zb2SPp18/dzo/V4vVWfHk1byOnMcRY7va/QHXwb2RO55+/dzt/FwpXt4HXWt8V7o34Hq4P3LO06+du52fK8XrzFg84b2Q90HkpYMHD+o///mP5fGuXbvUoEGDPJmbyjDAjnx9fa0elylTRhUrVlSDBg1UuHBhJ0UFV3L9+nVdu3bN8ph7I3s8/fq50/m5WqzOiiev5nXkPI4Y29XuD7gO7o3c8fTr527n50rx8j7oWuO70r0B18P9kXOefu3c7fxcKV5nxuIJ74W8D8KZUn+e7kheeTYTAAAAAAAAAAAAkMdIhgEAAAAAAAAAAMBjkQwDAAAAAAAAAACAxyIZBgAAAAAAAAAAAI9FMgwAAAAAAAAAAAAei2QYAAAAAAAAAAAAPJaPswMAAAAAAAAAAMBRTCaTkpKSZDKZ7Dqu0WiUwWCwepyYmGjXORw9j73HzqtrAucwGAzy8vKyeo3dBckwAAAAAAAAAIBHSUpKUmxsrK5fv67Y2Fi7J8Kk5ERPqVKlLI9Pnz4tb29vt5rH3mPn1TWB8xgMBgUGBqpw4cIKDAyUl5d7LEBIMgwAAAAAAAAA4DGSkpIUGRmpGzduODsUwOOYTCbFxMQoJiZGhQoVUoUKFdwiIUYyDAAAAAAAAADgEfIyEebl5aWgoCCrx+42j73HzqtrAtdw48YNRUZGukVCzLWjAwAAAAAAAAAgi27evElFGJCHbty4odjYWGeHkSkqwwAAAAAAAAAAHiF1IsxgMKh06dIO2dvIaDRaJQECAwMdtmeYo+ax99h5dU3gHOa9+C5cuGC1D9/169dVuHBhJ0aWOZJhAAAAAAAAAACPEB8fb5X0Kl26tIoXL+6QuQwGg1Wix8fHxyGJH0fOY++x8+qawHnMf0/nz5+3tMXGxspkMslgMDgrrEyxTCIAAAAAAAAAwO0ZDAarahUpuTIJgH2l/rsymUxKSkpyUjRZQzIMAAAAAAAAAOCR7L00IoC0/65SJ6JdDf8lAAAA7iUyUoqKcnYUAAAAAAAAcBPsGQYAANxLWJhkMEjTpjk7EgAAAAAAALgBKsMAAID7iIyU5syRZs+mOgwAAAAAAABZQjIMAAC4j7AwKSEh+ScszNnRAAAAAAAAwA2QDAMAAO7BXBVmRnUYAAAAAAAAsoBkGAAAcA/mqjAzqsMAAAAAAACQBSTDAACA60tdFWZGdRgAAAAAwIVFRkYqiv/fCjidj7MDAPKDuLg4Z4cAF5H6XuDeyB5Pv37udH55Havfu++qYMqqMLOEBCW8+67ixo/P03jSm8dR8zpyHkeM7U73MvIW90buePr1c7fzc6V4nRWLJ7wPOmJ8V7o34Hq4P3LO06+du52fK8Wbeu6kpCRJkpdXch2I0WiUwWBwyNxGozHDx5I0YcIEGQwGTZ061aHzuMrYjow1P+vVq5e++eYbDRo0SNOmTXN2ODIajTKZTJL+9zcXExMjb2/vDPvdvHnT4bGlx2AyRwwgy8LDwxUeHm7THhcXp4iICMvjqVOnqmLFinkYGQB4Hr+LF/XQiy/KOzExzeeNPj76deZMxZcsmceRAQAAAABcicFgUKlSpSRJQUFBkqQyZcpk+gG9o0RFRalhw4aSpN27d6tcuXJOiQPur3Hjxjp27Jg+++wz9erVy9nhyGg06uzZs5KSk2CSdPHiRWWWbjp16pSGDh1qeXzgwAHVqlXLcYGmQGUYkAMnTpzQpk2bnB0GAOQL9y5blm4iTJK8ExNVbdky7R84MA+jAgAAAAAgY5MnT1bCnVVOJk+erI8//tjJEcEdXb9+Xf/8848kqV69ek6Oxn2RDANyoHLlymrZsqVNe+rKMABA7vhdvKiKa9dmelylNWt09KmnqA4DAAAAALiEqKgoffnll5bHCxcu1PDhw6kOQ7bt379fJpNJfn5+qlmzprPDcVskw4Ac6Nu3r/r27WvT/tdff6l27do27U2aNFFAQEAeRAZXFxcXpx07dlgec29kj6dfP3c6v7yK1e/VVzOsCjNLXR2WV9cur66DI+dxxNjudC8jb3Fv5I6nXz93Oz9XitdZsXjC+6AjxnelewOuh/sj5zz92rnb+blSvKljCQgIkJeXl2XPsMDAQPn4OOZjcKPRqBs3blgeFypUyLIk4+eff26pCpOkhIQEff755znaOyyjeXLL3mM7Mtb86tChQ5KkOnXqqFixYk6OJlliYqLlb8y8JGmNGjUyfa13797t8NjSQzIMyAMBAQEqXLiws8OAC+LeyB1Pv37udH4OiTUyUlq4MMuHp6wOc9a1y6t5HTmPI8Z2p3sZeYt7I3c8/fq52/m5Ury8D7rW+K50b8D1cH/knKdfO3c7P1eK18vLy+oDeW9v7zxLxpjnioyM1Ny5c22enzNnjt58802VL1/eLvM4QlpjX7lyRcuWLdPq1at16NAhnT59Wjdu3FBwcLDuv/9+DR06VM2aNUtzvHvvvVcnT57U/Pnz0ywukJILDxYsWKA+ffooPDzc6rlWrVpp06ZNGjt2rN566y1NnTpVixcv1rFjx3Tt2jVt2LBBrVq1shy/ceNGTZ8+XVu3btWlS5cUFBSkevXqqVevXurdu3ea1y07c+TmWmRHRESEJk2apI0bN+rcuXOWtrJly6pt27Z67733dM899+R6npwymUwyGAySZLmmQUFBmSae/f39HR5berycNjMAAEBGwsKkFN+iy4y5OgwAAAAAAGcKCwuzqgozS0hIUFhYmBMiyp0pU6aof//+Wrp0qaVKSZJOnTqlxYsXKzQ0NEcVb9kRHx+vVq1aaeTIkdq3b5+8vLwsyRizV155Ra1bt9Z3332ns2fPqlChQrp69arWr1+v//znP2rfvr1iYmJyNYejr4XJZNLo0aPVpEkTLVq0SNHR0TKZTJIkPz8/XbhwQYsXL1ajRo2s5kfmSIYBAADXExkpzZmT7W6V1qyR36VLDggIAAAAAIDMRUZGak4G/3929uzZioqKysOIcq9s2bIaO3asIiIidOPGDUVHR+vmzZs6fvy4hg0bJik5EbVnzx6HxTB9+nT9+eefmj9/vq5fv67o6GhdvHhRdevWlSRNmzZNkyZNkiQNHDhQZ86c0ZUrV3Tt2jVNmjRJPj4+Wr9+vQYMGJDjOfLiWowYMUITJkxQoUKFNG/ePEVGRlqe2759u3799VcFBgbq6tWrGjp0aI7myK9IhgEAANeTzaowM6rDAAAAAADOlF5VmJk7VocNHDhQ48aNU8OGDVWwYEFJksFgUJUqVTR58mQNHjxYRqNR06dPd1gMsbGxWrRokfr27WtZaq9EiRIqXry4bt68qbFjx0qSevTooVmzZumuu+6SlLyE5/Dhw/Xpp59Kkr799lvt2rUr23OYOfJarFq1SlOmTLHE2a9fPx04cEAmk0l+fn6677771LZtW7322muSpHXr1ik6Ojrb8+RXJMMAAIBryWFVmFmlNWtkOH3ajgEBAAAAAJC5zKrCzNyxOiwjnTp1kiRt2bLFYXPUqlVLjz32WJrPrV271pIUGjduXJrHDB48WGXKlJEkLVq0KNtzZFVursUbb7whSerTp49lnN27d0uS6tSpY9mPq3379pKSl1Q8evRoruLNT0iGAQAA15LDqjAz78RE+d5ZGgEAAAAAgLwyceLEDKvCzNyxOuz48eMaOXKkGjZsqKJFi8rb21sGg0EGg0GPPPKIJDk0wXf//fen+1xERIQkqUKFCrr33nvTPMbb21tt2rSxOj47c6TkiGuxZcsWHTx4UJI0fPhwS7s5GdagQQNLW1BQkOV3835iyJyPswMAAACwyGVVmFmBBQukMWOk8uXtEBQAAAAAABmLiorS3Llzs3z87NmzNWrUKJV3g//funz5cvXo0UO3bt2ytBUuXFh+fn4yGAxKSEjQlStXFBcX57AYSpcune5zFy5ckCSVK1cuwzHM19p8fHbmMHPUtVi9erUkqXLlyqpfv76l3bz3WMpk2Pnz5y2/u8P94ypIhgEAANdRqpSUg2+SxcTEWC1B8MADDyioZEl7RpYju3cn5/b27pViY6XAQKl+fal/fynFv2MBAAAAAG5u8uTJWaoKMzNXh02bNs2BUeXe5cuX1bdvX926dUtt2rTRmDFj1KRJE8ueWlLy3lUPPfSQQ+Pw9vZ26PhZmcOR18JcAdasWTNL240bN/T3339LkkJCQizt5j3P7rrrrkwTgPgfkmGwYTQadfDgQf3111+Kjo7WtWvX5O3traJFi6pUqVIKCQlR5cqVHTb/sWPHtHfvXkVGRiouLk7+/v4qW7as6tatq1q1ajlsXgCAC/DzS/7JJpOvrxKKFPnf45IlczSOvURESC+/LG3fbvvctm3SjBlS8+bS1KlSo0Z5Hx8AAAAAwH6ioqL05ZdfZrufO1SH/fTTT7p+/bqKFSumH374QYUKFbI55ty5c+n2N+9zFR8fn+4x165dy1WM5oquzJYmND+flQqwtOT2WmTk1KlTNrHt27dPRqNRPj4+qlu3rqV95cqVkqSOHTvKYDBISr6Gd999typWrKjdu3db2mNjY9WyZUtFRUVp69atuueee9SrVy998803iomJsUrkSVJ4eLj69euntWvXOjzBmddIhsFizZo1mjNnjn788UfduHEjw2NLlSqlbt26aeDAgapTp06u575586ZmzJihmTNnZrjpX/ny5fX8889r+PDhKlq0aK7nBQDA3latkrp0kTL4d76k5KRYixbS0qXSo4/mTWwAAAAAAPvLblWYmTtUh0VGRkqSqlevnmbyR5J+/fXXdPsXK1bMapzUkpKS0t3DK6sa3fmWaVRUlI4cOZLmvmFGo1EbNmyQJDVu3DhH8+T2WmTF9evXLb+bq8Xuu+8++fr6SpJ27Nih33//XZL0wgsvWI4tUqSIRo0apddff13Lly/XU089pcTERD3zzDM6cuSINmzYoHvuuUeS1LRpU3399dfas2ePQkNDLWPExcXprbfeUqdOnTwuESZJXs4OAM537NgxtWnTRh06dNDSpUszTYRJ0sWLFzVt2jTVq1dPgwYNylX2/vfff1fNmjX16quvZpgIk5L/gzZ+/Hjde++9+u9//5vjOQEAcITdu72ylAgzi49PTpzl8t/9AAAAAAAnyWlVmNns2bMzrWhypiJ3VmE5cuRImtVde/fu1aJFi9Ltb65oWr58uUwmk83zCxYsyPX5t2vXTiVKlJAkjRs3Ls1jZs2apTNnzkiSevTokaN5cnstMlKtWjVJ0oYNG2Q0GiX9Lxlm3i8sNjZW/fv3lyQ9/fTTVksqStKQIUNUtmxZjR8/XklJSRowYIDWrVun7777zpIwlJKTYZJskpATJ07UhQsX9PHHH+foHFwdybB8bvv27WrYsKElK55dJpNJs2bNUmhoaLobD2Zk2bJlat26tU6ePJmtfhcvXlTnzp31+eefZ3tOAAAc5fXX/bKcCDOLj5eGDnVMPAAAAAAAx8ppVZiZuTrMVbVv315eXl6Kjo7Ws88+q9OnT0tKjnvJkiVq3769goKC0u3frVs3SdKhQ4c0cOBAXb58WVJyBdSkSZM0aNAgFS9ePFcx+vv7W5Jgixcv1qBBg3T+/HlJyftuTZ06VcOHD7fE07BhwxzNk9trkZGuXbtKkk6ePKkRI0YoPj7eKhm2d+9etW7dWvv371e1atU0Y8YMmzH8/f01ZswY/fnnn2rXrp3Cw8M1d+5cdejQweq4+vXry9fX1yoZdvr0aX3yyScaOHCgatasmaNzcHUkw/Kx48ePq0OHDlall2ZlypTRCy+8oM8//1zffvutvvrqK33yySd65pln5JfGHiwHDx5U+/btdfv27SzPv3XrVnXv3t2mj5eXlx5//HFNnDhRixcv1tSpU/X888/blJ6aTCYNGTJEy5cvz/KcAAA4yrFjRbRzZ85WoN62Tbrzb1wAAAAAgJuIjIzMVVWYmStXh1WrVk2vvfaapOTChvLly6to0aIKDAxUt27dFBgYqKlTp6bbv23btnruueckSXPmzFHJkiVVrFgxFStWTK+88opeeOEFPfbYY7mOc8iQIRoxYoSk5CqwMmXKqHjx4ipSpIiGDRum27dvq3Xr1po9e3aO58jttchI165d9eidPRQ+++wzFS1aVPv27ZMkvfHGGwoJCVFERIQaNWqk9evXq1SpUmmO8/zzzys4OFjr16/XBx98oN69e9scU7BgQYWEhGjnzp2WttGjR8vHxyfdyjpPwJ5h+dhLL71kkwjz9fVVWFiYXnrpJRUoUCDNfpcvX9bw4cP11VdfWbXv27dPn3zyid58881M546Li1OPHj1sEmHVq1fX8uXL08w+T5w4Uf369bNaHtFkMqlfv35q3ry57rrrrkznBQDAUX79tVKu+s+dK91Z+QAAAAAA4AZKlSqlv/76y/I4MDBQ3t7eORorpxVFeSEsLEy1atXStGnTtH//ft2+fVtVq1bVk08+qddff1179uzJsH94eLgaNWqk+fPn6++//1ZSUpLuv/9+vfzyy+rSpYv69u1rlzg//fRTPfbYY5o+fbp+//13Xb58WUFBQapfv76ee+459e7dO8evj1lur0V6vLy8tGzZMn3yySdasGCBjh8/bllW0sfHR/fff7/69Omjfv36yccn/bTO9OnTLVVx5mUd09KsWTNNnTpVMTExOnr0qL788ktNmDAh3SSbJyAZlk8dOnRIv/zyi037okWL9NRTT2XYt0SJEvryyy8VGBiomTNnWj03ZcoUvfHGG/Lyyrjo8MMPP9SpU6es2qpWraqtW7emWxZbvHhxLVu2TN26ddP3339vab927ZpGjRql8PDwDOcEAMCR/v03/X9kZsXevfaJAwAAAACQN/z8/FSyZEnL46CgoFwnW1zVc889Z6nwSq1Vq1aWxI15v6uUvLy8NHToUA1NZ4+A8PDwdD/b3bhxY7bibN26tVq3bp2tPtmdI6vXIrsKFCigN998U2+++aZmzpypF198UbVr19b+/fuz1H/JkiUaMWKEXnnlFW3evFnvv/+++vXrZ7PimpS8b1hSUpJ2796tsWPHqlKlSpalJD0VyyTmU2ktLdi5c+dME2EpffLJJwoODrZqO3/+vLZv355hv6tXr2ratGlWbV5eXpo/f36m68N6e3tr1qxZNvN+9dVXOn78eJZjBwDA3uLjc/d/eGJi7BQIAAAAAABwa+YKs5CQkCwdv3HjRvXu3Vtdu3bVJ598onfffVfnzp3TlClT0jy+WbNmkqQxY8Zo06ZNmjBhgnx9fe0TvIsiGZZPHT582KatR48e2RojICBAnTt3tmn/+++/M+z39ddf2yzP2KlTJz3wwANZmrdEiRKWtVnNjEZjrtZ7BQAgt/z8bL/9lh0uvCIGAAAAAADIQ9lJhu3fv1+dO3dWs2bNtGDBAhkMBnXs2FGhoaGaOHGirly5YtOncuXKKl26tH777Tc1bdpU3bp1s/s5uBqSYfnUhQsXbNrS2qcrM2n1Ma9Jmp5vvvnGpm3QoEHZmrdPnz42merFixdnawwAAOypSpVruepfv7594gAAAAAAAO4rMTHRsjRiZsmwyMhIPfzwwypfvrxWrFhh9Zn5e++9p6tXr+qjjz5Ks2/jxo0lJe+1ZjAY7BS962LPsHyqYMGCWWrLTFqlk35+fukef+3aNW3bts2qLSgoSB06dMjWvCVLllSrVq20evVqS9vJkyd16NChHCX1AADIrXbtTuqXX6rkuP/zz9sxGAAAAAAA4JYOHz6s+Ph4SVL9TL45W6FCBUVFRaX5XJs2bdLdvyw2NlZ//PGHunTpotDQ0FzF6y6oDMunqlSx/bAuMjIy2+Ok1eeee+5J9/ht27bZbKLYrFmzHG0s2aJFC5u2zZs3Z3scAADs4Z57rqlx48Qc9W3eXGrQwM4BAQAAAAAAt1O7dm2ZTCaZTCYVLVrUIXOMGzdOsbGx6VaNeSKSYflUmzZtbNp++eWXbI/z888/Wz0uWLBghnt/7dq1y6atefPm2Z5XUpoZ67TGBwAgr0ycGK8MCqTT5OcnTZ3qmHgAAAAAAAAkKTo6WosXL9Yrr7yiTz/9VO+//36aRTOeimRYPtWpUydVqlTJqm3mzJk6efJklsf45ptvLBv5mT333HMqVqxYun0OHz5s01a1atUsz5lSWhVof//9d47GAgDAHho0SNLSpcpyQszPT1q6VGrUyLFxAQAAAACA/G3t2rXq2bOnFi9erDFjxujVV191dkh5imRYPuXj46PPP//cqi0uLk4dOnTQkSNHMu2/YsUK/ec//7FqCw4O1oQJEzLsd+LECZu21Em5rCpXrpzN8orHjx/P0VgAANjLo49KmzcnL32YkebNk4979NG8iQsAAAAAAORf3bp1k8lk0tmzZzVu3Dhnh5PnfJwdAJznkUce0dSpUzVs2DDLRnp///236tevr969e+vJJ59U/fr1Vbx4cd2+fVvnzp3TH3/8oQULFmj16tVWY5UsWVKrV69WqVKlMpzz3LlzNm0VKlTIUfze3t4qU6aM1QaB58+fz9FYablw4YIuXryYrT7Hjh1Lsz0uLs4eIcEDpL4XuDeyx9Ovnzudn6vF6qx40pv33nulX36R9u710pdfFtT+/V6KjTUoMNCkOnWS9NxzCapfP0mSdP16zuexB0eM7Wr3B1wH90buePr1c7fzc6V4Xe190N3msff4rnRvwPVwf+Scp187dzs/V4o39dxJScn/X8vLK7kOxGg0ymAwOGRuo9GY4WN3mMfeY+fVNYFzGY1GS07B/DcXExNjU7yS2s2bNx0eW3oMJnPEyNStW7cUFxenxMREFSpUSAEBAQ77D2leWr16tQYNGpRm1VZWPP7445oxY4bKli2b6bElSpRQdHS0VduFCxcyTaKlp2bNmjZLL8bExCgwMDBH46U0btw4jR8/PldjTJ06VRUrVsx1LAAAAAAAAAAyZjAYLJ8zBgUFSZLKlCmT6Qf0ALLHaDTq7NmzkpI/j5ekixcvKrN006lTpzR06FDL4wMHDqhWrVqOCzQFKsPSsH//fu3cuVM7d+7UkSNHdOLECUVFRSkxMdHm2OLFi6tSpUqqUqWK6tWrp8aNG6tx48YqXry4EyLPGfPSiEuWLNG8efO0fv36TPt4eXmpf//+Gjx4sOrVq5fludL6loi/v3+24s2s740bN+ySDAMAAAAAAAAAAO6PZJiSkycrV67Ujz/+qDVr1ujy5ctWz2eUzbx8+bIuX76sPXv2aNmyZZKSv4HQsGFDPfLII3riiSdUv359R4afayaTSb/88osWLlyozZs3Z6lPUlKS5s2bpxMnTuiVV15Rhw4dstTv9u3bNm1+fn7ZijeltJJhCQkJOR4PAAAAAAAAAAB4lnydDNu4caPmz5+v5cuXWyqW0kp8ZWUpxJT9TCaTdu7cqYiICL377ruqVauW+vTpoz59+qhkyZL2OwE7OH78uPr06aMtW7ak+XzJkiVVsmRJJSYm6tKlS7p69arlucTERK1Zs0Zr1qzRE088oTlz5uTo/HKz1GRafe218ufgwYPVpUuXbPU5duyYOnfubNPepEkTBQQE2CUuuLe4uDjt2LHD8ph7I3s8/fq50/m5WqzOiiev5nXkPI4Y29XuD7gO7o3c8fTr527n50rx8j7oWuO70r0B18P9kXOefu3c7fxcKd7UsQQEBMjLy8uyZ1hgYKB8fBzzMbjRaNSNGzcsjwsVKuSQJRkdOY+9x86rawLnSkxMtPyNmZckrVGjRqav9e7dux0eW3ryXTLs9u3bWrRokSZNmqT9+/dLsk6epJeYySjBYjAYMkzKHDhwQK+//rreeecdPffccxo+fLhq1qyZm9Owiz///FNt27bVpUuXrNqrVq2qV155RY8//rjKlStn9dyxY8f0/fffa8qUKZY1QSVp5cqVOnLkiNavX6+77ror3TkLFCigW7duWbXdvHkzx8saprXhXsGCBXM0VmqlS5dW6dKl7TJWQECAChcubJex4Fm4N3LH06+fO52fq8XqrHjyal5HzuOIsV3t/oDr4N7IHU+/fu52fq4UL++DrjW+K90bcD3cHznn6dfO3c7PleL18vKy+kDe29s7z5IxeTWXI+ex99h5ef2Rd0wmkyUnYn59g4KCMk0852bLpNzKN8kw87J+7733nqKiotJNgKVOehUtWlTly5dXmTJlVKhQIfn7+8vHx0c3b97UzZs3FR0draioKJ07d85mT7HU48bHx2vOnDmaO3eunnnmGb377ru69957HXTGGYuOjtYjjzxikwj7z3/+o+nTp6e7dGHVqlX1xhtvaODAgerVq5d++ukny3OHDh1St27dtGHDBktWOLVChQo5PBnmyt+aAQAAAAAAAAAAeStfJMOWL1+uUaNG6dixY5ZklzlRZTKZLG2VKlVS69at1bhxY9WrV0916tSxlPhlxmQy6dixY9q3b5/27dunzZs3a/v27Zb9q1LPt3TpUi1btkx9+vTRBx98YLcKpKwaNWqUTp8+bdX21FNPac6cOVlatrBYsWL6/vvv1apVK/3xxx+W9t9++03h4eH6z3/+k2a/EiVK6MqVK1ZtsbGxKlWqVA7OIrlvSgULFsxxYg0AAAAAAAAAAHietMt3PMTff/+tDh066JlnntHRo0ctpXsGg8Hye4sWLTRlyhQdP35c//77r+bNm6cXX3xRoaGhWU6EScnJrmrVqumZZ57Re++9p40bN+rq1atavXq1Bg4cqFKlStkk4hITEzVv3jxVr15dn332mZKSkhxyHVK7dOmSFi5caNXm5+enqVOnZmv/Lj8/P02bNs2mffLkyen2CQ4OtmmLiorK8pwpGY1Gq6Ua0xsfAAAAAAAAAADkXx6dDKtbt65+/fVXq/UrTSaTqlSpog8++EBRUVHatGmTXn75ZVWuXNnu8/v5+aldu3aaOXOmzp49q9WrV+upp56Sj4+PVUzXrl3T8OHDNXHiRLvHkJZff/3VZqnChx56yGZ/sKxo1KiRatWqZdW2f/9+mySVWZUqVWzaTp48me15JenMmTM2S1OmNT4AAAAAAAAAAMi/PDoZdvv2bcvvJpNJrVq10s8//6xjx47pzTff1F133ZVnsRgMBrVr107fffedIiMj9fbbb6to0aJWSTHzkoqO9ueff9q0NWvWLMfjpdU3rTkkqXr16jZtx44dy9G8//zzj01bjRo1cjQWAAAAAAAAAADwTB6dDJOSk2APP/ywtm3bpvXr16tDhw7ODkmlS5fWu+++q1OnTmnixIkqXrx4ns5/+fJlm7ac7tmVXt/o6Og0j23YsKFN27Zt23I079atW23aGjRokKOxAAAAAAAAAACAZ/LoZFjjxo21fv16/fjjj2ratKmzw7EREBCgkSNH6vjx43rzzTcVEBCQJ/P6+fnZtN28eTPH4924ccOmrVChQmke27x5c3l7e1u1bdu2TUajMdvzbtmyxabtwQcfzPY4AAAAAAAAAADAc/k4OwBH+uOPP5wdQpYEBQXp/fffz7P50qrk+vfff3M83vHjx7M0hyQVLVpUzZo10++//25pi4mJ0Zo1a/Twww9nec7o6Ght2LDBqq1ixYqqWbNmlscAAAAAAAAAAACez6Mrw5C2atWq2bT9/PPPORrrxo0b2rhxo1WbwWBQ1apV0+3TvXt3m7ZZs2Zla94FCxYoPj7eqq1Hjx7ZGgMAAAAAAAAAAHg+kmH50EMPPSQvL+uX/siRI1q6dGm2x5o0aZJiY2Ot2kJCQlS6dOl0+/Tq1UtBQUFWbT/88EOae4ClJTo6Wh9//LFVm7e3twYMGJDFqAEAAAAAAAAgD0RGSlFRzo4CyPdIhuVDJUqU0EMPPWTTPmjQIB06dCjL46xdu1bjx4+3aU+r8iulokWL6qWXXrJqS0pKUr9+/XTlypUM+yYlJWnQoEE6e/asVXvPnj11zz33ZDFyAAAAAAAAAMgDYWHJP3A6o9GoTz/9VCEhIQoICJDBYJDBYNCKFStyPXbPnj1lMBg0ePDg3AcKhyAZlk99+OGHMhgMVm3R0dFq1qyZwsPDlZiYmG7fGzduaMKECerUqZNu375t9Vz58uU1ZMiQTOd/6623VL58eau2I0eOKDQ0VIcPH06zz5UrV/TUU0/ZVLAVLlxYYbyhAAAAAAAAAHAlkZHSnDnS7NlUhzlIeHi4xo0bZ7OVT1qGDx+uV199VXv37lViYqKCg4MVHBwsPz+/XMexa9cuSVKjRo1yPRYcw8fZAcA5GjZsqDfeeMMmiXT9+nX169dPY8aMUceOHVW/fn2VKFFCSUlJunjxonbs2KGff/5Z0dHRNmMWKFBAc+fOlb+/f6bzBwYGatGiRWrTpo1V4u3w4cOqVauWHnvsMbVo0ULlypXTpUuXtG/fPi1evFhxcXE2Y82dO1dly5bNwVUAAAAAAAAAAAcJC5MSEv73+7Rpzo3HA4WHh2vTpk2SpFatWqV7XExMjGbNmiVJmjhxokaOHGlTLJJT169f19GjRyUlf+4O10QyzI5Onz6t/fv369q1aypVqpRq166d4d5ZzjZhwgRdu3ZNM2bMsHkuMjJSs2fPzvJYBQsW1IIFC9S+ffss92nRooUWLVqknj17WiXEkpKStHLlSq1cuTLD/gaDQZMnT9YzzzyT5TkBAAAAAAAAwOHMVWFms2dLo0ZJqVbLQt44fPiwZZWzF1980W6JMEnas2ePTCaT/Pz8VKtWLbuNC/timUQ72LJli5o3b66KFSuqU6dO6tmzp9q1a6dy5crpkUceydY+XHnt888/1zfffKOSJUvmeIz69etr586dme4VlpYuXbpo3bp1qlChQrb6lShRQt9//72GDh2a7TkBAAAAAAAAwKFSVoVJyb+z1YvT3Lhxw/J7YGCgXcc2L5FYt25d+fhQf+SqSIbdcfToUZUtW9byc++99yo+Pj7TfgsXLlSbNm20Y8cOmUwmqx+j0ahffvlFDRs21LJly/LgLHKmW7duOnHihGbPnq3Q0FAVKFAg0z5BQUF68skn9fPPP2v37t2qW7dujud/8MEHdfjwYX388ceqWrVqhseWK1dO77zzjo4ePaonn3wyx3MCAAAAAAAAgEOkrgozc/O9w06cOKHhw4erVq1aCgwMVKFChVSjRg0NGzZMp06dSrNPmzZtZDAYNG7cOCUmJmrSpEkKCQlRYGCgSpcurc6dO2vfvn2W42/cuKH3339ftWvXVkBAgEqUKKFu3brpn3/+sRo3PDxcBoPBskTi+PHjZTAYrH5OnDhhOS7lEoopj8loacWMRERE6Nlnn1W5cuX02muvSZJ27typ4OBg9ezZ0yZeOB9pyju+++47nTt3TlLyH8MTTzyR6cZ5+/bt08CBAy1L/KVVWmkymRQfH69evXppw4YNatq0qf2Dt4OAgAD1799f/fv3161bt7Rnzx79888/unr1qq5duyZvb28VLVpUxYoVU+3atVWjRg15edkvl1qoUCGNHDlSI0eO1JEjR7R3715FRkbqxo0b8vPzU9myZVW3bl3VqVPHbnMCAAAAAAAAgN2lrgozM1eHueHeYV9//bWef/553bp1S5Lk6+srLy8v/f333/r77781f/58fffdd2rbtm2a/W/fvq2OHTtq3bp1KliwoAoUKKCLFy9q5cqVWrdunTZs2KAqVaqoXbt22rNnj/z8/GQwGBQdHa0lS5Zo48aN2rlzpypWrChJ8vf3V3BwsKKjo3X79m0FBATYVHx5e3tbjktISNCVK1ckScHBwZZjihcvnq3rYDKZ9NZbbyksLMyyNKLJZJIk+fn56cKFC1q8eLF+/vlnbd26VTVr1szW+HAckmF3/PLLL1aPe/funWmfkSNHKiEhwSoJZr7xzczPxcfH64UXXtCePXvsuh6pI/j6+qpZs2Zq1qyZU+a/9957de+99zplbgAAAAAAAADIsfSqwszccO+wtWvXqnfv3vLy8tLrr7+uF198UZUqVZIkHTlyRO+8846WLl2qLl26aO/evSpWrJjNGJ9//rm8vb21dOlSPfHEE/Lx8VFERIS6d++u48ePa9iwYQoODtaVK1e0evVqPfTQQ5KkDRs2qEePHrpw4YJGjx6tr776SlLyamfdunVTq1attGnTJo0cOVLjxo2zmdd83MaNG9W6dWtJshTF5MSIESM0ZcoUBQQE6LPPPtNjjz2m0qVLS5K2b9+uixcvqnPnzrp69aqGDh2qtWvX5ngu2BfLJEoyGo3atWuXJUlVrFixTBNBe/bs0bp162QwGCzLIpYvX16TJ0/WL7/8ovnz56tx48ZWybH9+/dryZIlDj0XAAAAAAAAAICTpFcVZuZme4clJSXppZdeUlJSkqZPn66PPvpIlStXtiwzWL16dS1ZskSPP/64rl+/rsmTJ6c5ztWrV7VixQo988wzKlCggAwGgxo3bqzZs2dLkrZu3apffvlFa9euVfv27eXl5SUvLy+1bdtWYXeu17Jly3T79u28OnUbq1at0pQpUyRJ3377rfr166cDBw5YKsTuu+8+tW3b1rJs4rp16xQdHe20eGGNZJiSs9fmDfQMBoOaN2+eafXW119/bfW4XLly2rlzp4YOHar27durT58++v3339WhQweZTCbLeF9++aVjTgIAAAAAAAAA4DyZVYWZudHeYb/99puOHj2qkiVLqn///ukeZ15pbc2aNWk+/8ADD+iBBx6waW/ZsqV8fX0lSc8884yqVq1qc0yHDh0kSTdv3tTRo0ezfQ728sYbb0iS+vTpo06dOkmSdu/eLUmqU6eOfHySF+Jr3769pORV5JwZL6yxTKKSN/5LqVatWpn2WbZsmaUqzGAwaMyYMZZySDMfHx/NnDlT9957rxITE2UymfTrr7/q9u3bKlCggD1PAQCAXIuMjJTBYFB5N1qqAQAAAAAAV2GYODHjqjAzN9o77Pfff5ckXbt2TWXLlk33uIQ7533y5Mk0n2/SpEma7d7e3ipZsqROnz6txo0bp3lMyj2+zPt+5bUtW7bo4MGDkqThw4db2s3JsAYNGljagoKCLL+n3lYJzkNlmKSoO1l4841ZpUqVDI8/deqUVQLN399fzz77bJrHVqpUSa1atbKMffv2bf311192iBoAAPsKCwuzLD0AAAAAAACyzhAVJcPcuVnv4CbVYWfOnJGU/Ln2+fPn0/0xJ6lu3ryZ5jgpE0SpmSuq0jvG/Lw5DmdYvXq1JKly5cqqX7++pX3Pnj2SrJNh58+ft/zOF45dB5VhkmJjY60eZ/SHKSWXhpoZDAa1bt1ahQoVSvf40NBQq43yDh06ZPUHA88XFxfn7BDgIlLfC9wb2ePp18+Z5xcVFaU5d5ZyeOmll1SuXLkMj3e118JZ8eTVvI6cxxFju9r9AdfBvZE7nn793O38XCle3gdda3xXujfgerg/cs7Tr527nZ8rxZt67qSkJEmSl1dyHYjRaMx0S5ycMhqNlt/9Jk+WIStVYWYJCUqaMEGmqVOzNU9aj3Mjs7ETExMlJVd2bd26NUvjmbckSikpKSnTuLNyjNFotDrGXISSWd+Uz+Xk+u3atUuS1LRpU0v/Gzdu6O+//5Yk1a1b19K+c+dOSdJdd92lu+66y66vl6swGo1W116SYmJi5O3tnWG/9JKleYFkmGxfAH9//wyPN9/M5iUSH3rooQyPr1y5stVjNs1zf+Hh4QoPD7dpT++Nf8eOHQ6OCO6KeyN3PP365eX5zZo1y7KkwciRIzVw4MBs9Xe118JZ8eTVvI6cxxFju9r9AdfBvZE7nn793O38XCle3gdda3xXujfgerg/cs7Tr527nZ8rxWv+fM5c8BAbG5vpB/S5ZYiKUsEvv8x+vzlzFDN4sEyZfCE1tbSSTfaSeuxixYpJSl7+MCYmJtvjmRNBCQkJ6fY3J1Pi4+MznePmzZtWx2RlfHM/s5ych3mluKJFi1r679ixQ0ajUT4+PqpSpYqlffny5ZKkNm3aWApxrl27ppCQEJUvX16bNm2yJGhjY2P16KOP6syZM1q9erWqVKmigQMHatmyZYqMjLTJVSxatEgvvfSSli9frlatWmX7POzFaDRaJcEkafPmzZkuC3nq1CmHx5YelkmUdZmllHl2ctu2bVbfJmjRokWGxwcGBkqSpU9O/tjgWk6cOKFNmzbZ/ERERDg7NADItosXL1pVMK9Zs0aXLl1yYkQAAAAAALiPbFeF3WFISJDf5Mn2D8iOmjZtKil56T/zkoCuxFwBmFd7c6X8bH/fvn2SpOrVq8vX11dScgXZH3/8IUnq27ev5dgiRYpo+PDh2r9/v1atWiUpuequb9+++ueff/Ttt99atm9q1KiRjEaj/vzzT6u54+Li9P7776t9+/ZOTYS5K5JhkgoXLmz12LwOalpiYmKs/uj9/f0zXfIwIQf/IYRrq1y5slq2bGnz06hRI2eHBgDZtmzZMsuyB1LyP8aWLVvmxIgAAAAAAHAPOa0KMyu4cKEMp0/bMSL7atGihe6++25J0ujRozP9rNu8d1heMVcAXrt2zaHz3HPPPZKSq5/M1WjmZFW9evUkJVd5DR06VJL0+OOPq3HjxlZjDBgwQGXKlNFHH32kpKQkDRs2TJs2bVJ4eLhCQkIsxzVs2FCStHfvXqv+U6dO1cWLF/Xuu+/a/wTzAZZJVPLandL/Krf279+f7rFr1qyxrDNrMBjUuHFjS/Y5PVevXpX0v2UVzZVicF99+/a1yuyb/fXXX6pdu7ZNe5MmTRQQEJAHkcHVxcXFWS0dwL2RPZ5+/ZxxflFRUVq3bp1N+6+//qpPPvkk3b3DXO21cFY8eTWvI+dxxNiudn/AdXBv5I6nXz93Oz9Xipf3Qdca35XuDbge7o+c8/Rr527n50rxpo4lICBAXl5els9sAwMDbVYGsxej0ShTDqvCzAwJCQr6/PMM9w5LvQ9XoUKF7Lb0Y1bGnjFjhjp16qTt27frscce03vvvacHH3xQBQoUkCQdP35ca9eu1fz58/Xoo49q2LBhlr7msQoWLGhJXKVmfq38/PzSPcbM39/f6ph69erpp59+0rp163T9+vV0P8dIudxgZnOkpUePHlq1apUiIyM1btw4hYWF6cCBA5KS7/9//vlHgwYN0sGDB1WtWjXNmjXLZp6goCC98847Gjx4sJ555hlt2LBB8+fPV+fOna2OCw0Nla+vrw4cOGAZ4/Tp05o2bZoGDBjgEgUZiYmJltfNHGONGjUyvS93797t8NjSQzJMyZvbmZlMJq1evVq3b9+2/DGntHjxYstxBoNBDz74YKbjp640K1myZC4jhrsJCAiwqUAEJO6N3PL065cX5zd9+vQ0v9WVkJCg6dOna9q0aVkax9VeC2fFk1fzOnIeR4ztavcHXAf3Ru54+vVzt/NzpXh5H3St8V3p3oDr4f7IOU+/du52fq4Ur5eXl9UH8t7e3o7bMywyUl65qAoz85ozR3rzTal8+Swd78hzSmvs9u3ba+nSperdu7d27NihDh06qECBAipcuLBiY2N169Yty7GPP/54muOmfl1yekzq+Pr166dJkybp2LFjqlKlikqVKiU/Pz9J0pYtW1T+zjVNfU9kV/fu3bV48WKtWrVK06ZN0+zZsy2fp7z55puWrZcaNWqk5cuXWwpwUhswYIDGjx+vDRs26IMPPkiz4MLf318hISGKiIiwxPrOO+/Ix8dH48ePd/geeFlhzo9I/7ueQUFBmSaeU++BlpdYJlHS3XffreDgYMvjixcv6rPPPrM57uDBg1q5cqXVfmHt2rXLdPzU5YzmslIAAJwpMjJSc+bMSff52bNnKyoqKg8jAgAAAADAjZQqpet//aVrR4/q2tGjMp49K124kP2fqCjJxQsoOnfurGPHjmns2LFq0qSJAgMDdfXqVfn6+qpevXrq37+/li9frpEjR+ZpXNWqVdOGDRv0+OOPq1SpUrp8+bJOnjypkydPWm0JkVteXl5atmyZPvzwQ1WvXl1JSUmWfcp8fHx0//3364svvtC2bdssCbi0TJ8+XefPn5eUvI9Yepo1a6YjR44oJiZGu3fv1pdffqnRo0erVKlSdjun/IbKsDu6du2qzz77TAaDQSaTSaNGjdKNGzfUv39/lShRQlu2bNGAAQMsSyRKUoUKFfTAAw9kOvbu3bst40rJf6AAADhbWFhYhmt9JyQkKCwsLMvVYQAAAAAA5Ct+fjKlTGIFBUkuULXjKKVLl9a4ceM0bty4dI8xGo1WlWLr16/PtJLpxIkTmc5t/mw9Lc2aNdPKlSsz7N+qVasMx8iKAgUK6M0339Sbb76pmTNn6sUXX1Tt2rUz3HYppSVLlmjEiBF65ZVXtHnzZr3//vvq16+fChUqZHNs06ZNlZSUpN27d2vs2LGqVKmShg8fnqv48zsqw+4YMmSIChYsKCl577DExESNHTtW5cqVk5+fnx566CEdP37cktQyGAwaMmRIpuPu2bNHZ8+etTyuUqWKihUr5rDzAAAgKzKrCjOjOgwAAAAAAMDanj17JEkhISFZOn7jxo3q3bu3unbtqk8++UTvvvuuzp07pylTpqR5fLNmzSRJY8aM0aZNmzRhwgT5+vraJ/h8imTYHdWqVdNrr71myQ6bk14pf1Iuj1ilSpUsJcOWLVtm+d1gMCg0NNT+wQMAkE2ZVYWZmavDAAAAAAAAkCw7ybD9+/erc+fOatasmRYsWCCDwaCOHTsqNDRUEydO1JUrV2z6VK5cWaVLl9Zvv/2mpk2bqlu3bnY/h/yGZFgK7733nnr16mWVEEv5IyWXYxYvXlzff/+9ZSO+9CQlJenrr7+2WiKxTZs2jj0JAAAykdWqMDOqwwAAAAAAAJIlJiZalkbMLBkWGRmphx9+WOXLl9eKFSusqrvee+89Xb16VR999FGafRs3bixJ+vTTT60KdZAzJMNSWbhwoebPn6977rknzcqwzp07a8eOHapXr16mY61YsUInTpywSq516tTJ0acAAECGsloVZkZ1GAAAAAAAQLLDhw8rPj5eklS/fv0Mj61QoYKioqJ04MABFS1a1Oq5Nm3ayGQypfmZS2xsrP744w916dKF1ebsxMfZAbiiPn36qE+fPjp48KCOHz+umJgYlShRQo0bN87Wfl8xMTEaNmyY5XHp0qVVqlQpR4QMAECWZLcqzGz27NkaNWqUypcv74CoAAAAAAAA3EPt2rUtBTCOMm7cOMXGxqZbNYbsIxmWgfvuu0/33Xdfjvubk2oAALiK7FaFmZmrw6ZNm+aAqAAAAAAAAPK36OhorV69Wjt37tTkyZP18ccfq0qVKs4Oy2OwTCIAAPlETqvCzNg7DAAAAAAAwDHWrl2rnj17avHixRozZoxeffVVZ4fkUUiGAQCQT+S0KsyMvcMAAAAAAAAco1u3bjKZTDp79qzGjRvn7HA8DskwAADygdxWhZlRHQYAAAAAAAB3w55h2WQ0GhUdHa2bN29KkipWrOjkiAAAyFypUqXslsQKCgrKVYUZAAAAAAAAkJdIhmVi//79WrFihTZu3Kg9e/bo2rVrlucMBoMSExPT7Xvt2jUZjUbL48DAQBUsWNCh8QIAkBY/Pz/5+fnZbTySYQAAAAAAAHAXJMPSsXfvXr399tv6+eefLW0mkylbYwwdOlRfffWV5fGAAQM0c+ZMu8UIAAAAAAAAAACAjLFnWBpmzZql5s2b6+eff5bJZLIkwQwGg+UnK1577TVJsoyxZMkS3bp1y2FxAwAAAAAAAAAAwBrJsFTef/99DR48WLdu3ZLJZLIkv8wJrexUh9WuXVtt27a1PL527Zp++uknR4QNAAAAAAAAAACANJAMS+H777/X2LFjbZJgVatW1dChQzVp0iRVqFAhW2N269ZNkizVZKtXr7Z73AAAAAAAAAAAAEgbybA7bty4oSFDhlgSYSaTSUFBQfrqq6/0999/a/LkyRo2bJiKFy+erXGffPJJeXt7S0peLnHdunWOCB8AAAAAAAAAAABpIBl2x7Rp03T+/HmrRNhvv/2mnj175mrc4sWLq2bNmpbHx48f1/Xr13MbLgAAAAAAAAAAALKAZNgdX375pSURZjAYNGnSJNWtW9cuYzds2NBqr7FDhw7ZZVwAAAAAAAAAAABkjGSYpHPnzumvv/6yPK5YsaL69u1rt/Hvu+8+q8f//POP3cYGAAAAAAAAAABA+kiGSdq5c6fld4PBoIcfflheXva7NMWKFbN6fPXqVbuNDQAAAAAAAAAAgPT5ODsAV3DhwgVJsiyRGBISYtfxixYtKik50SZJMTExdh0fri8uLs7ZIcBFpL4XuDeyx9Ovnzudn6vF6qx48mpeR87jiLFd7f6A6+DeyB1Pv37udn6uFC/vg641vivdG3A93B855+nXzt3Oz5XiTT13UlKSJFmKHYxGo+VzWXszGo0ZPnaHeew9dl5dEziX0Wi0bA1l/puLiYmRt7d3hv1u3rzp8NjSQzJM0qVLl6weFy9e3K7j37p1y+qxPavO4Bzh4eEKDw+3aU/vjX/Hjh0Ojgjuinsjdzz9+rnT+blarM6KJ6/mdeQ8jhjb1e4PuA7ujdzx9OvnbufnSvHyPuha47vSvQHXw/2Rc55+7dzt/FwpXvPnc0FBQZKk2NjYTD+gt5cbN264/Tz2HjuvrgnyltFotEqCSdLmzZstCbL0nDp1yuGxpYdkmCRfX1+rx/Hx8XYdPzo6WtL/Ks9KlChh1/GR906cOKFNmzY5OwwAAAAAAAAAAJAJkmGSSpUqZfU4daVYbv31119Wj0mGub/KlSurZcuWNu1xcXGKiIhwQkQAAAAAAAAAACAtJMMkBQcHS/rfnl579uyx6/gbN26UwWCwlAjec889dh0fea9v377q27evTftff/2l2rVr27Q3adJEAQEBeRAZXF1cXJzV0gHcG9nj6dfPWee3d+9eLVy4UPv371dcXJwCAgJUp04d9e7dW/Xr13epWNPjrHjyal5HzuOIsV3t/oDr4N7IHU+/fu52fq4UL++DrjW+K90bcD3cHznn6dfO3c7PleJNHUtAQIC8vLwsW9UEBgbKx8cxH4MbjUarZQALFSrkkCUZHTmPvcfOq2uS3/Tq1UvffPONBg0apGnTpjk7HCUmJlr+xsxLktaoUSPT13r37t0Ojy09JMMkNW7cWN7e3kpKSpLJZNK6dessSxrm1pYtW3TkyBHLWMWLF08zWQLPFhAQoMKFCzs7DLgg7o3c8fTr5+jzi4iI0Msvv6zt27fbPLdjxw7NnTtXzZs319SpU9WoUaMMx3K118JZ8eTVvI6cxxFju9r9AdfBvZE7nn793O38XCle3gdda3xXujfgerg/cs7Tr527nZ8rxevl5WX1gby3t3eeJWPyai5HzmPvsfPy+nsycxLJnMtwtpT5E3M8QUFBmSae/f39HR5berycNrMLKVKkiJo0aWKp3Dpz5oyWL19ul7HHjBkj6X83R6tWrewyLgAAubFq1Sq1aNEizURYStu2bVOLFi20atWqPIoMAAAAAAD3t3v3bg0ePFihoaGqW7euQkNDNXjwYKdWxsA9Xb9+XUePHpUkNWzY0MnRuC+SYXc8/fTTkmRZznDEiBGKiYnJ1Zjjxo2zLJFo1q9fv1yNCQBAbkVERKhLly6Kj4/P0vHx8fHq0qULeyICAAAAAJCJiIgINW/eXA0bNtSMGTO0bds27d+/X9u2bdOMGTPUsGFDhYaG8v+xkWV79uyRyWSSn5+fatWq5exw3BbJsDsGDx6sMmXKWB5HRUXpkUce0fXr17M9VlJSkkaMGKH33nvPklwzGAyqV6+eHnnkEXuGDQBAtr388stZToSZxcfHa+jQoQ6KCAAAAAAA98cqLHCEXbt2SZLq1q3rsP3v8gOSYXf4+flp/PjxlsSVyWTS1q1bVatWLX311VdKSEjIdIyLFy9q1qxZql69uqZOnWpZdlFKrjgLCwtz5CkAAJCpXbt2ZfqP8vRs27aN5RwAAAAAAEjDnj171L17d49cheXKlSuaO3euunbtqjp16qh48eLy8/NTpUqV1LNnzww/Z7jnnntkMBgUHh6e7jF9+/aVwWBQ3759bZ5r1aqVDAaDxo0bp9u3b+v//u//1KhRIxUtWlQGg0EbN260On7jxo3q0qWLypUrJ19fX5UsWVJt27bV/PnzZTQa05w/O3Pk5lpkR0REhJ599lmVK1dOr732miRp586dCg4OVs+ePfXPP//YZZ78hDRiCv3799f27ds1b948S0Ls9OnT6tOnj4YMGaIGDRro1KlTVkmunj17Kjo6WidPntSRI0ckyfJ8yqqw0aNHq3379k45LwAAzObOnZvr/g0aNLBTNAAAAAAAeIY33ngjx6uwbN261UFR2ceUKVM0fvx4SZK3t7cKFy4sSTp16pROnTqlb775RpMnT3boijLx8fFq1aqVtm7dKh8fHwUFBVltTyRJr7zyiiZNmiQp+bP5IkWK6OrVq1q/fr3Wr1+vr776SitWrFBQUFCO53D0tTCZTHrrrbcUFhZmWRrRnG/w8/PThQsXtHjxYv3888/aunWratasmaN58iMqw1KZOXOmHn74YUsSy5zQun79ujZt2qSrV69ajjWZTPr222+1du1a/f333zKZTFb9zLp37653333XCWcDAIC1vXv3OrU/AAAAAACeZu/evdq5c2eO+rrDKixly5bV2LFjFRERoRs3big6Olo3b97U8ePHNWzYMEnJiag9e/Y4LIbp06frzz//1Pz583X9+nVFR0fr4sWLqlu3riRp2rRplkTYwIEDdebMGV25ckXXrl3TpEmT5OPjo/Xr12vAgAE5niMvrsWIESM0YcIEFSpUSPPmzVNkZKTlue3bt+vXX39VYGCgrl69ynYW2UQyLBUfHx+tWrVK77zzjlVllzm5lbIqzPw45TGpjxs3bpy+/vrrvD0JAADSERsbm6v+MTExdooEAAAAAADP8OWXX+aqf25XcXG0gQMHaty4cWrYsKEKFiwoKbnyqkqVKpo8ebIGDx4so9Go6dOnOyyG2NhYLVq0SH379pW/v78kqUSJEipevLhu3rypsWPHSpJ69OihWbNm6a677pIkBQQEaPjw4fr0008lSd9++61lD67szGHmyGuxatUqTZkyxRJnv379dODAAUuF2H333ae2bdtalk1ct26doqOjsz1PfkUyLA0Gg0Hjx4/X5s2bLVViaSW90kqAmX9atWqlzZs3a8yYMU4+GwAA/icwMDBX/dNbSgAAAAAAgPxq//79uerv7quwdOrUSZK0ZcsWh81Rq1YtPfbYY2k+t3btWktSaNy4cWkeM3jwYJUpU0aStGjRomzPkVW5uRZvvPGGJKlPnz6WccxVg3Xq1JGPT/KuV+btmEwmk44ePZqrePMT9gzLQPPmzfXjjz/qr7/+0nfffadNmzZp+/btaa79ajAYVL9+fbVr105PPPGEQkNDnRAxAAAZq1+/vrZt25ar/sgfIiMjZTAYVL58eWeHAgAAAAAuLS4uLlf93WEVluPHj+vzzz/Xhg0b9M8//ygmJkZJSUlWx0RFRTls/vvvvz/d5yIiIiRJFSpU0L333pvmMd7e3mrTpo2+/vpry/HZmSMlR1yLLVu26ODBg5Kk4cOHW9rNybCU+7en/KJy6pXskD6SYVlQq1Yt1apVS5KUlJSky5cv6/Lly7py5Yr8/f1VsmRJlSpVSr6+vk6OFACAjPXv318zZszIcf/nn3/ejtHAlYWFhclgMGjatGnODgUAAAAAXFpAQECu+rv6KizLly9Xjx49dOvWLUtb4cKF5efnJ4PBoISEBF25ciXXScGMlC5dOt3nLly4IEkqV65chmOYv+xpPj47c5g56lqsXr1aklS5cmWrLyKb9x5LmQw7f/685Xe+wJp1LJOYTV5eXipVqpRq1Kih5s2bq379+ipfvjyJMACAW2jQoIGaNWuWo77Nmze3+scXPFdkZKTmzJmj2bNnO/SbfQAAAADgCerUqZOr/q68Csvly5fVt29f3bp1S23atNHGjRt148YNXbt2TefPn9e5c+e0dOlSh8fh7e3t9DkceS3MFWApP7O5ceOG/v77b0lSSEiIpd2859ldd92VaQIQ/0MyDACAfOazzz6Tn59ftvr4+flp6tSpDooIriYsLEwJCQlKSEhQWFiYs8MBAAAAAJfWu3fvXPV35VVYfvrpJ12/fl3FihXTDz/8oJYtW8rf39/qmHPnzqXb37zPVVpbD5ldu3YtVzGaK7oy+zKn+fmsVIClJbfXIiOnTp2yiW3fvn0yGo3y8fFR3bp1Le0rV66UJHXs2FEGg0GS1KtXL/n4+OjmzZs2Y4eHh8tgMOjXX3+VlHy9S5QooZCQEKtlFmNjY9WwYUMFBwfrn3/+ydF5uDKSYQAA5DONGjXS0qVLs5wQ8/Pz09KlS9WoUSMHRwZXEBUVpTlz5lgeUx0GAAAAABmrV6+eGjdunKO+rr4KS2RkpCSpevXqKlSoUJrHmJMsaSlWrJjVOKklJSWlu4dXVpk/r4iKitKRI0fSPMZoNGrDhg2SlOPXKrfXIiuuX79u+d1cLXbfffdZVqbbsWOHfv/9d0nSCy+8YDm2adOmMhqNlmUVzeLi4vTWW2+pU6dOeuihhyRJRYoU0ahRo7R3714tX75ckpSYmKhnnnlGR44c0Y8//qh77rknV+fhikiGAQCQDz366KPavHmzmjdvnuFxzZs31+bNm/Xoo4/mUWRwtkmTJikhIcHymOowAAAAAMjcRx995JGrsBQpUkSSdOTIkTSru/bu3atFixal299c0bR8+XKrKiSzBQsW5PoLmO3atVOJEiUkSePGjUvzmFmzZunMmTOSpB49euRontxei4xUq1ZNkrRhwwYZjUZJ/0uGmZOlsbGx6t+/vyTp6aeftlpSsWnTppJkk1icOHGiLly4oI8//tiqfciQISpbtqzGjx+vpKQkDRgwQOvWrdN3333nsV+GJhmWRbdv39aff/6p9evXa+nSpVq4cKEWLlzo7LAAAMixRo0aaevWrdq1a5cGDx6s0NBQ1alTR6GhoRo8eLB27dqlrVu3euw/gmDr4sWLaf77huowAAAAAMhYSEiIvvnmG49bhaV9+/by8vJSdHS0nn32WZ0+fVpS8hcnlyxZovbt2ysoKCjd/t26dZMkHTp0SAMHDtTly5clJVdATZo0SYMGDVLx4sVzFaO/v78lCbZ48WINGjRI58+fl5S879bUqVM1fPhwSzwNGzbM0Ty5vRYZ6dq1qyTp5MmTGjFihOLj462SYXv37lXr1q21f/9+VatWTTNmzLDqX79+ffn6+lolw06fPq1PPvlEAwcOVM2aNa2O9/f315gxY/Tnn3+qXbt2Cg8P19y5c9WhQ4ccxe8OSIZlID4+XtOmTVPbtm1VtGhRhYSEqF27durevbv69eunfv36Zdh/3bp1WrZsmeXn2LFjeRQ5AABZ16BBA02fPl2///67/vzzT/3++++aPn26Sy/TAMdYtmyZVVWYGdVhAAAAAJA5T1yFpVq1anrttdckJf9/xvLly6to0aIKDAxUt27dFBgYmGF1W9u2bfXcc89JkubMmaOSJUuqWLFiKlasmF555RW98MILeuyxx3Id55AhQzRixAhJyVVgZcqUUfHixVWkSBENGzZMt2/fVuvWrTV79uwcz5Hba5GRrl27Wu6Hzz77TEWLFtW+ffskSW+88YZCQkIUERGhRo0aaf369SpVqpRV/4IFCyokJEQ7d+60tI0ePVo+Pj7pVss9//zzCg4O1vr16/XBBx/keu87V0cyLB0zZsxQpUqVNGzYMG3cuFE3b96UyWSy+snMxo0b1aVLF8vPyJEj8yByAACA7Lt48aLWrl2b7vNUhwEAAABA5jxxFZawsDAtXLhQTZo0kb+/v27fvq2qVatq9OjR2rNnj8qWLZth//DwcE2ZMkX169eXv7+/kpKSdP/992vJkiV2XSby008/1fr16/X0008rODhYsbGxCgoKUuvWrTVv3jytXbs2x5VbZrm9Funx8vLSsmXL9OGHH6p69epKSkqy5CB8fHx0//3364svvtC2bdtUvnz5NMdo1qyZjhw5opiYGO3evVtffvmlRo8ebZM4M5s+fbqlgs68BKQn83F2AK7m5s2bev755/Xtt99abjaDwSCDwWB1XFaSYUOHDtX//d//6datWzKZTPr555916dIllSxZ0iGxAwAA5NSyZcuUmJiY7vPm6rBp06blYVQAAAAA4J4aNGjgUSuuPPfcc5YKr9RatWpl+bzcvN9VSl5eXho6dKiGDh2aZv/w8HCFh4en+dzGjRuzFWfr1q3VunXrbPXJ7hxZvRbZVaBAAb355pt68803NXPmTL344ouqXbu29u/fn6X+TZs2VVJSknbv3q2xY8eqUqVKluUhU1uyZIlGjBihV155RZs3b9b777+vfv36qVChQjmK3R1QGZaCyWRSjx49LIkwcxIsuxVhZqVKldLTTz9t6ZOYmKgVK1Y4KHoAAICcyawqzIzqMAAAAAAAHG/Pnj2Skveiy6pmzZpJksaMGaNNmzZpwoQJ8vX1tTlu48aN6t27t7p27apPPvlE7777rs6dO6cpU6bYJ3gXRTIshXHjxum///2vJFmSYAUKFNDzzz+vZcuWac+ePTYbzWWmS5culvEkZemDJgAAgLyUWVWYGXuHAQAAAADgeDlJhlWuXFmlS5fWb7/9pqZNm6pbt242x+zfv1+dO3dWs2bNtGDBAhkMBnXs2FGhoaGaOHGirly5YrdzcDUkw+44ffq0Jk6caElamUwm1a1bV4cOHdLs2bPVuXNn1atXTwULFszWuB06dJC/v79lzA0bNtg9dgAAgJyKiorK1pd1qA4DAAAAAMBxEhMTLUsjZicZJkmNGzeWlLx/WuqtnyIjI/Xwww+rfPnyWrFihVXV2HvvvaerV6/qo48+ymX0ros9w+4ICwvTrVu3LBVhVatW1ebNm3O9oZ6vr6/q16+vbdu2SZIuX76ss2fPqkyZMvYIGwAAIFcmTZqUpaowM/YOAwAAAADAcQ4fPqz4+HhJUv369bPcLzY2Vn/88Ye6dOmi0NBQm+crVKiQ7pdb27Rpk+O9ztwFybA7li9fbkmEGQwGzZkzJ9eJMLOGDRtakmFS8s1MMix/iYuLc3YIcBGp7wXujezx9OvnTufnarE6K568mtdR80RFRWnhwoXZ7jd79my99NJLKleuXJrPu9r9AdfBvZE7nn793O38XCle3gdda3xXujfgerg/cs7Tr527nZ8rxZt67qSkJEmSl1fyomhGo9GmQsZejEZjho/dYR57j51X18ST1axZ0+pLq1m9hmPGjFFsbKw+/PBDh193o9FoSZ6Z/+ZiYmLk7e2dYb+bN286NK6MGEyenu7LgkOHDqlWrVqWZFjDhg21c+fONI8NCQnRn3/+aUmaZeWmmjx5sl555RVJyXuHzZs3T3369LHrOSBvhYeHKzw83KY9Li5OERERlsdTp05VxYoV8zAyAACybtasWfr5559z1PeRRx7RwIED7RwRAAAAAOScwWBQqVKlJMlS6FCmTJlMP6AH3NWVK1e0bt067dmzRzNmzNC7776rIUOGOHxeo9Gos2fPSkpOgknSxYsXM60uO3XqlIYOHWp5fODAAdWqVctxgaZAZZikgwcPWn43GAxq166dXccvWrSo1ePr16/bdXzkvRMnTmjTpk3ODgMAgBy7ePFitvYKS23NmjV66qmnVLJkSTtGBQAAAAAAsmrDhg0aMGCAgoOD9frrr+dJIsxdkQxT8odBkizVXtWqVbPr+OZvIZjLcWNjY+06PvJe5cqV1bJlS5v21JVhAAC4qmXLlmVrr7DUEhMTtWzZMqrDAAAAAABwkqeeekpPPfWUs8NwCyTDlFxKmFKRIkXsOr45+WVOtvn5+dl1fOS9vn37qm/fvjbtf/31l2rXrm3T3qRJEwUEBORBZHB1cXFx2rFjh+Ux90b2ePr1c6fzc7VYnRVPXs1r73mioqK0bt26XMf166+/6pNPPrHZO8zV7g+4Du6N3PH06+du5+dK8fI+6Frju9K9AdfD/ZFznn7t3O38XCne1LEEBATIy8vLsmdYYGCgfHwc8zG40WjUjRs3LI8LFSrkkCUZHTmPvcfOq2sC50pMTLT8jZmLgWrUqJHpa717926Hx5YekmGSChcubPXYvMalvZgrz8xKlChh1/Hh+gICAmzuM0Di3sgtT79+7nR+rhars+LJq3lzO8/dd9+tqKgoScn/7tmyZYvluQceeMDyD9msCAoKyvSLPq52f8B1cG/kjqdfP3c7P1eKl/dB1xrfle4NuB7uj5zz9GvnbufnSvF6eXlZfSDv7e2dZ8mYvJrLkfPYe+y8vP7IO+bCH0mW1zcoKCjTxLO/v7/DY0sPyTBJpUuXlvS/ZQzNG7/Zy65du6wes7cGAABwJj8/P0sCy9fX16oqvmTJki7zf2IBAAAAAADswcvZAbiC1Ev77Ny5025jG41Gbdy40ZJok6S6devabXwAAAAAAAAAAACkj2SYpMaNG1vWtDWZTFq7dq1ln6/c+vbbb3X+/HnL4ypVqqh8+fJ2GRsAAAAAAAAAAAAZIxkmqUCBAmrVqpVMJpOk5E0XZ8yYketxr1+/rrFjx8pgMFjW0HzooYdyPS4AAAAAAAAAAACyhmTYHX369JEkS+Jq/PjxOnjwYI7Hu337tnr16qV//vnHqn3IkCG5ihMAAAAAAAAAAABZRzLsjmeeeUYhISGSkhNiN27cUNu2bXO0f9g///yjBx98UD/++KNVVdijjz6q2rVr2zt0AAAAAAAAAAAApINkWAqTJ0+Wt7e3pOSE2Pnz5xUaGqr+/ftr+/btSkxMTLfv+fPntXTpUvXo0UM1a9bUjh07LMsuSlJQUJD+7//+z+HnAABAfhAZGamoqChnhwEAAAAAAAA34OPsAFxJixYtNG3aNA0aNEgGg0EGg0FGo1Hz58/X/PnzVaBAAUmySnKVLVtWV65cUUJCgqXN/HzKqrD58+eratWqeXtCdmA0GvXnn3/q8OHDOnfunOLi4uTr66vChQurcuXKuvfee1WlShW7zhkVFaVdu3bp33//VWxsrHx9fRUcHKzatWurfv368vIihwsA+V1YWJgMBoOmTZvm7FAAAAAAAADg4kiGpTJw4EBFR0fr7bfftiSyzMmtlAkvKTnpde7cOZsxDAaD5XkfHx9NnTpVTz75pOODt6MNGzboiy++0E8//aTr169neGzJkiUVGhqqRx55RM8884xKlCiR7fnMScfp06dr79696R5XokQJ9e7dW6+++qrKlSuX7XkAAO4vMjJSc+bMkSSNGjVK5cuXd3JEAAAAAAAAcGWU2KRh1KhRWr16tUqXLm1JiGXnR0pOhJUsWVK//PKLBg0a5OQzyrpDhw6pVatWatOmjb755ptME2GSdOnSJf33v//VoEGD9PPPP+dozpCQEA0YMCDDRJgkXb58WZMmTVKNGjU0e/bsbM8FAHB/YWFhSkhIUEJCgsLCwpwdDgAAAAAAAFwcybB0tG3bVkePHtVHH32kMmXKyGQyWX7SkvL5woULa9y4cfrnn3/Upk2bPI485xYuXKiGDRtq06ZNeTbn1q1b1bRpU+3fvz9b/WJjYzVw4EC98cYbDooMAOCKUlaFSdLs2bPZOwwAAAAAAAAZYpnEDAQGBuq1117T8OHDtXXrVm3atEm///67oqKidPnyZV25ckX+/v4qWbKkgoOD1bRpU7Vr104tW7ZUoUKFnB1+tkyaNEmvvPKKTbvBYFBISIjatWuncuXKqXTp0kpMTNSVK1d0+PBh7d27V3/88YcSExOzPeexY8f0yCOPKCYmxua51q1bq127dqpUqZKuXbumgwcP6uuvv9aVK1esjps4caLKlCmj4cOHZ3t+AID7MVeFmZmrwz788EMnRgUAAAAAAABXRjIsCwoUKKCWLVuqZcuWzg7FIRYvXqxXX33Vpr1r164KCwtTlSpVMux//fp1/fTTT5ozZ468vLJWbJiUlKQePXro2rVrVu133XWXvv/+e4WGhtr0CQsL06uvvqpZs2ZZtb/++utq06aN6tatm6W5AQDuKXVVmNns2bP10ksvOSEiAAAAAAAAuAOSYZKio6N14MABq7bmzZurQIECTooo7xw5ckQDBw60Wv6xQIEC+vrrr9WlS5csjVG4cGF1795d3bt3T3cZydTmzp2riIgIq7bixYtr27Ztqly5cpp9AgICNHPmTBUqVEiTJk2ytN++fVtDhw7Vxo0bszQ3AMA9pa4KM0tISNCkSZPUqVMnJ0QFAAAAAAAAV8eeYZKWLVum1q1bW36ef/75fJEIk6QXX3xRsbGxVm2LFy/OciIsNYPBkOkxRqNREyZMsGn/7LPP0k2EpTRhwgTVqlXLqm3Tpk367bffshwnAMC9pFcVZrZgwQJdunQpDyMCAAAAAADuxGg06tNPP1VISIgCAgJkMBhkMBi0YsWKXI/ds2dPGQwGDR48OPeBwiFIhkm6dOmSTCaTparp6aefdnJEeWPVqlVav369VVvv3r0dfv6//PKL/v33X6u2unXrqmfPnlnq7+vrq/Hjx9u0z5gxwy7xAQBcT3pVYWYJCQlatmxZHkYEAAAAAACcLTw8XOPGjcvSqmHDhw/Xq6++qr179yoxMVHBwcEKDg6Wn59fruPYtWuXJKlRo0a5HguOQTJMsiTBzFVNme2R5Sk++ugjq8e+vr765JNPHD7vN998Y9P2wgsvZGuMxx9/XHfddZdV28qVK3Xjxo1cxQYAcD2ZVYWZrVmzhuowAAAAAIBL2L1bGjxYCg2V6tZN/t/Bg5PbYT/h4eEaP358psmwmJgYzZo1S5I0ceJExcfH69y5czp37pw6duyYqxiuX7+uo0ePSpIaNmyYq7HgOCTDJBUpUkTS/5JiJUqUcGY4eeLvv//Wli1brNoeffRRlSpVyqHzmkwmrVmzxqY9u9VoBQoU0BNPPGHVdvPmTW3atClX8QEAXE9mVWFmiYmJVIcBAAAAAJwqIkJq3lxq2FCaMUPatk3avz/5f2fMSG4PDU0+Dnnn8OHDun37tqTkrYOyst1PVu3Zs0cmk0l+fn422/vAdZAM0/8qwcx/APnhW+VLly61aevRo4fD5/3777914cIFq7Zq1aopODg422O1aNHCpm3z5s05jg0A4HqyWhVmRnUYAAAAAMBZVq2SWrSQtm/P+Lht25KPW7Uqb+KCrFYUCwwMtOvY5iUS69atKx8fH7uODfshGabkdTxTZoIPHz7sxGjyxtq1a23amjVr5vB5zf9hSKl58+Y5Gis0NDRL4wMA3FdWq8LMqA4DAAAAADjDnj3e6t7dS/HxWTs+Pl7q0sW9KsROnDih4cOHq1atWgoMDFShQoVUo0YNDRs2TKdOnUqzT5s2bWQwGDRu3DglJiZq0qRJCgkJUWBgoEqXLq3OnTtr3759luNv3Lih999/X7Vr11ZAQIBKlCihbt266Z9//rEaNzw8XAaDwbJS2Pjx42UwGKx+Tpw4YTmuVatWlr4pj0nZnh0RERF69tlnVa5cOb322muSpJ07dyo4OFg9e/a0iRfORzJMUqlSpdS0aVOZTCaZTCb9+OOPzg7JoYxGo/744w+rtpIlS6pcuXKWx9euXdP06dPVqVMnVahQQb6+vgoMDFTlypXVvHlzvfHGG1q3bp2SkpKyNXdaicaqVavm6DwqVqxok2n/+++/czQWAMD1ZLcqzGzNmjU6ffq0AyICAAAAACBtb7zhr/j47C29Fx8vDR3qoIDs7Ouvv1aNGjU0ZcoUHTx4UImJiZKSP4+dOnWqateuneb2OGa3b99Wx44d9corr+jgwYOSpIsXL2rlypV64IEHFBERocuXL+uBBx7QO++8o3/++Ucmk0nR0dFasmSJQkNDrRJu/v7+Cg4OVoECBSRJAQEBCg4Otvrx9va2HFesWDFL35THFC9ePFvXwWQyafTo0WrSpIkWLVqk6Ohoy/ZLfn5+unDhghYvXqxGjRrp0KFD2RobjkUy7I4hQ4ZYfj9+/LgWLVrkxGgc68iRI7p165ZVW7Vq1Sy/f/HFF6pQoYKGDBmin376SVFRUUpISFBcXJxOnjyp7du3a+LEiXrooYdUt27dbH0D/8SJEzZtlSpVytF5eHt7WyXwJCkqKsqy9isAwL1ltyrMzPxNMwAAAAAA8sLevd7auTNny+Nt2ybt3m3ngOxs7dq16t27t4xGo15//XX9+++/unnzpuLi4nT48GF16dJFMTEx6tKlS7oVYp9//rn27t2rpUuXKjY2VjExMdqxY4fuvvtuxcbGatiwYRowYICuXLmi1atXKy4uTrGxsfr1119VqlQpXbhwQaNHj7aM161bN507d86yetjIkSN17tw5q58KFSpYjkv5GXbKY7K7usyIESM0YcIEFSpUSPPmzVNkZKTlue3bt+vXX39VYGCgrl69qqHukunMJ1jA8o6ePXtq1qxZ2rx5s0wmk4YPH66GDRuqevXqzg7N7o4fP27TVqRIEd26dUvPPPOMVmVjsdq//vpLTz/9tAYMGKDp06dbMvHpOXfunE1bhQoVsjxfWn1PnjxpeWw0GnXp0iWVKVMmx2OaXbhwQRcvXsxWn2PHjqXZHhcXl+t44BlS3wvcG9nj6dfPnc7P0bFGRUXlqCrMbMGCBRoxYoTNlybsLa9eM0fO44ix3eleRt7i3sgdT79+7nZ+rhSvs2LxhPdBR4zvSvcGXA/3R855+rVzt/NzpXhTz21eycrLK7kOxGg0Wm2RY09Go1GS9OWXBXM1zpw5SfrsM1Om86T3ODcyGzspKUkvvfSSkpKSNH36dA0YMMDSLiWv+rV48WLFx8frhx9+0Keffqr33nvPZp6rV69q48aNeuCBByz9GzRooJkzZ6p9+/baunWr/P39tWfPHlWtWtVSbdWqVSt9+OGHGjBggJYtW6b4+Hirz6DNxyUlJWV4XVI+l9Prt2rVKk2ZMkWStGjRInXq1EkbN26UyWSSn5+fqlevrlq1aunVV1/V+PHjtW7dOl28eDHb1WfuwGg0Wl17SYqJiZG3t3eG/W7evOnw2NJDMiwFc7nlv//+q0uXLql169aaO3euHn74YWeHZldnz561aQsMDNRzzz1nkwgzGAwqXbq0ihcvrqtXr+r8+fNpLo04e/ZsnTlzRv/9738tbzRpiY6OTnPunEqr7+XLl+2SDPv88881fvz4XI8jSTt27LDLOPA83Bu54+nXz53Oz96xzpo1K0dVYWYJCQkaOXKkBg4caMeoMpdXr5kj53HE2O50LyNvcW/kjqdfP3c7P1eK11mxeML7oCPGd6V7A66H+yPnPP3audv5uVK85uRYUFCQJCk2NjbTD+hza//+3I2/a1eSYmJis3z8jRs3cjVfdsbesmWLjh49qhIlSqhr166KiYlJs98zzzyjH374QWvWrLFKhpkTT82aNVO9evVs+jdo0EC+vr66deuWHn/8cQUHB9scY67+unnzpvbu3asaNWrYjJ+QkJBubOa+Zhkdl5FRo0ZJknr06KEHH3xQMTEx2r59uyTpvvvus8xx//33S0pO1O3bt0+NGjXK0XyuzGg0WiXBJFkKjTKSXuVgXmCZxBSCg4O1detWtWjRQlJyFdOjjz6qhx56SIsXL06zqskdXblyxabtxx9/1NKlSy2PS5QooU8//VRRUVE6d+6cDh48qDNnzuj8+fP64osv0vym/Y8//qhx48ZlOHda3xLx9/fP/klk0NeRbwYAAMe7ePGi1q5dm+tx1qxZo0uXLtkhIgAAAAAA0hcXl7vKs9hYx1Su2YM52XP9+nXVrFlT1atXT/Nn2LBhkmS1bGBKDRs2TLPd29tbJUqUkJScGEtL6dKlLb9fvXo1p6eSK9u2bdPhw4clSS+++KKlfd++fZKkunXrWtpSFnBklhxC3qEy7I42bdpYfjcYDPL29lZSUpJMJpM2bNigDRs2SEpOmJUuXVqFCxeWj0/2L5/BYNC6devsFndOpN4vTLLOjNevX1+//PKLgoODbY4rWbKkBgwYoO7du+uJJ56wXBez999/X927d9d9992X5txp7efl5+eX3VOwSCsZlptKAgCA8xUpUkRz5861y1i5+cIFAAAAAABZERCQu4RHYKDrJkzMBSK3b9/WhQsXMj0+vWXwMlodzFy5l94xKT+HT0xMzDQGR1i/fr0kqWLFiqpTp46lff/+/ZKkevXqWdpSbr1TtmzZPIoQmSEZdsfGjRvTXDvWYDBYZW/NG+vlZJ1Zk8nksPVpsxtHekqXLq01a9aoVKlSGY4RFBSkVatWKSQkREeOHLEaOywsTAsXLsxyPLm5Jmn1tVe2ffDgwerSpUu2+hw7dkydO3e2aW/SpIkCAgLsEhfcW1xcnNXSAdwb2ePp18+dzs/VYnVWPHk1ryPnccTYrnZ/wHVwb+SOp18/dzs/V4qX90HXGt+V7g24Hu6PnPP0a+du5+dK8aaOJSAgQF5eXpatXAIDA3NU1JAVRqNRN27cUJ06Ru3cmfM5Gjb0sizrmNE8ZoUKFbLb0o+ZjW3+vUmTJtq6dWu2xzP3L1iwYLrnaH6t/Pz8MrwOUvKXXlMek5Xxzf3MMpsjLX/99ZckqXnz5pb+N27c0NGjRyUlLwNpbj906JAk6a677lL16tVdIidgb4mJiZbXzXzeNWrUyPS+3L17t8NjSw/JsDSkTlp52s2acoPB1CZOnJhpIsysUKFC+vzzz/XQQw9ZtS9evFjTp09P8z8qac2dm03z0upbsGDuNqw0K126tFUJbm4EBASocOHCdhkLnoV7I3c8/fq50/m5WqzOiiev5nXkPI4Y29XuD7gO7o3c8fTr527n50rx8j7oWuO70r0B18P9kXOefu3c7fxcKV4vLy+bZI6j9wzr3TtB8+b55rh///5eyk6Ijjyn1GOXKVNGUvJeT7mZM/XrktNjUsdn/uw+s75pJfiyw7z8Y3BwsKX/gQMHZDQa5ePjo5CQEEv7Dz/8IEnq2LGjJRHbq1cvffPNN4qJibFZxSY8PFz9+vXT2rVr9dBDD+natWu6++67VbFiRe3evdtyjrGxsWrZsqWioqK0detW3XPPPdk+D3tJmUMxn3dQUFCmiWdnruDDnmGpmKuKTCaT3X9cRXrf0ihZsqR69OiRrbHatm2rmjVrWrUlJibq999/T/P4QoUK2bTZOxnmyt+aAQAAAAAAAOBZ6tUzqnHjnC3f17y5lM5WWS7h/vvvl5S8YlpERISTo7Flrk7Kq8/fr1+/bvndXOV03333ydc3ORm6Y8cOy2fjL7zwguXYpk2bymg0as+ePVbjxcXF6a233lKnTp0sRSdFihTRqFGjtHfvXi1fvlxS8mfuzzzzjI4cOaIff/zRqYkwd0Vl2B0PPvigx1WApce8IWFqLVu2zFFVVbt27Syln2ZbtmxRx44dszR3bGxstufMqG965wcAAAAAAAAAjvDRRzf1yCOBio/P+mfMfn7S1KkODMoOWrdurapVq+rYsWMaMWKE1q1bl+FnyNHR0RmuTGZv5orEq1evOnSeatWq6cCBA9qwYYOMRqO8vb0tybAGd7KZsbGx6t+/vyTp6aefVrNmzSz9mzZtKkmKiIhQaGiopX3ixIm6cOGCPv74Y6v5hgwZosmTJ2v8+PHq3LmzBgwYoHXr1mnVqlVq1KiRQ8/VU5EMu2Pjxo3ODiHPmEtbUwsJCcnReGn1O3PmTJrHBgcH27RFRUXlaF7pf+WpZl5eXipZsmSOxwMAAADyk8jISBkMBpUvX97ZoQAAALi1kBCjvvkmSd27eys+PvPj/fykpUslV89r+Pj4aObMmerYsaO2bNmiBx98UB988IEefPBBS9Lr+PHjWrNmjebOnavHHntMQ4cOzbP4ateurZUrV+qnn37S66+/rnLlyjlknq5du2r58uU6efKkRowYoYkTJ1olw/bu3asBAwZo//79qlatmmbMmGHVv379+vL19bWqrjt9+rQ++eQTDRw40Gb1NX9/f40ZM0aDBg1Su3bttH79ei1YsEAdOnRwyPnlByyTmA/dfffdabbntKIqrX6XL19O89gqVarYtJ08eTJH8yYlJen06dNWbeXLl8/Tbx4AAAAgf4qMjMzVl7pcQmSkZr79tsLCwpwdCQAAgEd49FFp8+bkpQ8z0rx58nGPPpo3ceVW27ZttXTpUgUFBemPP/7QQw89pICAAJUsWVJ+fn6655579OKLLyoiIiLPV1/r06eP/Pz8dOzYMVWsWFF33XWXKleurMqVK9v13+tdu3bVo3desM8++0xFixbVvn37JElvvPGGQkJCFBERoUaNGmn9+vUqVaqUVf+CBQsqJCREO3futLSNHj1aPj4+GjduXJpzPv/88woODtb69ev1wQcfqHfv3nY7n/yIZFg+VKFCBQUGBtq0m9c1zS4/Pz+btvh0vv5QvXp1m7Zjx47laN5Tp07p9u3bVm01atTI0VgAAMD97d69W4MHD1ZoaKjq1q2r0NBQDR482PJtPcBuPCSJFPP22yr/1VeaPXu2+yf2AAAAXESjRtLWrdKuXdLgwVJoqFSnTvL/Dh6c3L51q+tXhKXWuXNnHTt2TGPHjlWTJk0UGBioq1evytfXV/Xq1VP//v21fPlyjRw5Mk/jqlatmjZs2KDHH39cpUqV0uXLl3Xy5EmdPHlSiYk528ctLV5eXlq2bJk+/PBDVa9eXUlJSZZ9ynx8fHT//ffriy++0LZt29JddaFZs2Y6cuSIYmJitHv3bn355ZcaPXq0TeLMbPr06Tp//ryk5H3EkDssk5gPeXl5qUGDBvrtt9+s2q9du5aj8dJajzW9KrOGDRvatG3bti1H827dutWmrYEr7zYJAAAcIiIiQi+//LK2b99u89y2bds0Y8YMNW/eXFOnTmVtddiFOYn0iY+PRo0a5Z5LDEZGyu+rr/SfpCR9kJCgsLAwTZs2zdlR5RjLPQIAAFfToEHyjycpXbq0xo0bl24lkyQZjUbdunXL8nj9+vXy9vbOcNwTJ05kOrc58ZSWZs2aaeXKlRn2b9WqVYZjZEWBAgX05ptv6s0339TMmTP14osvqnbt2tq/f3+W+jdt2lRJSUnavXu3xo4dq0qVKmn48OFpHrtkyRKNGDFCr7zyijZv3qz3339f/fr1U6FChXJ1DvkZlWH5VKtWrWza/v333xyNldZ/rNLLZteoUcPmuSNHjujChQvZnnfLli02bQ8++GC2xwEAAO5r1apVatGiRZqJsJS2bdumFi1aaNWqVXkUGTxWiiRSqTtJJHcU8/bbKpCUJF9JoyS3rw4LCwtz29cCAAAA7mfPnj2SpJCQkCz3adasmSRpzJgx2rRpkyZMmJDmam0bN25U79691bVrV33yySd69913de7cOU2ZMsU+wedTJMPyqU6dOtm0pVVplRVp9UvvPwIGg0Ht27e3af/++++zNWdiYqJWrFhh1ebn56eWLVtmaxwAAOC+IiIi1KVLl3SXZ04tPj5eXbp0sdqwGMguj0gi3UnomQ2Q3DqxFxkZqTlz5rjnawEAAAC3lJNkWOXKlVW6dGn99ttvatq0qbp162ZzzP79+9W5c2c1a9ZMCxYskMFgUMeOHRUaGqqJEyfqypUrdjuH/IZkWD7VpEkTVatWzaotIiJChw4dytY4ly5d0s8//2zT3rZt23T7dO/e3aZt1qxZ2Zr3hx9+0NmzZ63annjiCcpEAQDIR15++eUsJ8LM4uPjNXToUAdFBI/nIUkkc0LPzK0Te0quCktISFCCG74WAAAAcD+JiYmWpRGzkwyTpMaNG0uSPv30UxkMBqvnIiMj9fDDD6t8+fJasWKFVdXYe++9p6tXr+qjjz7KZfT5F8mwfOzll1+2aRs7dmy2xvjggw+s1oCVkhNtFSpUSLdPx44dVblyZau2ffv26dtvv83SnAkJCWnG+eKLL2apPwAAcH+7du3KdGnE9Gzbtk27d++2c0TIDzwiiZQqoWfmrok9c1WYmVu9FgAAAHBLhw8ftnwxs379+lnuFxsbqz/++ENdunRRaGiozfMVKlRQVFSUDhw4oKJFi1o916ZNG5lMJrf797or8XF2AK7it99+c9jY3t7eKly4sIoUKaLixYsrMDDQYXNlx4ABA/Txxx8rMjLS0rZ06VLNmDEjS4mllStXprlO6ZgxYzLs53Nno/FBgwZZtQ8ZMkTNmjVTpUqVMuw/evRom00JW7RowRKJAADkI3Pnzs11/waetps1HCuDJFLYnSTStGnT8j6ubIp5+20FpUjomZkTe6/Onq1Ro0apfPnyeR5bTpirwswS3Oi1AAAAgHuqXbu2TCZTtvuNGzdOsbGxVHc5CcmwO1q1amVTlugoFSpUUJMmTfTggw+qV69eNlnevOLn56dp06bpiSeesGofPHiwoqKi9Pbbb8vf39+m3+3btzV16lSNGjXK5o++ffv2ae5Hllr//v31xRdfWH0r+9KlS2revLm+//57NW/e3KbPjRs39Oqrr2rmzJlW7T4+Pvrss88ynRMAAHiOvXv3OrU/8h+PSCKlk9Azc7fEXuqqMLPZ7vBaAAAAIF+Ijo7W6tWrtXPnTk2ePFkff/yxqlSp4uyw8iWWSUzFZDI5/OfUqVP6/vvvNWzYMJUvX16DBg1SdHS0U8738ccf14gRI2zaP/zwQ1WpUkUvvPCCZs2apaVLl2r27NkaNmyYqlatqpEjRyoxMdGqT+XKlbVo0aIszevt7a3FixercOHCVu1nz55VaGio2rZtq48++kiLFy/WzJkzNWzYMFWoUMEmESYlfxu0Xr162ThrAADg7mJjY3PVPyYmxk6RIF/IQhLJHZYYTL3MY2rutuyjuSqsvKRyKdrZOwwAAACuYu3aterZs6cWL16sMWPG6NVXX3V2SPkWlWGp5FV1mLmi6saNG5o9e7ZWrVqlr776Sq1atcqT+VP65JNPdO3aNc2bN8+q/fz58/riiy+yNEb16tX1ww8/qESJElme995779WqVav0yCOP2HygtX79eq1fvz7TMV555RX+AwIAQD6U22Wng4KC7BQJ8oP0qsLM3KI6LJOEnpm7VIelrAobJckkKeWOyFSHAQAAwBV069ZN3bp1c3YYEJVhVtKq4srs+ZwebzAYLD8mk0lnzpzRww8/rD/++CMvT1mS5OXlpblz52rKlCkKCAjIVl+DwaBu3brpjz/+ULVq1bI9d4sWLbRt2zbVqlUrW/0CAgI0Y8YM/d///V+25wQAAO4vO5sUO6I/cu7ixYu6dOmSs8PIumwkkVy5OiyzqjAzd6kOS1kV1l/J15/qMAAAAADpIRl2x4YNGyw/EyZMkL+/v6VKzGQyqUiRInr66af1/vvv6+uvv9aqVau0du1aff/99/riiy80ZMgQNWrUyCopZjAYFBoaql9++UVr167VkiVLNHXqVPXs2VOlSpWyOs5gMOjWrVt66qmndPHiRadcg6FDh+rIkSMaOXKkgoODMzy2WLFi6tGjh/bs2aNvvvlGRYoUyfG8tWvX1t69e/XFF19kutxhiRIlNGzYMB0+fFiDBg3K8ZwAAMC99e/fP1f9n3/+eTtFguxatmyZli1b5uwwsswjkkhZTOiZuXpiL3VVmK/+d/1TcsnXAgAAAIBTsEziHS1btpQkzZo1S++8846MRqNMJpMqVqyoDz/8UE8//bR8fX0zHefo0aOaOHGiZcnBbdu26e2339YPP/xgSTANGTJECQkJCg8P1xtvvKHr169b+p87d04ff/yxJk6c6ICzzFzZsmUt8x84cED79+/X2bNndfPmTRUpUkQlS5ZUtWrV1KBBA3l52S+X6uPjowEDBmjAgAE6deqUdu3apRMnTiguLk4FChRQcHCwateubfd5AQCAe2rQoIGaNWum7du3Z7tv8+bN1aBBAwdEhcxERUVp7dq1kqSnnnrKydFkQQ6SSK64xGBmyzym5urLPqauCjMbIClM0uk7jxNc8LUAAAAA4Bwkw1JYuHChBg8ebFnG8KmnntLChQtVqFChLI9RrVo1zZ49Wz169NCTTz6p2NhYRUREqEOHDtqyZYtlf4uCBQtq4MCBatOmjVq3bq0zZ85YlkycNWuW3nrrrVxVW+WWwWBQnTp1VKdOnTyfu2LFiqpYsWKezwsAANzLZ599phYtWig+Pj7Lffz8/DR16lQHRoU0RUZKBoMmTZqkxMRESckVYl26dHFyYBnziCRSNhN6Zq6a2EurKszMfP3ZOwwAAABAapTY3HHy5Em99NJLlkTYQw89pCVLlmQrEZZSmzZt9MMPP1iWQNy/f7/eeOMNm+OqVq2qJUuWWJZklKTY2FitWbMmx+cCAACQHzRq1EhLly6Vn59flo738/PT0qVL1ahRIwdHBhthYYp5+20tXLjQ0rRmzRqdPn06g05OloskkistMZjVZR5Tc9VlH9OrCjNj7zAAAAAAaSEZdseHH36ouLg4SclVW1988UWul+N78MEH9fzzz1v2EZs9e7ZOnjxpc1zz5s312GOPWfYQk6TffvstV3MDAADkB48++qg2b96s5s2bZ3hc8+bNtXnzZj366KN5FBksIiOlOXPk9+WXKpWQYGlOTEzUpEmTnBhYxjwiiZTDhJ6ZqyX2MqoKM2PvMAAAAABpIRmm5G8LLl682FLF1bZtW1WqVMkuYw8YMEBS8rKDRqNRX375ZZrHmTdxN1eIRURE2GV+AADgGiIjI/kw1kEaNWqkrVu3ateuXRo8eLBCQ0NVp04dhYaGavDgwdq1a5e2bt3qdhVhHnPPhIVJCQkqkJRkk6RYsGCBa56jhySRcprQM3OpxJ4yrwozozoMAACklJSLfw8BSFtaf1cpV79zRSTDJP3xxx+KjY21PG7durXdxm7UqJFlnzBJ2rBhQ5rH3X///ZabxWQy6cKFC3aLAQAAOF9YWBgfxjpYgwYNNH36dP3+++/6888/9fvvv2v69Olq0KCBs0PLEY+4Z+5UhZm5S5LCI5JIkZEK/OabXA/zUsGCOrNjh0qWLGmHoHIuK1VhZlSHAQCQf5m3wEkp5ee+AOwj9d+VwWDI9Up7jubj7ABcweHDhyX97z+WZcuWtev4ZcqU0bFjx2QymSxzpVasWDGVLFlSly5dkiRFR0fbNQY4l3kJTiD1vcC9kT2efv3c6fxcLVZnxZPVeaOioiwf4r700ksqV65cmsfldp6ccMTYrnZ/uKPc3jOuwu/dd1UwxdKI5iTFyymOmT17tkudoyEqym5JpMfWr1fBggV1/fp1O0SWzb8tX18ZDh2yy7wFAgOVkJCghBSvpSP8P3v3Hh9Fdf9//L0khA0hAYHgjYuUm4hgCOGSSASr1BttvZQWrRUoYDUKbb1ia621/dkgWixC0W+gApZWpWJtsVJAEQMJQhIjERUFuSTeiHILIWEJ2d8fm12zue5ldmd283o+HvsIM5k585nhJLPZz3zOaen8HnnkEZ+qwtxmSsqW5J6VzuFw6JFHHtHjjz9uULTW+l1n9fug1Y9jdPtW6huwHvpH4KL92kXa+Vkp3obHjomJUU1NjWcUsC+//FK1tbVKSEgw/MP62tpanT592rPscDhCkhAI5XGMbjtc1wTmqK2tVWVlpcrLyz3TQzmdTnXs2FEVFRWt7l9VVRWGKJtmc9afqKqNmjt3rh544AFJrgzm8uXLdfPNNxvWfv/+/bV37145nU516NCh2f/w888/Xx9//LGcTqdiYmJ06tQpw2KAsZYtW6Zly5Y1Wl9ZWek1xOWCBQvUu3fvMEYGALCiZ555Rq+99pok6eqrr9att95qckSwumjoM/bycl1+++2KqanxWn9SUj99k6SQrHWO7RwOxRr0B1pNfLxq4+IMaastKy8v1+23366amhotlHSHj/stlHfiNTY2Vk8//bTpVW4AACC0OnTooM6dO0uSOnbsqJiYGJMjAqLT6dOndeLECUnS0aNHdfLkyVb3OXDggGbPnu1Zfu+99zRkyJCQxVgflWGS2rdv77X86aefNrOl/5xOp7744otmj1VfbOw3/x12u92wGGC8ffv2adOmTWaHAQCIAOXl5Vq/fr1ned26dbr++ust92Hsnj2dtX59H+3d21nV1TGy20+rb9+jmjBhv/r1O2p2eG1KpPSZ1gxcvbpRIkxqujrMSudYGxcnBwksS+ncubOWLl2qjl9/revuu09qol815fbYWJ01b55OdO3qWRcfHx+qMP1WXl4um81miX4PAEA0OXnypBwOh+Li4nTixAnFxcUpNjZW7dq1s/ycRoDVOZ1O1dbWqqamxjNyhMPh8CkRZjaSYXINYyh9M8HbunXrdP/99xvS9pYtW3TixAlP2+5jNeXo0W8+aEpISDDk+AiN8847T+PGjWu0vmFlGAAAq1evVk29D25ramq0evVqy1TB7N7dRTk5Q7VrV9dG39u1q6vWru2rQYMOaebMEvXvfyT8AbZBVu8zvrCXl6t3vYReQw2HsIvEc0T4xMXFKS4uTsOef77JBGtzYmpqlLp+vUos2q9Wr14tm81GvwcAIASOHDmiLl26KC4uLizDPQNtlcPh0JEjR8wOwycMkyhp27ZtGjNmjGw2m5xOp2JjY/XOO+8YUp43efJkvfjii55k2He+8x3PkDf11dTUKCEhQTU1NXI6nUpJSVFRUVHQx0d47dy5UxdeeKFn2T1M4qhRo0hwQpIrYbpt2zbPMn3DP9F+/SLp/KwWq1nxtHbcsrIyDR8+vNEfXnFxcSouLvZ5jqRQnd/atbGaMiVe1dWtPx1ptzu1fHmVrryy9Q+irdY/IolRfcZs9rvvVlzdnGfNaTiEXaSdoxmi/WerpfOzlZWp0/Dhsvn5QZYzLk7Hi4vlDEG/Cub/w/2zLsmQfm/V+2CkHMfo9qP9ZxXBoX8ELtqvXaSdn5XibS6W2tpaVVVVeV6h+BjcPX+SWyjmJQv1cYxuO1zXBOax2WyKj4/3vPz5/y0qKtKll17qWWaYxDAbOXKkzjrrLH355ZeSXImpGTNmaOPGjUENV/jyyy97EmFOp1M2m03f+973mtz2gw8+0KlTpzwTO/bt2zfg48J6EhISlJSUZHYYsCD6RnCi/fpF0vlZLVaz4ml43EWLFjX5BKLD4dCiRYu0cOFCQ44TiIICacoUqbrat+2rq22aMqWjcnOltDT/jmW1/mFloeozYVVaKq1Y0epmDavDIuocLSLaf7a8zm/RIimAJ7ptDocSFy2SwtCv/Pn/qP+zHop+b5X7YKQex+j2o/1nFcGhfwQu2q9dpJ2fleKtH0uXLl0kfTO0m9EJsYqKCuXm5nqWzz//fCUmJhp6jFAfx+i2w3VNYA6bzRbUkKNmDltOSlau/8Af/vCHnoSV5KoWu+qqq1ReXh5Qm3//+9910003eXWKDh066IYbbmhy+/q/ICTpoosuCui4AADAGkpLS7WkhcqYnJwclZWVhTEib7Nm+Z4Ic6uulurNcwuD1e8zPSU1rBMxu8/4LDvbp6SFe+6w+iLmHBFepaVSK5WGLcrJkSzUr0pLS7U2J8fzM06/BwAg9Gw2m2JiYhQbG2voKyYmRk6n0/MKxTFCfRyj2w7XNeFlzismJiZi594jGVbnoYceUrdu3STJU8m1adMmDRo0SPPmzfNUjbVm48aNuuaaa/STn/zEM2mcO8k2Z84c9ejRo8n9XnnlFc+2kpSRkRHsKQEAABNlZ2e3OC69w+FQdnZ2GCP6RmGhtHVrYPvm50uM5Bwa9fvMHDVOFJnZZ3zmZ9JipryTfhFxjgg/HxOszXI4XG1YRHZ2tu46dcrzM06/BwAAAEKPZFidrl27eg1N4c5uHjlyRHPmzFGvXr00evRo3X777Zo7d66efvpp/fWvf9Wf//xnPfTQQ7ruuut07rnn6vLLL9fatWu9qswkKSUlRQ888ECTxy4tLdUbb7zh2T4hIUGZmZkhPFsAABBKrVWFuZlVDbB0qbn7o7GGVWEz1DhRJEVABYmfSQuqw9CqYKvC3CxSHeauCmv4M06/BwAAAEKLOcPq+dGPfqQjR44oKytL0jcJMafTqZqaGm3fvl0FBQXN7l9/zNn6+w4bNkzr1q1T+/btm9zv//7v/xQb+81/xXe/+1116NAh6PMBAADmaK0qzM1dDRDuOZKKi83dH401rApzvxOcI2lWve3M6jM+CTBp0dTcYZY9R4RfcrJxSSwLzFXhrgpr+DNOvwcAAABCi8qwBn72s5/pn//8p5KTkz3JLZvN5nnVH++04aup7X74wx9q48aNniEYm/L73/9eVVVVntfKlSvDdboAAMBgvlaFuZlRDXD8eHD7V1QYE0eolJaWRlSFRVNVYW4RVR0W4FB2VIehRXa7KyFmxMtuN/VU6leFuVEdBgAAAIQHybAmXHfdddq5c6d+9rOfqWPHjp7EluSdGGv4qp8YGz58uFavXq3nn39eZ5xxhslnBAAAwsXXqjA3M+aK6dQpuP0tUFzRouzs7Iiaf6e5qjCp6USRJecXCnIouzvi4vRVcbEOHjyogwcPqqysTN27dzcwQMB8DavCJO+fcUv+bAMAAABRgmRYM7p166bFixfrs88+01/+8hf94Ac/0LnnnttsVVhcXJxGjx6tX/ziF8rPz1dhYaGuvfZas08DAACEUVlZmV9VYW7hrgZISTF3/1ByV1lFSoVFS1VhbhFRHRZgVZibzeFQt5wcJScne152k6t4ACM1VRXmRnUYAAAAEHokw1qRmJio2267TS+++KIOHDigw4cPa/fu3dq+fbs2b96skpISlZWVqaKiQvn5+frTn/6k0aNHmx02AAAwwfz58/2qCnMLdzXAjKY+jfXD9OnGxBEK7iqrSKmwaKkqzM3y1WFBVoV55OQYNzcUYDFNVYW5UR0GAAAAhB7JMD917txZ3/rWtzRixAhlZGRoyJAhOueccxQbG2t2aAAAwETl5eVasWJFwPuHsxogNVUaMyawfdPTXftbUcP52qxeYeFLVZibpavDkpNdSayDB1t9VezZo9eWL/e8Kvbs+eb7ZWUSQyMiCrVUFeZGdRgAAAAQWiTDAAAADLB69eqAqsLcwl0N8NRTkr+j0Nnt0oIFoYnHCA3na7N6hYUvVWFulq4Os9tdCTEfXs7u3eXo3Nnzcnbv7r0NQyMiCrVUFeZGdRgAAAAQWiTDAAAAglReXq7169cH3U44qwHS0qRVqyS73enT9na7a/u0tBAHFqCGVWFuVq2w8KcqzM3S1WEAmuRLVZgb1WEAAABA6JAMAwAACFLnzp21dOlS7dmzRwcPHgz4VVZWpu5hHCZu4kTptdcqNWjQoRa3S0+XcnNd21tVw6owN6tWWCQnJ6usrEwHDx7UR9OmtVgx4tZB0sc//ampfQaAf3ypCnOjOgwAAAAIHSa68tGpU6f0wQcf6KuvvtLXX3+tqqoqSdItt9xicmQAAMBscXFxiouLU/fu3ZWUlGR2OH5JTa3V3Lm52rOnszZs6KNDh3rpxIlYJSZKKSnS9OnWnSPMrbmqMLecnBzNmTNHPXv2DGNULbPb7bLb7VJpqbRypc/7xf/tb4r/3e8kC50LgKa5q8L+5Mc+MyVlS/pU1vzdBQAAAEQqkmEtqK6u1pIlS/Tyyy9r69atqq6ubrRNS8mw119/XUePHvUsDxs2TP379w9JrAAAAMHo1++o+vXboUsv7RZxCb3mqsLc3BUWCxcuDGNUPsrOlvyZa87hcO1jxXMB4MWfqjA3d3XYLFn8dxcAAAAQYRgmsRmLFy9Wnz599POf/1xvvvmmqqqq5HQ6vV6tefPNNzVp0iTP65577glD5AAAAG1Ha1Vhbpacf6e0VPIh9kZyciSrnQsAL/7MFdYQc4cBAAAAxiMZ1kBVVZVuuukm3XnnnSovL/ckvWw2m9fLF7Nnz1aHDq7nAJ1Op1577TV99dVXIYsdAICAlJbywToiVmtVYW6WnH/H36owN3d1GADLSk5O1ns33+xXVZhb/fkBmRcQAAAAMAbJsHqcTqduvPFGvfDCC3I6nZ7El78VYW7Jycm64YYbPPvU1NToX//6V4iiBwAgQNnZfLCOiORrVZibpSosAq0Kc6M6DLA0e3m54v2YD7Ch+L/9TcknTyo5Odk1vyAAAACAoJAMq+fhhx/Wv//9b0nyJMHat2+v6dOna/Xq1XrnnXc0ePBgv9qcNGmSpz1JWr9+vbFBAwAQDPcH8nywjgjka1WYm6WqwwKtCnOjOgywNn7GAQAAAEshGVbn008/1WOPPeZJWjmdTg0bNkwffPCBcnJydO211+qiiy5SXFycX+1eccUVio+P97S5ceNGw2MHACBg7g/r+NANEcbfqjA3S1SHBVsV5kYSG7AmfsYBAAAAy4k1OwCryM7O1smTJz0VYf3791dubq4SExODardDhw5KSUlRfn6+JOnrr7/W559/rrPPPtuIsAEACFzDD+tycqQ5c6SePc2LCfCRv1Vhbu7qsIULF4YgKh8lJxv3AXeQ71UBhEAb+BkvLS2VzWZTUlKS2aEAAAAAPiEZVufll1/2JMJsNpuWLFkSdCLMbcSIEZ5kmCR9+OGHJMMAAOZrOISTuzrMzCQB4INAq8LccnJyNGfOHPU0K/Frt7teAKJTNP+Ml5ZKNpuys7Nls9n06KOPmh0RAAAA4BOGSZT0wQcf6LPPPvMsp6am6pJLLjGs/W9961teywcOHDCsbQAAAtLcEE4MyYQIEGhVmJul5g4DgEiSna2KBx/UkiVLlJOTo08//dTsiAAAAACfUBkm6f333/f822azacKECYa236VLF6/lY8eOGdo+rK+ystLsEGARDfsCfcM/0X79wnl+9kceUVxTyQSHQ45HHlH144+3uL/V/i/Miidcxw3lcULRdijjLSsrC6oqzC0nJ0d33HGHzj33XAOigq+s9rsj0kT79Yu087NSvOGIxVZWpk5LlsheU6Pk2lp9Kumxxx7TtddeG9LjNtWu0ccxun0r9Q1YD/0jcNF+7SLt/KwUr5mx8Ddh6NtDdKmqqjLt2Dan0+k07egW8fTTTysrK0uSPEMkTps2rclthw8frh07dniGUzx9+nSr7b/00kuaNGmSbDabJOkPf/iDHnjgAeNOAGG3bNkyLVu2rNH6yspKFRQUeJYXLFig3r17hzEyAGidvbxcl99+u2Jqapr8/unYWG14+mlVd+8e5siA1jkcjhbfPHf8+mvJZtOJrl1bbSs+Pl5xcXFGhgcAUWvYM8+o72uvSZIWSpolKTY2Vk8//bS6854BAAAAPjhw4IBmz57tWX7vvfc0ZMiQsBybyjBJhw8f9lru3Lmzoe0fP35ckjwJNHu0jh/fhuzbt0+bNm0yOwwACMjA1aubTYRJUkxNjQasXq2SW28NY1SAb+Li4lpMYA17/nk5bTb6LwAYyF5ert7r13uWZ0rKlvRpTY1Wr16tW/mdCwAAAIsjGSYpKSnJa7miosLQ9svLy72Wu3XrZmj7CL/zzjtP48aNa7S+YWUYAFhNww+zmtNn3Tp9fP31VIchotTv3/RfADBOwwdpOkiaI1d12Lp163T99ddTHQYAAABLIxkmqUePHpLkGcbw888/N7T9wsJCr2X+SIh8U6dO1dSpUxut37lzpy688MJG60eNGqWEhIQwRAarq6ys1LZt2zzL9A3/RPv1C8f52e++u8WqMLeYmhpd+vbbzc4dZrX/C7PiCddxQ3mcULRt1v9H/f7dUv+Feaz2uyPSRPv1i7Tzs1K8oYzFVlamTq+/3mh9U9VhkXgfDEX7VuobsB76R+Ci/dpF2vlZKV4zY+FvwtC3h+hSVFRk2rFJhkmNJk7fvn27YW2fPn1ab775pmw2m9zTsw0bNsyw9hEZEhISGlUgAhJ9I1jRfv0MP7/SUmnFCp83j1u+XHEPPST17Nnqtlb7vzArnnAdN5THCUXbYbkuDfq3P/0X5rHa745IE+3XL9LOz0rxGhrLokWSw9FodVPVYdFwHwxF+1bqG7Ae+kfgov3aRdr5WSleM2OJhnsh90GEUnx8vGnHbmfakS1k5MiRnuy00+nU+vXrPfN8BeuFF17Ql19+6Vnu27evevKhDADADNnZTX6Y1SyHw7UPEAka9m/6LwAEr7RUWrKk2W/PlHSupJq66jAAAADAqkiGSWrfvr3Gjx/vqdyqrKzU4sWLg2732LFj+u1vf+upCrPZbLr88suDbhcAAL+18mFWs3JypLIy4+MBjNRc/6b/AkBwWnmQxl0dJrmqwz799NOwhAUAAAD4i2RYnSlTpkiSJ3H1u9/9Tu+//37A7Z06dUo333yz9uzZ47X+zjvvDCpOAAAC4m9VmBvVNYgEzfVv+i8ABM7HB2nqV4fNnz8/5GEBAAAAgSAZVucHP/iBhg8fLsmVEDtx4oQuu+yygOYP27Nnjy655BK9+uqrXlVhEydO1IUXXmh06AAAtCzQqjA3qmtgZa31b/ovAATGxwdp6leHLV++XGX8zgUAAIAFkQyr58knn1RMTIwkV0Lsyy+/VEZGhmbMmKGtW7eqpqam2X2//PJLrVq1SjfeeKMGDx6sbdu2eYZdlKTExEQ98cQTIT8HAAAaCbQqzI3qGlhZa/2b/gsA/vPzQRp3dZjD4VA2v3MBAABgQSTD6snMzNTChQs9SSybzabTp0/r2Wef1cUXX6xOnTrpgw8+8EpynXPOOYqPj9c555yjyZMn68UXX1RNTY2nGsz99dlnn1X//v3NOjUAQFsVbFWYG9U1sCJf+zf9FwD84+eDNPWrw3JycqgOAwAAgOXEmh2A1dx66606dOiQHnzwQa+EluR6yq0+p9OpL774olEbNpvN8/3Y2FgtWLBA1113XeiDBwCgoeRk45IAiYnGtAMYxdcPa93VYQsXhj4mAIh0AT5IM1NStqRP66rDFvI7FwAAABZCZVgT5syZo//973/q0aOHJyHmz0tyJcK6d++utWvX6rbbbjP5jAAAbZbd7kqIGfGy280+G+Ab/n5YS3UYAPgmwOGVqQ4DAACAlZEMa8Zll12mjz/+WHPnztXZZ58tp9PpeTWl/veTkpL08MMPa8+ePfr2t78d5sgBAADaAH8/rGXuMABoXZDDKzN3GAAAAKyKZFgLOnXqpHvvvVd79+7Vxo0b9fDDD2vChAk6//zzlZycrNjYWCUmJqpv375KT0/XL37xC7366qv69NNP9dBDDymR4aQAAACMF+iHtVSHAUDLAqwKc6M6DAAAAFbFnGE+aN++vcaNG6dx48aZHQoAAAAC/bCWucMAoHlBVoW53REXpxu3bVPtOefwgCgAAAAsg2QYAAAAIkewH9bm5Ehz5kg9exoXEwBEg+Rkv6tnKyoqtHnzZs/y2LFjlZiYqG6Jicw1CgAAAEshGQYAAIDIEeQQXlSHAUAz7Ha/E1jODh3k6Nz5m+Xu3aWkJKMjAwAAAILGnGEAAACIDAYN4cXcYQAAAAAAtC1UhgEAACAyBDCEV7OYxwYAAAAAgDaDZBgAAAAiQwBDeAEAAAAAADBMIgAAAAAAAAAAAKJWVFeGffvb3zY7hEZsNptef/11s8MAAAAAAAAAAABoE6I6Gfbmm2/KZrOZHYaH0+m0VDwAAESaoqIiLVmyRMXFxTp+/Lg6deqklJQUTZ482ezQAACA1ZSWSjab1LOn2ZEAAADAZFGdDAuG0+ls8fv1k1r+bAsAAPxXUFCgWbNmaevWrY2+l5+fr8WLF2vQoEGaOXOm+vfvb0KEAADAcrKzXcmwhQvNjgQAAAAmaxNzhjmdTr9fkiuJ1dyr/rYtbVf/+AAAwH9r1qxRZmZmk4mw+nbt2qVf/epX2r59e5giAwAAllVaKi1ZImdOjj7nvQEAAECbF9WVYZdccknAVVnbtm1TdXW1Z9mdzIqJiVHv3r3VuXNnJSQkqLKyUkePHtWBAwd0+vRpSfJKgnXs2FEjR44M8kwAAGibCgoKNGnSJK97ckscDofmzZunyy+/XOPHjw9tcAAAwLqysyWHQzZJH02frrN37DA7IgAAAJgoqpNhb775pt/7HDlyRLfccouqqqo8FWBnnXWWbr75Zl1//fVKSUmR3W5vtF91dbWKi4v10ksvaeXKlfriiy9ks9lUVVWlpKQkrVixQp07dzbgrBCJKisrzQ4BFtGwL9A3/BPt1y+Szi9csWZlZfmcCHNzOBy655579MYbb4QkpvrCdR1CeZxQtB1JfRnhRd8ITrRfv0g7PyvFa1YsVr0P2srK1GnJErkfjR1TUqKPN27UmSNGGNJ+a6zUN2A99I/ARfu1i7Tzs1K8ZsZi1XuhmW1bqW/Aeqqqqkw7ts3J+H0ehw4d0iWXXKIPPvhAktSuXTvdd999evDBBxUfH+9zO9XV1frDH/6gxx57zFMtNnjwYL311lvq2rVrSGJHeC1btkzLli1rtL6yslIFBQWe5QULFqh3795hjAwAosfu3bt1zz33BLz/E088oX79+hkYEQAAiATDnnlGfV97zWvdf/r0Ue2f/2xSRAAAAOFlLy+XbDZVd+9udiheDhw4oNmzZ3uW33vvPQ0ZMiQsx47qyjB/3XDDDXr//fclSXFxcVq5cqVuuOEGv9ux2+36wx/+oBEjRujGG2/UqVOn9P777+v6668PqFoN1rNv3z5t2rTJ7DAAIKpt2LAh6P1JhgEA0LbYy8vVe/36Ruu/s3+/Vn/0kToOHGhCVAAAAOE1cPVqOW02ldx6q9mhWEY7swOwihUrVmjTpk2y2Wyy2Wx66KGHAkqE1Xfdddfpt7/9rWe+sdzc3CariRB5zjvvPI0bN67RKy0tzezQACBq7N2719T9AQBA5Bm4erViamoare8gqdOiReEPCAAAIADl5eX66quvAtrX/XBQn3XrZA+wjWjEMIl1LrroIpWUlEiSzjnnHB04cEDt2gWfKzx9+rT69Omjzz//XE6nU0OGDPEcB9Fn586duvDCCz3L7mESR40apYSEBBMjg1VUVlZq27ZtnmX6hn+i/fpF0vmFI9aMjAzt3Lkz4P2HDBmivLw8AyNqLFz/Z6E8TijajqS+jPCibwQn2q9fpJ2fleI1Kxar3QdtZWXqNHy4bA5Hk+2clHTgjTcazR1m9HlYqW/AeugfgYv2axdp52eleM2MxWr3Qiu0baW+Ecnuvvtu2Ww2Pf74437va7/7bsUtWSJJcsycqeoA2giVoqIiXXrppZ5lhkkMs3379qmkpEQ2m2t63euvv96QRJgkxcTE6IYbbtBTTz0lSXr//fe1d+9e9e3b15D2ERkSEhKUlJRkdhiwIPpGcKL9+kXS+YUi1mDb69y5c9ivX7j+z0J5nFC0HUl9GeFF3whOtF+/SDs/K8VrViym3wcXLZKaSYRJruqwz37+cw3YsSOw9gNkpb4B66F/BC7ar12knZ+V4jUzFtPvhRZs20p9I1KUlpZqxYoVkqSHHnpIPXv29GdnqW5fSYpbvlxxDz0k+dNGCMXHx5t2bIZJlFRYWChJnuEMjc5ENmzPfTwAANC8lJQUU/cHAAARpLRUqnsCuiVjSkr0+fbtYQgIAAC0KaWlUlmZIU1lZ2fL4XDI4XAoOzvb3529Hw5yOFzrQDJMkg4cOOC13K1bN0PbP+OMMyTJU3lWWlpqaPsAAESjGTNmBLX/9OnTDYoEAABYXsMPfprRQdJHvEcAAABGy842JOlUWlqqJfUe8MnJyVGZr0m25h4OyskxLFEXyUiGSaqqqvJaPnjwoKHtuye6c1eeVVdXG9o+AADRKDU1VWPGjAlo31GjRik1NdXgiAAAgCX5WBXmRnUYAAAwlPu9iAFJJ3dVmJtf1WHNPRxEdZgkkmGSpOTkZEnfVG69++67hrbfsL3u3bsb2j4AANHqqaeekt1u92ufuLg4zZ07N0QRAQAAy/GxKsyN6jAAAGAo93uRIJNODavC3HyqDmvt4SCqw0iGSdK5557r+bfT6dTLL7+skydPGtL2yZMntXr1ak+iTZLOOeccQ9oGACDapaWladWqVT4nxOLi4nTvvfdSFQYAQFvhZ1WYm1nVYaWlpb4PdQQAAKyv4XuRIJJODavC3HyqDmvt4SCqw0iGSdKYMWMUGxvrWf7666/129/+1pC2H374Yc8wiZIUGxurjIwMQ9oGAKAtmDhxonJzc5Went7idoMGDdKjjz6qkSNHhikyAABgOj+rwtzMqg7Lzs72fagjAABgfQ3fiwSYdGquKsytxeowXx8OauPVYSTDJHXt2lWXXXaZnE6nbDabnE6nHn/8cS1evDiodp955hk99thjnjZtNpsuu+wynXHGGQZFDgBA25CWlqa8vDwVFhYqKytLGRkZGjp0qDIyMpSVlaVNmzZp7ty56t+/v9mhAgCAcAmwKswt3NVh7g+5fBrqCAAAWF9z70UCSDo1VxXm1mJ1mK8PB7Xx6rDY1jdpG+bMmaN169ZJcs0dVltbqzvvvFPbtm3TY4895plXzBdfffWV7rvvPi1fvtyTBHN74IEHDI892uzevVvFxcUqLS1VZWWl4uPjdc4552jYsGEaMmSI2eEBAEyUmpra5BCIx44d08aNG02ICAAAmCbAqjA3d3XY8M2bjYupBfU/5MrOztbChQvDclwAABAizb0XcSedfLzXt1YV5paTk6M5c+aoZ8+e9Xf27+GgnBxpzhypfhttBJVhdcaNG6dp06bJ6XRKkqeaa8WKFTrvvPN04403atWqVfrkk0+a3P+TTz7RqlWrdNNNN6lPnz5eiTD315/+9KfKzMwM52kZxul0avz48bLZbI1e48ePD7r9qqoq/elPf9LAgQM1YMAATZo0SXfddZd+85vf6J577tFNN92kCy+8UL169dLDDz+sI0eOBH1MAAAAAECECrIqzG1MSYm+LCw0IKCWNfyQi+owAAAiXGvvRfyoDmutKsytyeowfx8OasPVYSTD6lm4cKG+/e1vN0qIVVVV6cUXX9TkyZM1YMAAdejQQd27d1efPn3UvXt3dejQQQMGDNDkyZP1wgsvqKqqqlFF2Le//W099dRTZp1a0J566ilt2rQpJG1v2bJFgwcP1t13362PP/64xW3Lysr0u9/9TgMHDtS///3vkMQDAAAAALC45GSprEz3T5umZCngV09J8597LuThNvyQq8WhjgAAgPW1loTyMenka1WYm9cDNYE+HNRG5w4jGVaP3W7XmjVr9N3vftcrIeZOirlfp06d0qFDh1RaWqpDhw7p1KlTXt937yO5Kqq+973v6T//+Y/sdruZpxew3bt3h2x4x9WrV+vSSy/V/v37/dqvvLxc1157rf7yl7+EJC4AAAAAgIXZ7SqtrtaTK1fqKymo19KVK/XVV1+FLNSysjItWbJEPSWdW2891WEAgLaqtLQ0su+BviahfEg6+VoV5ub1QE2gQ0a30eow5gxrwG6365VXXtGyZct099136/Dhw17JLV85nU516dJF8+fP15QpU0IUbejV1tZq2rRpOnHihOFt5+XlafLkyTp16pTX+nbt2mnixIkaO3asevXqpfLycr377rv6xz/+4RWH0+nUnXfeqbPPPlvXXXed4fEBAAAAAKwrOTnZkA/SKioqVBjCoRLnz58vh8OhOZKckmbVrXd/mMXcYQCAtiY7O1s2my1y74G+JqFamTvM36owt5ycHP36llt0djBDRrfBucNIhjVj6tSpuv7667V8+XI988wzev/9933e94ILLtBtt92mW265RUlJSSGMMvSefPJJba43mfDo0aP19ttvB91uZWWlbrzxxkaJsEGDBunll1/W4MGDG+3z2GOPadq0aV7DIzqdTk2bNk3p6ek666yzgo4LAAAAABAZ7Ha7ISOwdOjQQXFxcQZE1Fh5eblWrFihnpJm1K3LlvRp3b9zcnI0Z84c9WxDH0QBANq2+gmgiLwH+js0YQtJJ3+rwtwcDoc+nj5dZwdSFfZNIy0m6qIRybAWJCUladasWZo1a5ZKS0u1detWFRYW6uDBgzpy5IgqKiqUmJioLl26qEePHhoxYoTGjBmjXr16mR26IT766CM9+OCDnuVu3bppwYIFGj16dNBtP/roozpw4IDXuv79+ysvL09du3Ztcp+uXbtq9erV+tGPfqSXXnrJs/7o0aOaM2eOli1bFnRcAAAAAAAYZfXq1Z6qsA516+aI6jAAQNtVPwEUkfdAf4cmbCbpFGhVmOSa83T0e+8FtK+XNlYdRjLMR7169VKvXr00adIks0MJi9raWk2dOlVVVVWedU8++aR69OgRdNtHjhxp9EuuXbt2evbZZ5tNhLnFxMTomWee0ebNm/Xll1961v/tb3/TQw89pG9961tBxwcAAAAAQLDKy8u1fv16r6owSZopqsMAAG1TwwRQxN0D/a0Kc2si6RRoVZgklcuVEJv+059+M39YoBITg9s/grQzOwBY0+OPP678/HzP8jXXXKObb77ZkLZXrlypY8eOea275pprNHbsWJ/279atm+69916vdadPn1ZOTo4h8QEAAAAAEKzVq1erpqbGqypMdf+eU2/ZXR0GAEC0a5gAirh7oL9VYW7u6rA6wVSFSdJJSV9Jmv+3v6ns5EkpOTnwlwFDTkcKkmFo5IMPPtBDDz3kWU5KStLTTz9tWPvPP/98o3W33XabX21MmTJFHTp08Fr3j3/8I6i4AAAAAAAwQnNVYW4zJZ1bbzknJ0dlZWXhCQ4AABM0lwCKmHtgoFVhbjk5Ut15Jicnq6ysTAcPHgzqVVZWpu7duxt0gtGPZBi8nD59WlOmTNHJkyc96x5//HHDSlWPHj3qVXEmSYmJibriiiv8aqd79+4aP36817r9+/frgw8+CDZEAAAAAACC0lxVmBvVYQCAtqa5YQEj5h4YaFWYW73qMLvdruTkZENe9jZU2RUskmHw8thjj2n79u2e5csuu0wzZ840rP38/HydPn3aa92YMWMUExPjd1uZmZmN1uXm5gYcGwAAAAAAwSorK2uxKsyN6jAAQFvR2rCAlr8HBlsV5lavOgzhF2t2ALCOnTt36uGHH/YsJyQkGD4PV2FhYaN16enpAbWVkZHhU/sAAAAAAITL/PnzW6wKc3NXh82qW3Y/Gb9w4cKQxwgAQDg1VxXm1uw9sLRUstkkg0YtC1hysnFJrMREY9qB36K6Mux///uf2SH47PDhwyooKDDt+DU1NZoyZYrXL6VHH31Uffv2NfQ4H374YaN1/fv3D6itfv36NVq3a9eugNoCAAAAACBYpaWlWrFiRatVYW5UhwEAol1ZWVmLVWFuTd4Ds7M9Qwuaym53JcSMeDGsoWmiOhl21VVX6YorrtC7775rdijNOnnypB577DH169dP//3vf02L449//KNXVVVGRobuvPNOw4+zb9++Ruv69OkTUFvnnntuo+EVP/nkk4DaAgBYX1GRlJUlZWRIw4a5vmZludYDAABYgfvJ99aqwtyYOwwAEO3mz5/fYlWYW6N7oHtoQoYWhEGifpjEDRs2aMSIEfre976nX/3qV0pLSzM7JElSZWWlFi9erPnz5+uLL74wNZYdO3bo97//vWfZbrfrr3/9q9q1Mz5X2tS59urVK6C2YmJidPbZZ3s9MfDll18GHFtDBw8eVHl5uV/77N69u8n1lZWVRoSEKNCwL9A3/BPt1y+Szi+csRYVtdN999m1fXvjty35+dLixdKIEXbdeGMX9e9/JOTx1Beu6xDK44Si7Ujqywgv+kZwov36Rdr5WSles2KJhvugke27n3z3tSrMbaakbEmf1i3n5OTojjvu0LnnntvCXuYqKyuTzWazdIxWZaXfHZEm2q9dpJ2fleI1M5ZouBca3Xb9/cvLy7VixQqf961/D7Q/8oji6pJojkceUfXjjwcVF6yhqqrKtGPbnE6n07Sjh1i7du1ks9nkdDpls9kkSZdeeqnuuOMOfe9732tUVRQOu3fv1v/93/9p6dKlOnLkiNyX32az6be//a0eeuihsMZz6tQpjRo1SsXFxZ51f/zjHzVnzpwmt9+3b1+joRPHjRunN99806fjdevWTYcOHfJad/DgQSUnJ/sVt9vgwYMbDb1YUVGhTp06BdRefQ8//LB+97vfBdXGggUL1Lt376BjAYC2avv2MzVv3kg5HK3fs+PiTuvee7dr5EjjHowAAADwlcPhUFVVlUatWKHzX3/dr30/vOwybbvlFs9yfHy84uLijA7RMM8884xsNptuvfVWs0MBAFjYM888o9dee82vfa6++mrNvu46XX777YqpqZEknY6N1Yann1Z19+6hCBNhdODAAc2ePduz/N5772nIkCFhOXZUV4bdeOON+sc//uFJhDmdTm3cuFEbN27UmWeeqSlTpugHP/iBRowYEdI4Dh06pH/9619auXKlJ2lUPwnmdDp19tln69JLLw1pHE35wx/+4JUIGzFihO69996QHa+pJwvi4+MDbq+pfU+cOGFIMgwAYK7du7v4nAiTJIcjRvPmjdSjj272VIgBgNH27Nmj9evXa+/evaqurpbdblffvn01YcKEJue0BdB2xMXFKenoUQ3YtMnvfQds2qT9N94YER/ylZeXa/369ZKk66+/Xt0jIGYAaMvs5eWSzRb2e0z9+4U/1q1bp3lVVZ5EmCTF1NRowOrVKuEhDAQhqpNhK1eu1K233qo77rhD77//vldS7IsvvtBjjz2mxx57TH369NE111yj8ePHa9y4cUG/kautrdX27du1ceNGbdiwQW+99ZZOnz7tObb0TRIsJiZGP//5z/Xwww8rISEhuBP20zvvvKNHH33Us9y+fXv99a9/DWnF3KlTpxqtswcxaWBTyTBfxqAFAFhfTs5QnxNhbg5HjHJyhmru3NwQRQUgUJGeRNq9e7dycnK0a9euRt/btWuX1q5dq0GDBmnmzJnq37+/CRECsIKBq1d7fXjnq0j6kG/16tWqqTvH1atXUx0GABY3cPVqOW22sN9j6t8v/HFWTU2TD5b0WbdOH19/fUQ8OGKmPXs6a/36Ptq7t7Oqq2Nkt59W375HNWHCfvXrd9Ts8EwV1cMkup0+fVpLly7VH/7wB8+41tI3iSlJnnWS1Lt3bw0bNkwXXnih+vTpo3PPPVdnnXWWEhISFB8fr5iYGFVXV6uqqkqHDh1SWVmZysrKtGvXLpWUlOj9999XdXW1p736CTD3ss1m06RJk/T73/9eAwYMCMdl8OJwOJSWlqaSkhLPuoceeqjVYQGDHSYxJiZGtbW1XutqamoCTsCNHTtWW7Zs8Vp34MCBgOchqy/QOcOuvfZaz7J7mMRRo0aFPdkJa6qsrNS2bds8y/QN/0T79Yuk8wt1rO+8007jxwde5bt2bbnS032Ztj444fo/C+VxQtF2JPVlhF5RUZHuu+8+bd++vdltRo0apblz5yo1NTWMkflu7dq1mjJlitd7/ObY7XYtX75cV155peFxGPmzVVxcrBUrVqikpESVlZVKSEjQ0KFDdcsttyglJcWgiP0Tab87rBSvWbFEw33QyPZtZWXqNHy4bAE+oOmMi9Px4mI5LTwPV1lZmYYPH+55CDUuLk7FxcXMHeYHK/3uiDTRfu0i7fysFK+ZsVj9Xui+N0lq9h5j9DlUVlbq1Vdf1e233x5QMmyhpDua+Z5j5kzmDmtGS/Otu40aVaO5c6uVmlrb7DahVlRU5DVCHsMkGiwmJka33nqrpkyZor/85S+aP3++V1JM8k6M7d+/XwcOHNCaNWv8PlbD3KLNZvNKgrVr107XXnutHnroIV100UUBnlHwfve733klwi688EL9+te/Dvlx27dvr5MnT3qtq6qqCnhYw6Ym3DNqXPUePXqoR48ehrSVkJCgpKQkQ9pCdKFvBCfar18knZ/Rsb7wQnD7//OfnXXFFeGfZyNc/2ehPE4o2o6kvgxjrVmzRpMmTWo1ibRt2zZdddVVWrVqlSZOnBim6HxTUFDgcyJMkqqrqzVlyhTl5uYqLS0tpLEF8rNVUFCgWbNmaevWrY2+t23bNi1dulTp6elasGBByONvTaT97rBSvGbFEg33waDaX7RICmKkEpvDocRFi6SFCwNuI9QWLVrkNRqLw+HQokWLtNDCMVudlX53RJpov3aRdn5WijeksZSWSjab1LNnq8cuLS2VzWZTz2a2DYbP51jv3uTrPcaI6xdoVVhPSTNa+H7c8uWKe+ihZq9/W7VmjTRpktTanyzbtsXqqqs6adUqyaw/u4KZMilY7Uw7sgk6dOigX/7yl/rkk0/03HPPacSIEXI6nZ5Krfov93p/X82106lTJ915553atWuXXnrpJVMTYQUFBXrsscc8yzExMfrrX/8alsl5O3bs2GhdUwktXzW1r5WfmgEA+KbedJYBKSlpU29xIKmoSMrKkjIypGHDXF+zslzrYY6CggKfEmFu1dXVmjRpkgoKCkIcmX9mzZrl8zm4VVdXe00KbRVr1qxRZmZmk4mw+vLz85WZmRnQw4FAm1VaKi1ZEnw7OTlSWVnw7YRAaWmpljRxjjk5OSqzaMwAYLjsbNfLp02zle3jtiHR8N4UpntMWVlZQHOFSdIcSS2O8eJw+Hz924qCAt8SYW7V1a7tLfZnV1i0icqwhmJjY/XjH/9YP/7xj7Vz504tW7ZML774okpLSz3b1K8a80f9yrC4uDhddtlluvnmm3XdddcFNTeWUU6ePKmpU6d6ZebvuusujRw5MizH79atmw4fPuy17vjx40pOTg6ovePHj3stx8XFBVxlBgCwjga/3gPYP7D7OCJPQYE0a5bU1Gf7+fnS4sVSerq0YIFkcpFLmxNMEikvLy9EUfmnsLCw1cRRc/Lz81VUVGSZoR8DTU6Go8INiArJyZ4PGCsqKrR582bPt8aOHavExETf2/Jn2zDKzs6Ww+FQT0lOSZ/WrXc4HMrOzqY6DED0q59cmjOnxeqk+g8QzJkzJyTVYa3KzvauWHYnkkL8+7p79+5aunSpZ9nX+2C7Tz9V19GjW6+yzslp9fpHsqKiIi1ZskTFxcU6fvy4OnXqpJSUFM2YMaPJvy1mzfI9EeZWXS3Nni1Z5M+usGnzj00PGTJE8+bN0/79+/Xuu+8qOztbV111lbp16+Z3VVhsbKyGDx+u22+/XS+//LK+/vprvfrqq7rxxhstkQiTpD//+c/auXOnZ3nAgAGtzhNmpDPPPLPRukCfIDt9+rQ+//zzVtsHAESeYJ9r6NQp6qdEhVxDQWRmNp0Iqy8/37UdRS7hY0QSyQrq/xFvxv5GiqYKN8CS7HZXQiw5Wc7u3eXo3Nnzcnbv7vmeTy+LfH5Qn9eHunWv+qgOA9AmuJNLPlQnuR8gcD8wEHbNVSyHoTrMbrerc+fOnlf37t2VnJzc6qtbTo5v825GaXVYQUGB0tPTNWLECC1evFj5+fkqKSlRfn6+Fi9erBEjRigjI8NrJI3Cwtb/Hm5Ofn7bG0mlTVaGNWfo0KEaOnSo7rvvPknSgQMH9NFHH2nfvn0qKyvTsWPHdOLECZ0+fVrx8fFKSEhQjx491KdPH33rW9/S4MGD1aFDi4Wcpvvss8+8lisqKpSenu7z/o4mfiEVFBQ0Ocl2cRNjXPXt21dbtmzxWrd//35lZmb6HIPbZ5991mjs2b59+/rdDgDAelJSXG/MAjV0qHmTwSI8Ah0KIjeXCrFwMCKJZIWKqqbez4Zzf6NEU4UbAHPUrwpzz+WSLarDALQhTQ05OGeO1MTcWg2Hlc3JyQl/dVjDqjC3MFWH+c3f4YajrDrM17mW3cOZu+daDvbZu6VLpbb0Np9kWAt69+6t3r17mx1GSH3xxRf64osvgmqjsrJS7777rk/bDho0qNG63bt3B3TcPXv2NFp3/vnnB9QWAMBaZsxwDW8XqJ/8xCEp9HNhwjwMBWFt0ZJEajgkt78qKioMiiQ40ZKcBGCOhlVh7keA50iaVW87Uz7sBYBwaW7IwUcfbWLTbK+CgrA/MNBaYsmKiaTmknfNsWpSLwDBDGdeXBzck54W+bMrbNr8MIkIrxEjRjRalx/go/9NzSXBH+kAEB1SU6UxYwLbd9CgQ0pJoTIsmjEUhPVFSxIp2Llo/ZojKIQaJxeHS1okaYukd+u+Lqpb78v+1lFUVKSsrCxlZGRo2LBhysjIUFZWlmWG2gSiQVNVYZI0U9K59ZZNGwoMAEKthSEHbZ9+6rWqrKzMqyrsm03DOJxsa4klqw0z6G9VmFsYhnwMh2CGMw92vnWL/NkVNiTDEFbp6emKiYnxWpefn6/Tp0/73Vb9CYndLrnkkoBjAwBYy1NP+T9lRlzcac2cWRKagGAZRgwFgdCKliRS46HA/UsiNTWUuBm+SU6OkJQnqUhSlqQMScPqvmbVrd9St903rJKcrC+QORUA+K+5qjDV/Zu5wwC0CS0MOdhh/nyvVfPnz29ympmwPTDga2LJSokkf6vC3KyW1AtAsMOZ22zBZcMs8mdX2JAMa2OefPJJOZ3OgF979+5t1Oa4ceOa3LYpXbp00ZgGj/pXVFRo3bp1fp3HoUOHtHHjRq91vXv31uDBg/1qBwBgXWlp0qpVvifE4uJO6957t6t//yMhjQvmC7ZIxcJFLlEj2CSQVZJIM2a4ayACSyJNnz49XKG2yJWcvEZSrqTW5gvOqNvuGs8aqyQn3dasWaPMzExt3XpSLSUn3XMqrFmzxrRYgUjXXFWYG9VhAKJeK8ml9suXy/7VV5Kk8vJyrVixotltw/LAgK+JJaskkgKtCnOzUlIvAMEOZ376dHCjIVjkz66wIRmGsJs8eXKjdc8884xfbSxfvrxR+eiNN94YVFwAAOuZOFHKzZXSW/nsdtSoGj366GaNHPlleAKDqRgKwvq+SSIFxipJpNTUVA0adLcCSSKlp6dbZgjvc875nqRVkuJ93CO+bntXcs8qyUnJVRF2ww1/VHX1G/IlOemeU4EKMcB/LVWFuVEdBiDqtZJcsjkcGrB6tSRp9erVTVaFuYX8gQF/E0tWSCQFWhXmZpWkXoCCHY48JubZoPa3yJ9dYUMyDGF38803N3q69D//+U+Tc4A15dChQ5o3b57XupiYGM2cOdOwGAEA1pGWJuXlueaJysqSMjKkoUNdX7OyXOvXrz9BRVgbEuQIfG1uKAgzpKamNhoNwFdWSiIVFEj79j0mf5NIcXEZWrBgQQgj889HH90p38/BLV6S6xyskpyUpJtvfl4Oxwb5k5x0z6lgFcxzhkjRWlWYG9VhAKKWj8mlPuvWqXLXLq1fv77VbUP6wIC/iSWzE0nBVoW5mZzUKyr65rOKYcO++azCl7d2wc617HQWBjzfenq6a772toRkGMKuS5cuuuOOO7zW1dbWatq0aTp8+HCL+9bW1uq2227T559/7rX+pptuUr9+/QyPFQBgHamp0qJF0pYt0o4drq+LFrW9N28IfigHCxW5RLWnnnpKdj8n/rPb7ZZKIs2aJZ086e+fTPH61rf+o7S0tJDE5K/CQqmkJNAMcoaGDp1imeTkc899oF27fq9AKtzy8/NNTzYVFBRo2LApGjFiqxYvvln5+U+rpORp5effrMWLtzLPGSzFl6owN6rDAEQtH5NLMTU1Sly0SDU1Na1uG7IHBgJNLOXkyPbpp8bH44vkZFcS6+DB4F5lZVL37mEPv6DAlVAaMUJavFjKz5dKSlxfFy92rc/IcG3XHCPmWg5kvnW7XbLQn11hQzIMpvj1r3+tnj17eq376KOPlJGRoQ8//LDJfQ4fPqzrr79eq1at8lqflJTEU2cAALQhQY7A1+aGgjBLWlqaVq1a5XNCzG63a9WqVZZKIgU4l7U+/LCrT0+ChkOQ0xBo0KDHjAnEAPfe20HBVLgFOydDMObPz9WoUadVUrJcLQ3tmJ/vYJ4zWIKvVWFuVIcBiDp+Jpe+c+CA1+/BloTkgYFAhxt0ONRh/nxjY2mBV4X8qFHK+P73lfXb36qotNSVHAv05W82KEhr1kiZma3/vZCf79quubd2Rsy17O9863a7a3uL/NkVViTDYIpOnTrp73//u2JjY73Wf/jhhxoyZIiuvfZaPfHEE3r++ee1cOFCzZw5U7169dIrr7zSqK2lS5fqnHPOCVfoAADAZKmpiuqhIKJpCLWJEycqNzdX6a1M/Jeenq7c3FxNnDgxTJG1Lti8iYl5Fy9BTkOgzz7rYUgcwSoslL788lsB7p0haXjQczIEav78j3XXXWlyOke3sqVraMfq6suY5wym8qcqzI3qMABRx8/kUlO/B5tj+AMDQQ432H75ctm/+sq4eJpQUFCg9PR0jRgxQosXL1Z+fr5KSkqUn5+vxYsXN6qQD2bowVArKJAmTZKqq33bvrratX1Tb+2MmmvZ1/nW09Nd21noz66wim19EyA0MjMz9fe//1033XSTVxlxbW2tXnnllSYTX/XZbDY9+eST+sEPfhDqUAEAgMU89ZTrCTtf/wCRrD8UREFBgWbNmqWtTTxe6P4jMT09XQsWLLBM9ZQv0tLSlJeXp6KiIi1evFibN29WVVWV4uPjNXbsWN1+++2WGYavvmDzJiblXRoJchoCVVQYE0ewgk8uTldFxTNGhOKXggLp7rt7y7d0guQe2rG6OlOzZ8/2eV5lwEjJyckqKytTu08/VdfRo33+MPiOuDjduG2baus9rNpwvnAAbVhpqWSzSQ1GirKkAJNLMyVlS/Jl0MGcnBzNmTOn0chZAQm0KqyOzeHQgNWrVXLrrcHH0oS1a9dqypQpqm7lj7f8/HxdfPHP1bfvGu3adUYT33cNP5ie7vq7zqw/iWbN8u/vUMm1/ezZrvnQ63PPtdzU34CtaTjXsnu+9aIi13vn4mLXe/nERNdUAdOnW//B0FCjMgymmjRpkl5//XX16tXLr/26deuml156yVITYQMAgPCJtqEg1qxZo8zMzFb/CMrPz4+oIdTqP9E5dWqqduxYrPPO+69mz16m7OxsPfHEE5ZMhEnRk0QKchoCWeVz7OCTiymmfCj/058el9PpayLMzTW0oxXmOUPbZLfblZycrG45ObL58eGqzeFQt5wcJScne17+zh0JIIplZ7tekSDA5JIp1WFBVoW59Vm3LiTVYbt37/YpEeZyjRyODU0mwuprbejBUApmKPX8/KYr24yea5n51ptHMgymu+SSS/Thhx9q3rx56t+/f4vbnnvuufrNb36jjz/+WNddd12YIgQAAFYULUNBFBQUaNKkSXV/IA6XtEjSFknv1n1dVLfepbq62vJDqDU3mfS2bbFau7av7r57vO6/P1NFRdb9cyRakkhBTkMQ9P5GCTY5KSUGPSeDvwoLpZKSQDuSa2hHM+c5a0rDYVwnTJigp59+Wnv27DE7NBgt0A9Xc3IkhkYE0JD7d0ok/I4IMrnUcA7FlhgynGxysuuaHjwY8Ktizx6tW7pUjqSk4GJpQk5Ojo+JsBGSVsnX+WFbGnowlEIxlHqkz7UcSRgmEX4577zz5HQ6DW+3Y8eOuueee3TPPffoo48+UnFxsUpLS3XixAnZ7Xadc845GjZsmIYOHWr4sQEAQOSKhqEgZs2aperqIZKektRUZi9DUpakPEmzJRWqurraskOorVnj2xj6u3Z11VVXObVqlTUTlSkpriReMPtbwYwZroRkoOqmITBdsMlJqcIzp0K4GDG0Y3Hx340IJWgtDeMquYY/GjRokJ5++mmNHz8+vMEhNAIdcsvhcO27cKHxMQGIXPV+pxx/8EF1WrbM3HhaEuSQg+7qsFk+bOuuDlsYzO9Mu9334TKa4ezQQY7OnYNqoym7d+/Wrl27fNz6KfmaCHNrbujBUArVUOruuZZnz56t/Bb+CInEYfOthGQYLGfgwIEaOHCg2WEAAIAIkppq/aRXUwoLC7V1azf59hRkhqRcSZMkveoZQs1Kwwz6P5m0TZMmuSr3rPb3XLQkkVJTpTFjAhvOJT3dOj9XwSYnzzzzC6Wm3mBYPL4wYmhHM+Y5a2jNmjX1qlebt2vXLl111VVatWqVJloxww3fBTvkVk6ONGdOZMwLBCD0GvxO6fDcc9If/mDN3xEGDTlo2txhFrNhwwYft0xV0w8Fts499GC43rOGcij1+nMtL126VMXFxaqoqFBiomuEg+nTp1vqb79IRDIMAAAghIqKirRkyRIVFxfr+PHj6tSpk1JSUjRjxgzeyEJ//ON6+TMciGu7VZIyJRVq6dKllupHRk4mbbZoSSJJ0lNPueZV8Of/xm53TUxuFcEmJx9/fLBxwfjIiKEdzZjnrD7vYVxb5x7GNTc3lyeWI1mQVRGRVB1WWloqm80WUR9CR2LMaOMa/E5pX1tr3eow95CDPqiurtbx48d1/Phxvf322571o0ePVqdOnfROp04+V2yZfb8Plb179/q4ZXBPkS1dGr733uEYSj01NdVSf+NFE5JhAAAAIdDSkFL5+flavHgxQxxA//vfRPk7HIhr+wWSLlZx8KUnhjFiMmmr/c0XDUkkyVV1t2qV71V7drtreyv9agomOXn++Yd0880XGB9UK4wY2jHc85w15BrG1b8Mt5WHcYUPDKqKiJTqsOzsbNlstuCGKAuzSIwZbVgzv1MsWx3mx5CD9rpX3LFjsn/2mWd910GDlBSCubcCUVTkuvzFxa6HdDp1clXbz5gRnvfdvr+HSAnqOOH8kyhahlJvq6w7YzUAAECEWrNmjTIzM5udW8UtPz9fmZmZWrNmTZgig5UUFkrHj18Y4N4ZkoaroqVxNsIsFJNJm82dRPJ1GgYrJpHcJk50DUeZ3soINOnpru2sOMrdU0/5PyVGhw61eu65rqEJqBXBf9hRHPZ5zupzDePqvo8Nl7RI0hZJ79Z9XVS3vjH3MK6IQO6qiIMHg3uVlUndu5t9Ni0qLS3VkiVLlJOTozIfK0HMFokxo41rptLUXR2G0CgocL2nGzHCVVmfny+VlLi+Ll7sWp+R4doulOw+v3EL7gmicP5JNGNGcPtbZSj1topkGAAAgIECHVKqINR/icBygk/+TLfUkCqhmkzabNGQRHJLS3MNR1lYKGVluT4EGTrU9TUry7U+L8+ayTwpsOTkP//ZzrTzCfbDkqFDt5s6RM7SpUsljZCUJ6lIUpZcifhhdV+z6tZvqduuqf0Rcex2V0LMiJe/2eswe/rXv1aywyGHw6Hs7Gyzw/FJdna2HBEWc32lpaUk8dqSVipNOzz3nM9DEsJ3a9a4RjZorZo+P9+1XSify+zbt6+PWwY3tnQ4/yRyj1YQCKsNpd4WMUwiEAaVlZVmhwCLaNgX6Bv+ifbrF0nnZ7VYzYqnqeNmZWUFNKTUHXfcofXr1/t8HKOEom2r9Q+rKizsqODejqfogguKdezYMaNCCsqxYwmSYgLe/+jR0zp2zJp9ZeBAae1aqbi4nZ57Lk4lJe10/LhNnTo5NXRorX7yE4dSUmolSaH87zDqZ6t/f+mPf2z6e2Z2J1/O75JLpNdea6f777dr27bmf35GjarR3LnVSk2tDdk5tRZv//7SyJEdtX27/z/nNttWLVgw1eef71D83t2wwS4pV60P5ZpRt90kSa961hYWFhr2+ynU9xWj2+c+aH1lZWXqtXKl5kiaJSknJ0d33HGHzj333JAfO9D+UVZWpiX1EgvhjNkojzzyiGw2mx5//PGA9o/2n61IO7/W4rU/8ojiWph/sH1trQ7df79ig5kU1MdYQilcx/blOEVF7TRpUoKqq20+tVldLU2a5NTLL3v/Pxl1H5wwYYLWrl3rwx7Fcr2fCMwFFzh07JifExcH4Y9/bKerrvL9OkuS3e7Uo49W6tix2hBGFhmqqqpMO7bN6XQ6TTs6EKGWLVumZU1M9FlZWen1ZP+CBQvUu3fvMEYGADDT7t27dc899wS8/xNPPKF+/foZGBGs7Oc/H6/9+zsH0cIOPfHEBsv0mfvvz9SuXYEPR3f++V8rO3uzgREh2u3Z01kbNvTR3r1JqqqKVXx8jfr2PabLL9+vfv2Omh2eJGn37i761a/GyuHwJ1FcpWnTntX3v2/eB9y7d3fRvfeOltPpT2VPlaRMSYWSpD59+ujPf/5zKMIDgvbSk08q5803JUn9JH0q6eqrr9att95qZlgteuaZZ/Taa695rbN6zPWVl5fr9ttvlyQ9/fTT6m7xYTQRHHt5uS6//XbF1NS0uN2pdu30xv/9n6rpD4YI9P34oEGHNHdubggiku6//37t2rWrla2Gy1VtHpgnnngz7O/9tm8/U/PmjfTpPV5c3Gnde+92jRz5ZRgis74DBw5o9uzZnuX33ntPQ4YMCcuxqQwDArBv3z5t2rTJ7DAAABazYcOGoPe3SmIDoWe3nw5y/xpL9Ze+fY8GlQzr29caFW6IHP36HVW/fjvMDqNF/fsf0b33bvf5wxKbrVrTpq3V975nbqVHTs5QPxNhkquCbIGki11L8a1VlIXWnj17tH79eu3du1fV1dWy2+3q27evJkyYYKnfnQi/8vJypW/apA51y+7qsHXr1un666+3ZJKmvLxc69evV09JTrmSd5K1Y25o9erVqqlLjKxevTpikngIzMDVq1tNhEmu6rBeK1fq45//PAxRRbfduzsH/F58166u2rOnc0gSSjNnztSvfvUrOVqoEpTekZQvqZVxyZswaNAhUx6CGjnySz366Gbl5Axt8boPGnRIM2eWqH//I+ELDs0iGQYE4LzzztO4ceMarW9YGQYAaFv27t1r6v6ILMEmj1JTrTX974QJ+7V2ra/zAjR2+eX7DYwGsA5fPyzp0+czzZr1sfr3N/dnO5gP01xDHA2X9I4f84QYa/fu3crJyWnyKfRdu3Zp7dq1GjRokGbOnKn+/fubECHM9tbKlcqpN0jSTEnZkj6tqbFsksadSJojVzJsVt36GgvHXJ87mecWSUk8qygvL5fNZouIa2YvL1fvZoZ/b8qATZtU+uMfUx0WpA0b+gS9fygeMurfv7/uvfdezZs3r5WE2Cz5NjzzN+LiTmvmzJJgQwxY//5HNHdubkSMVgAXhkn0walTp7R161a98847+uqrr/T111+rqqpKNpuNSYHhZefOnbrwwgs9y+5hEkeNGqWEhAQTI4NVVFZWatu2bZ5l+oZ/ov36RdL5WS1Ws+JpeNwHHnhAH3zwQcDtDRkyRHl5ea0ex8jzC0XbVusfVlVc3E7jxnUKeP9Nm4575qmyissvD2x+pFGjarR+/YkQRBRdov1nK9LOL5B4fZl3LlyxNOeuu+xaujQu4FikRZLu1KZNm5SSkhJEO9/w9fzWrl2rKVOm+DR3p91u1/Lly3XllVca3vcirS+3JWVlZXpr6FDdVuv987ZQro9h4+LiVFxcHNJ5uPztH2VlZRo+fLh6OBzaXbfOPbSjwhRzsO6++26v+c4kV7WIv3OHRfvPVkvnd/fddwc131ooNBev/e67Fdfg/7s1h266Kai5w8zsG+E6dmvHmTChY4vzqbam/pDlobgP7tq1S/fff7/X+oYGDPil9u+f51M1vd3u1PLlVbryytYrEGEtRUVFuvTSSz3LDJNoEQUFBcrOztZrr73W6M200+lsNRk2f/58rye8r7nmGl1xxRUhixfWlZCQoKSkJLPDgAXRN4IT7dcvks7ParGaFU9iYmJQ+3fu3NmnuEN5fqFo22r9wyouuUQaM0bautX/fdPTpUsuCTyRFip/+YuUmemajNtXdru0aFEsfSQA0f6zFWnn50u8l1ziejUWTPIpsFia8/77wR49Renp6bqk6RM1RFPnV1BQ4HMiTJKqq6s1ZcoU5ebmauDAga22b3S8MMfK7Gw9VNs48eypDnM4tGjRIi1cuDBsMbXWPxYtWiSHw6E5UqOhHSXJYULM/igtLdWKFSsaDfG4fPlyPfTQQ+rZs2fAbUf7z5b7/NzXUFLQ1yyUEhISlHT0qFQXqz8Sn39e7efOlQw6t1D0jaIiackSqbhYOn5c6tRJSkmRJk/2rugOV79seJyqquDaq6r6Jk0Qivvg+PHj9fbbb6uoqEhLly5VcXGxKioqlJiYqJSUFE2fPl2pqakqKJBmz5by85tvLz1dWrDAprS0jobFiPAxcyhtkmFNOH78uKZPn65//vOfklyJr0AkJCRo4cKFstlskqTt27eTDAMAIIoNHTq0xSfdWmPUE/SIHE89FVjyaMGC0MUUjLQ0adUqadIk387Jbndq1Sqb0tJCHxsA3xw/Htz+NluSFpjwS2rWrFn1EmHDJc2QlCKpk6TjkoolLZFrXhKX6upqzZ49W2vXrg1rrDBHaWmpeq1c6Uko1ddB3ySYcnJyNGfOHEskHEpLS7VkyRL1lKtHu3mSd3XLVoq5oezsbE8yr/4Qjw6HQ9nZ2ZZN4lnJ07/+tZIdDn0qWf+aZWdLLQ6F17T2tbU6/uCD6rRsmfExBamgQJo1q+kH2PLzpcWLO2nQoEzT54XqFORzcvHx4amwSk1NVWpqarPfT0uT8vJcycelS13Jx4oKKTHRlXycPl1qYXegRdaaaMAC9uzZo7S0NP3zn/+U0+n0VIA1fPliypQpOvPMMyW5Emrbtm1rctxyAAAQHW655Zag9p8+fbpBkSBSuJNHdrtv29vtru2tnDyaOFHKzXU9sdmSQYMO6bXXKjVxYnjiAuCbYD9MO//8c5UW5l9ShYWF2rp1q6QRkvIkFUnKkmsOs2F1X7Pq1m+p284lPz9fxcXFYY0X5nj617/WtCaqwtxmSjpX3yRprKB+Iql+Es+dvHOzUsz1NUzmua+xW05OjsrKyswJrhWlpaWWiM2dxHX/f1v5mtnKylylUwHq8NxzksXObc0a14NrrY3ksGtXV/3qV2O1fbvrc+CioiJlZWUpIyNDw4YNU0ZGhrKyslRUVBSyWIN9rrJv32OGxGGU1FRp0SJpyxZpxw7X10WLSIQhOCTD6jl69KgmTpyojz76yCsJ5k6KJSUlKTbW92K6Dh066MYbb/SqLHvllVdCEToAALCAlJQUjRkzJqB909PTW3xCDtHL1+RRerpru0hIHrmf6CwslLKypIwMaehQafToGl111V498cSbmjs3V6mp1przDEDwH6ZdemlXQ+Lwh2v6gmsk5Upq5ZepMuq2u8az5rnnngtZbLCGlqrC3OonmKyQcGiuKswtEhJLDZN5kZLEU2mpnn7wQUvE5k7iWjFZ21CH+fMDqgpzc1eHWUVBge+jHUiSwxGjuXNHKD19lkaMGKHFixcrPz9fJSUlys/P1+LFizVixAhlZGSooKDA8HhnNPWLwg+XX77fmEAACyMZVs/06dO1a9curyTY+eefr+eee05ff/21Dh8+rAsuuMCvNidNmiRJnmqyDRs2GB43AACwjqeeekp2X8t86tjtdlOGlIJ1NJc8yshwLRcWur5v5YqwpjR8onPduhP62c92qF+/o2aHBqAZwX6YZkaR8+bN1ZJWSfJ1Dor4uu1dFWIlJSWhCQyW0VpVmJuVEg7NVYW5WT2x1NIQj1ZP4lU8+KB6/u1vpsdWVlbmSeJaLVnbkL28XO0DmCusIStVh82a5d9Q5pJUU9Ne77//sxa3yc/PV2ZmptasWRNEdI2lprrmIw7EqFE1vD9Hm0AyrM727du1evVqTxJMkqZNm6Z3331XP/7xj3XGGWcE1G56erq6desmyTVUYl5eXsBzkAEAAOtLS0vTqlWrfE6I2e12rVq1KuxDSsGaGA4EgNmC/TDNjN9Xu3f/XL4nwtziJbkeRDke7ERpsDRfqsLcrJJwaK0qzM3KiaWIHeKxtFT2v/1NP62tVbLJsS37/e+9krhWStY25OjcWcc/+ECfvvOOzm3fXslSQK/zYmJU5m8GKgQKC1sfGrF5GXLNXdm86upqTZo0yfAKsaee8n34dTe7XZo71/xrDoQDybA6c+fO9fzbZrPpiiuu0NKlS/0aFrE5I0aM8CTAqqqq9MknnwTdJgAAsK6JEycqNzdX6a2Me5eenq7c3FxNjIRx7wAAbUYgH6bFxZ025cO0wkKpquqiAPd2fWDZKdiJ0mBpvlaFuVkh4dBaVZibVRNLkTzEY8WDD6p9ba3n2poVW3l5ub714ovNJhKtdM0kqTYuTs7u3fVoTo4+O3VKX0kBvT47dUrZTz5pwhl4W7o02BZaL5Ourq7W7Nmzgz2Ql0DnI2bocrQVJMMknT59WuvXr/dUhcXExGjRokWGtd9w/o9du3YZ1jYAALCmtLQ05b3wggpjY5Ul18dtQ202ZaSlKSsrS4WFhcrLy6MiDABgOf5+mBYXd1r33rvdlA/TjPjAcujQoUaE0qKioiJlZWUpIyNDw4YNU0ZGhrKyslRUVBTyY7dl/lSFuZmdcPC1KszNiomliB3isa4qzG2mZFp12FsrVzaZxLVCsrY5ZWVlWrJkSdDtWKEPFxcH20KKT1vl5+cbfh+IxvmIAaOQDJNriMSKigpJrqqwyy67TH379jWs/XPOOcdr+fPPPzesbQAAYGHZ2UqtqdEiSVsk7XA6tWX0aC1atKjRwzIAAFiJrx+mDRp0SI8+ulkjR34ZnsAaMOIDy5/85CcGRNK03bt36/LLL9eIESO0ePFi5efnq6SkRPn5+Vq8eLFGjBihjIwMw4fKgou/VWFuZiYcfK0Kc7NaYimSh3h0V4W5mVUdVl5ervRNm1pNJFrhmtXXvXt3lZWV6eDBg0G9ysrK1L17d1PPJfjRcxN93nJp8E91NBKt8xEDwSIZJmnfvn1ey+PGjTO0/S5dungtuxNvAAAgipWWSk09GZmTY5lJoQEAaElrH6Zt2nRcc+fmqn//I6bFGOwHlh07nqmUlBRDYmlo+/bt+tWvfqXt27e3uF1+fr4yMzO1Zs2akMTRVgVSFeZmVsLB36owNyslliJ2iMcGVWFuZlSHvbVypX5aN91KU6xaHWa325WcnGzIy9f5l0Ml+NFzff/stzj4pzqaxXzEgDeSYXI9cSHJM69Xz549DW0/Pt41ka/NZpMknThxwtD2AQCABWVnSw5H4/UOh+t7AABEiOY+TEtJMX+OkWA/sOzf/yxjAmlg9+7dmjdvnhwOh6ThkqdO/N26r4vq1rtUV1dr0qRJVIgZKLm6Wj8LYh74O+Li9FVxcVirVJKTk1VWVqaPpk3ze2jHj3/6U9MrayJ5iMeGVWFu4a4Oa6kqrGFMCmNcbU3wz0gU+7wlRRNA+JAMk1RZWem17E5eGeXw4cOSvkm2JSUlGdo+AACwmOaqwtyoDgMAwBDBfmA5dmzQj/83KScnRw7HUEl5kookzwyiw+q+ZtWt3yJphCRXQmz27Nkhiactsj/5pGxNPZjkI5vDoW45OWGtUrHb7Uqurlb8ypV+7xv/t78p+eRJUytrInaIx2aqwtzCWR3WWlVY/ZisWB0WLWb4U5rZJN+HPkxM9H1IRQDBIRkmqVu3bl7LR44cMbT9hnOENTweAACIMs1VhblRHQYAgCGC/cBy+nRj4qjvnXfe0a5d/SXlSmpl0jVl1G13jSTXkIlFRUXGB9XWtPZgkq/MeICptfeRzTH5/WUkD/HYXFWYW7iqw8rKylqtCmsYk8IQV1uUmiqNGRPo3nmS3vF561AN1QugMZJhcpWhS98MY7h3715D28/Ly/Na7tGjh6HtAwAAC/H1wxeqwwAACFowH1imp4dm3pQ//ektSask+TrqTHzd9q4KsaVLfa8oQDOSk13vsw4eDO5VViaFc7jBYJN4Jr6/jNghHlupCnMLR3XYst//3qeqsPoxRUp1WFFRkbKyspSRkaFhw4YpIyNDWVlZlk7+P/WU5H+BZZUk/yp8p4fiqQwATSIZJqlfv35eyw2TV8E4duyYNm/e7Em0tWvXTmlpaYa1DwAALMbXp3mpDgMAwBCBfGBpt0sLFoQmntdfv1a+J8Lc4iW5AiouLjY2oLbIbnclxIx4hXO4wUCrwtxMfH8ZqUM8tlYV5hbq6rDS0lJ968UX/U4kWr06rKCgQMOGTdGIEVu1ePHNys9/WiUlTys//2YtXrxVI0aMUEZGhiXnS0xLk1at8udXQJWkSZIKfT5Genq6UkPxVAaAJpEMkzR06FCdeeaZklzzeuXm5hp2A/nLX/7iNSfZRRddpM6dOxvSNgAAsBZbWZl/T/NSHQYAQND8/cDSbndtH4rnVAsLpcrKoQHunSFpuCoqKowMCZEikod2dIu0IR59rApzC2V12NO//rWm+ZCUayomq1aHzZ+fq1GjTqukZLlamjcxP9+hzMxMrVmzxsRomzZxopSb66okbkmfPp8pNvbbkl71uW273a4FoXoqA0CTSIbVmTBhgpx1pci1tbX63e9+F3SbH9z83sAAAG7hSURBVH74oR599FHZbDY5nU7ZbDZdc801QbcLAACsqcP8+f59AEB1GAAAhvD1A8v0dNd2EyeGJo7gRzicrsTERCNCCYlIHOosYkTq0I5uETjEo69VYW6hqg4rLS1Vr5Ur/aoKaxiTQhBXMObP/1h33ZUmp3N0K1u65k2srr5MkyZNsmyFWF6e62GHrCwpI0MaOtT1NStL2rTpuP785+26//7LFBcX51Obdrtdq1atYvQwIMxizQ7AKn7+85/rb3/7mydx9de//lWXX365fvSjHwXU3r59+/T9739fx48f9wyRaLfbdeeddxoZNgAAsAh7ebnar1jh/445OdKcOVLPnsYHFYDi4mI9//zzKi4u1vHjx9WpUyelpKRoxowZDOEBALA09weWRUWupFRxsVRRISUmSikp0vTpoZkjrL7gRzhMUUrK+wZEYqyCggLNmjVLW7dubfS9/Px8LV68WOnp6VqwYAEf7gbKbg/vkIxGM2qIx4ULjYupJX5WhbnNlJRdV4W10KBYk6urdWtMjBRAZZg7pj+1b6+Xt20L73xrzSgokO6+u7fkc3rPNW9idXWmZs+ebej0NUZKTW36HnLsWK02bpRGjhypRx99VC+++KK2bdvWbDv8rgTMQ2VYnREjRui6667zVHA5nU795Cc/0Z/+9CdPxZgvTp8+rWXLliktLU27d+/2qgqbMWOGkpOTQ3gWAADALANXr5YtkoaFaWD37t26//77NW7cOC1evFj5+fkqKSnxfMBl5fH8AQCoLzVVWrRI2rJF2rHD9XXRotAnwiTp+PFgW0jU9OnTjQjFMGvWrFFmZmaTibD68vPzLTvUGUIsAod49LcqzC0U1WH2J59Uu1OnAt6/g6S7Tp1STk5OWOdba85Pf3pcTqe/dW6ueRPz8/MjutK0f//+Wr9+vQoLCz1VtEOHDvVU0RYWFiovL49EGGASKsPqmT9/vrZs2aLy8nLZbDbV1NTo3nvv1TPPPKNp06YpIyNDjgYfcn388cf6+uuvtX//fr311ltas2aNysrKPAkwSbLZbBo4cKD+3//7f2acFgAACDF7ebl6r18feAMmV4dt375d8+bNa/Q+pyH3h1yrVq3SxFCNLwUAQATr1Cm4/RMTZalK7IKCAk2aNEnV1dWShkuaISlFUidJxyUVS1oi6R1JUnV1tSZNmqTc3Fw+7G1L3EM8GiEcw4QGWBXmZmh1WGmpnEuWyBZcK5opafD//Z/K5sxRTxNHnCgslEpKAv1F6Jo3cenSpZb6PRiI1NTUiD8HIBqRDKund+/e+te//qVvf/vbOnnypKeq6+OPP9avf/1rz3buSjGn06nzzz/fqw3399yJMKfTqU6dOumll15Sp2DfFQMAAEsauHq1YmpqAm8g3MPC1FNUVORTIsyND7kAAGheSoqUnx/4/ldccZZhsRhh1qxZqq4eIukpSU1NyJYhKUtSnqTZkgpVXV1t6aHOEAIRNsRjxYMPKjHAIQmlb6rD7s7J0Zxgk0/JyTq5e7eOHz+u48eP6+233/Z8K6HzpVr933P03ocdVHminRI61urC80/qxz84oosuqG7U1NudOinR5GESjZg3sbj470aEAgCNMExiA2PGjNF///tf9ejRw1Pd5U6KuV/11V9ff3v398455xxt3LhRF1xwgRmnAwAAQizoqjA3EyYNl6T77rvP50SYm/tDLgAA4G3GjOD2f+CBHsYEYoDCwkJt3dpNUq6aToTVl1G33TWSFPFDnSGKlZaq0/PPB93MHXFx+syIObrsdtl79VL3wYPVddAg2Xv1UtnJofrtwpv03VuG6Nnnz9D24o56/yO7thd31LPPn6HLf9BXl03upX2Vg9V98Dev5F69TB8m0Yh5EysqKgyIBAAaozKsCePHj1dxcbGmTZumtWvXSvqm0ssX7oTZhAkTtGzZMp199tkhiRMAAJjP0bmz1tU9Ajl27FglBjO0SziGhamnsLBQ27dvD2hf94dcDP8BAMA3UlOlkSNrtH27/x+3pKeHZ14zX/3xj+slrZJrLh9fxNdtnympMCqGOkMUSk6WzYAH0GySuiUmGl4Rt337mZo3b6QcjpgWt9uxo5NGjTqpJ544oF/+coChMQTDiHkTg/p7CgBaQDKsGWeeeab++9//avv27Zo7d65effVVnTx5stX9YmNjNX78eD344IO65JJLwhApIkFlZaXZIcAiGvYF+oZ/ov36RdL5WS1Ws+KprKxUbVycHHFxkqTj8fFydvB3suh6HA7Xq4njtLQcqMWLFwe9/xNPPNFovdX6B6yDvhGcaL9+kXZ+VorXzPtgOI4b6uMY3f4jjzj0/e+f0eqH2fXZ7U49+miljh0LfOg2o61de418T4S5xUtaIOliFRYW6tixY8YHFuGs9Lsj0hh27YJ5v15fM+/dA5WX5/ApEebmdHbQXXf1VHX1et1xx2jD4vBVU/8f8fEdFdzHzRW64IIL/P7dYebPVTTcC41um99zaElVVZVpx7Y5G477hyadPHlSb7/9trZs2aKysjJ9/fXXOnz4sOLj49W9e3edeeaZGj16tC699FKeYGgDli1bpmXLljVaX1lZqYKCAs/yggUL1Lt37zBGBgCA7+6//37t2rUr4P3PP/98ZWdnGxgRAADRwdfqDkmKizute+/drpEjvwxDZL7Zvbuz7rlnfBAtpKpPn0P685//bFRIhtmzp7NeeqmL3n8/TidOxMhmO674+F0aPDhPP/jBt9SvXz+zQ0Qbdf/9mdq1q2sAe+br8cfz1L9/f8Nj8tfTTw/T2rV9g2hhkZ544iQ/h0AUO3DggNe0C++9956GDBkSlmNTGeajDh066JJLLqHaC5Kkffv2adOmTWaHAQBAUKqrG0+87Q8zn+gCAMDKRo78Uo8+ulk5OUNb/HB70KBDmjmzRP37HwlfcD7YsKFPkC1MV3z8QkNiMcru3V301FMDtH//OY2+d/LkCOXn36T8/Dz16fMnzZqVbonEAsJvz549Wr9+vfbu3avq6mrZ7Xb17dtXEyZMCGmCZvfuzgEmwiQpXY8//gc9/bT5fXbChP1BJcP69Hld/fpNMTAiAPgGyTAgAOedd57GjRvXaH3DyjAAAKws2Am24+P9HToJAIC2o3//I5o7N1d79nTWhg19tHdvkqqqYhUfX6O+fY/p8sv3q1+/o2aH2aS9ezsH2UKK+vYNpjrEWNu3n6m5c0eopqZ9K1tmaP/+4Zoz5ybdf/9hjRw5MizxwXy7d+9WTk5Ok6Mm7Nq1S2vXrtWgQYM0c+bMkCRKg01Af/HF1dqzZ4/pFVX9+h3VoEGHAkrs2Wz5mjXr4hBEBQAuDJMIGGjnzp268MILPcvuYRJHjRqlhIQEEyODVVRWVmrbtm2eZfqGf6L9+kXS+VktVrPiCddxQ3Wcu+66S0uXLg14/xkzZjQ7Z5iV+gesg74RnGi/fpF2flaKl/ugtdq3Ut8IVEZGgnbu9H3Os8Z2aNOmI0pJSTEqpIAVFbXTFVfE+zWHm1SluLjL9b///T+lpqYaGk809A9/FBe304oVcSopaafKSpsSEpwaOrRWt9ziUEqKf3PkherarV27VlOmTFF19WBJMySlSOok6bikYklLJL0jyfUw2fLly3XllVcGfdz6JkzoqG3bgqlZ2KJrr31cy5cvNyym1jT3/1FU1E5XXZWg6mqbH61V6dFHNwc895mZP1fRcC/kPohwKioq0qWXXupZZphEIMokJCQoKSnJ7DBgQfSN4ET79Yuk87NarGbFE67jGnWcrKysoJJht99+u09xWK1/wDroG8GJ9usXaednpXi5D1qrfSv1DV8FG25ioiwzzcQDD0gOh797xcvhmKdf/eoe5eXlhSIsj0jsH74oKJBmzZK2bm38vW3bpKVL4zRs2HEtXdpJaWmBHcOIa1dQUKCf/OTPcjjekJTexBYZkrIk5UmarerqQk2ZMkW5ublKCzTwJgQ/+niitm7dampfcv9/jB8vrVolTZok+TIqu812Uk88UaZf/nKC4bGYIRruhdwHEUpmjjDTzrQjAwAAwFSpqakBD/+Tnp5u+JPSAADAGoIt6LriirMMiSNYhYVNJ2N8k6H8/GoVFRUZGVKbsGaNlJnZ+rXfsaOTRo06qfnzPw5PYE24+ebn5XBsUNOJsPoyJOVKukbV1dWaPXu2oXF06hRsCxU6duyYEaEYYuJEKTdXSm/lsg4bdlzbtnXQL385IDyBAWjTSIYZoKamRs8884y+853v6KyzzlJ8fLx69+6t7373u3rxxRfNDg8AAKBZjz32mOLi4vzax263a8GCBSGKCAAAmG3GjOD2f+CBHsYEEqQgCuDrTA+qir4tKijwvSJIkpzODrrrrp6aPz83tIE14bnnPtCuXb+X5GuVQrykVZJGKD8/39BEafAjihYHH4TB0tKkvDxXUjorS8rIkIYOdX3NynKtf/fdwCsDAcBfDJNYp6KiQn/84x89yzabTb/5zW9anVi+tLRU11xzjXbu3ClJck/BVlZWpk8//VT//e9/tXjxYv3jH//QWWdZ48koAAAAt9TUVN17772aN2+eHD6MIWS327Vq1SpDh4UBAADWkpoqjRkTWFVVerprfysoLg62hRQVF//dgEiCU1QkLVniOp/jx11VRCkprqSlVa6126xZvifCvhGvu+9ur8zMgrC+x7z33g7yPRHmFi9pgaSLtXTpUsNGSpgxQ1q8OJgWllp2GLrUVOv1UwBtE5Vhdf7zn/8oOztbc+fO1dy5c5WXl9dqIuzEiROaMGGC3nvvPTmdTjmdTtlsNs/Lve6tt97SlVdeqYqKijCdDQAAgO9GjhypRx99VIMGDWpxu/T0dOXm5mrixIlhigwAAJjlqaekVj4WacRul6xUPH78eLAtJJr6WU5BgSu5OGKEK1GSny+VlLi+Ll7sWp+R4drOCoIZltLpHKOf/nShsQG1oLBQ+vLLbwW4d4ak4SoOPtvqkZoqnXHGhwHunSfpHWVmZhoWDwBEI5JhdV555RVJ31R2/exnP2t1n4cfflgfffRRkwmw+okxp9OpkpIS/eIXvwjlKQAAAASsf//+mjt3rjZt2qSsrCxlZGRo6NChysjIUFZWlgoLC5WXl0dFGAAAbURamrRqle8JMbvdtb2V3ioYMQ9TYmKiEaH4zdd5t/LzXdutWROeuFoS7IiSJSUjwzZHmxFDaBqdKM3OPiGpys+9qiS55i+bM2eOofEAQLQhGVZny5YtstlskqSYmBhdddVVLW7/9ddf6y9/+YtnH8mVSEtJSdHkyZM1btw4z/fcCbHly5drx44doTsJAACAIKWkpGjRokXasmWLduzYoS1btmjRokWGDQEDAAAix8SJUm6uqzqpJenpru2sVjxuxDxMKcE34jd/592qrnZtb3aFmBHDUoZrjjYjYjU6UTp5cn8lJ98h3xNiVZImSSrU0KFDeb8OAK0gGSbps88+02effSbJlbhKS0tT586dW9zn+eef14kTJyS5kmAxMTFauXKlioqK9Pe//10bN27Utm3blJyc7NnH6XRqyZIloTsRAAAAAAAAA6WlSXl5rmHlsrJcw/INHer6mpXlWp+XZ62KMLcZM4JtYammT59uRCh+CWTerepqafbs0MTjKyOGpTRy6MGWGBFrKBKl998/RDExl8o19GFL8iRlSnpVcXFx+utf/2p4LAAQbUiGSdqzZ4/X8rBhw1rd54UXXpAkz3CIt956q2688UavbVJTU7VkyRLPNk6nU6tWrTIucAAAAAAAgDBITZUWLZK2bJF27HB9XbTItd6qUlOlMWMC3TtP6en2sFfbBDPvVn6+FKZRBptkxLCU4ZqjzYhYQ5Eo7d+/v+bMuVyxseMkpUpaJGmLpB11XxfVrb9YUqE6dOigl156iaHMAcAHJMMk7d+/X9I384Wdf/75LW5fWVmprVu3eg2R2Nx8YBMnTvRq7+DBgzpw4ECQEQMAAAAAAKA1Tz0ldehQ6+deVYqLu1cLFiwISUwtCXaUwDCNMtgkI4alDNccbcHGeuaZX4QsUTpy5EhlZ2dr1Kj2ku6UNFbSRXVf75T0jiQpPT1dmzdv1kSrjU8KABZFMkzS4cOHvZbPOOOMFrfPy8tTTU2NZ3no0KHq379/s9tPmDDBk2iTxLxhAAAAAAAAYZCWJv3zn+0UF3faxz2q1L79j/XSSw+YUm0T7CiBmzcHPf5fwIwYljJcc7QFG+vjjw82JpBm9O/fX+vXr1dhYaGysrKUkZGhoUOHKiMjQ1lZWSosLFReXh4VYQDgh1izA7AC99xfbq09hbK1rl7dPfzh1Vdf3eL2gwd73yA///zzAKIEAAAAAACAvyZOlLZsidFPf3pcJSUtjY+Xp6FDl+ivf/2VaUmGYOey2r37C0nNP7AdSqmp0tChrV3j5uRJekfTpy8xOqwmuYfQDGRIyvPPP6Sbb77A+KCakJqaGvahOgEgWlEZJun0ae+ng06dOtXi9m+//bbXcmZmZovbd+3aVZI8wyoeO3bM3xABAAAAAAAQoLQ0aceOTioslCZNKtdZZ+1Rx4671bHjOzrrrJc0aVK2Cgvt2rHjr6ZW2wQ7l9WJE1+qyMSJw/76106y2U76uVeVpNlKT08Pa+Lnqacku92/fTp0qNVzz3UNTUAAgJCiMkyNK8GOHDnS7LZOp1N5eXmy2WyeyrCMjIwW24+JifFaPnnS3zcFAAAAAAAACFZqqvTii8mSkuutHW5WOI2kpEj5+cG0UKylS983rZooLU164okDuuuunpLifdijStIk2e07tWBBboij85aWJq1aJU2aJFVXt7693S6tWtVOjEwIAJGJyjB9M0eYu3Lro48+anbb7du3eyXLBg0apM6dO7fYvnt797xhHTt2DCJaAAAAAAAARCMj5t0qDnbisSD98pcD9Kc/Fchma20MwjxJmbLbX9eqVatMqcibOFHKzZXS01veLj3dtd3EieGJCwBgPCrD5D2nl9Pp1JtvvtnstqtXr/b822azaezYsa22//XXX3stJyUl+R8kAAAAAAAAolpqqhQf/66qqi4KYG/XvFsVFUONDstvv/xlpjIzC/TTn05VSclISSmSEiVVSCqWtFTSO0pPT9eCBbmmDk2Zlibl5UlFRdLSpVJxsVRRISUmuir1pk93/b8AACIbyTBJQ4YMUfv27VVTUyNJKi4u1tatWzVmzBiv7aqqqrRs2TKvIRIvvfTSVtt///33vZb79OljXPAAAAAAAACIGv37/1klJYvk2zCDbq55t6TG04GYJS0tTTt2LFNRUZGWLnVVrFVUVCgxMVEpKemaPn2JacM5NiU1laQXAEQzkmGS7Ha7rrjiCq1Zs8aT6PrJT36idevWqW/fvpKk2tpa3XHHHTp48KBnOEW73a5rrrmm1fbfeecdT7uS1K9fv9CdDAAAAAAAACLW2LF2lZRMkrRK/sy7JRVKklJSUkIWWyBSU1MtlfQCALRNzBlWZ9q0aZ5/22w27dmzR4MHD9aVV16pH//4xxo4cKCWL1/uVRV2ww03tPq0TXl5uXbu3OlZTkpK0nnnnReq0wAAAAAAAEAEmzFjhqRXJWXKNfRhS/LqtnvVs2b69Okhiw0AgEhFZVid6667TpmZmcrNzfVUfjkcDq1fv16SPFVd7u/FxsbqN7/5TavtvvLKK6qtrZXNZpPNZtPo0aNDdAYAAAAAAACIdKmpqRozZoy2bt0q6WJJwyVNV3PzbtWXnp5OFRYAAE2gMqyev/3tb+rZs6en8sud+Gq4LEl//OMfNWDAgFbbfPHFFz1tSNIll1wSgsgBAAAAAAAQLZ566inZ7fa6pXck3SlprKSL6r7eqYaJMLvdrgULFoQzTAAAIgbJsHp69eql3NxcjR8/Xk6n0/OS5Pm33W7X/Pnzddddd7Xa3gcffKANGzZ4JdGuvvrqkMUPAAAAAACAyJeWlqZVq1bVS4i1zG63a9WqVUpLSwtxZAAARCaGSWygT58+euONN7Rlyxa98sor+uSTT1RRUaFu3bpp9OjR+tGPfqSzzjrLp7aWLl2qzp07e5bPOussy01iCgAAAAAAAOuZOHGicnNzNXv2bOXn5ze7XXp6uhYsWEAiDACAFpAMa8bFF1+siy++OKg2Hn/8cT3++OMGRYRIVllZaXYIsIiGfYG+4Z9ov36RdH5Wi9WseMJ13FAeJxRtW61/wDroG8GJ9usXaednpXi5D1qrfSv1DViPv/1j4MCBWrt2rYqLi/Xcc8+ppKREx48fV6dOnTR06FD95Cc/8Tx4fezYsVCFbQnR/rMVaednpXjNjCUa7oXcBxFOVVVVph3b5nSPAwjAZ8uWLdOyZcsara+srFRBQYFnecGCBerdu3cYIwMAAAAAAAAAwHoOHDig2bNne5bfe+89DRkyJCzHpjIMCMC+ffu0adMms8MAAAAAAAAAAACtIBkGBOC8887TuHHjGq1vWBkGAAAAAAAAAADMRTIMCMDUqVM1derURut37typCy+8sNH6UaNGKSEhIQyRweoqKyu1bds2zzJ9wz/Rfv0i6fysFqtZ8YTruKE8Tijatlr/gHXQN4IT7dcv0s7PSvFyH7RW+1bqG7Ae+kfgov3aRdr5WSleM2OJhnsh90GEU1FRkWnHJhkGhEFCQoKSkpLMDgMWRN8ITrRfv0g6P6vFalY84TpuKI8Tirat1j9gHfSN4ET79Yu087NSvNwHrdW+lfoGrIf+Ebhov3aRdn5WitfMWKLhXsh9EKEUHx9v2rHbmXZkAAAAAAAAAAAAIMSoDGvFhx9+qM2bN2vr1q06cOCAjhw5oqNHj+rUqVMBtWez2bRnzx6DowQAAAAAAAAAAEBTSIY1Y/Xq1frTn/6k/Px8r/VOpzOodm02W1D7AwAAAAAAAAAAwHckwxo4fvy4Zs6cqRdffFFS08mvQBNawSbSAAAAAAAAAAAA4B+SYfU4HA5dfvnl2r59u5xOp2w2m2w2m1cSq34irLn19ZEAAwAAAAAAAAAAMA/JsHruvPNObdu2rVESLDU1VQMGDNC6det05MgRT6JsypQpqqqq0qFDh/TJJ5/ok08+kfRNYszpdKpz5876/ve/z/CIAAAAAAAAAAAAJiAZVufDDz/U0qVLPUkwm82m4cOHa8WKFRoyZIgkafjw4Tpy5Ihnn2effdarjYMHD+qFF17QwoUL9fHHH8tms+nYsWP67LPPtGrVKnXu3DmcpwQAAAAAAAAAANDmkQyrM2/ePE8STJIGDBigN954w68EVo8ePTRr1izdfvvtevjhh5WdnS2n06nXX39d48aN01tvvaWkpKRQnYIhSktLtXPnTpWVlenIkSNyOBw644wzdMYZZ+j888/X0KFDFRMTE9IYdu/ereLiYpWWlqqyslLx8fE655xzNGzYME9iEgAAAAAAAAAAwBckw+qsWbPGqyrsySefDLiSKzY2Vn/4wx/Ur18/zZgxQ5JUUlKiW265Rf/6178MjDp4H374of73v//pjTfe0FtvveVV+daUhIQEjR8/XrfddpuuvvpqtWvXzpA4qqqqtHjxYj399NP6+OOPm92uZ8+emj59un7xi1+oS5cuhhwbAAAAAAAAAABEL2MyGRHuo48+Unl5uWe5d+/euvLKK4Nud9q0abrzzjvldDrldDr1n//8R6+++mrQ7QarqqpKv//97zV06FANHjxYv/jFL/Tvf/+71USYJFVWVurVV1/Vd7/7XQ0bNkwFBQVBx7NlyxYNHjxYd999d4uJMEkqKyvT7373Ow0cOFD//ve/gz42AAAAAAAAAACIbiTD5KracrPZbPrOd77j035Op7PVbR555BF16tTJM/zi/PnzAwvSQF9++aUeeughvffee0G1s3PnTqWnp2vhwoUBt7F69Wpdeuml2r9/v1/7lZeX69prr9Vf/vKXgI8NAAAAAAAAAACiH8MkSjp06JAkeYZIbG5eKndCy62qqkodO3Zsse3OnTvrqquu0qpVqyRJmzZt0pEjRyw7xF///v01btw4DRgwQD169FBCQoIOHTqk4uJi/fe//1VpaanX9jU1NZo1a5bi4uJ06623+nWsvLw8TZ48WadOnfJa365dO02cOFFjx45Vr169VF5ernfffVf/+Mc/dOLECc92TqdTd955p84++2xdd911gZ80AAAAAAAAAACIWiTD9E0yzK179+5NbtehQwevajBfkmGSlJ6e7kmG1dbWavv27ZowYUIQERvrggsu0NSpU3XTTTfp3HPPbXa7mpoaPfvss7rrrrt0/Phxr+/NmjVL48eP18CBA306ZmVlpW688cZGibBBgwbp5Zdf1uDBgxvt89hjj2natGlewyM6nU5NmzZN6enpOuuss3w6NgAAAAAAAAAAaDsYJrEJ8fHxTa5PSkryWv788899aq9hkmbPnj2BBWawSy+9VJs2bdLOnTt17733tpgIk6TY2FjNnDlTW7ZsaVTZ5nA4dPfdd/t87EcffVQHDhzwWte/f3/l5eU1mQiTpK5du2r16tW64YYbvNYfPXpUc+bM8fnYAAAAAAAAAACg7SAZpsZJroZVT81t13DIwOa4q8ncwyweOXLEzwiN1blzZ7355pt64403dMkll/i9/7Bhw7RkyZJG61977TV99dVXre5/5MiRRvOMtWvXTs8++6y6du3a4r4xMTF65plndOaZZ3qt/9vf/qZPPvnEh+gBAAAAAAAAAEBbQjJMjSu3jh071uR2/fr181ouKCjwqf19+/ZJ+iYp1q6duZf9jDPO0Lhx44Jq44YbbtCwYcO81p0+fVqvvfZaq/uuXLmy0TW+5pprNHbsWJ+O3a1bN917772Njp2Tk+PT/gAAAAAAAAAAoO0gGSbp/PPPl/RN5VZzwxi6kz/u7TZs2OBT+//73/+8lrt16xZQnFZz1VVXNVrnS3XW888/32jdbbfd5texp0yZog4dOnit+8c//uFXGwAAAAAAAAAAIPqRDJNrrqr6iZUPPvigye3GjBnj+bfT6dTmzZv1zjvvtNj2pk2b9NZbb3kSaJI0aNCgICO2ht69ezda98UXX7S4z9GjR5Wfn++1LjExUVdccYVfx+7evbvGjx/vtW7//v3N/t8BAAAAAAAAAIC2iWSYpPbt22v06NFyOp1yOp3avn17k9t961vf0siRIyW5qsOcTqcmT57c7NxhJSUluvHGG70SYfHx8Ro9erTxJ2GCEydONFoXHx/f4j75+fk6ffq017oxY8YoJibG7+NnZmY2Wpebm+t3OwAAAAAAAAAAIHqRDKtz6aWXev59+PDhZucDmzFjhmfuL5vNpo8//lhDhw7V7NmztWrVKr3++ut64YUXNH36dI0cOdJTKeV0OmWz2XTLLbeoffv2oT+hMNi9e3ejdWeffXaL+xQWFjZal56eHtDxMzIyfGofAAAAAAAAAAC0XSTD6lx77bWSvpkP7F//+leT282YMUMpKSle644dO6ZFixZp8uTJ+s53vqObbrpJy5Ytk8Ph8KoKS0pK0gMPPBCK8MOupqZGr7zySqP17sq55nz44YeN1vXv3z+gGPr169do3a5duwJqCwAAAAAAAAAARCeSYXUuuugiDRgwwDNU4rPPPqva2tpG29lsNq1cuVLdu3f3LLuHTGz4cifCnE6nYmJitGzZMvXq1Sus5xUq//73vxvND9a1a1eNHTu2xf327dvXaF2fPn0CiuHcc89tNLziJ598ElBbAAAAAAAAAAAgOsWaHYCVNEzwOBwO2e32RtsNHjxYr7/+un74wx96Kp3qV4DV53Q61aVLF61cuVJXXXVVaAIPs+rq6iYr3KZNm6bY2Ja7VMMEmqSAE4QxMTE6++yzVVZW5ln35ZdfBtRWUw4ePKjy8nK/9mlq6EhJqqysNCIkRIGGfYG+4Z9ov36RdH5Wi9WseMJ13FAeJxRtW61/wDroG8GJ9usXaednpXi5D1qrfSv1DVgP/SNw0X7tIu38rBSvmbFEw72Q+yDCqaqqyrRj25zuCbDgt5qaGj3zzDN6/vnnlZ+f36iSbODAgfrhD3+oX/7ylzrjjDNMitJ4v/zlL/Xkk096rTvjjDO0a9cuJScnt7hvt27ddOjQIa91Bw8ebHW/5gwePLjR0IsVFRXq1KlTQO3V9/DDD+t3v/tdUG0sWLBAvXv3DjoWAAAAAAAAAAAi2YEDBzR79mzP8nvvvachQ4aE5dhUhgUhNjZWd9xxh+644w5VVlbqs88+01dffaWEhASdffbZASd4rOyll15qlAiTpMcff9yn823qSYD4+PiA42lq3xMnThiSDAMAAAAAAAAAAJGPZJhBEhISNGDAAA0YMMDsUEKmsLBQt9xyS6P1N9xwg37605/61MapU6carWtqKEpfNZUMczgcAbcHAAAAAAAAAACiC8kw+OSTTz7RxIkTdeLECa/1559/vp599tmg2m5uvrVA9zVq5M+srCxNmjTJr312796ta6+9ttH6UaNGKSEhwZC4ENkqKyu1bds2zzJ9wz/Rfv0i6fysFqtZ8YTruKE8Tijatlr/gHXQN4IT7dcv0s7PSvFyH7RW+1bqG7Ae+kfgov3aRdr5WSleM2OJhnsh90GEU1FRkWnHJhmGVn366ae6/PLL9cUXX3it79Wrl9auXavExESf22rfvr1Onjzpta6qqirgYQ2bmnAvLi4uoLYa6tGjh3r06GFIWwkJCUpKSjKkLUQX+kZwov36RdL5WS1Ws+IJ13FDeZxQtG21/gHroG8EJ9qvX6Sdn5Xi5T5orfat1DdgPfSPwEX7tYu087NSvGbGEg33Qu6DCKVgpkwKVjvTjoyIcPDgQV1++eXau3ev1/qzzjpLGzZsUJ8+ffxqr2PHjo3WNZXQ8lVT+/KkAQAAAAAAAAAAcCMZhmZ9/fXXuuyyy/Thhx96re/evbs2bNiggQMH+t1mt27dGq07fvx4wDE23DcuLi7gKjMAAAAAAAAAABB9SIahSYcPH9aECRP03nvvea3v2rWrNmzYoCFDhgTU7plnntloXVlZWUBtnT59Wp9//nmr7QMAAAAAAAAAgLaLOcNa4XA4tGPHDu3atUtHjx7V0aNHderUqaDafOihhwyKLjSOHj2qCRMm6J133vFa36VLF61bt04XXXRRwG337dtXW7Zs8Vq3f/9+ZWZm+t3WZ599ppqamkbtAwAAAAAAAAAAuJEMa0Jtba3++c9/asmSJdq0aVOjhEuwrJwMO3bsmL7zne+osLDQa31SUpL+97//acSIEUG1P2jQoEbrdu/eHVBbe/bsabTu/PPPD6gtAAAAAAAAAAAQnUiGNbBjxw5NmzZNxcXFkiSn02lo+zabzdD2jFRRUaErrrhC27Zt81qfmJio//3vfxo1alTQx2gqmZafnx9QW3l5eY3WpaamBtQWAAAAAAAAAACITiTD6nn77bc1YcIEVVZWepJgRiavjE6sGen48eO68sortXXrVq/1nTp10muvvaYxY8YYcpz09HTFxMTo9OnTnnX5+fk6ffq0YmJi/Gpr8+bNjdZdcsklQccIAAAAAAAAAACiRzuzA7CKQ4cOaeLEiTp+/LgkVxLMZrPJ6XQa9rKqyspKXX311Y0qrRISEvTf//5XF198sWHH6tKlS6PEWkVFhdatW+dXO4cOHdLGjRu91vXu3VuDBw8OOkYAAAAAAAAAABA9SIbV+cMf/qCvv/7aqxLM6XRq1KhRWrBggbZu3ary8nI5HA7V1tYG/KpfEWUFJ06c0MSJE5Wbm+u1vmPHjnr11VeVmZlp+DEnT57caN0zzzzjVxvLly9XdXW117obb7wxqLgAAAAAAAAAAED0IRkmqba2VsuWLfMkwpxOpzp06KCVK1dq69atuvPOOzVq1Ch169ZNsbHRM7JkdXW1vv/97+vNN9/0Wh8fH681a9Zo3LhxITnuzTffrMTERK91//nPf5qcA6wphw4d0rx587zWxcTEaObMmYbFCAAAAAAAAAAAogPJMEnbtm3TkSNHJLkSYTabTStWrIjqSiOHw6Hrr79eGzZs8FofHx+v//znP7r00ktDduwuXbrojjvu8FpXW1uradOm6fDhwy3uW1tbq9tuu02ff/651/qbbrpJ/fr1MzxWAAAAAAAAAAAQ2UiGSfroo488/7bZbBo9erR+8IMfmBhRaNXU1OiHP/yhXnvtNa/1drtd//rXv3TZZZeFPIZf//rX6tmzp9e6jz76SBkZGfrwww+b3Ofw4cO6/vrrtWrVKq/1SUlJys7ODlmsAAAAAAAAAAAgckXPmH9BKC8vl/RNVdjEiRNNjii0XnjhBb3yyiuN1tvtdt1333267777Am47LS1NS5YsaXW7Tp066e9//7u+/e1vq6amxrP+ww8/1JAhQ/Td735XmZmZOvfcc/XVV1/p3Xff1T/+8Q9VVlY2amvp0qU655xzAo4ZAAAAAAAAAABEL5Jhkk6dOuW1fN5555kTSJg0PF+3I0eOeIaLDFSXLl183jYzM1N///vfddNNN3klxGpra/XKK680mbCrz2az6cknn4zqKj4AAAAAAAAAABAchkmU1L17d6/ldu24LOEyadIkvf766+rVq5df+3Xr1k0vvfSSZs+eHaLIAAAAAAAAAABANCDrI+mCCy6Q5Ko0kqSDBw+aGU6bc8kll+jDDz/UvHnz1L9//xa3Pffcc/Wb3/xGH3/8sa677rowRQgAAAAAAAAAACIVwyRKGjVqlDp37qxjx45JkvLy8qK64mjq1KmaOnWq2WF46dixo+655x7dc889+uijj1RcXKzS0lKdOHFCdrtd55xzjoYNG6ahQ4eaHSoAAAAAAAAAAIggJMMkxcbGasqUKVqwYIEkad26dTp27JiSkpJMjqxtGjhwoAYOHGh2GAAAAAAAAAAAIAowTGKdBx54QF26dJHNZtPRo0f1//7f/zM7JAAAAAAAAAAAAASJZFidM888Uzk5OZ7lJ554Qn//+99NjAgAAAAAAAAAAADBIhlWzw033KBFixbJZrOptrZWt9xyi+677z4dP37c7NAAAAAAAAAAAAAQgKieM+zAgQN+73P11Vdr4cKFuuuuu1RdXa0nnnhCOTk5+uEPf6hx48ZpwIAB6tq1q9q3bx9wXL179w54XwAAAAAAAAAAAPguqpNh5513nmw2W8D722w2OZ1OHT16VEuWLNGSJUuCjslms6mmpibodhBZKisrzQ4BFtGwL9A3/BPt1y+Szs9qsZoVT7iOG8rjhKJtq/UPWAd9IzjRfv0i7fysFC/3QWu1b6W+AeuhfwQu2q9dpJ2fleI1M5ZouBdyH0Q4VVVVmXZsm9PpdJp29BBr1y64USDrJ9KMukw2m02nT582pC2YZ9myZVq2bFmj9ZWVlSooKPAsL1iwgEpAAAAAAAAAAECbd+DAAc2ePduz/N5772nIkCFhOXZUV4ZJCqoyzOh2ojjv2Obs27dPmzZtMjsMAAAAAAAAAADQiqhPhpGAQiicd955GjduXKP1DSvDAACINPbycslmU3X37maHAgAAAAAAYIioToY9++yzZoeAKDV16lRNnTq10fqdO3fqwgsvbLR+1KhRSkhICENksLrKykpt27bNs0zf8E+0X79IOj+rxWpWPOE6biiP07DtsZs3q31cnKoff9ywNs3uH7AO+kZwov36Rdr5WSle7oPWat9KfQPWQ/8IXLRfu0g7PyvFa2Ys0XAv5D6IcCoqKjLt2FGdDJsyZYrZIQCSpISEBCUlJZkdBiyIvhGcaL9+kXR+VovVrHjCddxQHcdeXq6O//iHbJLiHnpI6tnTkHat1j9gHfSN4ET79Yu087NSvNwHrdW+lfoGrIf+Ebhov3aRdn5WitfMWKLhXsh9EKEUHx9v2rHbmXZkAAAAWMrA1atlczgkh0PKzjY7HAAAAAAAAEOQDAMAAIDs5eXqvX79NytycqSyMvMCAgAAAAAAMAjJMAAAAGjg6tWKqan5ZgXVYQAAAAAAIEqQDAMAAGjjGlWFuVEdBgAAAAAAokCs2QGYrbq6Wjt37lR5ebmOHDmiLl26KDk5WRdccIGpk7kBAACES6OqMDd3ddjCheEPCgAAAAAAwCBtNhn20ksv6ZlnntHmzZt18uTJRt+Pi4vT2LFjdeutt2rSpEkmRAgAABB6trKypqvC3HJypDlzpJ49wxcUAAAAAACAgdrcMImfffaZLr74Yv3whz/U66+/rurqajmdzkavkydP6o033tDkyZOVnp6u0tJSs0MHAAAwXIf585uuCnNj7jAAAAAAABDh2lQybPfu3br44ou1detWT9LLZrM1+3Jv8/bbb2vs2LHavXu32acAAABgnNJStV+xovXtmDsMAAAAAABEsDaTDDt9+rRuvPFG7d+/X5I8Ca+W1N+mtLRUkydP1unTp0MeKwAAQFhkZ8vmcLS+HdVhAAAAAAAggrWZZNif//xnFRYWNkqAuau/OnbsqLPPPlsdO3b0rHNz7/POO+/oySefDGfYAAAAoVFaKi1Z4vv2VIcBAAAAAIAI1SaSYU6nUwsXLvRKhDmdTp155pn605/+pH379qmiokJlZWWqqKjQvn379MQTT+jMM8/0JMXcwyYuXLjQrNMAAAAwTna2q+LLV1SHAQAAAACACNUmkmEbN27Uvn37JMmT3Bo9erR27NihX/ziF+rdu7fX9r1799Yvf/lL7dixQ2PGjPGqEjtw4IA2btwYttgBAAAM529VmBvVYQAAAAAAIAK1iWRYbm6u13L37t31yiuvqHv37i3u1717d7388svq0aOH1/q33nrL8BgBAADCxt+qMDeqwwAAAAAAQARqE8mwwsJCSa6qMJvNpl/84heNElzNOfPMM/WLX/zCs2/99gAAACJOoFVhblSHAQAAAACACNMmkmEfffSR13xhkydP9mv/H/3oR55/O51OffTRR4bFBgAAEFaBVoW5UR0GAAAAAAAiTJtIhh09etTz7zPOOEN9+/b1a/++ffuqa9eunuUjR44YFRoAAED4BFsV5kZ1GAAAAAAAiCCxZgcQDvWTYa3NE9ac7t276/Dhw5KkY8eOGRIXAABAWCUnN0piVVRUaPPmzZ7lsWPHKjExsfW2fNkGAAAAAADAAtpEMqy6utozTGLHjh0DaiM+Pt7z75MnTxoSFwAAQFjZ7a5XPc4OHeTo3Pmb5e7dpaSkcEcGAAAAAAAQMm1imEQAAAAAAAAAAAC0TSTDAAAAAAAAAAAAELVIhgEAAAAAAAAAACBqkQwDAAAAAAAAAABA1Io1OwCgLaisrDQ7BFhEw75A3/BPtF+/SDo/q8VqVjzhOm4ojxOKtq3WP2Ad9I3gRPv1i7Tzs1K83Aet1b6V+gash/4RuGi/dpF2flaK18xYouFeyH0Q4VRVVWXasW1Op9Np2tHDpF27drLZbHI6nerUqZPS0tL8bmP79u06ceKEnE6nbDabxo0bF1AsNptNr7/+ekD7wjqWLVumZcuWNVpfWVmpgoICz/KCBQvUu3fvMEYGAAAAAAAAAID1HDhwQLNnz/Ysv/feexoyZEhYjt3mKsMqKyu1adOmgPZ15w2dTmdAbbgTaYh8+/btC7gfAQAAAAAAAACA8GlzyTCjCuH8bYckWHQ577zzmqwObFgZBgAAAAAAAAAAzNWmkmEkpGCUqVOnaurUqY3W79y5UxdeeGGj9aNGjVJCQkIYIoPVVVZWatu2bZ5l+oZ/ov36RdL5WS1Ws+IJ13FDeZxQtG21/gHroG8EJ9qvX6Sdn5Xi5T5orfat1DdgPfSPwEX7tYu087NSvGbGEg33Qu6DCKeioiLTjt1mkmFtYGo0WFhCQoKSkpLMDgMWRN8ITrRfv0g6P6vFalY84TpuKI8Tirat1j9gHfSN4ET79Yu087NSvNwHrdW+lfoGrIf+Ebhov3aRdn5WitfMWKLhXsh9EKEUHx9v2rHbRDJs7969ZocAAAAAAAAAAAAAE7SJZFifPn3MDgEAAAAAAAAAAAAmaGd2AAAAAAAAAAAAAECokAwDAAAAAAAAAABA1CIZBgAAAAAAAAAAgKhFMgwAAAAAAAAAAABRi2QYAAAAAAAAAAAAohbJMAAAAAAAAAAAAEQtkmEAAAAAAAAAAACIWiTDAAAAAAAAAAAAELVIhgEAAAAAAAAAACBqkQwDAAAAAAAAAABA1CIZBgAAAAAAAAAAgKhFMgwAAAAAAAAAAABRi2QYAAAAAAAAAAAAohbJMAAAAAAAAAAAAEQtkmEAAAAAAAAAAACIWiTDAAAAAAAAAAAAELVIhgEAAAAAAAAAACBqkQwDAAAAAAAAAABA1CIZBgAAAAAAAAAAgKhFMgwAAAAAAAAAAABRK9bsAIC2oLKy0uwQYBEN+wJ9wz/Rfv0i6fysFqtZ8YTruKE8Tijatlr/gHXQN4IT7dcv0s7PSvFyH7RW+1bqG7Ae+kfgov3aRdr5WSleM2OJhnsh90GEU1VVlWnHtjmdTqdpRwci1LJly7Rs2bJG6ysrK1VQUOBZXrBggXr37h3GyAAAAAAAAAAAsJ4DBw5o9uzZnuX33ntPQ4YMCcuxqQwDArBv3z5t2rTJ7DAAAAAAAAAAAEArSIYBATjvvPM0bty4RusbVoYBAAAAAAAAAABzkQwDAjB16lRNnTq10fqdO3fqwgsvbLR+1KhRSkhICENksLrKykpt27bNs0zf8E+0X79IOj+rxWpWPOE6biiPE4q2rdY/YB30jeBE+/WLtPOzUrzcB63VvpX6BqyH/hG4aL92kXZ+VorXzFii4V7IfRDhVFRUZNqxSYYBYZCQkKCkpCSzw4AF0TeCE+3XL5LOz2qxmhVPuI4byuOEom2r9Q9YB30jONF+/SLt/KwUL/dBa7Vvpb4B66F/BC7ar12knZ+V4jUzlmi4F3IfRCjFx8ebdux2ph0ZAAAAAAAAAAAACDGSYQAAAAAAAAAAAIhaJMMAAAAAAAAAAAAQtUiGAQAAAAAAAAAAIGqRDAMAAAAAAAAAAEDUIhkGAAAAAAAAAACAqEUyDAAAAAAAAAAAAFEr1uwAgIbKy8u1fft27dmzR8eOHVP79u3VrVs3XXDBBUpLS1P79u3NDhEAAAAAAAAAAEQIkmGwjH/+85/685//rC1btsjpdDa5TWJion74wx/qvvvu08CBA8McIQAAAAAAwP9v777joyrT/o9/hxRKIIA0AQmE0IJBIMWgEAwoCssCioCorAsssNZdC8IDooAF0dVVLOyyygOiIC5FUdZGCSWrCClIkSaSBAiBEMCEENN/f/hzHiZnQqYlM5n5vF+vvJxzzbnv+5rJkEu4cu4DAABqG7ZJhNudPHlS8fHxGj16tBITEytthElSXl6eFi9erB49eui555674rkAAAAAAAAAAAA0w+BWhw8fVkxMjLZu3WrXuKKiIj3zzDO69957VVpaWk3ZAQAAAAAAAACA2o5tEuE2OTk5GjRokE6dOmV4LioqSiNGjFBoaKgKCgp0+PBhrVixQpmZmRbnffjhh2rZsqVef/31GsoaAAAAAAAAAADUJjTD4DZTpkxRRkaGRaxRo0b64IMPNHz4cMP58+bN07x58zRnzhyL+IIFC3TbbbdpyJAh1ZkuAAAAAAAAAACohdgmEW6xYcMGrV271iIWGBiozZs3W22ESVJAQIBmz55t9Sqwv/zlLyopKamOVAEAAAAAAAAAQC1GMwxu8dxzzxlis2fPVnR0dJVj//rXv2rQoEEWsR9//FErVqxwWX4AAAAAAAAAAMA70AxDjdu/f7+2b99uEWvevLmmTp1q8xwvvviiIfaPf/zD6dwAAAAAAAAAAIB3oRmGGrdy5UpDbMKECQoMDLR5jqioKEVFRVnEduzYoWPHjjmdHwAAAAAAAAAA8B40w1DjvvzyS0Ns1KhRds9jbYy1uQEAAAAAAAAAgO+iGYYalZ+fr5SUFItYgwYNFBkZafdccXFxhljF7RcBAAAAAAAAAIBvoxmGGrV7926VlZVZxKKjo+Xv72/3XDExMQoICLCIJScnO5UfAAAAAAAAAADwLjTDUKMOHjxoiHXq1MmhuQIDA3XNNddYxI4ePaqSkhKH5gMAAAAAAAAAAN6HZhhqVFpamiHWvn17h+cLCQmxOC4tLVVGRobD8wEAAAAAAAAAAO9i/950gBOysrIMsXbt2jk8n7Wxp0+fVseOHR2e8zdnzpxRdna2XWN++OEHi+NTp05JklJSUlS/fn2nc0LtV1BQYNGw5bNhH29//2rT6/O0XN2VT02tW53rVMfcnvb5gOfgs+Ecb3//atvr86R8qYOeNb8nfTbgefh8OM7b37va9vo8KV935uINtZA6iJpU8d/PCwsLa2xtmmGoUefOnTPEGjZs6PB81sbm5OQ4PN/lFi5cqLlz5zo1x4svvuiSXAAAAAAAAAAA8CbHjx9XZGRkjazFNomoUfn5+YaYM78ZYG3spUuXHJ4PAAAAAAAAAAB4F5phqFHFxcWGWL169Ryez1ozrKioyOH5AAAAAAAAAACAd2GbRLidyWRy6djy8nJn0jF78MEHNXr0aLvG5ObmKikpSXl5eXrqqafM8U8++USdOnVySV6o/caPH6+kpCRFR0dr6dKl7k6n1vH29682vT5Py9Vd+dTUutW5jqvn/vHHH3X77bebj6mDuJyn/eyobbz9/attr8+T8qUOes781EFUxZN+dtQ23v7e1bbX50n5ujMXb6iF1EHUlMLCQt13333av3+/rr32Wt100001tjbNMNSogIAAQ6ygoMDh+ayNDQwMdHi+y7Vs2VItW7a0e9wNN9yg/fv3WzTDOnXqpGuvvdYleaH2CwoKMv+Xz4X9vP39q02vz9NydVc+NbVuda5T3a+BOojLedrPjtrG29+/2vb6PClf6qDnzk8dREWe9LOjtvH29662vT5PyteduXhDLaQOoiY1b97c/N8mTZrU2Lpsk4ga1aBBA0PM1c2w3354AwAAAAAAAAAA0AxDjWrWrJkhdvHiRYfnszbW2hoAAAAAAAAAAMA30QxDjWrVqpUhduLECYfnO378uE1rAAAAAAAAAAAA30QzDDUqNDTUEEtPT3d4voyMDItjPz8/hYSEODwfAAAAAAAAAADwLv7uTgC+pWvXrobYjz/+6NBcRUVFhivDwsLC5O/Pxxqebfz48YqPj1eHDh3cnUqt5O3vX216fZ6Wq7vyqal1q3MdT/tewrvxeXOOt79/te31eVK+1EHPnh+4HJ83x3n7e1fbXp8n5evOXLyhFnrS9xLez12fN1N5eXl5ja4In5afn6/g4GCVlZWZY0FBQbpw4YLdTaxvvvlGffv2tYiNHTtWH374oUtydcb+/fsVERFhPt63b5+uvfZaN2YEAEDNoQ4CAHwZdRAA4Muog/BUbJOIGhUUFKTevXtbxPLz85Wammr3XImJiYZY//79Hc4NAAAAAAAAAAB4H5phqHGDBw82xFavXm33PNbGWJsbAAAAAAAAAAD4LpphqHFjx441xJYsWaKioiKb50hNTdWuXbssYrGxsQoNDXU6PwAAAAAAAAAA4D1ohqHGRUREqF+/fhax7OxsvfbaazbPMWPGDEPsgQcecDo3AAAAAAAAAADgXWiGwS1mzZpliM2ePVspKSlVjn3rrbf01VdfWcQ6duyoe+65x2X5AQAAAAAAAAAA7+Dv7gTgm2677TaNGDFC69atM8cKCws1YMAAffDBBxo2bJhhTHFxsebPn69nnnnG8Nwbb7yhgICAas3ZHi1atNDs2bMtjgEA8BXUQQCAL6MOAgB8GXUQnspUXl5e7u4k4Juys7MVGRmpEydOGJ6Ljo7WiBEjFBoaqoKCAh05ckTLly/XyZMnDec+/PDDevPNN2siZQAAAAAAAAAAUMvQDINbHThwQAMHDlRWVpZD48eMGaMVK1bIz8/PxZkBAAAAAAAAAABvwD3D4Fbh4eHauXOn+vXrZ9e4gIAAzZ49Wx9++CGNMAAAAAAAAAAAUCmuDINHKC8v16pVq7RgwQJ9++23quxj2bBhQ40ePVrTpk1Tt27dajhLAAAAAAAAAABQ29AMg8c5c+aMdu7cqZ9++km5ubny9/dX8+bNFR4erpiYGAUGBro7RQAAAAAAAAAAUEvQDAMAAAAAAAAAAIDX4p5hAAAAAAAAAAAA8Fo0wwAAAAAAAAAAAOC1aIYBAAAAAAAAAADAa/m7OwEArrVz504tXbpUW7du1cmTJ1VaWqq2bdsqNjZW9913n26++WZ3pwgAgMtlZ2crKSlJu3btMv83KyvL/PySJUs0fvx49yUIAEA1unTpkrZv367NmzcrJSVFBw8e1NmzZyVJTZs2Vbdu3RQXF6fx48crNDTUzdkCAOA6RUVF2rVrl3bs2KHvv/9ehw4dUkZGhi5cuKCSkhI1btxY7dq1U0xMjEaPHq1bbrlFJpPJ3WnDDUzl5eXl7k4CgPMuXbqkJ554Qv/85z+veN7IkSP1zjvv6KqrrqqhzAAAqD5ZWVnq06eP0tPTr3gezTAAgDc6ffq0/vrXv2r9+vXKz8+v8vw6depo8uTJeuWVV9SwYcMayBAAgOo1efJkvfvuuzafHxUVpcWLF6tnz57VmBU8EVeGAV6gtLRUo0eP1ueff26ONWjQQN27d5e/v79++OEH5ebmSpLWrl2r9PR0bdu2TQ0aNHBXygAAuMQvv/xSZSMMAABvdfz4cX300UeGeIcOHdS6dWsFBgbq2LFjysjIkCSVlZVp0aJFSk5O1qZNmxQcHFzTKQMA4FIVr/Vp1KiROnbsqKZNm0qSTp06pSNHjqisrEySlJycrLi4OH355Ze68cYbazxfuA/3DAO8wNy5cy0aYVOmTNGJEye0a9cuffvtt8rMzNSsWbPMzycnJ+uBBx5wR6oAAFSbFi1aaPDgwZo1a5bWrVvn7nQAAKgxJpNJ8fHxeu+995SVlaVjx47pm2++0ZYtW5Senq5du3apT58+5vOTkpI0ZcoUN2YMAIBrBAUF6Y477tDixYt15MgR5ebmavfu3UpISFBCQoIOHjyoU6dOaebMmfLz85Mk5eXl6Z577rHpqmp4D7ZJBGq5U6dOqVOnTrp06ZIk6Q9/+IOWLVtm9dynn35azz//vKRf/7KUmprKJcEAgFotNzdXX3/9tWJiYtS+fXuL5y7fB55tEgEA3iglJUUvvPCC5s6dq4iIiCueW1RUpFtvvVVbt241x1JTU9WrV69qzhIAAM/w7rvvavLkyeZj/p7oW7gyDKjlFixYYG6ENWjQQK+//nql5z799NNq166dpF8vIX7ppZdqIkUAAKpNcHCwRo0aZWiEAQDgCyIjI7VmzZoqG2GSFBgYqEWLFlnE1q5dW12pAQDgcSZNmqSwsDDzcUJCghuzQU2jGQbUcpf/5WXMmDG66qqrKj03MDBQEyZMMB+vX79eRUVF1ZofAAAAAMAzdO3aVZ07dzYfHzhwwI3ZAABQ8yIjI82Ps7Ky3JgJapq/uxMAvF12drZ27dqlo0ePKjc3VwEBAWrWrJm6d++u6OhoBQQEODz34cOHdeTIEfPx4MGDqxwzZMgQPfvss5J+3R9369atGjRokMM5AABwJdVZBwEAqA08rRY2a9bM/PfI3NzcGl0bAOB7PK0OlpSUmB8HBwfX6NpwL5ph8Frnzp1TUlKS+Ss5OVkZGRmG86rrtnmrV6/WggUL9N///rfSNRo1aqQxY8Zo2rRp6tKli91rfP/99xbHN9xwQ5VjIiMjFRgYaL4i7Pvvv6cZBgBeyBfqIAAAV0IttC49Pd38uGXLljWyJgCg5lEHjYqLi/Xtt9+aj2+88cZqXxOew1ReXZ92oIbt27dP//nPf5ScnKykpCQdO3bMpnGu/iNw8uRJ3XvvvRY3Ja5KYGCgZs2apVmzZslkMtk87tlnn9Xs2bPNc/zyyy82je/UqZOOHj0qSZo4caIWL15s85oAAM/ki3WwKpfPxY2RAcD7UQurtmPHDotfonzrrbf00EMPVdt6AICaQx2s2rRp0/S3v/1NktS8eXMdOnToirecgXfhyjB4jXfffVcLFixwaw6HDx9WfHy8Tp06Zde4oqIiPfPMMzpw4IDef/99+fn52TQuLS3N/Piaa66xuViEhISYm2GXzwEAqL18sQ4CAHA5amHVXnzxRfPjevXqaeTIkdWyDgCg5lEHjUpKSpSdna3vvvtOCxcu1IYNGyRJ9evX14cffkgjzMfQDANcJCcnR4MGDbL6wz4qKkojRoxQaGioCgoKdPjwYa1YsUKZmZkW53344Ydq2bKlXn/9dZvWvHx/98aNG9uc6+X74ebl5dk8DgCAyrijDgIA4Ek8vRYuX75cn376qfn4kUceUevWrV2+DgDAN3lKHaxXr54KCwutPmcymXTrrbfq1Vdf1bXXXuvwGqidaIbB6wUGBioiIkLR0dH697//rQsXLlTLOlOmTDHsu9uoUSN98MEHGj58uOH8efPmad68eZozZ45FfMGCBbrttts0ZMiQKtfMz883P65Xr57NudavX9/8+OLFizaPAwDUPt5cBwEAsAW1UNq7d6/+/Oc/m4+7du1q3nIfAODdqIP/Jz4+Xg8//LC6d+/u8rnh+WiGwav4+/ure/fuio6ONn/17NlTgYGBkqSvvvqqWn7gb9iwQWvXrrWIBQYGavPmzYqOjrY6JiAgQLNnz1aTJk306KOPWjz3l7/8RQcOHJC//5X/iBYXF5sfV3Xu5S4/t6ioyOZxAADP5mt1EACAiqiFRidOnNDQoUPNv0xZv359rVy5UkFBQU7PDQDwLNRB6dZbbzX/e2dhYaGysrJ0+PBhlZWVKSEhQQkJCerTp49Wrlyp9u3b2z0/arFywEtkZmaWX7p06YrntG/fvlySxZcrxMXFGeZ94YUXbB4/aNAgw/j33nuvynHDhg0znx8TE2PzeqNGjTKP69mzp83jAACeyxfrYFUun2/JkiVOzwcA8GzUQqPs7Ozy8PBw85z+/v7ln376qdPzAgA8D3WwcmfPni1/8cUXyxs0aGCePyQkpPz06dMuWwOer46LemqA27Vu3dpi+7+asn//fm3fvt0i1rx5c02dOtXmOS6/ifFv/vGPf1Q5rmHDhubHBQUFNq936dIlq3MAAGovX6yDAABcjlpo6cKFC7r11lt14MABSVKdOnX0/vvva9iwYU7NCwDwTNTByjVr1kz/8z//o23btpn/LTQjI0NPPPGEy9aA56MZBjhp5cqVhtiECRPMlx/bIioqSlFRURaxHTt26NixY1cc17x5c/NjazenrExWVpb5cbNmzWweBwBARe6sgwAAeAJPrIV5eXkaPHiwUlNTJUkmk0mLFy/W2LFjHZoPAIDKeGIdvNI6M2fONB+vXLlS586dc+ka8Fw0wwAnffnll4bYqFGj7J7H2hhrc1+ua9eu5sc5OTkWV3xdyfHjx82Pu3XrZmOGAAAYubMOAgDgCTytFubn52vo0KH67rvvzLGFCxdq/Pjxds8FAEBVPK0OVmXMmDHmxyUlJUpKSnL5GvBMNMMAJ+Tn5yslJcUi1qBBA0VGRto9V1xcnCFW8RLjirp3725xvHv37irXOXnypLKzs83H4eHhtiUIAEAF7q6DAAC4m6fVwl9++UXDhw+3GPfaa6/p/vvvtzsfAACq4ml10Bbt2rWzOD579qzL14BnohkGOGH37t0qKyuziEVHR8vf39/uuWJiYhQQEGARS05OvuKY66+/XvXq1TMfJyYmVrlOxSLSv39/O7IEAOD/uLsOAgDgbp5UC4uKinTHHXdo8+bN5tj8+fP16KOP2p0LAAC28KQ6aKuff/7Z4rhJkyYuXwOeiWYY4ISDBw8aYp06dXJorsDAQF1zzTUWsaNHj6qkpKTSMUFBQbr55pvNx8uXL69yncvP6dGjhzp27OhAtgAAuL8OAgDgbp5SC0tKSnTXXXdZbCc1d+5cTZ8+3aFcAACwhafUQXtUvFAgLCzMpfPDc9EMA5yQlpZmiLVv397h+UJCQiyOS0tLlZGRccUxEyZMMD/es2ePPvvss0rPTUlJ0RdffGF1LAAA9vKEOggAgDt5Qi0sLS3VuHHj9Mknn5hjM2fO1DPPPONwHgAA2MIT6qA9ioqK9Pzzz5uPw8LC1LVrV5fND89GMwxwQlZWliFWcd9Ze1gbe/r06SuOGTlypMU+vH/+85+t/lZGZmam7r33XpWWlkqS2rZtqwceeMDhXAEA8IQ6CACAO7m7FpaXl2vSpEn66KOPzLGpU6fqhRdecDgHAABs5e46uHbtWj399NM6c+ZMlXNnZmZq2LBhSk1NNcdmzJjhWKKolezfvBOA2blz5wyxhg0bOjyftbE5OTlXHGMymfTuu++qX79+unTpkk6dOqXY2Fg9+OCDiouLk5+fn3bt2qW33nrLXDz8/Pz0zjvvWNxvDAAAe3lCHZSkyZMn6/3336/ynPvvv98QP3TokFO/uQgA8G3uroWrVq3S0qVLzceBgYHau3evBg8ebNN6rVq10nvvvWd3ngAASO6vg7m5uXr++ef14osvKi4uTn379lVERISaN2+u+vXrKy8vTz/99JO2b9+udevWqaCgwDz29ttv18SJEx3OFbUPzTDACfn5+YZY/fr1HZ7P2thLly5VOa53795auXKl7r77buXn5ys3N1fz58/X/PnzDef6+/vr7bff1pAhQxzOEwAAyXPqYHFxsQoLC694TklJidW95svLy21PEACACtxdCys+V1RUpK+++srm9fiFEACAM9xdB39TWlqqLVu2aMuWLVWeazKZNGnSJL399tsymUyOpIlaim0SAScUFxcbYs5cbWXtB35RUZFNY3+7zHfw4MGqU8f6H+0bb7xR33zzjaZMmeJwjgAA/MaT6iAAAO5ALQQA+DJ318G4uDj95S9/sem+X3Xr1tXo0aO1bds2/etf/1JAQIDDeaJ24sowwMWc+Y0Ca2Pt+Y31zp0764svvlBmZqYSExN18uRJlZaWqm3btrr++usVFhbmcG4AANjCHXVw6dKlFltEAQDgTjVZC8ePH6/x48c7vB4AAK5Wk3UwLCxMCxYskPTrlo179uzRTz/9pLNnz6qoqEgNGzZU06ZNFR4eruuuu45bxvg4mmGAE6z9BsHle8/ay9rYwMBAu+dp06aNxowZ43AeAADYwlPrIAAANYVaCADwZZ5UB6+66irFx8crPj7e4fXh3dgmEXBCgwYNDDFX/8APCgpyeD4AAKoTdRAA4OuohQAAX0YdRG1CMwxwQrNmzQyxixcvOjyftbHW1gAAwBNQBwEAvo5aCADwZdRB1CY0wwAntGrVyhA7ceKEw/MdP37cpjUAAPAE1EEAgK+jFgIAfBl1ELUJzTDACaGhoYZYenq6w/NlZGRYHPv5+SkkJMTh+QAAqE7UQQCAr6MWAgB8GXUQtQnNMMAJXbt2NcR+/PFHh+YqKioy/PZDWFiY/P39HZoPAIDqRh0EAPg6aiEAwJdRB1Gb0AwDnNC7d2/VqWP5xygpKUklJSV2z5WUlKTi4mKLWGRkpFP5AQBQnaiDAABfRy0EAPgy6iBqE5phgBOCgoLUu3dvi1h+fr5SU1PtnisxMdEQ69+/v8O5AQBQ3aiDAABfRy0EAPgy6iBqE5phgJMGDx5siK1evdrueayNsTY3AACehDoIAPB11EIAgC+jDqK2oBkGOGns2LGG2JIlS1RUVGTzHKmpqdq1a5dFLDY21upNKAEA8CTUQQCAr6MWAgB8GXUQtQXNMMBJERER6tevn0UsOztbr732ms1zzJgxwxB74IEHnM4NAIDqRh0EAPg6aiEAwJdRB1Fb0AwDXGDWrFmG2OzZs5WSklLl2LfeektfffWVRaxjx4665557XJYfAADViToIAPB11EIAgC+jDqI2oBkGuMBtt92mESNGWMQKCws1YMAAffbZZ1bHFBcX67nnntMjjzxieO6NN95QQEBAteQKAICrUQcBAL6OWggA8GXUQdQGpvLy8nJ3JwG4yu9+9ztlZmZW+vwPP/yg4uJii1jPnj2vOOfnn3+uNm3aVLl2dna2IiMjdeLECcNz0dHRGjFihEJDQ1VQUKAjR45o+fLlOnnypOHchx9+WG+++WaV6wEAUBF1EADg66iFAABfRh0EKkczDF6lQ4cOSk9Pd+mcx44dU4cOHWw698CBAxo4cKCysrIcWmvMmDFasWKF/Pz8HBoPAPBt1EEAgK+jFgIAfBl1EKgc2yQCLhQeHq6dO3cabhpZlYCAAM2ePVsffvghP+wBALUWdRAA4OuohQAAX0YdhCejGQa4WLt27bRt2zZ99NFHuvHGG2UymSo9t2HDhpowYYL27NmjOXPmqE4d/kgCAGo36iAAwNdRCwEAvow6CE/FNolANTtz5ox27typn376Sbm5ufL391fz5s0VHh6umJgYBQYGujtFAACqDXUQAODrqIUAAF9GHYSnoBkGAAAAAAAAAAAAr8V1hwAAAAAAAAAAAPBaNMMAAAAAAAAAAADgtWiGAQAAAAAAAAAAwGvRDAMAAAAAAAAAAIDXohkGAAAAAAAAAAAAr0UzDAAAAAAAAAAAAF6LZhgAAAAAAAAAAAC8Fs0wAAAAAAAAAAAAeC2aYQAAAAAAAAAAAPBaNMMAAAAAAAAAAADgtWiGAQAAAAAAAAAAwGvRDAMAAAAAAAAAAIDXohkGAAAAAAAAAAAAr0UzDAAAAAAAAAAAAF6LZhgAAAAAAAAAAAC8Fs0wAAAAAAAAAAAAeC2aYQAAAAAAAAAAAPBaNMMAAAAAAAAAAADgtWiGAQAAAAAAAAAAwGvRDAMAAAAAAAAAAIDXohkGAAAAAAAAAAAAr0UzDAAAAAAAAAAAAF6LZhgAAAAAAAAAAAC8Fs0wAAAAAAAAAAAAeC2aYQAAAAAAAAAAAPBaNMMAAAAAAAAAAADgtWiGAQAAAABcbs6cOTKZTBZfvqJDhw4Wr3v8+PFuy6W8vFxxcXHmXPz8/LRv3z635XO5vXv3ys/Pz5xb//793Z0SAAAAvBTNMAAAAAAAvNSyZcuUmJhoPp4wYYIiIiLcmNH/6dGjh8aNG2c+3r59uz744AM3ZgQAAABvRTMMAAAAAKxIS0szXNl0pa/69evr6quvVteuXTVs2DDNmTNHmzZtUllZmbtfCnzUzz//rOnTp5uP69evr2effdaNGRk999xzqlu3rvl42rRpysvLc2NGAAAA8EY0wwAAAADABX755RedPn1ahw8f1vr16zV37lzdcsstCgsL06uvvqqSkhJ3pwgf89JLL+n06dPm48mTJ6tNmzZuzMgoJCTEYhvJU6dO6dVXX3VfQgAAAPBKNMMAAAAAoBqlpaVp6tSp6tOnj44cOeLudOAjTp8+rTfeeMN8HBAQoKlTp7oxo8o9+eST8vPzMx///e9/V05OjhszAgAAgLehGQYAAAAANgoKClLPnj2tfnXu3FlNmzatdGxycrJuueUWnThxogYzhq+aN2+e8vPzzcfjxo1Tu3bt3JhR5cLCwjRq1CjzcV5enl566SU3ZgQAAABvYyovLy93dxIAAAAA4GnS0tIUGhpqEbvpppu0ZcuWK447evSoVq5cqddff11nz541PN+nTx99++23rkwVHqZDhw5KT083H//xj3/U0qVLa2z9nJwchYSE6NKlS+bYrl27FB0dXWM52Gvr1q2Kj483Hzdq1EgnTpxQcHCw+5ICAACA1+DKMAAAAABwobCwMD311FPau3evrr/+esPzO3bs0KpVq9yQGXzFP//5T4tGWGRkpEc3wqRfG81dunQxH+fl5emdd95xY0YAAADwJjTDAAAAAKAaXH311Vq/fr2uvvpqw3OLFi1yQ0bwBSUlJXrrrbcsYn/605/clI19Jk6caHH85ptvqqyszE3ZAAAAwJvQDAMAAACAatKiRQtNmzbNEE9MTLS4cgdwlS+++EJZWVnm4zp16ujOO+90Y0a2Gz16tMVxenq6EhIS3JQNAAAAvIm/uxMAAAAAAG82cuRIPf744xaxwsJC7d+/XzExMTbPU1paqpSUFKWnpys7O1vnz59XcHCwWrRooc6dO6t3794ymUyuTt9CUVGRkpKSdOjQIZ09e1aFhYVq1KiR+vTpo9jY2GpdW5IuXLignTt3KisrS9nZ2SotLVXLli3VsmVLxcTEqEWLFtWy7smTJ5WUlKTMzEydO3dOQUFBCg0NVUxMjNq0aVMtazpq2bJlFsf9+vVTq1atnJ63oKBA+/fv14EDB3T+/Hnl5eXJz89PDRo0UNOmTdW+fXuFhYWpbdu2Dq/RsWNH9e7dW6mpqebYsmXLdPPNNzudPwAAAHwbzTAAAAAAqEbt27dXUFCQ8vPzLeLZ2dk2jd+4caMWLVqkjRs36sKFC5We16xZMw0dOlQzZsxQt27d7Mpx6dKlmjBhgkXs2LFj6tChgyRp//79evnll7VmzRrD65CkP/7xj4Zm2Jw5czR37lyLWHl5uV15Sb9u+7dkyRItW7ZM3377rUpLS62eZzKZFBUVpbvvvlsPPfSQ6tata/daFX388cd67bXXlJiYaDV3k8mkG264QdOnT9fw4cOdXs9Z+fn5Wr9+vUXs97//vVNzfvzxx/rf//1fffXVVyouLq7y/DZt2qhv374aMWKEhg0bpuDgYLvWGzZsmEUzbO3atfrXv/7lku8nAAAAfBfbJAIAAABANWvcuLEhdqXGliTt3btXN998swYNGqTVq1dXeX5OTo6WLVumiIgI3X///SosLHQi4//z/PPPq1evXlq2bJnVRlh12rRpkyIiIjRlyhQlJiZW2giTfm20JSUl6YknnlCXLl308ccfO7zu2bNndfvtt2vkyJHavn17pU288vJyffPNNxoxYoTGjBnj9q0vN23apF9++cUiFh8f79BcGRkZuummmzRy5EitX7/epkaYJGVmZmrVqlUaN26c5s2bZ/e6AwYMsDi+ePGitm7davc8AAAAwOVohgEAAABANfv5558NsSZNmlR6/meffaYbbrhBmzdvtnut0tJSLVq0SPHx8Tpz5ozd4y/30EMP6emnn1ZJSYlT8zhiyZIlGjx4sA4dOmT32IyMDN15553629/+ZvfYnJwc3XzzzVq3bp1d41atWqUhQ4aoqKjI7jVd5YsvvrA4Dg4OVmRkpN3zpKWlqV+/ftq2bZurUrPZDTfcoHr16lnEKr4uAAAAwF5skwgAAAAA1Sg9Pd3qFVWV3d9qxYoV+sMf/qCysjKLeGBgoAYOHKjY2Fi1a9dOjRs31sWLF5WWlqZNmzYpMTHR4vwdO3Zo5MiRSkhIUEBAgN15v/POO1q4cKH5uGHDhho0aJD69u2rVq1aqby8XMePH1dCQoL8/Pzsnv9K3n//fU2cONEQ/21bwiFDhqhdu3by9/fXyZMntWHDBiUkJFhcOVZeXq5p06bJZDJp6tSpNq1bXFys2267TXv27DE817ZtW915550KDw/XVVddpdOnTys1NVWffPKJzp8/L0natm2bnnjiCQdftfMqXkHVq1cvh743EydO1PHjxw3xXr16KT4+Xl26dFGTJk0UEBCgvLw8nT9/XgcPHtSePXuUlJR0xSv4qlK3bl316NFDu3btMse2bNni8HwAAACARDMMAAAAAKrV2rVrDbHAwEB1797dEN+/f78mT55s0Qjz9/fXY489pieffLLSBtqcOXO0e/duTZo0ScnJyeb4f//7X82cOdOhK6Reeukl8+P7779fzz//vJo1a2Y4b+bMmYat+Zzx448/6sEHHzTEIyIitHjxYl1//fWG56ZNm6YDBw5o4sSJ2rFjhyG/+Ph4RUdHV7n2Cy+8YPH+Sb82Z+bOnaupU6dabSy9+eabeuqpp7RgwQJJ0ttvv63AwMAq13K1vLw8w1V01113nd3zJCYmKiEhwSLWsWNHLVu2TH379q1y/Pnz5/XFF19o0aJFMplMdq8vST179rRohu3bt08FBQWqX7++Q/MBAAAAbJMIAAAAANXk7Nmzevnllw3xfv36KSgoyCJWVlamsWPHWtx3KigoSF9//bVefvnlShthv+nVq5e++eYbDRo0yCL+xhtv6MSJE3bn/tvVPa+++qr+8Y9/WG2E/abitnbOePDBB3Xx4kWLWHR0tBITE602wn4THh6uhIQEDRw40CJeXFxs9Sqzio4ePWq4x5W/v79Wrlyp6dOnV3qFVVBQkF5//XX9/e9/l/TrFWmuul+bPVJSUgxXE0ZERNg9T8XtIQMCAvTVV1/Z1AiTpKZNm+qee+7R1q1b9fTTT9u9viT16NHD4rikpES7d+92aC4AAABAohkGAAAAANXi9OnTGj58uLKysgzPTZ482RBbs2aN9u3bZxFbsmSJBgwYYPOagYGBWrVqlZo3b26OFRUVmRs19rrzzjv1+OOPOzTWEfv27dOGDRssYsHBwfrkk0/UuHHjKsfXq1dPa9eu1dVXX20R37t3r77++usrjl24cKGKi4stYjNmzNDtt99uU+6PPfaY7r77bpvOrQ6HDx82xNq3b2/3PD/99JPFcXx8vDp16uRQTg0aNHBonLW8rb0+AAAAwFY0wwAAAADAhX766SfNnz9f1113nb799lvD8zExMbrrrrsM8cu3JZR+bUKMHj3a7vUbN26sv/71rxaxjz/+2O556tSpo1deecXucc546623DLFZs2apbdu2Ns/RuHFjzZ8/36a5f1NYWKilS5daxNq0aaMZM2bYvK7061V0devWtWuMq6SlpRli9rxvv8nLy7M4vtIVgdXlmmuuMcSsvT4AAADAVtwzDAAAAABslJSUpF69ell9rqCgQGfPntW5c+cqHd+2bVutWrXKcC+ltLQ0w72qJk2a5HCeQ4cOtdiiLi0tTenp6XZdKTRw4EB16NDB4RwcUfGqsLp16+pPf/qT3fOMHTtWjz/+uMX3IiEhQaWlpVa3O/zuu+8M37dx48bZfY+q1q1ba9iwYVq9erXdOTvL2laYFa+Qs0XF5td3332nkpIS+fvX3D8ftG7d2hA7fvx4ja0PAAAA78OVYQAAAABgo/z8fH3//fdWvw4fPnzFRlivXr20adMmqw2prVu3GmK23qPJmtDQUEMsNTXVrjns2Z7RFbKysgxb9A0YMEBXXXWV3XPVrVtXw4cPt4hdvHhR33//vdXzd+zYYYiNHDnS7nWdGees3NxcQ6zifelsERsba3F87NgxTZ482eJedtXN2vaKFa9YAwAAAOzBlWEAAAAAUI1CQkL00EMP6bHHHlNAQIDVc/773/8aYrbeq8pWZ8+etev8yMhIl65flZSUFEMsOjra4fliYmIMWx+mpKRYfV0Vr8rz9/dXz549HVo3KirKoXHOstasqlevnt3z3HXXXZo5c6YKCgrMsaVLl+rzzz/X+PHjNXLkSMXExKhOner73VprV+Tl5+dX23oAAADwfjTDAAAAAMAF6tatq+DgYDVp0kRdunRRVFSU+vfvrwEDBlTZOLC2xV1lVzE5Kicnx67zW7Zs6dL1q2KtWRceHu7wfN27d7dpDUk6c+aMxXFISIhDjSRJ6ty5s/z8/FRaWurQeEdVXM9kMjnUsGrdurXmzZunxx57zCJ+5swZvfzyy3r55ZfVpEkT3XjjjYqNjVWfPn104403qmHDhk7lfzlrWzKWlJS4bH4AAAD4HpphAAAAAGCjm266SVu2bHH5vPY2qhxx+ZU+tggODq6mTKw7f/68IdakSROH52vatKkhVtk2lhcuXLA4bty4scPrmkwmNWrUyDBndat4NVV5ebmKiooUGBho91yPPvqoSkpKNGPGDKtNqAsXLujzzz/X559/LunX5lWfPn101113aezYsWrevLljL+L/s/ZZtbZ1IgAAAGAr7hkGAAAAAG5mrRHkbtauzqlO1u4J5cg9r640trL7TlWMO7OuK8a7ak17G6CXmzp1qvbt26d77723yqvkSkpKlJiYqEceeUTt27fXk08+6dS2htbydsd7CgAAAO9BMwwAAAAA3MzaPZIKCgpUXl7usq85c+bU/AuzQ6NGjQwxZxoq1sZaW8Na3Nn7U7nj/lbWtrWs7Eo4W3Xt2lUffPCBsrKytHz5ck2aNEndunWTyWSqdMylS5f0yiuvKDIyUunp6Q6tay3vmt62EwAAAN6FZhgAAAAAuJm1beWcbWTUNta2NXRmq0FrY6+66iqr51bcjvHnn392eN3y8vJKr0CrTu3btzfErN2LzhGNGzfWPffco3feeUcHDhxQTk6O1q9fr+nTp6tHjx5Wxxw+fFhDhw5VUVGR3etZy9va6wMAAABsRTMMAAAAANysVatWhpijV9XUVi1atDDEDhw44PB8P/zwgyFW2b2sKl51lJGRoV9++cWhdY8cOaLS0lKHxjqjY8eOhpirmmEVNW3aVEOHDtX8+fO1Z88eHTp0SA888ID8/Pwsztu/f78WL15s9/wnT540xEJDQx3OFwAAAKAZBgAAAABuFhsba4ht27bNDZm4T2RkpCGWlJTk8Hy7du0yxKKioqyeWzFeUlKi77//3qF1k5OTHRrnrOuuu84QO3ToUI2s3aVLFy1cuFDLli0zPLdmzRq75zt48KAh1rNnT4dyAwAAACSaYQAAAADgdoMGDTLE1q5d64ZM3KdVq1aGq5sSEhIc2i6yqKhIn376qUWsYcOGVhtGktSnTx9D7OOPP7Z7Xcl937ewsDDDNpB79+6t0Rzuuece9erVyyK2Z88eu+ep2Ihs2bKlQkJCnEkNAAAAPo5mGAAAAAC4Wffu3dW5c2eL2M6dO7V582Y3ZeQet912m8VxYWGhlixZYvc8H330kXJycixiAwcONGzj95vY2FhDI+n999+3e6vErKwsffbZZ/Yl60IVrzB09Oo2Z3Tr1s3i2JH7r1VsoFm7chIAAACwB80wAAAAAPAATz31lCE2adIkh66Mqq0efPBBQ+y5557TqVOnbJ4jNzdX06dPN8QfeeSRSsfUrVtX48ePt4hlZmZq/vz5Nq8rSVOnTlVhYaFdY1zp1ltvtTg+evSoXe+dK1Rcz9q94K7k2LFjhnudVWySAgAAAPaiGQYAAAAAHmDcuHGGq2qOHTum3/3ud8rMzHRoztzcXL388sv64IMPXJFitYuIiDA0dH7++WfdcccdunjxYpXjCwsLNWrUKEND5rrrrtMtt9xyxbEPPPCAAgICLGIvvPCC1q9fb1Pub7zxhpYvX27TudXld7/7nSGWkJBg1xxPPPGEfvjhB4fWT0lJ0fbt2y1i9t7ry1q+1l4XAAAAYA+aYQAAAADgAfz8/LRq1So1atTIIv7dd9+pd+/eWrhwoU3b9pWUlGjjxo2aMmWKQkJCNH36dGVlZVVX2i63cOFCNWzY0CL23XffKS4uTikpKZWOO3jwoAYOHKgNGzZYxAMCArR48eIq1+3UqZNmzpxpESspKdGoUaP0yiuvqLS01Oq4S5cu6YknntCjjz4qSTKZTKpbt26V61WHLl26KDw83CK2ceNGu+ZYvHixrr32Wg0aNEjvvPOOzpw5Y9O49evXa8iQISorK7OIjxs3zq71K+bbo0cPhYaG2jUHAAAAUJG/uxMAAAAAAPwqIiJCy5cv18iRI1VSUmKOnzlzRg899JCeeuop3XTTTYqNjVXLli3VuHFj5efn68KFC8rIyFBycrJSU1OVm5vrxlfhnLCwMC1cuFD33XefRXz37t2KiYlR3759NXjwYLVr105+fn46efKkNm7cqM2bN1u8Z7+ZN2+eoqOjbVr7qaee0vr165WcnGyOFRYW6sknn9SCBQt05513Kjw8XE2bNlV2drZSU1P18ccfW2xl+dBDD+mzzz5Tenq6g++Ac8aNG2ex5eann36qkpIS+fvb99f/jRs3auPGjbr//vt17bXXqnfv3urevbuaNWumJk2aqLS0VOfOndOBAwe0YcMGHTx40DBHXFyc7rrrLpvXLCws1H/+8x+LWMXPAQAAAOAImmEAAAAA4EGGDRumTZs26a677jJc0XXhwgWtW7dO69atc1N2NeMPf/iDiouL9ec//9miwVVWVqbt27cbtuKzxmQyaf78+Zo6darN6wYEBOjLL7/UwIEDtXfvXovnTpw4oQULFlxxfFxcnF555RV99tlnNq/pauPGjdOsWbNUXl4uScrJydGWLVuq3CayMmVlZdq7d6/h/ahKRESEVq5cqTp1bN+QZsOGDRaNXD8/P9177712rQsAAABYwzaJAAAAAOBh+vfvr5SUFI0bN05+fn4Oz2MymTRgwADFxcW5MLuaMXHiRH3xxRfq0qWL3WPbtWun1atXa9q0aXaPbd68uTZv3qzhw4fbNW7kyJH68ssv3bZF4m9CQkI0dOhQi5g99zK7+uqrnVrfZDLpj3/8oxITE9WmTRu7xq5YscLiePjw4WrdurVT+QAAAAASzTAAAAAA8EitW7fW+++/ryNHjujRRx813AuqMo0aNdLvf/97vf766zp27Jg2b96s2NjYas62etxyyy3av3+/Fi1apL59+16xMWgymRQVFaVXX31Vhw8f1siRIx1et3nz5lq3bp3WrFmjfv36yWQyVXpubGys1qxZozVr1qhBgwYOr+lKjz/+uMXxv//9b/388882jT148KCSk5P13HPPadCgQQoODrZpXMuWLfXggw8qJSVFS5cuVePGje3KOScnR2vXrrWIVXwdAAAAgKNM5b/tnQAAAAAA8GinT59WSkqKzp49q5ycHF28eFFBQUEKDg5W27Zt1a1bN7Vv3/6KzZva7MKFC9qxY4dOnz6t7OxslZaWqkWLFmrVqpViYmLUsmXLaln35MmT2rlzpzIzM3X+/HkFBQWpQ4cOuv7669W2bdtqWdNZUVFRSklJMR+/+eabevjhh+2ep6ysTGlpaTp69KjS09OVm5urS5cuqW7dugoODlbr1q113XXXqUOHDk7l+9prr1k0v2JiYrRz506n5gQAAAB+QzMMAAAAAAAvs27dOt1+++3m486dO+vgwYN23cOrppSWlqpz5846duyYObZ+/XrDdo8AAACAozzv/4IBAAAAAIBTRowYYbE95pEjR7R69Wo3ZlS5lStXWjTC+vbtSyMMAAAALsWVYQAAAAAAeKGEhAQNHDjQfNyrVy+lpKR41Daa5eXl6tmzp/bu3WuObd26Vf3793djVgAAAPA2XBkGAAAAAIAXGjBggO68807z8e7du/XRRx+5MSOjFStWWDTCxowZQyMMAAAALseVYQAAAAAAeKnjx48rPDxc+fn5kqSOHTvqwIEDCgwMdHNmUlFRkbp162beIjEoKEgHDx7UNddc4+bMAAAA4G383Z0AAAAAAACoHu3atdPy5cuVmppqjqWlpalLly5uzOr/8rjvvvvMx71796YRBgAAgGrBlWEAAAAAAAAAAADwWtwzDAAAAAAAAAAAAF6LZhgAAAAAAAAAAAC8Fs0wAAAAAAAAAAAAeC2aYQAAAAAAAAAAAPBaNMMAAAAAAAAAAADgtWiGAQAAAAAAAAAAwGvRDAMAAAAAAAAAAIDXohkGAAAAAAAAAAAAr0UzDAAAAAAAAAAAAF6LZhgAAAAAAAAAAAC8Fs0wAAAAAAAAAAAAeC2aYQAAAAAAAAAAAPBaNMMAAAAAAAAAAADgtWiGAQAAAAAAAAAAwGvRDAMAAAAAAAAAAIDXohkGAAAAAAAAAAAAr0UzDAAAAAAAAAAAAF6LZhgAAAAAAAAAAAC8Fs0wAAAAAAAAAAAAeC2aYQAAAAAAAAAAAPBaNMMAAAAAAAAAAADgtWiGAQAAAAAAAAAAwGvRDAMAAAAAAAAAAIDXohkGAAAAAAAAAAAAr0UzDAAAAAAAAAAAAF6LZhgAAAAAAAAAAAC8Fs0wAAAAAAAAAAAAeC2aYQAAAAAAAAAAAPBaNMMAAAAAAAAAAADgtWiGAQAAAAAAAAAAwGvRDAMAAAAAAAAAAIDX+n8wPUovAj5mjAAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXl8FEX6/z+5JwdnAgECCYckEO6Ew3AoLsitCaBCFFfdXd0Dd931+LouroiKuz9R1otVd13X1chwQ5Aj3HeAmAk3OTgzZEISQoDcd/3+mFSlp6e7p3tmkkySer9e85quqqer6+nqfrq6uuopN0IIAYfD4XA4HA6Hw+FwOBwOh9OMuLd0ATgcDofD4XA4HA6Hw+FwOO0P3inF4XA4HA6Hw+FwOBwOh8NpdninFIfD4XA4HA6Hw+FwOBwOp9nhnVIcDofD4XA4HA6Hw+FwOJxmh3dKcTgcDofD4XA4HA6Hw+Fwmh3eKcXhcDgcDofD4XA4HA6Hw2l2eKcUh8PhcDgcDofD4XA4HA6n2eGdUhwOh8PhcDgcDofD4XA4nGaHd0pxOBwOh8PhcDgcDofD4XCaHd4pxeFwOBwOh8PhcDgcDofDaXZ4pxSHw+FwOE1At27d4Obmpvj79a9/3dLF5HA47QBujzgcjivAbRFHCs+WLgCH42y6deuGwsJCRZkXXngBX331VTOViMPhtDdqa2vxj3/8QzKtuLgYr776KqqqqhAXF9e8BeNwOO0Obo84HI4rwG0RRw7eKcVpU3Bjx+FwXAFPT08sWrTIKr6qqgozZsxARUUF/vnPf2LmzJktUDoOh9Oe4PaIw+G4AtwWceTgnVKcNgU3dhwOx1Wpq6vDk08+iYMHD+Ltt9/Gb3/725YuEofDaadwe8ThcFwBbos4APcpxWkHcGPH4XBcgd/+9rfYtGkTFi9ejKVLl7Z0cTgcTjuG2yMOh+MKcFvEAXinFKcdwI0dh8NpaZYsWYJ///vfeOKJJ/Dpp5+2dHE4HE47htsjDofjCnBbxKG4EUJISxeCw2kqlixZgvfffx9PPPEE9Ho93N15PyyHw2lePv30U7z00kuYOnUqtm/fDm9v75YuEofDaadwe8ThcFwBbos4QninFKfNwo0dh8NpafR6PZ566ilER0fjwIEDCAgIaOkicTicdgq3RxwOxxXgtogjhndKcdok3NhxOJyWZteuXXjkkUfQr18/HD16FN26dWvpInE4nHYKt0ccDscV4LaIIwWfy8Rpc+zatQvPPPMMBg4ciB07dvAOKQ6H0+ycPHkS8+fPR/fu3bF7927FRteLL76IX//61wCA+vp6xMbG4k9/+hOKiorg6emJ8vJyJrt27Vo8+OCDTV5+DofTdlBrj2zZHDlbxeFwOGpwhi3ibaO2CR8pxWlTnDx5ElOmTEHnzp1x7NgxhIWFycq++OKLqKmpwVdffYX6+nrMnTsX/fv3xz/+8Q/FNA6Hw1EiPT0dkyZNQn19PY4cOYIhQ4YoyptMJkRGRuLixYtYuXIlLl26hC1btsDd3R39+vWDXq/H/fffj9raWgwZMgTffPMNJkyY0EzacDic1oxWe6Rkc5RsFYfD4SjhTFvE20ZtD8+WLgCH4yzS09Mxe/ZseHt7Y9euXYodUgDwxhtvIDIyEm+99RZWrlwJQgg++ugjm2kcDocjx927dzF9+nTcvn0bv/vd73Dq1CmcOnXKSq579+6YNm0aACAkJARPP/005syZAwA4evQoe8kbPXo0Tp06hfvvvx/ffvstBgwYwBtdHA5HFfbYIyWbo2SrOBwORw5n2yLeNmp78E4pTpvA2S+CvOHF4XDsISUlBTdu3AAA/POf/8Q///lPSbmf//znzBYBwIgRI7Bq1SokJyfD39+fxdOGV1VVFd59911s3ry5aRXgcDhtBnvskS2bI2erOBwORw5n2yLeNmp78Ol7nDbB7t27MX36dJtyP//5z/G///2Phf/973/jhRdeQHJyMmJiYixkldI4HA7HWZw8eRKPPfYYxo0bh6CgIHz55Zcsbd++ffjzn/+Mp556CkePHsWGDRtasKQcDqeto2RzlGwVh8PhOBMlW8TbRm0P3inFabcoNa54w4vD4TQHRqMREydOxPfff4/77rsPgwcPxvnz5xEaGgrAPAq0V69e6NSpE/bt24fIyMgWLjGHw2nLyNkcW7aKw+FwnIlS+4e3jdoevFOK0y5RalzxhheHw2kOSkpKMGHCBLz00kv45S9/CQD47W9/C0KIRUf4fffdh/Hjx+O7775rqaJyOJx2hNjmqLVVHA6H40yU2j+8bdS24J1SnHaHUuNqxYoVvOHF4XBchtLSUgwcOBDHjh1D//79W7o4HA6njcNtDofDcQWUbBG3U20P3inF4XA4HI6L8qc//Ql1dXX49NNPW7ooHA6nHcBtDofDcQWUbBG3U20PvpwYh8PhcDguxunTp9GpUyecPXsW77//fksXh8PhtHG4zeFwOK6Aki3idqrtwkdKcTgcDofD4XA4HA6Hw+Fwmh0+UorD4XA4HA6Hw+FwOBwOh9Ps8E4pDofD4XA4HA6Hw+FwOBxOs+PZ0gVoKebOnYuDBw9iypQp2LBhg+r96uvrkZubiw4dOsDNza0JS8jhcNRACEFJSQl69eoFd/f21c/O7RGH4zpwW8RtEYfjKrRXe8RtEYfjWqi1Re3Wp9TBgwdRUlKC//3vf5o6pXJyctCnT58mLBmHw7GHGzduoHfv3i1djGaF2yMOx/XgtojD4bgK7c0ecVvE4bgmtmxRux0pNXnyZBw8eFDzfh06dABgPrEdO3a0Sl+/fj0ef/xxTXHidBpWktGK2v2V5NTophRWs20Prqqbo3rZKrMaGbm0tqRbcXEx+vTpw+7N9oSSPWoPda8lri3ZWXEct7NNfz0qyXFb5Jy2EW8/uL6dlYpvK7q1tWdIe7VH/D2Ntx+kwq7efrAV76q6OdMWtcpOqcOHD2PFihUwGAy4efMmNm/ejLi4OAuZVatWYcWKFcjLy8OIESPw2WefYezYsQ4fmw4F7dixo6Sx8/f3t4q3FSdOp2ElGa2o3V9JTo1uSmE12/bgqro5qpetMquRkUtri7q1x2HaSvaoPdW9mri2ZGfFcdzONv31qCTHbZFz2ka8/eD6dlYqvq3o1lafIe3NHvH3NN5+kAq3lvaDXLyr6uZMW9Qqp+/t3LkTx44dQ3R0NObNm2fVKbV27Vr8/Oc/x5dffolx48bh448/xvr165GZmYnu3bszuYMHD+Lzzz/XNH2vuLgYnTp1wr179xyubA6H4zjt+Z5sz7pzOK5Ge74f27PuHI4r0l7vyfaqN4fjqqi9J1ul57uZM2fivffew9y5cyXTV65cieeffx7PPfccIiMj8eWXX8LPzw/ffPON5mNVVVWhuLjY4qfEli1bNMfRbaPRiLS0NHz00UcW/+Jto9GoWQ+pMmiVU6ObUljNtj24qm6O6qU2D616ScW3Jd04Ztpb3au1s+Jwa7RF4jhuZx1DnAd9Fot/wuew8FnMbZFt7K17cbtIbtuedpFcubTKtZbrWqsMf4a0nWcIpxFH6r4tvKeJ43j7wTEc1a292VklWuX0PSWqq6thMBjwxhtvsDh3d3dMnToVx48f15zf3/72Nyxbtswqfv369fDz88O8efOwb98+3Lt3D927d0dJSQn0ej0AICoqCvX19bh8+TL0ej1iY2Nx9OhR3L59GwUFBaioqMCWLVtgMpmwd+9ezJ49G9XV1TbL5O3tjX379uHGjRsAgOnTp+P8+fMwmUzw9/fHnDlzsHbtWgBAREQEgoKCWBmmTp2KrKwsGI1G+Pj4YN68eVi7di3q6+sxYMAA3Llzh5V/8uTJMBqNuHr1Kjw9PVFbW4uNGzeiuroaYWFhGDBgAMt34sSJKCgoYOH4+HgkJibi8uXLOHLkCCIjI1laTEwM8vPz2XHq6+uxbds2lJSUoEePHoiKisKOHTsAAGPGjEFlZSXOnTsHoHHVxDt37iAoKAgxMTEs31GjRgEATp06BQB45JFHcPz4cRQWFqJLly4oLS1lxxw2bBh0Oh1++uknAEBNTQ0OHDiAvLw8dOjQATNmzGD5RkZGolOnTiw8bdo0XLx4EZcvX0ZiYiJiY2NZWnh4OIqKiqDX62EymZCfn48rV64gOzsb3t7emD9/PtavX4/a2lr0798foaGhzLfZAw88AJPJhCtXrsDd3R0LFizA1atXodfrERoaivDwcOzduxcAMGHCBBQWFiIzMxMmk4mdw7KyMoSEhGDo0KHYtWsXTCYTrl69itLSUly4cAEA8Nhjj+H69evQ6/UIDg7G6NGjWfmjo6NRU1PDwnFxccjOzoZer0dgYCA7hyaTCenp6XB3d0daWhoAYM6cOUhJSUFBQQE6deqEKVOmYNOmTQCAoUOHws/PDykpKQDMHcs5OTnQ6/UICAjArFmzsG7dOgDAoEGD0LVrVyQnJ8NkMqGwsBAZGRm4ceMGfH19ERcXhzVr1iAnJwepqanw9/e3ec+0RyoqKlTFK4WltuXydUbZ1MpIpdmKk9NTSUYravdvSt3UbNtDc+nW0tej0WhEREQEKisrbe6n0+mQmZnplDK0deyp+xs3biA+Pl5TXYSGhjpcLq1yreG6tkeGP0PazjOkPbBq1SqsWrUKdXV1APh7mtx7WlZWFkwmEwDw97Rmek8DzCvQbd26lb+nKUFaOQDI5s2bWdhkMhEAJDk52ULutddeI2PHjmXhKVOmkKCgIOLr60tCQkKs5CmVlZXk3r177Hfjxg0CgNy7d09S/siRI5rjjhw5QgwGAwGg+mcwGBTPi5oyaJVTo5tSWM22Pbiqbo7qpTYPrXpJxbdm3e7du6d4T7ZllHRvD3WvJU5Oz9Zoi8Rx3M46hjAPe57F3BbZ1t2euv/666+btF0kVy6tcq3hurZHhj9DWvczpL3aI2fYInFcW3pPE8fx9oNjOKpbe7Czam1Ru+2UshdbJ/bWrVua427dutXkxk6qDFrl1OimFFazbQ+uqpujeqnNQ6teUvGuoFt2djYxGAwWv71791rFZWdnW+zfXhtehCjr3prqXquMvXZWKq012iJxHLezjiHMw55nMbdFzmkbicN79+5t8k6p9nJd2yPDnyGt+xnSXu0Rf0/TFsfbD47hqG7twc6qtUWt0qeUEkFBQfDw8EB+fr5FfH5+Pnr06NHkx9+zZ4/mOKl0Z6P2GEpyanRTCqvZtgdX1c0Z9aomD616ScW3tG50ykx0dLTFb+rUqVZxERERMBqNzXLftGZaS93bI+MMOyulT2uxReI4bmcdo7nOTXvGnro/efJkk5ZJ6pj2yLXm67ottB/skWlvzxBOI+39PU0cx9sP9kH9i/3rX/+S9EEp9i+m1p6q0UVOH+G2q9pZJdqcTylvb29ER0dj3759bEW++vp67Nu3Dy+++KLd+aqdq1xbW2s1V9lkMtmcq+zpqa0qcnJy2DxVNXOVaRlszVWurKyUnasMwGquMs2XzlWmYepTymQysbnKNC0mJgbFxcVOm6tM87U1V7murk7TXGWaL52rTMN0rrLJZGJzlWlaeHg4KioqnDZX+ebNm03iU4rOFadzlWn56VxlGo6Li0NBQQGbq0zPoTPmKt++fZvNVe7Ro4cqvyEAUFlZiR9++AFeXl7cpxSHw+FwOBwOh8NpFsS+J5csWSIrS/0dcmzjRgghLV0IrZSWluLy5csAgFGjRmHlypV46KGH0LVrV4SGhmLt2rV45pln8NVXX2Hs2LH4+OOPsW7dOmRkZCA4ONihY9ta1jA7OxthYWGa4rKzs3H79m1ER0erLofBYEBUVJRqeakyaJVTo5tSWM22Pbiqbo7qZavMamTk0lxNt7S0NM3Xf2BgIMLCwtr18r9KureWurdHxl47K6Vna7RF4jhuZ7ktaimEH+yysrLw9ddfS36w69WrF06fPg2g8YPd8ePH4evryz7Y5eTkICQkBA888AC2bNmCjIwMvPPOO6rLsmbNGowZM4aNsFLzwW7v3r3w9fW1+cHOw8MDWVlZAKw/2I0dOxapqakWH+y2b98OX19f9sHuzJkz8PX1ZR/sbt++jYEDByIyMhKJiYnw9fVFTEwMrly5wj5a/vznP0dSUpLdH+zWrVsHX19fxQ92Hh4eePTRR7F582YAlh/sKioqMH/+fKSlpVl8sPvuu+/g6+vLPtjt378fvr6+7IPdpUuXEBgYiNjYWHzzzTfw9fVFeHg4cyhdUVGB2bNnO/TB7vvvv4enp6fiB7uKigo8++yzkh/sKioqMHnyZIsPdmPHjkVGRgaKi4vZB7sNGzbA19cX0dHRuHnzJnJzcwEAcXFx2LZtG2pra+Hl5YVZs2YhMTERFRUViImJsfuD3bBhw3D79m3k5uYqOheuqKjAo48+KulcuLy8HMOHD4e/vz8iIyPblT0C+Hsabz80ffvBkXaCmPbQVlfdNtIyt9BVOHDggOT83WeeeYbJfPbZZyQ0NJR4e3uTsWPHkhMnTjjl2LbmRaalpWmOS0tLa/K5ylJl0CqnRjelsJpte3BV3RzVS20eWvWSim9p3ey5/un+7dVvAiHKureWurdHxl47K5XWGm2ROI7bWcfgtshxnNE2Eod/+OGHJm0XyZVLq1xruK7tkeHPkNb9DGmv9oi/p2mL4+0H7TjSTlCjV0vqpqZsamW02qJW6VNq8uTJIGYn7Ra/b7/9lsm8+OKLyM7ORlVVFU6ePIlx48Y1S9kyMjI0x0mlOxu1x1CSU6ObUljNtj24qm7OqFc1eWjVSyreVXVryv3bOq297h29X8Vxcnq2RlskjuN21jG4LWp67Kn769evN2WRJI9pj1xrvq7bcvuBP0M4UrT39zRxXHtsPxw9ehRpaWnYuXOnrC+o7du3Y/v27ZJp6enpqvRRo1t7s7NKtDmfUk0F9ynFfUpxn1JN61NKC7t27eI+pTgcDofD4XA4HI4qjEYjXnnlFdTU1ABQ9gfFaV5apU+plsTWvMi6ujp4eHhoiqurq8OZM2eadK6yVBm0yqnRTSmsZtseXFU3R/WyVWY1MnJprqZbmh3zs0eMGAEPD4926ceFoqR7a6l7e2TstbNSerZGWySO43aW26KWxhltI3H4p59+wtixY1WXQWu7SK5cWuVaw3Vtj0x7f4YYjUbk5+fbfIZ06dIF/fr1U10ue8usVo6mtVd7xN/TePuBcu3aNdy5c8ciLT09HYsWLbJHDbsRthPEtAc7q9YWtcrpe64MHeGjJW7Hjh0ICgqCTqdTdQydToegoCCHy6VVTo1uSmE12/bgqro5qpfaPLTqJRXvqro15f5tndZe947er+I4OT1boy0Sx3E76xjCPOx5FnNbZBt76v7cuXNN2i6SK5dWudZwXdsj056fIXR1rbFjxyI6OhrR0dEW28JwREQEW/bdVe0sp5H2/p4mjmur7Qd6D0dHR+O96Gh4jx2LwdHRGLpoEeaqKMtcAKcBlDf8S+2jRgYA0tPT8dlnn1lNAzQaje3OzirBp+85mdLSUs1xpaWlCA0NRWZmJgoLC7Fz5068/fbbqK2tha+vL44ePYqkpCTMmDEDgLnRHBoa6nC5tMqp0U0prGbbHlxVN0f1UpuHVr2k4l1Vt6bcv63T2uve0ftVHCenZ2u0ReI4bmcdQ5iH8FkMAG+++SZ27tyJP/7xj+jWrRt7DgONz+Jjx445XIa2jj117+vry+qCtoEWLFiAy5cvY/DgwUhISGDx9rSL5MqlVa41XNf2yLTnZ0hhYSFb7t0WNTU1KCwsRGhoqMvaWU4jznhPS0pKgslkwj//+U8AQHJyMg4cONAq3tPEcW21/VBYWIiamhrMBbAJQD3MI3GGNYTnAdgscyw1+6jNdy6AoYsWIRxAFoBlgnSdTocPPvhAlb7Xr19n7lIA80ebkJAQq23qi9FV7awSvFNKJWp9SgUGBlr5lKK+c4Q+pcrLy5lPqdu3b+PChQvw8vJCZmYmPD09UVtbCwCorq7GzZs3cf/99zMfUjRdy7LHtAy2fEoFBATI+pTq1auXlU8pmi/1KUXDwmWPqU8pmkaXy6XHCQ4OdsinFM3Xlk+p7t27y/qU6tq1q5VPKZov9SlFw9Sn1O3bt5lPKZoWHh4Of39/6PV63L5922GfUnfv3rXpU+r27duyPqVu374t6VOqtLTUwqcULT/1KUXDcXFxKC8vZz6lgoKCmG6O+pSqrq52yKdUhw4duE8pBXr16qUqXikstS2XrzPKplZGKs1WnJyeSjJaUbt/U+qmZtsemks3V7geQ0ND2QsF9XAwYsQI9OvXT3I6hjPK0Naxt+5pXZSUlCAqKgru7uYB/oQQREVFsXhnlkurXGu5rrXK8GeIdlzVznIaceQZK7RHu3fvZumRkZGorq5uFbZIHNcW2g9GoxGFhYUoLS1l7yTUGflSNHYcoeG/HsBbDeGlgFWH0TKJfQiABAAmAAEAujfEiWX+CcAHQAaAQQD0kO+4qqyslB19J9TXaDTi1VdfRXV1tYWM0B8W3fb29kZsbKzL2llFVK0JyGHYWtbwzp07muPE6ceOHbNYSrKurk4yDy2o3V9JTo1uSmE12/bgqro5qpfaPLTqJRXf0rplZ2cTnU6namlVnU5HsrOz2f7tddljQpR1by11b4+MM+yslD6txRaJ47iddQylPMaMGUMAkMTERJv3FLdFjrWN1NR9nz59CADSu3dv2Xy10F6vazUy7fkZYs+S72rLZW+Z1cq1d3vUHO9pd+7cIX/6059Y/efn57tU3WuJa+3tB1vvD1UAIRK/+ob/OtF/liDNGT9xXrUAOSUo37/+9S9iMBisfgcPHmTb27Zt02SPtm3bZrG/3C87O9vhenOmLeI+pZzMzp07NceJ03/88UeLcHV1tWQejpZLq5wa3ZTCarbtwVV1c1QvtXlo1UsqvqV1o8Oijx8/Di8vLwDA5s2bsXz5chgMBotfZmYmQkNDnVKGtkxrqXt7ZJxhZ6X0aS22SBzH7axjKOVRVFQEAAgMDFR9T3GscVbd0ylVdFoAv67laS/tB3tk1NpZrbjq9chpxFnth/Lychauqqpy2bpv6+0HW1Nt62DuqRFCALg1bLuL/gc2pIn3qQdwBcB4AMMBpDfEiWUKARxp+IfgOBQPABGC8AsvvGDhq47+Jk+ezLbnzZsnq58U8+bNs9hf7if0hydFUz1D5HC4U6qmpgY3btxAZmYma7xxHOPu3bsW4aqqqpYpCIfTjNDpMjU1NQgKCkJsbCybLiP82eM3hMPhcOzh9u3bAMxTvDktT0VFBQDuN4fD4bQs1BYBUO1/jNP8eMC6Y0iq04lSDeD5Bpm6hrg6mDtMXgVwHMA5AEsa4qgMcXODO4ALL72EBwB0A3Ae1h1XdQAyNeognrbnLPnKykrmP9MVsMunVElJCRISErBmzRqkpKSguroahBC4ubmhd+/emDZtGl544QWMGTPG2eV1eaSWL7YVJ04PCAiwCFdWVmpaFlltubTKqdFNKaxm2x5cVTdH9VKbh1a9pOJdRbfjx48DAMaPHw83Nze7dOOYaW11r0XGGXZWSp/WYovEcdzOOoZcHnV1dewjUWBgoOp7imONs+qevvzV1taiurqaX9cKtLf2gxYZtXZWK656PbYH1Pr+HTp0qJXv37KyMivfv+7u7sz3b1lZGfP9azAYUFZWhuLiYnbs3bt3Y+rUqSzfIUOGICAgQJPvX1oGW75/+/fvL+v7d+zYsVa+f2m+1PdvVlYWysrKAACJiYkoKytjvn+pbExMDPMhCwDR0dEO+f6l+dry/Tty5EhZ379DhgzBmjVrcPXqVfj5+WH8+PG4ePEijh49qnhdlAAIFMXVwdz55APL0Tl1AC4C+BrAbZj9TkXA3Im0DMAWgexmmH1DvQVgqKcnKvv2Rd2SJTiWm8tk3oLZh1QdzJ1j9H+ZYombl6SkJGRmZkr6/tXpdMz376xZs7Bu3ToAwKBBg9C1a1ckJyejrKwMhYWFyMjIwI0bN+Dr64u4uDisWbMGZWVlmnz/au6UWrlyJZYvX44BAwbgkUcewV/+8hf06tULvr6+KCoqwvnz53HkyBFMmzYN48aNw2effYaBAwdqPYzLodbYdejQgVUoNXaHDx9GSkqKhbGrr69Hr169sGXLFhQXF6OyspIZO4PBYHHsHTt2WNyo9hi7vXv3IiUlxaaxq6ioYOUXG7tBgwZZGTuaLzV2qampSElJYY7O8/LykJubi8jISCYbExOD9PR0dpzBgwc7ZOxovo44Ou/fvz+MRqOFo3OaL3V0TsPU0fnFixdx/vx5xMbGsrTw8HCUlJQgJSUFxcXFCAgIcMjR+aFDh5CSkqLo6Ly4uBj9+vWTdHReXFwMNzc3K0fnycnJSElJYY7Oafmpo/OjR48iJSUFcXFxOHHiBFJSUhAYGIiuXbtCr9ejuLgY1dXVDjk6NxgMSElJsTB2a9asAWA2ePQ4nTp1kjR29+7dw507d7ijcxmEQ8uV4pXCUtty+TqjbGplpNJsxcnpqSSjFbX7N6Vuarbtobl0c6Xr8c6dO2y7a9euyM/P17Q/pxFn1H1tbS1bBAYwj5bi17U8TWFnpeJbm25GoxGpqam4d++eRfylS5dY3NmzZ5usXM7Y3556a+ssXrwYixcvZu3Gxx9/HB07dgQAzJo1i8mdO3cO8fHxFvvW1tZi2LBhAIBp06YxOV9fX8THx+PcuXMYMmQIACA8PBznzp3Dli1b2P73338/qqurrfLt378/237ggQcs0sSy48aNY2Xo1q0bJkyYwNIWLFggW/6ePXti3LhxLG3+/Pmy+fbp0wfR0dHsnSo2Nhbnzp1j6ULZkpISPPzwwyzfOXPmKJZ/6NChbFu4Sq04X8DcxqfQY0jpBgD33XcfAHPH33PPPWdzVNpcNDovv4PGDinqbJx2DH0K4HXIdxhthvzqfBDJGE6eZE7uZ6SlMafjwo4ruc6tlmbGjBkWDvoHDBjAtu+77z6LehPXTVhYGM6dO4egoCBMnDjRIm3hwoXs2hJ24Cpi04OViIULF5Lz58/blKusrCRffPEF+c9//qP1EC6NLWddq1ev1hwnTh83bpyFw7KsrCzJPLSgdn8lOTW6KYXVbNuDq+rmqF5q89Cql1S8K+hWX19PevXqRQCQQ4cO2TwOTWuvzjwJUda9NdW9Vhln2FkpfVqLLRLHcTvrGHJ5ZGRkEACkY8eOinLcFjmnbWSr7ktKSizaRtnZ2fy6VqA9tR/UymhZVEXLjzo6d6Xrsb3ao+Z4T1u9ejX52c9+xur/2LFjLlX3WuJaS/th+fLlNu/DuSKn5fS3p8G5eHnDf5xAXipey8/Ly8vCYbjWRRJa+kdtl7315kxbpHmkFB1pYgsfHx/85je/0Zo9B9ynFKd9YjQakZubC09PT4wePbqli8PhcNo5QifnnJZH6MMF4H6l2ht02XcAuHbtGhulTbl58ybu3r2Lzp07o2fPnpIy6enp3P8PxymIHZ1zmh/hqKgsAJ3ROCKKUg8gCMAoif2Fo6G8vLxQU1Nj85je3t7YtGkTevbsCQA4duwY93XrJNwIIXK+vmxSXFyM//73v8jLy0O/fv0wYsQIDBs2DH5+fs4so0tBh4Xeu3ePDQsVUlVVBR8fH01x4vT+/fvj2rVrLJyamoqhQ4da5aEFqTJolVOjm1JYzbY9uKpujuplq8xqZOTSXFE3vV6PJ598EmPGjGHT/NToZuuebMso6d6a6l6rjDPsrJQ+rcUWieO4nW2a63Hbtm145JFHEB0djdTUVJv3FLdFjrWNbNV9QUGBReP/5MmTGDFiBL+u7SizGpmWeIYIO56E3Lx5E/PmzUN1dbXVi+gyWE6zsZXubHx8fJCVlYXQ0FCXsrPt1R41x3taVVUVxo0bhzNnzgAwrzL20EMPuUzda4lrLe2HEydOICYmhoXnwuyviXZCEVg7NKdUAFDqmdDpdNi/f7+qMgYFBVk8h8RlTktLQ3R0tM18XAWDwWAxfU+Is54ham2RQ6vvzZs3D++99x7OnDmDTz/9FBMnTkSnTp0waNAgi/mv7Yl9+/ZpjhNuE0KQ2+Akzd3dXD1VVVWSeThaLq1yanRTCqvZtgdX1c1RvdTmoVUvqXhX0C05ORmA2cm5nIzS/hxLWlPda5Vx1M4Kw63RFonjuJ11DLk8xCOl1N5THGucUfdSI6X4dS1Pa2s/GI1GRERESC5dPmfOHNYhtQnAMAC+Df+bACwAEABgkUz6XFktlXn11VeZr9dPPvkEx48fh06nAwC89tprMBgM+PLLL9lLqqtej5xGnNV+ENqj1vSeJo5zxfaD0WhEWlqaxW/jxo0Wsu/B3BFFOzJoh5R4pE0dLFe7S0hIwCeffMLuaYPBgMzMTMTExFit9i31E4+KEusWFBTEbERrp6meIXLYtfoe5fjx4zh48CBbZa+qqgrnzp3D6dOnWe9xe0PsOFFNnHC7uLiYDQPt2rUrCgsLUVVVJZmHo+XSKqdGN6Wwmm17cFXdHNVLbR5a9ZKKdwXdpDql7NGNY6Y11b1WGUftrDDcGm2ROI7bWceQy+P27dsAzM9iJTlui2zjjLoXT7sqLS1lq0g5s1xa5Vrbda1WprmfIYWFhTan1i2F5fQc+r9GJCdMr4PZ0bA9o6W6dOnCRhFkZmbi/vvvx7Rp07B161ZkZ2cjKioKmZmNr7yuamc5jTir/SCevueog3nefjDL0c5psS2YC+A0zA7D7wIIhvTIKDcor3Y3ePBgZGZmsntXbpSQWsS6hYaGIjMz02rEZ1JSkoUD+PT0dCxatEj1cTw9PS0W+nBUTg1N9QyRw6FOqeHDh8PTszELHx8fjB49ul37g+nevbvmOOH2zZs3AQCdOnVC586dWaeUVB6OlkurnBrdlMJqtu3BVXVzVC+1eWjVSyq+pXUrKytjHdnCTil7dOOYaS11b4+Mo3ZWGG6Ntkgcx+2sY8jlIR4ppfae4ljjjLqXGikVHBzs9HJplWtt17VaGWc+Q4xGI+7du4e0tDT2LyY9Pd1meSOhfYqHB8wvsvZAO6SBRl1mzpyJrVu3shWNW4Od5TTirPaDeKRUr169nF4urXJtof0g1TktnqrXoyFePGWvDoARwD1Ir3an0+kQFBTEVtZtKjsbGhpqNaLqzp07DnWALVu2zKJTKyUlBWPHjrXa3rlzJ9588027jyOkqZ4hcjjkU+rIkSP44IMPsGHDBofnvrs6q1atwqpVq1BXV4esrCx8/fXX8PPzw7x587Bv3z7cu3cP3bt3R2RkJA4ePAgAiIqKQn19PVJTU+Hp6YnY2FgcPXoUt2/fRkBAAKZOnYotW7agtrYWUVFR8PLywnfffYfly5cjPDwc7u7uyMjIwJtvvok//elP2LVrFwBgyJAhCAgIwMmTJwEA06dPx/nz52EymeDv7485c+Zg7dq1AICIiAgEBQXh0KFD8PT0xNSpU5GVlQWj0QgfHx/MmzcPa9euRX19PQYMGIAuXbogNTUVADB58mQYjUZcvXoVnp6emDFjBnbv3o3q6mqEhYVhwIAB2L17Nzw9PTFx4kQUFBTg4sWL8PT0RHx8PBITE1FcXIy+ffsiMjISO3bsgKenJ2JiYpCfn4+rV68CMC9HeezYMZSUlKBHjx6IiorCjh07AABjxoxBZWUlW7507ty5OHjwIO7cuYOgoCDExMRg8+bN8PT0xKhRowAAp06dAgA88sgjOH78OAoLC9GlSxeMHj0ae/bsAQAMGzYMOp0OP/30EwDzUq1ZWVnIy8tDhw4dMGPGDOj1enh6eiIyMhKdOnXCkSNH4OnpiWnTpuHixYu4fv06OnbsiNjYWHz//ffw9PREeHg4AgICkJaWhtraWkybNg1XrlxBdnY2vL29MX/+fKxfvx61tbXo378/QkND2fXywAMPwGQy4cqVK3B3d8eCBQtY3YSGhiI8PBx79+4FAEyYMAGFhYXIzMxEbW0tnnrqKWzbtg1lZWUICQnB0KFDsWvXLtTW1mLChAkoLS1lDajHHnsM27dvR0VFBYKDgzF69GgkJibC09MT0dHRqKmpQVpaGjw9PREXF4e9e/eitLQUgYGBGDlyJPbt24fa2lqMHj0a7u7urHE5Z84cpKSkoKCgAJ06dcKUKVOwadMmAOalYv38/JivqJkzZyIlJYXdC35+fpg6dSq6du2KvXv3omvXrkhOTkZtbS1mzpyJjIwM3LhxA76+voiLi8OaNWtQU1ODwYMHw9/fH5GRke3ObwKg7DuhpKQEHTp0sNpHHK8UltqWy1cLavJQkpFKsxUnp6eSjFbU7t+UuqnZtofm0s2Vrsff/e53+OKLL/DWW29h2bJlNu+p9urDBbDtx8UZdZ+WlobJkyez9K+++grx8fH8urajzGpknPUMuXPnjuTIBy24AVgB4BWJtDoAFwCMA3ASwFBYdlzVATgHaUfHtjh8+DAmTZoEoFGv7Oxs9O3bF+7u7igsLISnp6dL2tn2ao+cYYvEcVLXeHBwMOuY+ve//40FCxa4TN1riXO19sOlS5esfDKdhnkqrtiBOR0JKRwVNRfmTqiEhASEhobC398fgPnjd1hYGEJDQ5vdzkrJyY0Ik0Kn08FgMCAyMlIyP+H2xYsXER0drTrfzMxMWUftznqGqLZFNtf6U8BoNJIHHniA9O/fn7zxxhskMTGRGI1GR7J0ee418VKjP/zwAwFAHnroITJ48GACgKxdu9YlluNsimWPtZRNS7m0yvElnVtWN7rU6xNPPKFYLqk0W/dkW0ZJ99ZS9/bIOGtJZ1syWuFLOrctO/vEE08QAOTjjz9WlGvPtujzzz8ngwcPJuHh4QQA+frrr8nq1atJZWUl2b59O1m9ejXZu3cv+e6778jq1avJ6tWrSUZGBrl48SJZsWIFWb16NSkrKyO7du0iK1asIElJSaS8vJysXr2arFixgpw/f55kZmaSFStWkNdff91iKetf/vKXJCEhgeV75swZcuXKFRa+ffs2OXToEFm9ejVJTEwkdXV1LM1gMJDs7GxWhoKCAnL06FGyevVqsnHjRkIIIWvWrCGrV68mJ0+eJN988w3bNzc3l5w4cYKsXr2arFu3jqxevZps2LCBrF69mhw7dozk5eWxfI1GI0lNTWVhQgjZsmULWbFiBTl8+DApLCxkadeuXSNffvkl072mpob8+OOPZPXq1WT//v3k7t27rAyXLl0i586dY+GKigqyc+dOsnr1arJ7925SUlLC8k1PTyfp6elMtqSkhOzevZusXr2afPzxx6SiooKlnTt3jly6dImV4e7du2T//v1k9erV5McffyQ1NTUs39OnT5Nr166xcGFhITl8+DBZsWIF2bJlCyGEkBUrVqhayl3p5wGQ/4qWeK8V/ceJloSXS9f6e+mll8jq1atJZmYm+eqrr9h5ou3zP/zhD+STTz4hZWVl7JxdvHiRZGRkMNni4mKyd+9esnr1arJ9+3ZSWVnJ0s6ePUsuX77Mwv/73//IwYMHyerVq8nWrVtJbW0tS0tLSyPXr19nx7l16xY5cuQIWb16Ndm8eTMhhBC9Xk9WrFhBfvrpJ3Lx4sV2Z48Iafr3NEIa39Xo7/PPP281z1hxnKu1HwwGg9V9WCm6/+mvEiCnAFLe8C+8zw0Gg8u0Z+XksrOzyfLly4nBYLD6CeOzs7M1tY3E+Z44cYKdlz179ljk66huznxPc2j63vz585Gfn48HH3wQycnJ+OKLL1BcXIyuXbti1KhR2L17tyPZt0vo9L2ePXuy+aiVlZXw8vJqyWJxOE2KlD8pDofDaUnE0/c41ixevBiLFy9mX0Iff/xx9iV01qxZTE6v1yM+Pt5i39OnT7O4adOm4fbt25g+fToAID4+Hnq9HkOGDAEAhISE4L777rPYPywsDO7u7oj38QGWLQOysoDwcPRfuhSYNw+AeQSyEHEZQkJCWFy3bt0wYcIEliZcsOfKlSsW+/bs2RPjxo1jus2fP1823z59+iArK4uFY2Njodfr2QgcoWzHjh2Z7p6enpgzZ45i+YcOHcq2hVM7xPkCwKBBg9j2ww8/zMqu0+ms8r3vvvug1+vRqVMnPPTQQ4r5CsOTJk1CTk4OYmNjWVpERASWLFnC5OdC/ep4Opj9RcUCqAXwSwAlMPuIkpqesxnAPIV0rXTv3p3pZjAY2HZaWhrS09Nx7949dOvWDX5+fqzeBg8eDMA8U4EyZcoUi3zF53vAgAEAzPXx4IMPKsqGhYVBr9cjKCgIEydOtEhbuHAh9Ho9Ro8ejeLiYju15tiipqbGIuzIKECOMn6wdl4OmEdGpcO+EZCuQmhoKPr16yc5rU/s7+rYsWMO5RscHIz8/HwEBgaymUWuhkOdUufPn8fx48cxYsQIFnf9+nWcOnUKZ8+edbhwrRGpC8tWnHCbrrzXs2dP1kFFlx51drm0yqnRTSmsZtseXFU3R/VSm4dWvaTiW1K3+vp6HD9+HIB1p5Q9urUHhNOJAWD9+vVW04k9PDxQUlKCbdu2AWicTlxaWgq9Xs+mE5eWlmLXrl144IEHsGXLFjbV08vLi8nOnj0bnp6e0Ov1qK+vR01NDTZs2ADAvunENF+l6cQdOnSAyWTC4cOHAVhOJ6ZD5jdu3MimE/fv3x96vR4A2HRiepz4+HjU1NRAr9ejd+/eiIyMZGkhISE4c+YMLl68iNLSUtTW1iIpKcmu6cSRkZGsDErTiQFzI3bzZvOrmHA6cWlpKfO5QqcTjxgxguVLpxPT8k+bNg06nQ56vR5+fn6Iiopish07dsSNGzdYPefn59s9nTgqKgqbNm1CVVWV4nTi0tJS1NfXS04nLi0txdWrVy2mEw8fPhzbt29HcXExgoODMWjQIFb+6OhoBAUFsfCQIUOwa9cuFBUVwd3dHeXl5ew8jBw50u7pxOHh4Th06BByc3MREBCAWbNmYd26dbh8+TIAoLa2Fnq9HqWlpSgsLLSaTlxWVga9Xo+ePXvacTe3D5zxjKX3EqW0tBQPFBYCf/gD4OZm/nZ+7hwwfz6wcSPrmNJaLq1yvP2grJvQGb3YNwxdHW8erDumOgLYCuBBAJUAngDwY0OaktPyzTbStSDsyBPqNXPmTHz44YdISkrC66+/LiljD011PXIacfQ9DbC8LgDze5qr1r0W3VzhPU28eMUHMHdOA8oOzIVQ31F06p64DM1tZ5Xkmus9rXfv3sjPz0dOTo7qTqmmeobI4VCn1JgxY6wunr59+6Jv376YO3euI1m3Wurr6zXHCbeFI6Xo6KiqqirJPBwtl1Y5NbophdVs24Or6uaoXmrz0KqXVHxL6paVlYWioiL4+vpi5MiRiuVSm9bWUTM6IT09HR06dLD6ygqAfcmdNm0a0tPTWTg+Ph7p6enw9/dHYWEhunbtin79+uHy5ctwd3dHREQErl27hnPnzrEOJjoXvX///ix/W6MTJk6cyI4pNzohPT3d6os8HZ1AHeIKRyekp6dbyPbp0wd+fn7sOGPGjGHbwjJQ/UeMGIH09HSHRieIywBIj05IT0+XHZ2Qnp5uNTpBKl/hORw0aBDbFsqmp6ejT58+rF6Dg4MRHBxs0fn7+OOPy+oaEhLCnGemp6djnuglXygbGhqKqKgopKenw93dHY8++qiVbHp6OrtOhg8fzvKdPXu2rK51dXUW542OpElPT4efn5/FeQDsG52Qnp5u5cMiPj4eb7zxBgDz/UKvO6nRCRMmTMDgwYP5yAQFnPGMlXJ0Hvj5540dUoD5380NeOcdVZ1SvP3QfO0HwDxCSriMuzvMHVTvw9yRREdRRTTI+cLstPhRAIeVVXE6Op0OnTp1YmGhLhMnToSfnx/y8/Nx4cIFZoNctT3LacTR9zQAVraoNb2nieNc4T3NaDSisLAQ165dsxh1NgPA4obttwHEwXoEZEJCArv/rl27hn79+rG2qXDxhJa0s0pyzfWe1rt3bxgMBphMJlXlVSqbWhmt51frIhYWvPTSS3j77bdx9+5dR7JpU5w+fdoibDQasXnzZqSlpVn8hHGbN2+G0WgE0Ngp1atXL9bhV1VVZZWvo+WyR04qTRynFFazbQ+uqpujeqnNQ6teUvEtqRudujdmzBiraar26MYxY2/d7927FxEREYiOjsZjjz2G6Ohoi21hXEREBLNdziibWhk196s4Tk7v1miLxHHczjqGXB63b98G0Dh9T+09xbHGGXUvniJTWloKr2vXGjukKIQAmZl2l0urXGu7rtXKOLv9AJhXzxMv4+4OYBDMq2Ztgnn0lA7mDikAeAfO75D63e9+B4PBYPFbvny5RTgzMxMFBQWSunh7ezOnw+vWrZOUsYemuh45jTij/SBePbI1vaeJ41q6/UAdftP25aJFiwAAgQC+aZD5GOZOqFEwT+cbhcYpuYMHD0ZUVBSioqJQXV2NqKgo9rHUVeyskpyz7aycbiEhIQCAnJwcGyW1XTa1MlrPr0MjpR577DEAwMCBAzF37lyMGzcOo0aNwtChQ+Ht7e1I1m0CoWd94Xx6ijDu3XffRWZmpuxIKQ6nrUKn7sXExLRwSTiAebUMtf4RKisrUVhYKLtyB4fTWqmurkZpaSkAy2XhOS2H1Eip4p490eXGDcuOKTc3QDBijuMaPATplw7qgbdPQ1i8wtbTAFY6sRw6nQ6DBg2ymloi9uECKPtxGTlyJFJTU3knUDtE7FOKv6fZT2FhoUWbk46WHArzFL0bAN5omaK1KXr37g1AW6dUc+NGiPgTk3qys7Nx5swZnD59mv1fv34dnp6eiIiIaFN+pYQ+XLKysvD1119b+XDp3r07hg0bhn379gEAfHx8rJxfKrFp0yY89dRTqKioQGpqKt5++21s27YN8fHx+OKLL5hfE3t8uBw+fBgeHh6KPlwGDBiAwMBA5mdD6MPF09MTs2fPxs6dO5kPlwEDBmDPnj3w8PBgPlzS09Ph4eGB+Ph4JCYmoqSkBGFhYYiMjMTOnTvh4eGBmJgYFBQU4MqVKwCA2bNn4/Dhw3b5cImJicGWLVvg4eGh6MOlS5cuGDduHJKSkgBY+nABgIceegjp6enMh8uMGTOwZs0aeHh4MB8uR48ehYeHB6ZNm4aLFy8iOzsbHTp0QGxsLBISEuDh4YHw8HB07NgRqampbNqJvT5cFixYgHXr1qGurk7Rh0tdXR2efPJJSR8udXV1GD9+vIUPl8ceeww7duxAeXk5goODMXr0aGzduhUeHh6Ijo5GTU0NTp06BQ8PD8TFxWHfvn0oKSlBYGAgoqKisGfPHtTV1SE6OtpuHy4zZ85Eamoqbt26hddffx03btzAK6+8gujoaAwaNAhdu3ZFcnIy6urqMGPGDCsfLmvWrEFtbS0GDRoEf39/REZGtrtljwHlpY/Ly8vh5+dntY84Xhw+duyY1fQkJQwGg+Z543JlUysjlWYrTk5vJRmtqN2/KXVTs20PzaWbUlhq21G95MqVl5eHnj17ws3NDbW1tcyHldI91V6XYAdsL8PujLr/+OOPsWTJEvj4+KCqqgrTpk3D1mefhc+TT1oXaNMmQIUbifZ2XWuRsfcZItYnIyMDcdHRMADo1iAj9g3zFID/ApD6nF0B8+gIIV5eXti8ebOFH7ebN2/i7t276Ny5M3r27ImKigr4+vpCTFBQEIKCghx+hly6dAnh4eFwd3fHrVu30LVrV5eys+3VHjnDFonjxOmHDh3C5MmTWfi3v/0tPvzwQ5epey1xLd1+SEtLY9PnxT7nCMwjK6V8zlGEbVBXtbNKcs6ys7Z0++677/DMM89g6tSp2LNnj9N0c6otsrnWn0aKi4vJ4cOHyeeff+7srF0CW8sa7tq1i21LLWup9Dt69CjbvnfvHpk7dy4BQF5//XWLfO1B7f5KclJp4jilsJpte3BV3RzVS20eWvWSim8p3YqKitg1X1BQYLOcUmntcRl2ipLu9tb9559/rsluGQwGzeVuiuvaVpyc3q3RFonjuJ11DKk8zp8/TwCQrl27KsoJ47ktUtc2kouzVfdvvvkmAUCCgoIIADJ+/HizzMaNhHh6mpcJ79CBkE2bVJe7vV3XWmSc1X5IS04mPzUs4Z4KkAUyy7ifBkidaMn32gaZhIQEi+XSv//+e6frZs8zZOjQoQQA0ev1No+pBmdej+3VHjnDFonjxOn/7//9P4t20C9+8QuXqnstcS3dfhC+K18ASL2MDZBqf3p5eZHs7GzZ47iKnVWSa673tH379hEAZNCgQarKq1Q2tTJabZFD0/ek6NChAyZNmsSWum1vUB8U9kBXZfLx8UGHDh3YylpVVVUO5aulXEpyUmniOKWwmm17cFXdHNVLbR5a9ZKKbyndTpw4AcA8Bbhbt26SMkr7c+Sxt+7v3bvXZGWSO6ZWGTX3qzhOTu/WaIvEcdzOOoZUHkVFRQAa/UkpHYvbIts4o+7pFA+6EENpaalZJj4e8PEBamuBgQNVjZBSKpdWudZ0XWuRsfcZkpmZiaCgIHTevx8jPvoI3fLz4Q6gGOYRD0YAayXyXQbzKAmpFbb+2uA3RngMWzTHM2TWrFk4f/48duzYgYULF7qsneU04oy6p+9rlNb0niaOa+72A3Vq3nn/fvT4178w4vp1nANwGcBgWPuc84DZuTlF6Nj82LFjFu4jXNXOKsk113sanb6nxdF5Uz1D5HB6p1R7xxHfE7du3WJ5uLm5oUOHDgDMxs5RnxZq91eSk0oTxymF1Wzbg6vq5gw/JGry0KqXVHxL6Xb06FEAsFgNTKlcatM49td9cwzzb4rr2lacnN6t0RaJ47iddQypPGhjSs055LbINs6oe+pTqmvXrsjOzkZpaalZpq4OoCtB5+U5XC6tcq3putYiY88zxGg04pVXXsGcmhqraTgdAUTD3CklxWaYO63egvUKW3/VUG41Ms56hsycORMffPABkpKSUF9f73Q7S1/gxdy+fdvC2bZwJVxuj5RxRt2L/Sa3pvc0cVxzth+or+WZlZUW9mEIzD6kgMYpe5Q6mG0BZbCgg5q+N8uV01XsrJJcc72nUUfnJSUlKC4uVtXWb6pniCyqx3BxCCG2h6CVl5ezba3T9/72t78RAGTChAmEEEKWLVvGhoUK87UHtfsryUmlieOUwmq27cFVdXNUL7V5aNVLKr6ldPvZz35GAJCvvvpKVTml0trrEHVClHW3t+6PHTvW5NP3muK6thUnp3drtEXiOG5nHUMqj//85z8EAJk1a5ainDCe2yJ1bSO5OFt1/8tf/pIAII8//jgBQLp3726WuXu3cbqHhwchdXWqy93ermstMrau9+zsbGIwGMixY8fYtLqEhAQCgFzTOA1H63PGVZ4h1dXVpEOHDgQASUlJcaqdzc7OJjqdTtX50el0bBpTe7dHzrBF4jhx+tdff21x/h955JFW84wVxzVn+4G+F5+WmKpbD5CbAlsh/I+TsQWtxc4qyTXne1rnzp3N0yQvXHCozGpltNoid21dWBxbbNmyxe596dcQOm0vKysLgLkH3pF8tZRLSU4qTRynFFazbQ+uqpsjehmNRqSlpeEf//gH0tLSZH9Go1GzXlLxzakbZePGjcxZv9zKe/boxjFjb91Tx/tNiZq6c/R+FcfJ6d0abZE4jttZx5DKg46UEk7fU3tPcaxxRt3TkVLFxcUAgLKyMrNMQxiAedRUw9RLe8ulVa41XddaZJSud+Ey7hMmTMB70dHwiI7GvEWLcA1AX9iehuMIrvIM8fLywqBBgwAAO3fudKqdFa9KpgRdCVeqnK2VuXPnokuXLmyld2fhjLqnq0ZTKisrW80zVhzXEu2HcFiusgmY7UUnmEdLnoN5gYNzMDs/lzt6a7GzSnJq452hGx0tpXYKnzgP+m4q/Em9pxqNRtkyKOGU6Xvjx4/HlStXkJ+f74zs2i30gdK5c2cA5tVFAKh+KHHaBrSxR+t9yZIlsrLe3t546aWXECGx/HVQUFCTldEZ3LhxA2VlZejYsSMiIyNbujgcDofDkJq+x2lZ6DORujYoKytDfX09UFJiKZiXB7j486+1I+wwEa+YFSazD4HlNJy2wsiRI/HTTz9hx44deOmll1q6OG2Gl156Cb/4xS/wv//9r6WLYkV1dTUAwN3dHfX19aiqqmrhErUusgAMh/Q0vc2QX2mP4xi9e/fGhQsXkJOTo3lf8bupEPF7qk6nU+X3T4xTOqUWLFggOee5PTJ8+HC796XnkDpw69u3LwDzSClH8tVSLiU5qTRxnFJYzbY9uKpu9uql5etYdXU1VqxYgRUrVlil6XQ6/Pjjj5L7tZRuQsrLywEA999/Pzw8PFSVU20ax/r8UN8Unp6eFr4oxOEuXbo0e9m0yqi5X8Vxctd4a7RF4jhuZx1DKg8pR+dyx+K2yDbOqPuEhAQAYCNTACA8PNxypBQA5OcDQ4dCDe3tutYio3S9C1/Cl6KxQwqwHiEFQfwymyWyRqfTWX1kc6VnyMKFC/Hvf/8bKSkp6NOnj81yKdFc9d4amDx5cpOM3HZG3dOPFZ06dcKdO3da1XuaOK4l2g97AIxAo/8o4aIGjuTrqnZWSU5tvDN00+rsXJiHPSM3tZ5fp3RK8S8DjdDRTfZAHbb16NEDAODr6wvA3CnlSL5ayqUkJ5UmjlMKq9m2B1fVzVG9HKWyshKnT5+W/NKfnZ3NGpVBQUEtotuZM2cAyDs5t3Wclj6/ro7w/Ch94ZDaz8fHR9WXP6mXBa1ls0dGzf0qjpO7xlujLRLHcTvrGFJ5SI2UkjsWt0W2cUbdCx2du7m5gRBiHrHQ8IGDocHZeXu7rrXIKF3vwudDBKyn4oghAK7DehqOcCUtOYROvG2VTa2MM58hvXv3xvDhw3H27FmcPHkSEydOtFk2LeVqiTwc5fDhw1ixYgUMBgNu3ryJzZs3Iy4uzkJm1apVWLFiBfLy8jBixAh89tlnGDt2bJOXzRl1T0dKdezYkXVKtZZnrDiuJdoPP2v4z4d5yp5wUQMlxG3O1mJnleTUxjtDNzp9T+1Iqea6pincp5STMRgMbDsoKAg6nU7VfjqdDnfu3AEA3L17F0BjT2ZVVZVFvo6Wy145qTRxnFJYzbY9uKpuSseTmpdLf+np6cqKaOC1115DdHS01W/evHlsOyIiArt27XKabmo5ceIEAOVOKa11xmlEeH60fOGoqanBxo0bYTAYsHz5crz55pss7c9//jOWL18Og8EAg8GAzMxMq5cFrWWzR0bN/SqOk7t/W6MtEsdxO+sYUnlIjZSSOxa3RbZxRt1TG5aTk4OAgAAAQEpKivVIKQ2dUu3tutYio+Z67wRzh5MUNL4O5tEQL0vI0JW0lH5SzxhXe4bMmjULALB5s2MTj5qr3puasrIyjBgxAqtWrZJMX7t2LV5++WUsXboUaWlpGDFiBKZPn46CgoImL5sz6p76zKGj/FvTe5o4rrnbD9MARAEohXnVPT8AoyDdIZWQkMDam8uXL7dqc7YWO6skpzbeGbppHSnVXNc0xSkjpdoDq1atwqpVq5gT8vXr18PPzw/z5s3Dvn37cO/ePXTv3h21tbXQ6/UAgKioKGzbtg0//vgjunfvjps3b+Lzzz9necbHx2Po0KEoKCjAnDlz8PjjjwMw98AXFxez6U35+fmor69n+Q4ZMgQBAQHMSfT06dNx/vx5mEwm+Pv7Y86cOVi7di0AICIiAkFBQTCZTNDr9Zg6dSqysrJgNBrh4+ODefPmYe3ataivr8eAAQNQWVnJjjN58mQYjUZcvXoVnp7mS2Xjxo2orq5GWFgYBgwYwPKdOHEiCgoKWDg+Ph6JiYkwmUw4cuQIIiMjWVpMTAyKi4vZcerr67Ft2zaUlJSgR48eiIqKwo4dOwAAY8aMQWVlJc6dOwfA7Pjw4MGDuHPnDoKCghATE8PyHTVqFADg1KlTAIBHHnkEx48fR2FhIbp06YK6ujp2zGHDhkGn0+Gnn34CYH4RP3DgAPLy8tChQwfMmDGD5RsZGYlOnTqx8LRp03Dx4kWYTCYkJiYiNjaWpXXs2BEZGRl4//33UVBQgKCgIOTk5ODmzZvw8vLClClTsH79enz44Yeora11+LqcC/PQ+XCY52gvg/a52JWVlTh16hTef/99DB48GLW1tTh58iSuXbuGyZMnw2Aw4Nq1a+jUqRNqamqg1+thMpmQnp4Od3d3NvVrzpw5SElJQUFBATp16oQpU6Zg06ZNAIChQ4fCz8/P/AIBYNSoUbh16xbc3NxQVFSEuro6rFu3DoB5akbXrl2RnJwMk8mEwsJCZGRk4MaNG/D19UVcXBzWrFkDk8mE1NRU+Pv7O3weOZb07NkTUVFRyMzMtPiiEhgYiJCQELYcL4fTVuE+pVwPOlLKy8sLAQEBKCkpMXdUiX1Kcf+mTUrvlBQMWroUFTB3OPk2xNMpfHQqznUAPaB+FERrZubMmfj73/+Os2fPoq6uTtYlQXth5syZmDlzpmz6ypUr8fzzz+O5554DAHz55ZfYvn07vvnmG/z5z3/WdKyqqiqLkXvF4k7qJoCOlKLtT+5TyhrqMgIArl27xj66v9GQ/i8ARTbyoJ3WAOz+CMppROtIqebGjRAi95GDI0FxcTE6deqEe/fuoWPHjpLp4nga9/bbb2PZsmVs/5iYGCQnJ6O4uBg+Pj5sVNW1a9fQt29fbNq0CfPnz8fIkSNx6NAhyeNpKbea/ZXklHRTE1azbQ+uotvdu3dVT5FyBmLnovR/HrR3THl7e7OHrBI+Pj7IyspC586dHaozem0PHz6cTeOTQk2d2bon2zJKugvPXVpaGqKjo1XnazAYEBUVheLiYvztb3/D3//+dwDA0qVL8fLLLzt8ntXcs47er+I4ufu3NdoicVx7srPibUf1kitX7969Wcc3vXfkjsVtkWNtIzXh4uJijBs3DhkZGcyh9KVLl5CUlITpmZmA0I3E008D332nutzt6brWIkPThC+XnffvR//XXgNxc4Ob4PXhG5hHP0RAWycUfdZoxdWeIb6+vujWrRvu3buHEydOYNy4cZp1Eh/Dkee2K9kjNzc3i+l71dXV8PPzw4YNGyym9D3zzDO4e/cuEhMTWdzBgwfx+eefY8OGDbL503crMV9//bXk4IHBgwfj0KFDAMyDB+rr65GamgpPT0/Exsbi6NGjuH37NgICAjB16lRs2bIFtbW1iIqKgpeXFwwGA7744gscOXIEkyZNwpEjRxAYGIjMzEzs3r0bgH2DBw4dOgRPT0+bgwc6d+7MRqCIBw9Mnz4de/bssRg8sHv3bnh6erLBA1lZWaitrcXTTz+NxMREFBcXo2/fvoiMjMSOHTvg6emJmJgY5OXl4dq1a6z8ycnJqgcPrFu3Dr/61a9QU1NjUSf3AzgOoBpAfwC2xuts2bKFDdCYNGkSLl26ZDF4QK/Xw9PTkw0eOHLkCDw9PdnggevXr6Njx46IjY3F999/D09PT4SHh8Pf3x+nTp1CbW0tpk2bhitXriA7Oxve3t6YP38+1q9fj9raWvTv3x+hoaHMt9kDDzwAk8mEK1euwN3dHQsWLGB1ExoaivDwcOzduxcAMGHCBBQWFjKH3zNnzsThw4dRVlaGkJAQDB06FLt27UJtbS0mTJiA0tJSXLhwAQDw2GOPYfv27aioqEBwcDBGjx6NxMREeHp6Ijo6GjU1NUhLS4Onpyfi4uKwd+9elJaWIjAwECNGjMD+/ftRW1uL0aNHWwwe6Nu3L8aPH48OHTpgzZo1ioMHZs6ciZSUFHYv9OjRQ9P02vfffx+9e/fG4MGD4e/vj8jISNu2iDQBdXV1JDs7uymybnHu3btHAJB79+5Jpu/bt0827o9//CMBQB577DECgHh7e5OKigqyb98+cv36dQKA+Pj4kL179xJCCPnwww8JADJ48GDJfLWgdn8lOSXd1ITVbNtDS+m2evVqYjAYiMFgIF988QVJSEggMI9YJwDIXICcBkh5w/9clWm2ZPoD5DWAlAKEiH61ADklkZczfwaDweE6e+WVVwgA8utf/1pRTk2d2bon2zJKugvPncFg0FzHNI8XXniBxb/yyisO1724bPbIqLlfxXFy93NrtEXiuLZsZ23p01TXo06nIwDItWvXFOWE8dwW2dc2UhPet28fCQsLIwDIqlWryKhRowgA8re//Y2Q994zPwN9fMz/Dz+sutzt7brWIrNv3z6SnZ3N7gU0tEXqRO2OOgfaHfRZ0xK6aY2z9QyhbfulS5faLJuacjny3CbEdewRALJ582YWNplMBABJTk62kHvttdfI2LFjWXjKlCkkKCiI+Pr6kpCQECt5SmVlJbl37x773bhxw2FbJI4Tp0+ePJkAILNnzyYASFBQUKt5xorjmqL9IHftJjbYjK/tsA+t2c4qyamNd4ZuhYWF7NxWVFRoKrM99kirLXJo+t5///tfrF27FtnZ2ejYsSMmTZqEP/3pT/D09ES/fv3YVLf2RL7EsHEaR4eUjho1Crt370ZxcTHS0tKQn58PPz8/AGYn53ROdWlpKQDzsFCpfB0tl1Y5Jd3UhNVs20NL6GY0GvHMM89YfQWgiEcxDWsIPwmgUiZNOMJJbv+rMH9dkMMD5i+VTcnNmzdx5swZdO7cWVFOyjkp5fjx4wCU/UkB2uuM04gzzk9+fj7zrQOYbZKz8nVERs39Ko6Tu59boy0Sx7VVOysOS203xfVYXl7ORrwKp+/JHYvbIts4o+5pnZSUlDCfUnl5eQD13TlgAHDxoqbpe+3putYqk5+fj86dO1uM/g6HtTNad9jX7rB3oQxaNkdkmuIZMmvWLGzYsAE7duzA22+/bbN8asvVEnm4AnTEiS18fHzg4+OjOl9n1H1Jw5Rhd3fz3dCa3tPEcc3RfgDM/qMehfm95gMV8mL70JrtrJKc2nhn6Na1a1fodDpUVlYiNzcX/fsrvVE2X7uRYlenVF1dHebNm4ekpCTMnj0bjz76KO7cuYP169fjX//6Fz777DN7sm0TSA1Lo3H37t0DYF5CNDIyEidOnMCxY8cQGRmJ3NxcAGZfLlSevvRXVVU5PPRW7f5Kckq6qQmr2baHltCtsLBQtkMKAFbC3FVMG2/0fzWAWom0egBfAZjUELcIlkss0//+DfsfBDAIQC9YNhDrYB4635TMmzcP1dXVWLJkiaKcTqeTnANeVVWF1NRUALY7pbTWGacRZ5wfurIMpayszGn5OiKj5n4Vx8ndz63RFonj2qqdFYeltpvieqQdsZ6enujQoYOsnK14TiPOqHvqU6pLly6sU8rNza3R0Xl4uLlTSoOj8/Z0XWuVEae5A6hAow8pipp2R0JCAgoLC9l0p0mTJil+uLKFKz5DZsyYAQBITU3FrVu30K1bN5tlVDoeXSxJjUsI4Qu8q9ujoKAgeHh4SL5k09XHmxJn1D0ddEE/WrSm9zRxXHO0HwCAegrbCLMPXCF0FU5qGwDrD9ut2c4qyamNd4Zubm5u6N27Ny5fvgyTyWSzU6q5rmmKXT6lPvzwQ6xcuRIHDhxARETj95H6+nqsXLkSS5YsQW1tbZscKWVrjnZNTY3VEog0btq0adizZw++//575OTk4I033kBcXBzWrVuHf/3rX3jxxRcxb948rFmzBl5eXjh9+jRGjRqFoKAg5ObmOrQ0o1S5tMop6aYmrGbbHppaN+pPoba2ljl8T09Px6JFiwBYOhvPgbnTaLDd2ihTDXNH1G00jqaiTkXp/1y4jkNRKX8Rx48fx/jx49GtWzfk5+ebXypkUFNnruI3oSVQ0l147uz1TVFTU4Nx48axxQOovXJ0mVg196yjtkgcJ2ebWpMtkotrC3ZWTVhq21G9pI555swZjBw5Et27d7d4cZI7FrdFjrWN1IRramoQEBCA6upqXL16Fa+//jrWr1+PTz75BH/46ScgIQF47TVgxQrAzQ2orgY8bX93bU/XtVaZmpoanDt3DtHR0XAD8G8Av2xIox/N1LQ76Aeqnj17upRuTfEMGTlyJM6cOYPvv/+etREd0Yu2P9PS0vD8888jKCgISUlJqKurY+1RwPIF3tXskdinFACMGzcOY8eOZYMYqE+eF198UbOjc4pwQaqsrCxZn1KjRo1iK05Tn1KnTp2Cm5ubhU+pzp07Y/LkydiyZQsIIRgxYgTzKfX2228jKysLL730Ej755BMA5pHkW7duBWCfT6mjR4/Czc3Npk+p4OBgJCcnA7D2KRUXF4etW7da+JTat28f3NzcLHxKEULw5JNPIjExEWVlZejTpw8iIyOxa9cuuLm5ISYmBkVFRcwfUlxcHPbt26fap9TXX3+N3//+9+YwgOUwf0h3A/AqgI9Edbd8+XJERUVhwoQJ2LZtGwDrBakefvhhnDt3zsKn1Lp16+Dm5sZ8SiUnJ8PNzY35lLpx4wb8/f0RGxuL1atXw83NDeHh4ejatStOnDgBQgimTJnikE+pDRs2oKamxqZPqXnz5mHXrl1WPqUIIbj//vutfEolJSWhtLSU+ZTatm0b3NzcmE+pM2fOwM3NDXFxcTh48CDu3r2LwMBAjBs3Djt27AAhBKNGjbJakGrixIk4e/YsXnvtNbz77ruKPqXobC57fUqFhYUxH15N5lNqyJAh5Pvvv5dN/+CDD4ibm5s9Wbs8tuZFrl69WjZu7Nix5jm1iYnk7bffJgBI9+7dyQ8//ECWLFlCAJDFixcz+ZUrVxIAJCAgQDJfLajdX0lOSTc1YTXb9uAs3bKzs5mPKIPBQJYvX062bdtGvL29ZefMzm2YH10v4WNB7HehFiBnAJIh45MhDyDLAfJ+w7bU/mK/DXMb4sob/uPs9OvQVD8pfxHUV1p0dLTDdUaI6/hNaAmUdBeeO3t9U6xevZr5cQFApk6d6vD9Ki6bPTJqbJE4Ts42uaIt0hrXmuysrTitz5CmuB73799PALM/RyU5cTy3Rfa1jdSEhT4bv/zyS/Lcc88RAGThwoWEPPqo+Tn5z38S4u5u3r55U1W529N1bUtG3Aba8OSTpKhPH1IOkFuCdsgKhXZHQkICWb58uUU7ivqYbUnd1KQ54xkSGxtLAJD4+Hib5VNbLkLM71UAyLx58xTlhGktaY9KSkrIqVOnyKlTpwgAsnLlSnLq1Cl2LaxZs4b4+PiQb7/9lly8eJG88MILpHPnziQvL8/hYzvDFonjxOl9+/YlAMjvf/97du1/++23DpW7LbUfaJtT/I5E/8V+dIVtTkd0c1U7qySnNt5Zuj311FMEAPnggw80lVnsX1Dpp9PpSHZ2tmZbZNf0vStXriiuLPHaa6/htddesyfrNo1w+l7fvn3h7e2NgoICFBQU4ObNmwDM0/co9GsJX2q06SksLLRaOW8ugNkA7sI81JSu7UFHRWUBoLUlHutzG0A3WI9iWtogKzXC6Tdo/NL4k0iGuLnBgxDU/uUv8P7wQ7ZS3mZoX2mvpaFfeMLDw1u4JBw1iKfvcThtndu3bwMAAgMDW7gkHIpwury3tzebvldZWQk0+HdBly5At25mn1J5eUAzTAVqKxiNRos2kNivJZ2y9ykApdb94MGD4e7u3m6XcR8xYgQSExOxa9cu1NXVwcPDwyn5njhxAgBw//33OyW/piY1NRUPPfQQC7/88ssAzCvsffvtt1iwYAFu3bqFt956C3l5eRg5ciSSkpIQHBzcUkXWBG2D+/v7s7ja2tqWKo7LshSWrkjcYH6veQut792lrRASEgIAMJlsrX1oSWhoKDIzM1FYWIhNmzZh+fLlGD9+PGbPns2mLlPoyM1jx45pOoZdnVL+/v64desWBg4cKJl++vRpfPrpp/jmm2/syb5VM2TIENk46ui8Y8eOGDVqFKKjo3H8+HGUlZVZdEpRefpfU1ODwYMdmxAmVS6tckq6qQmr2bYHZ+jWvXt3qw4pYYOMOhqHIG44rDujKIEwOy5/C9JLJCulAWZjTWWGe3vDffBgYOlSjJ47F5d+/Wu2PDMAXLp0yepeFE4vbElu3rzJho0CACGELcUbHh7O0uR8S2i9HjmNCM+PFt8U3t7ezDdFeHg4s1uAeXi6M867mjwctUXiODnb5Gq2yFHdXNnONsUzpCmuR+pTSujkXOlY3BbZxtG6F/q+GDFiBLKyzF5JAgICgBs3zAkdOgDBwY2dUnaWS6tca7mulWQKCwstng/il0k0hB+CbVxNN7VpzniGxMbG4tNPP0VRURFSUlIQExNjs5y2ykAIYYvD0E4pV28bTZ48GcSGd5gXX3wRL774YjOVqBFn1L1UvC3/PPaUS6ucq7UfpBZGUFqQqa3aWSU5tfHO0q13794AgJycHBslts4jNDQUoaGhbOppVFQU5syZg+HDh6va3xZ2dUo9+OCD+PLLLyWdFOfl5WHhwoW4dOlSu+yUol/vpOKEI6UAs5Pn48eP4+LFixadUlRe2CDWsrKE2nJplVPSTU1YzbY9OEM3X19L153iBpnQqAp7/JVQGsWkZoQTlTEcP27hl4kaBUrnzp2tHoZaOyHoVx9nQ52iS7Fs2TIsW2YefybnFF3r9chpRHh+hF84cnJy0Lt3b4wbNw61tbXw9/fH4cOHmWx5eTmrh/r6eos8S0tLnXLe1eThqC0Sx8nZJlezRY7q5sp2timeIU1xPcqNlJI7FrdFtnG07qn/HE9PT3Tu3JmlVVdXN46U6tjRPDrq7FnVK/C1p+tajNFoxPXr11FbW4v09HSLtAjYv8qeK+hmS6YpniFGoxE5OTkYM2YM9uzZg2+++Uay7a7k4F2qDDdu3MDNmzfh4eHBfEPytpH9OKPuads6MDDQaX7S2mL74QbMHVNClBZGaIt21pac2nhn6UY7pdSMlJLL4+rVqwCAAQMGONUW2dUptXTpUsTExMDNzQ2vvfYa7rvvPhQVFeHHH3/Ee++9h7CwMFy6dMmerFs9J0+etOogOHnyJEJDQ1FeXg7APFJqz549GD9+PD766CMcPXqUTdHr2bMny+P06dMsj+TkZIdGS0mVS6ucnG7COKWwmm17cIZu58+ftwgPhnWDTAvZDuwrxMvLy+aSyVJ60U6IhIQEq2GVAJCUlMTib968iTlz5jipxJao7eyqrKxEYWGhVUNN6/XIaUR8fmhnZmZmJoYPH86GmpeVlWHYsGGsQaXX69k+ws4qwNwp5YzzriYPR22ROE7ONrmaLXJUN1e2s03xDGmK65F2SolHSskdi9si2zha99T5qq+vL06ePMkauzdu3Ghcfa9Dh8YpeypHSrWn61qI1HS90zC/QN4EIPV6rXZ135bWTY2Ms58hnp6eVi4gvv76a3z99ddWx5b7CCdXBjp1b8SIEfDz87NLt/aA0NE5AKxfv17S0Xlubi5zQE4dnW/fvh0hISEWjs4LCgrwwgsvYMuWLTCZTJg5cyZzdE5dGRw/fhweHh6oqanByZMnzfYI9jk637RpE0JCQmw6Or9w4QLLV+zovLa2FqdOnbJwdE7zFTo6N5lMePXVV5GYmIhLly5h3LhxiIyMZLIxMTHYs2cPc0pdX1+PixcvSjo6DwkJQV5eHi5fvgwAeOihh7Blyxbzfg11Q9A4dc8Dje5QKElJSSgoKEBhYSHTTezovKamBtnZ2RaOzml5qaNzGqaOzk+ePImBAwciNjaWpYWHh+PMmTM4efIkTCYTnn76aYccnW/ZsgU9e/a06eicEILz589bOTo3mUyYN2+elaPzrVu3Ijg4mDk6p+Wnjs537tyJkJAQxMXF4ccff0T37t0RGBiIgoICptvs2bOtHJ3n5uYCAC5fvoyqqipFR+c7duxAYGAgAgICMGvWLKxbtw5A4ztzTk4ONm3ahGeffRYZGRm4ceMGfH19ERcXhzVr1iAnJweTJ0+2mOaqhF2dUsOHD8fOnTvxi1/8AgkJCY2ZeXripZdewu9//3uEhYXZk3WbRTgFho6UosN6qREDgF69erEvVsKVNYT+FDiOQVczoXTevx8/X7kSfwJwFUAxAG+J/ehAZOEIKebzqSGe/r/sQPno0qgAcOzYMbv9MYSGhqJfv35Wq98BZj8PNN5oNLIvPbagDz1O64YurU65ffu25FLMtOHl4eGBuro67lOqDSC2f3I4slx7a4dO3+M+pVwH+oFDp9MBaPwCa+FTqmNH8/Q9QPVIqfaKcLqe2F1BPzS2c8Sr7IlfJjlmxNMflZD7CCcH7ZTSOhWwvbF48WIsXryYrTr4+OOPs06VWbNmMTm9Xo/4+HiLfU+fPs3ipk2bxuR8fX0RHx8PvV7PpiINHDgQTz31FACgR48e8Pf3R2VlJerr663yFXYOPvDAAxZpYtmQkBAW161bN0yYMIGlLViwgG1fuXLFYt+ePXsyP896vR7z58+XzbdPnz6Ijo5mHx9jY2Oh1+sxadIkK9mOHTuybb1eb/XxOj4+3qpz2yId5hX3KmB+t+oPaXclOp0OixYtQmhoqGTd3HfffawMQj9l4vKKw5MmTUJOTg5iY2Ot0rKysli90o4f4eyvxx9/3EpX4TGEq9D17NnTIl24HRoayt619Ho9Hn30Uat89Xo9u06E0+CCg4NldQOAs2fPsnD37t0t6ormS98lIyIax7jOnTsXL774Iu7cuQNPT0+r8z1gwAC2HRgYaKUbIQS/+c1vAADPPfcczp49i6CgIEycONEin4ULF0Kv12P06NEWfSBKuBFbk34VqK+vR0pKCq5du4aOHTsiJiYGXbt2RVlZGT788EMsXbrU3qxdFltLrBYVFVl9XS0qKkJxcTH69esHX19fZGRk4MqVK+jUqRMeeeQR1mvp4eGBEydOoKSkBJ06dYKnpydGjx6NmpoanD17FsOGDbO73FLl0ionp5swTimsZtsetOhWWlqq6MxT3Jsv/odE3P8DMB3y/qG0YjAYmBFTo5vWOpOKP3v2rEVn071791jnqXD70qVLWLhwoTaFVCLUW66cUmmusuxxS6Cku1Ld19TUWHRCCe2LcL+1a9di4cKFCA0NhdFoBAAUFBSgW7duDpW7Ka5rW3FytqmlbFFT6aa0LbZ/Snh7e2PTpk1s8Q1PT09ZvwHO1E3rM8TROpM6ZmxsLLZu3Yovv/wSv/71r23q1p5tkdpl2AcOHMicntLRCT/99BO8vLzY6IS8vDwEBwfjgQcewJYtW1BTU4Po6Gh4eXlBr9fj7bffRp8+ffDll18iKSkJn332GSbGxOBIg7+dCwcOoMeePQh8/31cHz8eHX/80ebohIMHD8LLy8vm6IQOHTqw0evi0QlTpkzBgQMHLEYn7Nq1C15eXmx0woULF+Dl5YX4+HgkJibi3r176NevHyIjI7F9+3Z4eXkhJiYGJpMJRqMRNTU1ePLJJ5GUlKR6GfaDBw/izp07CAoKQkxMDDZt2gQvLy+MGjUKAHDq1CkAwCOPPILvvvsOixcvBmAeITUM1v6jjDAv9KK2bePj44OEhASUl5ejU6dOiI2NxXfffQcvLy+Eh4dDp9Ph7NmzqKmpwfTp0x0anbBmzRoQQhRHJ9TU1GDRokXYtm2b1eiEmpoaTJw40WJ0ws9+9jOkpqaiuLiYjU7YsmULvLy8EB0djTt37rBpK3Fxcdi9ezfKy8vh7++PwMBAq5cyJZYvX45+/fpZjU6IiYlBdnY2cnNz2eiEwYMH49KlS3j33Xfx9NNPIzk5GTU1NZg1a5bk6ITq6mpERkaqX4a9jWHve5raZ2x1dTWblnn16lVMnDgRubm52L9/v1WniRZcvf0gdcy0tDQ2pVSIH4AMAH0ALAHwfkO88KM7RfgBrC20H7TKqY13lm51dXXw8fFBXV0dTCYTevXqpanMhYWF7B2gvLwcFRUVzntPs7keoAi6nKdacnJytB7CpbG1rOGhQ4ck406fPk0AkKCgINVLKnp7exN/f38CgPzwww8OlVuqXFrl5HRTG1azbQ9adKPLlNLfaYDUNSxRSn/1AMloWLJUvOyxVJytevTx8SE+Pj6altHUopvWOpOKV1tv//73v1XpYc+PLgmrVTe+DLu07kp1f/XqVYtzv2/fPsn9lixZQgCQCRMmMNmdO3c6XO6muK5txcld4y1li7SkadFNaVts/7T8PD09ybZt2yyWjBf+qN1q7meIo3UmlcfEiRMJALJ+/XpFOXE8t0Xa20Zqw59++ikBQMLDw8mhQ4fItm3bCAASfd99jc/vykpCEhLM2w89pKrcrto2aorrWojQFpSL2kD0V65gDxISEti9/+9//1vWBrSEbmpknP0M0Wpbpdo7UseorKxk7cdLly5p0q292iNn2CJxnHD77t27rB737NlD+vfvTwCQVatWOVRuV28/SCG+7uc2vFdVN9iQfIDoVFz3ztLN1eysGjlnv6ep0a13794EADl58qTmMp84cYIAIL169bJ5HK22SPP0vTFjxiAuLg6/+tWvMGbMGEmZe/fuYd26dfjkk0/wwgsv4A9/+IPWw7gcWuYq02GR9GtgSkoKShqGl7u7u6se4ltdXc2m8N24cYPla89c5ZSUFJhMJptfA69cucKcn0nNVd64caPF10CaL/0aSMP0a+ClS5fg5uaGyMhIlhYTE4P09HR2nPr6emzbts3ur4E0X6mvgcePH0dhYSG6dOmCwsJCNtqDIrUyhBuAUMg7I5eKo7z77ruoqamBj48PCgoKMHv2bJSUlMBkMqGyshJTpkzBnj17UFdXh5CQEPTo0QMGgwGA+Xqprq7GsWPHcPz4cSxYsACpqakwmUyKXwPp+Zf6GmgymdC7d2+rucppaWkwmUzsayA9h3SuMg3HxcXh1KlTMJlMCAwMRGlpqeqpfmrlKElJScjMzMSgQYPQtWtXJCcnw2QyITIyUnausp+fn+q5yu0NOSeGtC6FCKdzCfejq3P06tULbm5uIITg2rVrTVY2tTJSabbixOk0rCSjFbX7N6Vuwu0zZ84gICAAnffvR8RHHyHo9m2chnnEA7Vjc2Fe2CEcQJYoTUhtba2i7zk6sooeU0xQUJAq3ZTCUtuO1plUHnKOzpXuKY4yjtY9XQzG19fX4uuuG5265+UF+Pg0+pRSOX2vue5ZV7iu5bgCYAisXRMo+Y8aPHgwG9ksdAcgPm5L6taczxDh9BhHEB/jzJkzqKqqQmBgoMW0Gq26cRoRnx+j0YijR49aPbeEcUePHkXfvn0t/AO7u7ujoKCAjZqiNspZ5bJHzpntB61tI/HMEwDoDmAmbC/spOY4rd3Oam0/NKVuvXv3Rk5Ojs2yS6ULnZzbOo7W86u5U+rixYtYvnw5Hn74Yeh0OkRHR6NXr17Q6XS4c+cOLl68iAsXLiAqKgoffPCBxTze1ozaucpbt261mjN66dIluLubb1HqhEwt/v7+KC8vh7e3t0NzlcPDw1m5lOYq5+XlWZRfOFdZSjdhvn369IHJZGJhOgWCzlUWyvbs2ZNtb926VXKuspChQ4eybbHjbmG+ADBo0CC2/fDDD7PtrVu3YsaMGViyZAmLuwlL/wmAemeeUsyaNQs5OTl49NFHsXXrVovjU8RT1KZPny6b33333Wehm9Rc5a1bt8Ld3V1yrvLWrVsl5yr379/fQl58Dq9cucLC/fr1Y9uVlZW4fPkyNm7ciAcffFD+REC7A/UZM2ZYnJuwsDBs3bpVdq7y1q1bNc1Vbm/IddZRmyLk1q1bkvtRPy6BgYHQ6XSoqKhgtqwpyqZWRirNVpw4nYaVZLSidn9n61ZeXo60tDR03r8fU1euRP2zz6K0Vy8cNhpxoL7eoqE4DOaG48sAOsFypVGaNg/qG5GU6upqdr8LbSxFp9Ph888/t6mbUlhq2xmd0uI85BydK91THGXUXNdKYTc381Nap9PB39+fvSx60Y98dEqARkfnzXXPusJ1LUcWgKGATWfEao/jKrq1xDPEUcR5UX9S999/P7sHbB2zvdojtYMHvL292Uf+Hj16YMaMGaiurpZ8bgnjli1bhl27drFpvL6+viguLrbopHJk8EBeXh70er3NwQNA44I04sED/v7+VoMHaL5CR+d5DfYxMTEReXl5OHLkCCIjI5lsTEwMKisr2XF8fX0lBw8IP1IK2xKUOgBvobE9ce3aNfj5+ckOHtDpdOyYYkfnXl5eOHDggIWjc1pe6uichqmj87y8PCQmJiI2NpalhYeHgxACvV6PvLw85OfnOzSV+NatW9Dr9TYdnfv5+WHr1q1Wgwfy8vJw9epVq8EDRUVFzOfV6NGjWfnp4AEajouLw507d6DX6xEYGAgfHx+mW3p6upWj85SUFLay9vXr19n5lnJ0XlxcDL1eb+HofPNmc20GBwez4xQWFkoOHsjLy0Nqaqp6m6Q4jkqB8vJysn79evLSSy+RuLg4Mn36dPLUU0+RDz/8kJw7d87ebF0eW0PQ6urqJON++OEHAoCMGTNG0xDfkJAQAoAcPXrUoXJLlUurnJxuasNqtu3B1v7Z2dnEYDCQn376iSQkJLBzOxYglWicskcAUtvwH2fH9BY69Y6Wx1G91Oahtc6k4rXWm5pyOWM4uxrd2usQdUKUdVeq+4MHD1qc+6VLl0ru9/vf/54AIH/5y19Ijx49VA2/VkNTXNe24uSu8ea0RWrktOqWnZ1NdDodmdtgu+pE/wWwnqKs9KsHyA2AdLXDBtr6/fTTTzZ102qLrl27JjulUGp6oa1zXl9fTzw9PQkAcuPGDZv1IIzntkh720htWK/XEwBk8uTJpK6ujmRkZBAA5OEOHczXbt++ZsFbtxqv56oqm+V21bZRU7cf6PO5G0BKG87XFah3TSB8DriabmpknP0Mcdb0PfEx4uPjCQDy7rvvatatvdojLbbInno7d+4cAczuWOrq6si4ceMIALJp0yaHyt0S7Qd7toVonQZsq/3Y1uysGrmWeE976aWXCADy+uuvay7zs88+SwCQd955x+ZxtNoiuz95+/r64rHHHsPHH3+MzZs3IykpCQkJCXjllVcsRrW0N2jPtzju3r17ACA5rUEJukz7zp07nV4urXJyuqkNq9m2B6X96coQ0dHRGDNmDDYuWoTTACoBHAPgAyANwFmYV4g4B/MQ1C0Kx/P29sa2bduwfPlyGAwGGAwGLF++nC3xS8vjqF5q89BaZ1LxWuvNGbqpwR7dOGaU6l48Uko4fU+4H/2a1aVLF5CGNTESExObrGxqZdTYInGc3DXeXLZIrZxW3eiqT0th+ZWS/neD9RRlwNxCrJeIdwPQG0AugDUApgGYD7Mz5PKG/7kS+81VIbN7925ZPdSExdtGoxHh4eGIjo62+YuIiLCavi2Vb0lJCVv0QTxSSq095VjjaPvh0KFDAMwjpdauXcvaUu50RVA6UqprV4CuXKxiVLqrto2aq/3wfwD8AaQAGACzg+JRUG4DeXl5ISgoSPY4rqJbSzxDHEWcl3CklJKc2jSO4+eHrl7s5+eHtWvXsul7dDRNU5erKa9rR97TsmBuVwjROvOkrdpZJbmWeE8LCQkB0OiiQw6pPK5cuQKgcfqeM22R5ul7HPugU4y0dkp5e3sDgMXKaBz1KC17TPkQgF5mf+FKEUlJSZgxYwZbKaK4uNjCp0J7XT6d0/pQmr4npKzhha9r165sKfaqqqqmLRzHLqT84wGNnyjFQ+rPwdwBJbXqViXML6cLGn40XjjFLx7A2oa8xbZVbhqgyWRiw8gp165dY3HCF101FBYWqvZbp3YZ9qKiIgDmzg8/Pz9N5eE0HbSefX19AQimTjVMQ0CHDuZ/d3cgOBgwmcxT+Hr3bvayuhpGo9HiwwMApKenoweAxQ3ht2zkIWwLHTt2jLd3moH8/Hxcu3YNbm5usj58Oc0P7ZSitoh2SmnxodoWOQxgBGD3NGBO89G74bloq1NKCrFPKWfCO6WcjJSzw4iICOaoW+tcb9op1b17d6eXS6ucnG5qw2q27UHt/uKRBIDZaP4f5DulhM48AUt/ULb0cYbjSzV5aK0zqXit9aamXEFBQdDpdKoc++t0OskXUnt045hRqns6b50i7JQS7kd9M3Tt2hVdunRBdna2lfNnZ5ZNrYwaWySOk7vGW8IWOVs3wPyVUqqDKRtmv3m0gShsKLrB3HkkTnsKwHUAvwDwW5gbCuIRWPqGX2VDOhHJiH1JAMA///lP/POf/7TShfrt0Ol02LBhg6yezqwruWPIOTlXOia3RbZxtP3QuXNnAOZrJCIigrWlOlAB4TLTwk4pO8qlVa4p2kbOaj/Q0eJSz+GPAfjCPGp8l428xG0h8XHkwq2pbeSMZ4ijCPOio6SovxxbZVWTxnH8/NCPen5+foiIiGCdUo62jVqq/eCM97QAAI81bOcC6ArzCKllUB51qaasSmmuYmcdkWuJ9zTaKWXLEbk4j4qKCrYP7ZRypi3inVJORurFOigoyO6RUnT6Hh2l4MxyaZWT001tWM22PajdX2okgQcAtbeMVt0c1UttHlrrTCq+KXQLDQ1FZmam1Rdays2bN9GzZ0+Wn9SXV3t045hRqnvaqAoICEBpaalFp5RwP+FIKdoo9vDwaLKyqZVRY4vEcXLXeEvYImfrBgBJsPxKSTuJ1gE4CXMHUQSsG4rzFNL+AOB5KDcU5J5MWmwrRerFWckWydkWrQjzpSOlxFP3xHJq4jmNONp+oCsR0w8YXl5e8PHxQUc6crNDh8YdNazA56ptI2e1H4SjxYWEAPhNw7atUVLij0auopsjMk3xDHH0I5z4GHJT9+TKqiaN4/j5EY6UCgoKYp1SdBBBU5erKa9re9/T/gKgJxoXTbB3zFhrtbOOyLXEe5pw+h4hxGIRBaVjUsf2HTp0YJ2wzrRFvFPKyUgNaz527BjzKWXvSKnz5887vVxa5eR0E8YphdVs2wPdX26IOiUfQF/RvlrmO2vVzRlD3NXkobXOpOKbSrfQ0FBZOb1ej9mzZyvub49uHDNKdU87pcLCwnDhwgWL+0a4H+2s6tKlC2uIOWqLlMqmVkaNLRLHyV3jTWGLHJGzRzcAmAHLkaB0+Px0AH+G/Gp6mxXSALN9FI/AqgNwAcDPYJ7mtxvWnf72rmJ65swZC7ugZIucNSJAmK/SSCm19pRjjaPth0uXLgEwvwjS+ICAAHSgnVLCkVIaVuBz1baRs9oPcvfIX2D2qXkQwH5BvJLLAlfTzZWeIfHx8cjMzERCQoLFCtF1dXWYOXMmbt++jU8//RQTJkyQ/QgnPgbtlIqJiXFYt/aA2tX3cnNzWSc37VBSS3Z2NltdzcvLC4mJibh58yYAICMjw6HV99atW4eQkBCbq+9duHCBDVQQr75XW1uLn376yWL1PZqvcPU9k8mEV199FYmJibh06RLGjRuHyMhIJhsTE4Ndu3axVebr6+tRVVWFvLw8BAYGYtCgQTh27Bju3r2LCE9PvNzgYuYVyHdIeXl54e7du8jIyJBdfa+wsJB9+BSvvldTU4M+ffpYrL5Hy0tHE27YsAEhISFs9b2TJ09i4MCBiI2NZbLh4eE4c+YMfH19YTKZ8PTTTzu0+t6GDRvQs2dPm6vvEUIQEBBgtfqeyWTCvHnzrFbf27RpE4KDg9nqe7T8dPW9nTt3IiQkBHFxcdi8eTO6d++OwMBAFBQUwMPDAyaTCbNnz5ZcfY9O26usrMTXX3+NgIAAydX3tm7disDAQLb63jfffAMA6NWrF4xGI5KTk2EymfDss89Krr6Xk5ODyZMnq+774J1SzQT3KdW0KA1RB8ydUd0atumLm635zmJnnhxOW4F2SoWGhrJOKfHXEkKIpE8pNV+COU0H7Xynvphox3sEHBsJKscySE/xWwrgdsPvLzIyrdGXBO2UkhopxWk5qL8W4ajxgIAAdGyoL4uRUsHB5n8VnVLtjbkA3gMwuCG8V5QunKaXmZkpO2WPY01oaCj69etndc4WLlyIVatWIS0tDb///e9V5UU7FwDpkVIcaxYvXozFixejuLgYnTp1wuOPP846VWbNmsXk9Ho94uPjAcDKx6EtwsLCMGrUKABAx44dERQUhIiICCQnJ6Ouro7lS+nfvz/bfuCBByzSxLIhISEsrlu3bpgwYQJLW7BgAdu+cuWKxb49e/bEuHHjmG7z58+XzbdPnz6Ijo5mnWexsbHQ6/WYNGmSlWzHjh3Z9meffYb/+7//s2j/zYW5HfA3mJ/3pwBsg/m9ddOmTWwmBGDu4F60aBHrLB00aBBLe/jhh9m2sG4o9913H0t76KGHZHUThydNmoScnBzExsZapWVlZSE+Ph56vZ51/IwfP57l8/jjj1scR3yMsWPHsnDPnj0t0oXboaGhzB7o9Xo8+uijVvnq9Xp2nQwfPpylBQcHy+oGAGfPnmXh7t27s216DvV6PfvAIPw4MWXKFADAq6++isLCQowbN87iuEJfUYGBgRbH7NOnDwBg6NChCAsLQ1hYGPR6PYKCgjBx4kQL3RYuXAi9Xo/Ro0ezPhCbKK7NZ4Of//zn5NChQ45k0eqwtaxhQUGBZNyDDz5IAJDPP/+c6HQ6VUuP+vj4kJkzZxIA5G9/+5tD5ZYql1Y5Od3UhtVs20NBQYHisq5eADnRsDRpOkBOKyx7nJCQwJYQT0tLc0g3R/VSm4fWOpOKb826tddljwlR1l2p7t944w0CgPzmN79h135RUZHFfsXFxY1L/ZaXk+eee44AIC+//LLD5W6K69pWnNw17mxb5Kickh7Z2dmyz487Eksx1zbYOTXPG6Xf3IZ8lJaLVyOj5rd3717Z8yHedtYy7MJ833nnHQKAPP/886rrjdsi+9tGasPPP/88AUCWLFnC4ocMGUJW0et96dLGHT/5xBz3+OM2y+2qbSNnPWOF98jchnNVL/qfK3OPtIf2g5Y4e58hhw4dIgBI586dSVVVlaoynz59mgAgHTt2lFxynbeN5NFii+x5hnz66acEAHniiSdIQUEBa0e9+uqrDpW7uWyROE7N9t69e62e9wQgdTK2RPysbet21hG5lrKzI0eOJADI9u3bVZf597//PQFA/u///s9m+YVpam2R1GI9qrl37x6mTp2KgQMH4v3337fpMKs9kJWVJRlHewkHDBiAzMxM/Oc//4HBYIDBYLDYFoZ/+OEH9rXW0XMrVS6tcnK6qQ2r2bYHW/u/D2AcgDswT2UZCfllj+lXwqioKKsVyrTq5qheavPQWmdS8W1JN44Zpbqn13aXLl3YCmN0Ch/dj/rW8fHxga+vL1t1zxl2vinq3lac3DXenLZIjZySHmL/MHMBnAZQDaBzQ1zDWmSaRyslJCRYPIcMBgO2bdsGb29vbIbZXiotF69GRg3Z2dkW4aZ6bsgdQ2mklFp7yrHG0fZDXsOoJ51Ox+IDAgIaHZ3bOVLKVdtG9l5TRqMRaWlpSEtLw48//mjhwmApzPaBjoelU3zlfEq1t/ZDUz1DJkyYgJ49e+Lu3btsao+tctGpe2PHjoW7u/WrGm8b2Y+j50fo6DwrK4uN3sxzcGRmc9kicZyabfFzmdoSsbsArbZEi5wr2Vlb5dIi11J2Vo2zc3EeV65cAWA5msqZtsihTqktW7bAZDLht7/9LdauXYu+ffti5syZ2LBhQ7tdGtNoNErGUZ9SHTt2RGhoKHx9fVnnh3BbGK6urmbzneWWbHekXFrl5HRTG1azrRZhw+vQoUMWDS+g8WWtCsCrDXHPAdByJEd1s0cvW2XQKiOX1pZ145hRqntho4rO9aY2hu53584dAI0v59XV1RZyTVE2tTJqbJE4Tu4ad9QW2SqDVjm1us2FecrcMABegvhsABUAzjXIbFFRHp1Oh0mTJlk8h6KiojB79mxcunQJBoMBy5cvl+20cibihr2SLaqvr4czEOZLO2OlfEqptacca6Tuv0OHDrHnOH2Wi8Nie+Tr68viAgICwDxJSfmUUuHo3FXbRva2iyIiIhAdHY3o6Gj88pe/xKJFi1j6IGib4tve2g9N9Qzx8PDAY4+Z1yZbt26dqjIrOTmXO46aNI7l+aGrRKuBOqgXOjqnfp+Axg8aziiXvXKOXtdy2+LnstaFo9qSnVVTLi1yLWVnhc7O5RDnQTulhNNSnWmLHPYp1a1bN7z88st4+eWXkZaWhv/+9794+umnERAQgEWLFuF3v/sdBg4c6OhhWg1STvN8fHzYSCm6gpVQTrwPDfv4+LBtQojTy6VVTk43tWE122qw5T+KvqwJe/EB7T2wjuqmVS81ZdAqI5fWlnXjmFGqe2GnVOfOnXHr1i3W2UT3E69CRv3hOeODQ1PUva04JTurpVxKNJedBay/VALmL5X3APS3kjYj5esBkF/9EmhcrOD69euS/mUuXbpk4Sh///79+NnPfsbC6enpFi/GthB3cinZoq+++kp1vkoI81VydK7WnnKsEZ4j4TN8yZIlFnLi8LvvvovMzEzmvFin07G8ZEdKaXB07qptI3uuKbmV9gBgIqQb/EoLErS39kNTPkOeeOIJfPbZZ9iyZQuqqqpsnltbnVK8bWQ/wvNDV4let24dLly4gG+//ZalzZgxA8uXLwdgfq498cQTCA0NZe0nX1/fVvmeJo5Tsy1+Lt+EdTvDHluiRc5V7KyacmmRayk7q2aklDCPuro6tvqecKSUU22R4uQ+DeTm5pK///3vJCIigvj7+5Of//znZMqUKcTT05OsXLnSWYdpceyZo11fX0+8vLwIAGI0GjUd749//CMBQP785z9rLWqbxdYc8NOCec5afKvodDqSnZ3d0upxNNJe/SYQYr/uc+fOJQDIF198QWbPnk0AkK+//tpCZv369QQAmTRpEiGEkK+++ooAII8++qjTys/RhtD2lcPahxRpiKcyQh95BoOhReybs/w+idm4caOmfNXa9/vvv58AIJs3b9asK7dF6nS355qYM2cOAUD+85//sHyeeuop8hO99oV+Me7cabwnysubQFvXRO68zhbZi1rRf5wd9x9HG3V1daRXr14EAPnxxx8VZW/fvs3q49atW3Yfs73aI3v1jomJIQBIt27dCADy2muvScq9+OKLBAB58803CSGELF++nAAgv/jFLxwuu6sitC1dAXJb5FNKbEu4HXF9vvnmGwKATJ8+XZW80WgkAIinpyepqanRdKxm8SlVU1ODjRs3Ys6cOQgLC8P69evxxz/+Ebm5ufjf//6HvXv3Yt26dXjnnXccOUyrgi7xKSQhIYGNLqAjpYRy4n1oeO3atayX8cyZM04vl1Y5qTS5skuF1Ww7AzVD1MX+U/72t78hMzPTYrSAo7o5Qy81eWitM6n4tqQbx4xS3QtHSpWUlABonJZH96PTZbp06QIAOHfuHADg6tWrTVY2tTJqbJE4TsnOaimXEs1lZwGgQGJf8ZfKGzdusKl4ly5dcmiZcGfopoakpCTZ/Oj2+fPn8eSTTwIwL4kttOV0mswvfvELi3ixfZc7htJIKbX2lGONo+fo+vXrAMwjpWhe/v7+0iOlOnUC6BdaG1P4XLVt5Mj5ou4LymGezpsIwBfAVgALYZ7aq2aKb3trPzTlM8Td3Z2t6KU0hW/t2rVsSfb77rtPdgVo3jayZtWqVYiMjMSYMWMAAOvXr4der0dVVRV27NgBvV6Pffv2ISEhAXq9Hnq9HpmZmUhPT8f777/PzjsdEXz06FFUVFRAr9fjo48+woULF5CVlYXz588DANzc3PD555/j4sWLAMyrVdJ8z549i6tXr7JwUVERDh8+DL1ej61bt6K+vp6lpaWlwWg04qOPPoJer8etW7dw7Ngx6PV6bNq0CYC5TvV6PVJSUvDtt9+yfW/evImTJ09Cr9dj/fr1WLt2LTZu3Ai9Xo/k5GTk5+ezfG/cuAGDwcD0AYDExER89NFHOHLkCG7fvs1kr1+/jn/961/sOMLn8pcAugLIAXAe0rYkOTkZer0ee/bsQWlpKcs3IyMDGRkZLN/S0lLs2bOHHWP16tUs7fz587h8+TILJyQk4MCBA9Dr9di2bRtqa2tZvmfOnMH169dZ+Pbt2zhy5Ag++ugjJCYmAgBLMxgM+O9//8vOQ35+Pivvxo0bLa6dkydP4ubNm6wMJpMJKSkp0Ov17D77xz/+Ab1ej2PHjuHWrVtMlrqZoeE1a9Zg69at0Ov1OHz4MIqKilgZrl69irNnzzLZmpoafPLJJ9Dr9di/fz+Ki4tZ+bOysnDhwgUWrqiowKeffgq9Xo/du3fjhx9+YPmmp6dbXJclJSXYt28f9Ho9cnNzAQAXLlyAXq/HuXPncOXKFSZ79+5drFq1Cnq9Hj/++CPzDxUYGIhz584hOzubHaewsBBHjx6FXq/Hli3mq2DNmjX46KOPkJqaqtoXrUPT93r27In6+nrEx8cjJSUFI0eOtJJ56KGH0LlzZ0cO06qQ8nFBl1V3c3NjU2CEcuJ9aLi+vp51Sjk6ZUat7w0lOak0ubJLhdVsO4IbgD/C0r8KRfyyJlz2GIDkC4ujujlDLzV5aK0zqfi2pBvHjFLdCzulOjS8zNFOKbqfePoetUVy00OcUTa1MmpskThOyc5qKZcSzWVnuwHoQtNg7oSXcmzuCrpRnx1qr5vDhw/jL3/5i2R+9fX1uHPnDuLi4lBVVYWf/exneO655yxs+ejRo7FhwwZUV1erXs5eeAwlR+dq7SnHGkfPEfVp5+vry64lWZ9Sbm7mKXzZ2eYpfH37Olyu5m4b2Xu+xO4LaKvmIID5AGoByHVZUJ85cmWWi28r7YemfoY88cQT+OSTT5CYmIjKykpJX0b19fU2p+7ZOk57tUeLFy/G4sWLUVxcjE6dOuHxxx9Hxwa7MGvWLCan1+stlrkHgO+//x51dXUIDQ3F7NmzsWvXLtTX18PX1xfx8fHQ6/UYMmQIALDp7126dEFgYCDuv/9+/PDDD6ipqbHKV+h754EHHrBIE8v26tWLxXXr1g0TJkxgaQsWLGDbV65csdi3Z8+eGDduHNNt/vz5svn26dMH0dHR0Ov1AIDY2Fjo9XpMmjTJSrZDhw5s+/333wcAPAXgcQA1AGIBpEGa8ePHWzx/hfkCwKBBg9j2ww8/zLal6ua+++5jaQ899JCsbuLwpEmTkJOTg9jYWKu0rKwsVq/BwcEIDg7G+PHjWT60A5kiPEZISAjGjh3Lwj169LBIF26Hhoay86DX6/Hoo49a5avX69l1Mnz4cJbWvXt3Wd0A4OzZsxbXC92m51Cv12Pw4MEAgIiIxmEZU6ZMAWB2rfDmm2+itLTUIl/h1LyuXbuytP/85z8AgBEjRmDUqFEAgLCwMOj1egQFBWHixIkWui1cuBB6vR6jR49mLoxs4VCn1EsvvYRXXnmFrd5EIYTgxo0bCA0NRefOndkcxPaAsDIp9CHfoUMHtoqGUE68Dw0PGDCAnTtfX1+nl0urnFSaXNmlwmq2tTIXZt8qETCvQCVolrKXNDWrUDWFbo7opVQuLTJyaW1ZN44ZpboXdkr169cPQGOnFN1P3ClF5ZzR4G2KurcVp2RntZRLieays5/AbOuuw+xDKhzmTvdlsBz1QH0GaCmblnKpkaM+OwoLC3H+/HkMHTrUIp3Gbd26FcuWLcOuXbvw3nvvsZeImpoapKWZm75VVVWYPXs2rly5gu7du2Pt2rVWI/f6NnRA0JE1WspMO70A6ZFSau0pxxpHz5Gbm3nNOJ1Oxxy0yvqUAswr8NFOKSeUq7nbRvaeLylfc/Uwr85ZK5JNSEhAXV0duyfFvuXaW/uhqZ8h999/P3r37o2cnBzs3r3b6gWV7v+///0PABATE6Op/GrSONLnhzryfvDBByUHUgj3oY7O/fz8MGDAAJSWlgJw3D9Rc9kicZya7fF5ebgAYHBDeD3kO6TUlkurnCvZWVvl0iLXUnaWPkfv3r2LsrIytuiR3DGkVt6zdRyt59ehTqm3334bv/71r606pYqKitCvXz/mmNLV2LZtG1555RXU19fj9ddfx69+9Sun5U0rWQg9Px0FX/KEcuJ9aDgkJIQZOU9Px3zSS5VLq5xUmlzZpcJqtrUg/iJIvzl9CWA3zEuTRkD6ZU1MU+hmr162yqVFRi6tLevGMaNU91KdUtRZNd2PdkrR6Xv0ZcUZjs6bou5txSnZWS3lUqI57OwjAOJh7myfD+WGYffu3TWXTUu51MpRZ+nBwcFW6TQuKioKBQUF+OKLL/DXv/4Vf/3rXxWPc+fOHZSXl1vlZ0+nlLBxRhqc1UqNlFJrTznWOHqOaL34+vqyvDr4+SGACghHSgGqV+Bz1baRrXIZjUaLBQYA85fvebB2X+AO6VWxBg8eLHlPypVZLr6ttB+a+hlCp/D94x//wLp16yQ7pXr27ImTJ08CUB4pxdtG9iN1fuiUvMmTJ7NOqaqqKsl9hI7OQ0JCkJGRAQBs0AE2bQKWLQOysoDwcGDpUmDePLvKpVXO0etacnvTJkz+7DMQmGekEABPAtgAYLOqErdeO6sGR3VrKTvbsWNHdOjQASUlJTCZTAgPD1csA/0AKO5ocqYtcsinFJFZaaC0tFT1EpvNTW1tLV5++WXs378fp06dwooVKxxexlPI4cOHreKSk5MBNPqTEsuJ96Hhw4cPs04ptfMxtZRLq5xUmlzZpcJqtsXQObnCX3p6OgD5L4L3w2woRwHwa/jfIpARD1FvKt3UnnMl1OShtc6k4tuSbhwzSnUv7JSi88rpSCm6Hx0xQl/OacPr7t27TVY2tTJq7ldxnJKd1VIuJZxpZ4W273//+x+ufvgh+sfGIrFBbitsf6mkI4y0lM2eMquVs1VHv/jFL1SXp6amBoWFhVZ5hoWFAQByc3PZlC9b0DxoR2xAQIDVakPisqqJ5zTi6Dmi9kin07G8ungJJuuLR0qpXIHPVdtGttpFERERiI6ORnR0NN6LjoZHdDTmL1oE66tWeVUs3n5QH+eMZ8gTTzwBwOzLh464EbJ27VrcvXsXvr6+GDZsmKbyqy1De0d8fsrLy9mzUjhSKl/QoS3cRzhSSvieVlBQYO6Qmj8fOHcOqKw0/8+fb47XWC575By9riW3ly1jHVJo+K+D+cO/FGrfsaRwJTurFkd1a0k7SzuNcnJybJZBbqSUM22RXcNvXn75ZQDm4dRvvfWWxUipuro6nDx5UtK/lCuQkpKCIUOGsIqYOXMmdu/ebTWH1ZnQF8CO4i95KqDGrrZWPPC67SNcNlqMB4AhUPdFMCEhAYMHD0ZSUhJmzJihuPw5h9MeEHZKUbtEO6UoTelTiqOM2PbNBfAXwOJL5dyGn9yXSp1Ox/yFtRbYl2YHCA4OZj6scnJyLHx62ELJyTmnZaEjNIUfPDs3XC/Vbm7wFk+dCQ42/9volHJ15EZECW2DcMQ4RcnXHKflGDduHEJDQ2E0GrFr1y7ExcVZpF++fBmA2Teel5eUh1SOszlx4gTq6uoQEhKC/v37Mz/A9F8M7ZTy9fVFTU2Npe/fZcvMPu3ooA1CzOF33lE1WsoVoDbn2rVrSEtLw8iMDMnFo4Z5ecHQ4P9MCH/Haj307t0bGRkZsp1SQuQ6pZyKpjX9Gpg8eTKZPHkycXNzI+PHj2fhyZMnk2nTppEXXniBZGVl2ZO1TQ4dOkTmzJlDevbsKbts8+eff07CwsKIj48PGTt2LDl58iRLW79+PVm8eDELf/DBB2TFihWqj29rWcPc3FyruI8//pgAIDNmzJCUE+9Dw7m5ueS7774jAMiDDz6ouoxqy6VVTipNruxSYTXbQsTLG88FyGmAVADkXsPyo/Wi5dBrAXJKZonx5tZN7TlXQk0eWvWSim/NurXXZY8JUdZdqe79/f0JAHLlyhWSnJxMABB/f3+L/UaMGEEAkF27dhFCCDl37hy7p2prax0qd1Nc17bilOyslnIp4Sw7K7Z9pwVLL0vZus8++4wYDAZiMBhIUlISMRgMJDs72yV1U4qTW9Je7mcwGCTzjIiIIADIvn37NJV5+/btBAAZNWqUJt24LdLWNrKnnjt16kQAkIyMDJbXnk8+IQQgdzw9rQ+4apX5Xpk7V7Hcrto2ys3NJdnZ2USn00m2g8ob/o0StqEOIGUNMqcEy7SrvX9s6dyW2g9a4pz1DHnllVcIABIfH2+V9vTTTxMA5LXXXlPMg7eN5NH6nvbXv/6VACBPPfUUIYSQ7OxsAoB4e3uT+vp6q30iIyPZ8yU3N5fs3LmTACBDhw4lRKezuBfZT6ezWe7mskXiOOF2SkqKlc25KqFPLUBOu7mR7Oxsh8usVq41v6cpybWknX322WcJAPL+++8rlqGoqIhdDyUlJarKL0xTa4vs+ix54MABHDhwAM888wx27tzJwgcOHMCuXbvw1VdfYeDAgfZkbZOysjKMGDECq1atkkxfu3YtXn75ZSxduhRpaWkYMWIEpk+fbh5W2QwYjUaruOzsbACWI6WEcuJ9aNhoNLIeeLWe67WUS6ucVJpc2aXCarbloF8Dh8HsO4qeSTqMFLD9RbC5dVN7zpVQk4dWvaTi25JuHDNy5yc7O9tipBTdLisrQ0VFBduPTpehPqXoyCkq2xRlUyuj5n4VxynZWS3lUqKp7GwErEeFeqBxVGiHDh0QFRWFqKgodO7cGVFRUexrvNay2VNmtXJq600LUvvTKXz02as2D3qNy42UUmtPOdY4eo7oyCCdTsfyou2AMjc36x1UTt+zdb3SKbS7d++2ciVAf3QpeaV87XnGFhYWWoxMFbaDfAEMB9AH0iPG3SDtvoBCp9jw9oP6OGc9Q+gUvq1bt1pN4Tt+/DgAZX9Sto7D7ZEy4vNz6NAhAOapewDY9L3q6mp2/wn3EU7fE76nlZWVmX1IiXFzAyKkvLopl8seOUev64sXL1qNhi9v+KdL3NB3rbcJsRrFaU+Z1cq15vc0JbmWtLO2pu/RPKg/qeDgYAQEBEjKKO2vFofGyv/3v/+1a0qaI8ycORPvvfce5s6dK5m+cuVKPP/883juuecQGRmJL7/8En5+fvjmm28AmJdUFPpnMplM6NWrl+zxqqqqUFxcbPFTQrwSEADcuHEDgKVPKaGceB8avnr1KjN2JSUlise1hVS5tMpJpcmVXSqsZlsOOf9R1wCcA1DR8D8X8v6jmls3tedcCTV5aNVLKr4t6cYxI3d+MjMzmT9APz8/5Ofns2kCt27dYvuJp+/l5OTAw8MDANhqM84um1oZNferOE7JzmoplxJNZWelmn1CPzHCZ5ojdlaJ5nqGaEVqf63OzmkedPqelJNzuWMpxXMaEZ6joKAg1X5HdTodAgMDmdNhX19flldAgx0rluqUkpu+t2kTMGIE4OsLjBiB6jVrJH1Xbt++HQMHDmR+m5599lm2Lf499thj2L59u8X++/bts2iQ23rG0jLs27eP/VP/mRRxO4hqLfbuKvYhlZCQAIPBYPHLzMxEaGgobz9oiHPWM2TMmDEICwtDWVkZdu7cyeJLSkrYFBlbnVK8bWQfRqOR3WNpaWk4fvw46wgMCgpCWloasrKy2Gqf9+7dA2B5ToWOzoXvaeXl5Wan5kLoVD5xvATN+YyVu2bF/otHw+wqpRZAOuTftRwps1q51vyepiTXknaWrtAs57ea5qE0dc+ZtkizT6mXX34Z7777Lvz9/ZlvKTlWrlypNXuHqK6uhsFgwBtvvMHi3N3dMXXqVGZ0xo4di/Pnz8NkMqFTp07YuXOn4io/f/vb37BsmfXYm/Xr18PPzw/z5s3Dvn37cO/ePXTv3h2EEOj1egBAVFQU6uvrma8WX19f7N69G7dv30ZhYSEqKiqwZcsW5Obm4sKFC/Dy8oLBYEBubi6Ki4tRVFSEM2fOADD7lKL5DhkyBAEBAWyFjunTpzOd/P39MWfOHKxduxYAEBERgaCgIOTm5kKv12Pq1KnIyspivfvz5s3D2rVrUV9fjwEDBqCmpoYdZ/LkyTAajbh69So8PT3h6emJjRs3orq6GmFhYRgwYADLd+LEiSgoKGDh+Ph4JCYmIjc3F0eOHEFkZCRLi4mJQWlpKTuOu7s7tm3bhpKSEvTo0QNRUVHYsWMHrl27xs631EgBdwA9APRvCH/wwQdY1L8/xmSam2MPPPAAsrOzcezYMVy8eBFubm7smMOGDYNOp8NPP/0EwOy0/8CBA8jLy0OHDh0wY8YMVt7IyEh06tSJhadNm4aLFy8iNzcXiYmJiI2NZWnh4eGorq6GXq9Hbm4u8vPzceXKFWRnZ8Pb2xvz58/H+vXrUVtbi/79+yM0NBQHDx5k5TWZTLhy5Qrc3d2xYMEC5OfnQ6/XIzQ0FOHh4di7dy8AYMKECSgsLERmZiZyc3NRX1+Pbdu2oaysDCEhIRg6dCh27dqF3NxcXL16FaWlpbhw4QIA4LHHHsOtW7eg1+sRHByM0aNHs/JHR0ejpqaGhePi4lBYWAi9Xs9GD1Dd0tPT4e7uzhxEzpkzBykpKSgoKECnTp0wZcoUbGpw7jh06FD4+fmxL8ozZ87EnTt3oNfrERAQgFmzZmHdunUAgEGDBqFr165ITk5Gbm4uCgsLkZGRgRs3bsDX1xdxcXFYs2YNcnNzkZqaKrmMKUd+xc76+nq27evrCy8vL3Tr1g25ubm4desWPD09UV1dzTqe6Au6l5cX/P39UVxc7HCnlJrVRJVkpNJsxYnTaVhJRitq99eiW1cA9HMGfSEVjwqlnYXi/V1dNy35aslTa6cUzcPWSCm5sjqqQ3tAeI5CQ0ORmZkJvV6Phx9+GH//+9+xfv16AEBSUhK6desGANizZw/i4+MtVpHU6XQsL/+GFZ6LpRbdEa6+R/26UCfE9EXx3DlMOnsWC1etwlqZVUXnwtwZFA4gC+Z7TuzHrba2FnPmzLHad9myZfjyyy/h7e2NkydPMtvbuXNnnD17loX37t2LZ555hvnNWrJkiWRZBkH6SzIdMe4B6RHjgwcPRlRUlGSeWu9XqXilsNS2M+6X1vwMcXNzwxNPPIEVK1Zg3bp1mNfgayg1NRWEEPTp00fxY7mt47RXe7Rq1SqsWrWKrfwufk+7cuUKXnnlFdTU1EjeY/MkfD7l5eXhwIEDFu9pdHBCfX09ioqK2It3TU0N9FVVmBQdjd4GAwiAu3364Pz8+Rjy4IM4f/iwS7ynZWVlsQVuxO9pYt+irzT8/wDgWYlznpSUhI4dO6KyshLnzp0DAMydOxcHDx7EnTt3EBQUhJiYGFaGUaNGAQBOnToFAHjkkUdw/PhxFBYWokuXLm32PQ0wt9O2bt3qUu9p9Nl69uxZnDt3TvY9jXaeu7u7Q6/XN917ms0JhyImT55M7ty5w7blfg899JDWrDUDkU8pk8lEAJDk5GQLuddee42MHTuWhRMTE8nAgQPJgAEDyFdffaV4jMrKSnLv3j32u3HjhuY52s8//zwBQN555x3V+1D2799PAJDBgwdr3re1Q/1OdG/wIyU1p1noP4r6juK0L9qr3wRC7NOd2jAvLy8WN3z4cAKAJCUlEUIIycvLIwCIm5sbqaurY3K9evUiAEhaWprzlOBYIfS582mDvbsm8CUj9hPTVmyfPb6GpPjhhx8IoN0X4+LFiwkA8uabb9pVfm6L7NOd+rUAQC5evGiVfufOHZZeXV3N4vP/3/8jBCBJHh7WmZaUNLYXiovNccOHE+LmZtGOqHdzs/JDSX9zBT6ahP9zJXw7zdVw3drzu7+hzSPVDrraYBPkfEi1FfvQlkhJSSGA2ZdjWVkZIYSQ999/nwAgjz/+uFOO0V7tkZzeWp8vAMjx48et8vfy8iIAyI0bNwghjf42g4KCzAK//rX5/vT1bXJdnY3wHIUJbM5wjc9gTusgLS2NACA9evRQlPvlL39JAJClS5fadZwm8yl14MABNt9W6EtK/Nu/f7/WrJuNRx99FFlZWbh8+TJeeOEFRVkfHx907NjR4qfExo0breJoz6dwX6GceB8a3rhxIxsWKvTnYg9S5dIqJ5UmV3apsJptxqZNGLRwISoAXIfZjxRgPadZy4oyza2b2nOuhJo8tOolFd+WdOOYkTs/mzebv/PTVVM3btzIRibcunULGzduZP6k/P392YpoGzduZHPJHR0p1RR1bytOyc5qKZcSzrazQwD8tmH7FwBGQtpPzL59+yT3d2XdtOarJU+tI6VoHuIpq2qOpRTPaUSp7oV+deh0Gal0d3d3NhIAAHwbRhbdrauzGAEKAAgIAOjX2Yal3UlmJiAaVeVGCIYAmAfgNMz+U04DeArAZzC/edGGsntD+HtY+nYa1hCmTiXmivKSdjahjDCPSwD2w9zmAaz9aL4Ms01Q8iElB28/qI9z5jNk9OjR6Nu3r8UUvhMNK5nZmrpn6zjcHjmPu3fvAmg8p7W1tWxEo6+vr8V7GvO1Sd2tVFQAGlZOb85nrNw1K2xLvASzfdkN4Kyqksnjqu+gzWWLlORa0s7S6Xv5+fmorq6WLYPS9D1n2iKHfEr96le/YkPaXIGgoCB4eHggv6EBQsnPz0cPOpS7iZGqVGqohD6lhHLifWi4urracqlRJ5dLq5xUmlzZpcJqtgGwIfa+ly9DB3OjDwD+BbNhtHdOc3PrpvacK6EmD616ScW3Jd04ZuTOD+1Qop1S1dXVFp1S1dXV7OVcOOS2urraaZ1STVH3tuKU7KyWcinhbDv7Mcxz7DcCOKCQn/D5oNrOaqS5niFakdqfdkrl5OSgVsVLAc2D+pSSm76n1p5yrFGqe+qjBbDslKLp1PGur68v3NzcWLxPw3VfLMqDIXB2bjQaYWzwSyXGC+Z7jHYyDQeQACAEjX6bKG4AqFUUd1Z9CeATyHdYyXVWieP/LspjQMP/GQDxUPajqRXeflAf58xnCJ3CBwDr1q0DIYR1SsXExNjcn7eNmgfaKUXPqbAD3c/PT/o9Teh7WENbqTmfsXLXLNWhM4DnG+I+VFUqZVz1HbS5bJGSXEva2aCgIHh7e4MQgps3b8qWgU5RleqUcqYtcmji8a1btzBjxgx069YNCxcuxFNPPYWRI0c6kqVDeHt7Izo6Gvv27UNcXBwA85zfffv24cUXX3Qob1tzlalPqeDgYCufUtRJuY+PD/MpVVlZyXxKFRUVWfiUKioqQnFxMWpqalivdV1dnUM+pYqKilTNVe7cubPsXOWwsDCruco0XzpXmYapT6mioiI2V5mmxcTEwMvLix2nd+/e+Oabb5CXl4fAwEA89cEH8APgLviiWQ9gLMxfAeW4du0a/Pz8ZOcq9+rVS3aucvfu3a3mKtPy0rnKNEznKhcVFbG5yjQtPDwcnTp1gl6vR1FRkcNzlYuLi23OVS4qKpL1KUXnu4vnKpeXl1vMVablp3OVaTguLg6VlZVsrnLPnj2Zbo76lKJ+0pR8ShUVFcnOVS4qKuI+pRSgK5CJoaNAaKdUWFgY65QqLCzEuHHjJEeMhIWFsXPtaKeUXNnUykil2YoTp9OwkoxW1O6vRrdHAUwFUAngNRv59ezZUzJvV9VNLo42kNQ0ZLy9vREUFGS1UhAA9OjRg+VjMplslp2m23J0LpePo+e2PaBU93KdUjSdvghS5+g03qthvxKYbZJ4VSAEBwNXrgB5ebhTU4PQhmixbzYaFjsQp2OvxAusuEG6s6o7gD+I9nFv2OdrmP3D0WPRzio9zB1NwvgRsByh5dYQBoA1DT9nofV+lYpXCkttO+N+ae3PEKPRiOHDhwMwr8K3fv16FBQUMP+AtF0VFBSE0NBQq/3tqTeOdqg9krJVOp0OYWFhrFOqtrYWhBC4CRemKikBGmYX2aI5nrFSccJt2pZ4AUAAzAMB9qgqlTLNpZur2iIluZa0s25ubggJCcG1a9ck20phYWGoqqpiC7ZJdUo51RbZNTlQQFFREfnqq6/Igw8+SNzd3UlkZCRZvnw5uXbtmqNZS1JSUkJOnTpFTp06RQCQlStXklOnTpHs7GxCCCFr1qwhPj4+5NtvvyUXL14kL7zwAuncuTPJy8tzyvFtzYuUOk5ERAQBQPbu3SspJ96HhvPy8khWVhYBQAICAhwqt1r9leSk0uTKLhWW205NTSU6nY7NUS6X8JtAGuKh8LM1t7m5dXPGNacmD616ScW3Zt3aq98EQpR1lzt369atIwDIsGHDmNyyZcsIAPL888+TvLw88t133xEAZPLkyRb5zZw5kwAg//3vfx0qd1Nc17bilOyslnIpodXOZmdnE4PBYPE7/dZbpKh3b+a/Zr0Kvxe7d++WLENL6qY2TRyXmppqcT52794tuZ2amqp4vPvuu48AIAcPHlRd5n79+hHA2i+lLd24LbKvbUTjYmJi2LX8r3/9yyqd+jnp3bu3ZV6//S0hAFkKkEuXLlkfdN48c/vh889J4ezZhADECGvfbFI+KwlAKgV+m4T/19DoX4r+6gBSIOP3yVk/W20gqZ9Op2PtY7X1YiutLbUftMQ56xmSnZ1t0ea1p/5420geZ/qU+vvf/04IaTyn165dIwCIb4O/qLy8PAufd5WVlYSMGtV430r4yJOjuZ6x4jjhM3fn88+TMwCpbyj/Jw6+d6kps1q51vyepiTX0nZ24sSJBABZu3atZBkyMjIIYPZ/V19fr7r8wrQm8yklpkuXLnjhhRdw8OBBZGdn49lnn8X333+P++67z9GsJUlNTcWoUaOYB/+XX34Zo0aNwltvvQUAWLBgAT788EO89dZbGDlyJE6fPo2kpCQE0+WBmxgpX1qFheYFvYU+pYRy4n1oeP/+/awHXuprsKPl0ionlSZXdqmw3PauXbss9LsCsK+ClDpYLnEsRqfTISgoSEGi+XVzhl81NXlo1Usqvi3pxjEjd37oCEs6Umr//v0W0/f279/PRkpVCaa77N+/32nT95qi7m3FKdlZLeVSQoudNRqNiIiIsFha/r3oaIx45x10yslhU4Ieg7JPGp1Oh4yMDMkytJRuWtLEcVlZWYiKimK/wsJCye2srCzF42nxK0XzsDVSSq095VijVPdyPqXE6XSkFMurYZoMHSkFmEeg0OXebzWMOin96isEbt+OegBPwNo3WyYaR0VR6mBeAn0erKfLvYzGkVZU1h3m0QXnJfKqh3WbhqI23lYbCAASEhJgMBjYb/ny5cjMzJQcaUPh7Qf1cc56hhQWFqpu01dWVrJ3CFtl1VIGjjro9D2xLaIj2oTvaUBDm0k4fU84asoGzfWMFcYZjUbExMSw9seMf/8bQ9E4OvMPsM8nnpYyq5Vrze9pSnItbWepXymTySRZBupPqn///nBzE48Rdq4tctq6oTU1NUhNTcXJkydx/fr1JusEmjx5MojU8r8CXnzxRYen6zkTOtxT6FNKLVbDQiUuiLZGLoChMBtE4VLH1Kl5QkICBg8ezOSTkpKwaNEixYYXh8MxQzuaaKcUAItOKaDR4bN4Ooyzpu9xpF9MlqJxGg/QaP/eAjBfwu7NmDEDQUFBOHbsWPMUuhVBh41nZ2erkq+pqWFLfcv5lOI0DXLT9yhCn1IWNLzwFcNsk2hHL5VfDfPUuICGpcq3AzghcfxlME+lo20NYZtjC4DNEvvMg/m+jIC5s4jKusnkdR1AKCynAtYBqAbgIxHvIfGvtLCLTqfDpEmTLNpBtjqkOByOMrRTikJtlbe3N4uz6pQST99zYQoLC5kfKaX2h5QNVDMYgOP60E6pnJwcyXQlf1LOxuFOqQMHDmD16tXYuHEj6uvrMW/ePGzbtg0/+9nPnFE+l0GtT6moqCgLn1K1tbWsgeTp6cl8Snl5eTGfUhUVFRY+pSoqKlBcXAxfX19s27aNleH777+Hl5eXXT6lKioqVPmUioiIkPUpNXHiRCufUjRf6lOKhqlPqYqKCuZTiqbFxMRY+N4aNmwY0/F+ANMati8D6A3LBh8A3LlzB5mZmQgKCkJMTAxOnz6NY8eOsYeFnE+psWPHyvqUGjlypJVPKVpe6lOKhqlPqYqKCuZTiqaFh4dj4MCB0Ov1qKiocNinFPUlpuRTqqKiQtanVEVFhaRPKXd3dwufUrT81KcUDcfFxTH/X4GBgRg9ejTTzVGfUv7+/jZ9SlVUVMj6lKqoqOA+pRSYOHGiZDx9WaedUhMnTmRfQgoLCzFx4kQkJycDMNeFMD8az1aZcXLZ1MpIpdmKE6fTsJKMVtTuP3HiRNYBKCQc1quPeMD84ls/eDCioqJYfLdu3dCnTx8AsPhYIadPc+qmJU2uXqTCUttyx9MyUmrixIlsxUnAPAJcTk5LPKcRpbqX65Si6eKRUiwv0UgpYUfvXJg7pCgEwCMN8eIXrM2Q72SSY7NEPkp5yXVWfQrgdYn4/wdgukx5xB/mAGnfQ01hZ6XinXXPaqGtPkPUYk+9cbRDO6XEtogOMpg4cSLc3d3h5eWFmpoa65FSGj7gNdczVi5Oqf1BEdoeOX9nasulVa452w9acFS3lrazISEhAKQ7pSZOnIiVK1cCkO+UcqotUjXhUIZevXoRnU5H4uLiyPr1681zads4tuZFUj8XYnkApLy8XFJOvA8Np6amkoqKCra/I/PCxcewR04qTa7sUmG57YSEBALg/7N35uFVVef+/5zMCZAwhDEQFDBoUNAEwYhYVEQENAHlIlWrtrW9vfbeVqy2Vmtvq1Z/tVWrpddap6p1yxAgGBWoyCjIkDAPCWFI4AAJIWSek/X742QtzrDPPvuck4QM5/s8ebLXWu9e+3333ufda6/9ru8rgls4HgSId71Yw9xRbTOrlxHM9OGtXXr1ndm27sqbIISx7e7O3ZNPPikAMXfuXCW3f/9+AYi+ffuKnTt3ivvvv18A4uc//7lDf7/61a9c6n1BW9zXnuqM/Kw3ehnBG1+kx29xRIdHprHFLxr5PW+3fUFn87MfffSRAMQtt9xiSudDhw4JQPTu3dsr/e3rA77I/NjIvq5fv37qN/C9733PpX3JkiUCEJMnT3bsKzlZCBB3gli6dKnDb2o3rrxP8rfkbmzR1n+zW45vz2dlVG92DOQOgfFDx3yGeMttpHe9A2Mj92hNTqnp06cLIS6e09WrVwtAXHHFFQ71PXv2FIDIO3TI8Rn+0Uem9W6vZ6x9nbc+06zv8UZns3Kd+T3NSO5S+1n5fJ00aZKuDnfddZcAxN/+9jev9LdvaxdOqf/93//lzJkzLF++nHvvvdchhLG7QvJcSMjlACEhIeorn7Oc8z6ynJub6xAiWucmnbEvevkip9fmTne9srttubziv7FxPZwHnjKlrXu9vJVrC9vM6mUEM314a5defVeyLQAb3J0f+TVERkrl5uaq5Xsyq6JcvmfP9ZKbm9tqnFJtce091Rn5WW/0MoI/vsg++5fkpDFatmPGt3YU24za2soXebN8Lzc3V/FJGS3dM+tPA3CF0bV3Fykl26Ufksv3VF8tS2PsOaUkzHz19xZhYWG89957DuMyb7AcG4+VPZ+VUb0evFkyExg/dL5niFkExkbeIzY21uE9zAihoaHARX/k7ItEC42MrJfvvw0tYycFL5bvtdcz1l3dC+gvIzZaNmwWnW384A38te1S+1mjSKnc3FwHTikzeppt04Nfy/ceffRRf3bvFpAOLSYmxic+KJew0C6I0QcOcACQweiLsE1MBRBAd8Ds2bNZv349t912G0uXLm3z4+lxSvXt2xeLxYIQgsrKygCn1CXAj4ARQCU2/pmROC7b+c2lUqyTQi7fKygooKmpSRHTuoMnkvMA2gbNzc1uic4l5JI8lxfKlo9+klPKHrnANbi+ZHkiC5cw4q687bbbHMinV61axbhx45gzZw719fUmj2AOYWFhLFu2TKVq92bJTAABdCeYoVl59913OXr0qHoeXHnllQgh2LRpEwMGDOA73/kOu3fvJicnhzfffJMLFy6gaRpWq5UDBw4ofh0hBOXl5RQXF6NpmpqkWrt8OVfa6bRr0yYO9+5timbFarWaolmpra11S7MCuNCsyH4lzUpubq4itZb0IQCS4bIBaER/GfOqVasoKysjKSmJL774AoDrr7+e2tpa9rVw98kx7YULFxTNitRBJilzR7MiKUvAlWaloaHBhWZF9itpVmRZ0qxYrVZFsyLbEhISFEWJ1Wr1m2blzJkzHmlW5D2zcuVKF5oVq9WqS7NSWFjoQLMi9Zc0K7KclpZGUVGRolmR59BqtZqiWcnKygJsROdHjhxh586dgI1m5dy5cxw5cgSwjanktbGnWbFarW5pVqxWq1c0KxYhPLCGO2HBggU8//zz9OjRgwULFhjKynWIXQnl5eXExMRQVlbmkE3PHbZu3cqNN97I5ZdfrpyZt+jVqxeVlZUcOXKkzbIathcKCgocBnO9v/6aEU8+qUjN5f856PM1AGRlZTlwqwTQveHtb7KjYf369VRUVPDPf/7T60kpX2x/6qmneOWVV3jiiSf405/+pOr79etHSUkJ+/fvZ86cOeTm5rJx40YmT56sZN555x0effRR7rrrLlauXOmVrgE4Ijs7m+TkZAD6YnuJ7gf8FFioIx/we96hqamJiIgIGhsbKSgoUPxb7vDBBx/wyCOPMH36dL788kufjtnZfZE/8NX26upqhwHrddddpwbQEm+++Sb/8z//w7x58/j0008vNvTsCVVVjAB+/PLL3H777eo3NRt9DqfZGEciSfjye3Me3wCcOXPGhSy5d+/egCOJcu/evdXEkz0Ck1BdD/a+3wx89f3d1R+1ht27d+/muuuuY/DgwZw+fVrVv/fee/zgBz9gxowZfP7556p+xIgRHD9+nN0ffcS4Bx+82NFvfgO//73PtrQ17O/FxcBc4M/AL9zIB8YhXQ8NDQ2Eh4cjhODs2bMOiepOnz5NXFwcwcHB1NTUqAhCb2H2N+n18r1du3Yppv5du3a5/du9e7dPindULFy4kMTERK6//nrANgOvaRp1dXV88cUXaJrG2rVrWbp0KZqmoWkaOTk5aua4ubmZ6upq1qxZg6Zp/O1vf1Mzta+99hoHDhwgNzdXlcvLy3nrrbfQNI2gINtlWr58OZsef5yahASaw8O5MHw4mx5/nJKSEjZu3IimaaxcuZLm5malQ3Z2NgUFBbz22mtomsa5c+f45ptv0DRNkVAvWrQITdPYvn272k/TNM6cOcO2bdvQNI0lS5aQkZFBeno6mqaxZcsWCgsLVb8nT54kKytLlQEyMjJ47bXX2LRpE+fPn+e5555j1KhRDinQK558kmZsE1HgmO3BHbZs2YKmafz73/+msrJSHfPw4cMcPnxY6V9ZWcm///1vNE1j1apVLFu2TLXt37+fvLw8VV6yZAnr1q1D0zQyMzNpbGxU/e7Zs4cTJ06o8vnz59m0aROvvfYaGRkZAKotKyuLTz75RF3HwsJCpW96errDvbNt2zY1wy5nteU1kF9Q3njjDTRN45tvvuHcuXNKVqa9lsdpbm5m5cqVaJrGxo0bKSkpUW3Hjh1j7969at+GhgYWLlyIpml8/fXXlJeXK/1zc3M5cOCAKtfU1PC3v/0NTdNYs2aNuv6vvfYahw4dIicnR/VbUVHB2rVr0TSNL774grq6OtW2b98+jh49qsqlpaX8/e9/R9M0PvvsMzWzr2kau3btIj8/Xx2nuLiYzZs3o2kaK1asAODTTz/ltddeY+fOnbppTDsTpkyZQq9evVq9X3lvOkN+iZGRUlJOLuFbvny5ipSy9+MZGRmttnzPnW5mZfTaPNU5t8uykYy3MLu/s9wL2Cak9gJv+XAsb7d9ga+2eWpzd130ynrb7o4XHBysJqI8LeHLyMgwFSnl7lj+ntvuAHfX3j5KCi5SHtjv40x0npGRAU1N0JJwQS9Sajm2j1v7gJqW/2YnpPSWyJm5r+Pj40lKSiIpKYmTJ0+SlJTEzJkzuf/+++nZsyf3338/999/PzNnzqSxsVGVe/bsycyZMx32k//9mZBqCz+rV99av1lv0FWfIWbhy3ULwAYz114SmcuJY2df5Fwvl+812SXMALxavtdez1i9ut7A3S3b/zSlhXfobOMHb+CvbZfaz4aGhjJo0CDAdQnfBx98ANiebe4mpFrTF3m9fG/dunW6210djz32GI899pia7Zs7d66a7ZsxY4aSk5nnJPbs2QPY+C2ioqKYNm2akouMjGT+/PlomsaYMWMASEhIQNM0oqOjiYmJYf78+fziF7+gvLyceywWRrz+OlgsIAR9Tp5k8uuvw+TJ3DxnjoO+9joADBo0SNX179+fSZMmqbZ58+ap7aNHjzrsO3jwYCZOnKhrm3O/w4YNIzc3V5VTU1PRNE1FWkRERKgJTYnReM/7cOONNzrM1NvrAI4Zw26//Xa1rae/jDzTNI1bbrnFrW3O5cmTJ3Pq1ClSU1Nd2uQ5kGGXAwcO5MYbb1T9zJ071+E49seIi4tjwoQJqty/f3+HdvttOQCWE5d333039pA6yHXAY8eOVW19+/Z1axvA3r17VblPnz5qW55DTdPU0obRoy9erdtuu82tbeCYvSE6OtqtbWD7zWiaRmxsrEsGh/vuuw9N0xg/frzDS0x7Y+PGjbzyyitkZWUpfr20tDQHmYULF/LKK69w9uxZxo0bx5tvvulwjdsK9jwt9pCZ8+SklJTr378/OTk5nDt3Tk1K2S95qq6ubrVJKXe6mZXRa/NU59wuy0Yy3sLT/jKS4sCBA/RZt47dwJWAZKj5b2yT8t4ey9ttX2B2f3+vm1FZb9voeJdddhnHjx/nxIkThllgqqur1T1vxCnl7lj+ntvuAHfX3rnefvmebJPL9ySnVHV1tUNWKz1OKXCfIU/i448/Jj8/n+nTpzvU60UndaT72izaws/q1XcV2zrCM8QsfLluAdhg5trLaMaamhrq6+tdrrUMFpBlOSklnMejXoyV2usZq1c3DwgHdmObwG9tdMbxg1n4a1tH8LNDhw7lzJkzWK1WhyjOgoICwD2flKfjeHt+/eKUkiHxelxJBQUF3TLkeOjQoQ5le04pd3LO+8iy/C+d3cC33lITUoDtv8ViCw11mpTypJcvcnpt7nTXKw8YMMBl/1rAmXbQiPdB7wtmR7BNb9usXkYw04e3dunVdyXb2hNVVVWMGzeO73//+8zR+Q0uWrSIBQsW8NZbbzFx4kRef/117rjjDnJycnR/D60Jd+dHTjTJSSkpJ39XdXV1NDfbqLYTEhIc+mtsbAQuTmy1tm5mZcz8Xp3rPPlZs3oZwWj/goICRo8eTW1tLbOBX2MjNLeflHc/HWJ8LG+3fUFn9LOSV+rEiRNuZWQfGzZsAIwnpcz60wBc4e7a601KCSGwWCxqH+dIqaFDhyo+qYagIOqbm32aKL/qqqvUxx1f9Ddq68rP2K5qW3s9QyThtpxsNYI7YvuOPjbqyDBz7e2XGJWVlbn4oj59+jjspyalnDnxvIiUaq9nrF7d91r+f2hKA+/RGccPZuGvbR3Bz8bFxbFjxw6XSCl5v9sHFHjS02ybHvyalLr88ss5c+aMy8vV+fPnufzyyxXZXHdCYmKiQ1lGcTivobSXc95HluV/6ewiCgouTkhJCAE5nqk7nY/hi5xemzvd9crOM63fwxYyChdfzuyzPTgTjYL+F8yOYJvetlm9jGCmD2/t0qvvSra1J+68807uvPNOt+2vvvoqjz76KI888ggAb731Fp9//jnvvfcev/rVr7w+Xl1dnUPCA6MoMXfnR4bgykkpKSeX71W0DKIiIyMVKaWUk7x4/kZKtcW191Tnyc+a1csIRvsXFxerl5Df4johJZct60V2hIeHu7yYePqNGm37gs7oZ81m4EtMTDS1fM+sPw3AFe6uvfwS27NnTyorK2loaKC2tpbIyEi1j3OkVGJiIhQWAtAQEQHV1T77pM54X5tFYPzQMZ8h8fHx5OTkuPCPgW1ZmIzSAfecYh19bNSRYebaBwcH06tXLyoqKigtLVXt8iV9yJAhDvup7PPOYzIvJqXayxfZ18XGxpIYGsqNDQ00Ap8YHNebzJ9mdPBWrjP7WSO5juBn5eSRMx2K/ABtNCnVmr7Ia04pe8ivWc6orKw0nXazq2HNmjUOZXeRUvZyzvvIsvwvnV2V3oyjxQKjPSc5dj6GL3J6be50l/jkk0/Izs4mOztbcSoBXAa82bL9L2xcKs68D1dddZXiZ5B/eg/nS2Wbu2vofP38gZk+vLVLr74r2dZRUF9fT1ZWFlOnTlV1QUFBTJ06la1bt/rU50svvURMTIz6k5w5ehx3n3zyCRUVFQ4cd4cOHVLpXYODg1mzZg3vv/8+q1evVgPhb775BrBNpL///vtomkZ5eTmffPKJiiaprKxU/e7du5djx46pshmOO9mvEcfd4sWLVXYRZ447uc7dnuPus88+U7KS404eB+DDDz9E0zTFcSfbVqxYwZ49e9A0jffff5/GxkYyMzPRNI1169ZRVlam+s3Ly2P//v2qXFtby6pVqxTHnTz3ehx39hEhZtLV//rXv+bFF1/ktdde4//9v/+nzpPkuJP6nz9/nk8//RRN08jIyFC8hfIcnjx5UtnmD8fdmjVrFC+fEcfd+++/75bj7v3333fhuFu1ahWff/654riT25LjTl5jTdP48ssvWb16NZqm8a9//Yvq6mp1HvQ47uQ537lzpyHH3eeff64mXPPz891y3L3//vu6HHdSB2eC7s6G2bNn06dPH+69995W79vdM1a+5A0YMECNJ+W4Se7jHCm1Zs0a9fJX1RL5WVlZ6VXKd/mCFRg/BMYPZus8jdXN6gWO/GP2f4WFhR7HvJ6O09HHRpcaZq+9fPcqLS1V7fKZcubMGYf91KSUnIQKa1mU78VkeXv5Ivu6+Ph43r/1VgBWA1fcdBNZWVlkZWXx4osvOmzn5OT4vAKqu/tZI7mO4Gfj4uIAV04pSUFkNCnVmr7Ip0gpmXXPYrHwm9/8xiG1eFNTE9u2bePaa6/1pesOCzOpRgcMGEBjY6N6CUpKSlLLBk6dOkV1dTWbN2/m/PnzFBUVUVNTw4oVK1Sq0dDQULKysrBarQ6pRuVXwmXXXMPDx48rnYTFgkUIKhYsYNfGjR0i1agsz58/n3feeYcFCxaoJT8SQcBHQDSwGVvEVLPOOV+1ahXR0dGBVKOacapRq9VKc3MzmZmZHS7VqJxouPrqq4mKimL79u2ALcLo/PnzaJpGz549mTFjBosXLwbaLtVoe6O4uJimpiaHTBYAAwcO5PDhw6o8depU9uzZQ1VVFUOHDmXJkiWkpKTo9vn00087ZD0tLy9n2LBhuhx3mqbRq1cvF64u+eLXp08fpk2bxvnz57njjjs4ePAggOLWGTBgAHFxcWr/2NhYJk2axJNPPklVVZVLv/aRkDfffLNDm7Osfb/uOO40TXOQg4scd/J3fM8996i2/Px8B1lnjjtn3jTZt6ZpjBs3jnHjxqFpGiEhIcyaNctQ/6uvvlpt2/PR6PHWSY47+wmLXDynq7/nnnvUsiK9fu3PjT1HnL2spmkMGzasVTjuNE1zWaLaGhx3mqYxc+ZMJedsa1ZWloM9d9xxh9qOiopyuUfsOe5mzJjBH//4RyorKwkPD3fLcadpmnq2T506leDgYK847qQOl5LfrjXws5/9jO9///v8859tQXWrD/mS16NHDyIjI6murqasrEwRr4JrpBSgXv7qW17+KisrXSJQfvjDH7Jr1y6ef/55B+5PuBiBIifhAwgggADsId9t7bNkyglyNQnVAjkZHiQnoYYMgRMnvIqUuiRobubKlvegD7FxActxR05OjsN2d6Tk6S5wFylV2BKRbDQp1aoQPmDKlCliypQpwmKxiBtvvFGVp0yZIqZNmyZ+9KMfidzcXF+67vAoKysTgCgrK9NtP378uEP54YcfFoB46aWX3Mo57yPL8v/NN98sALF48WIhLr9cCNuiPSHGjRNi2TJTejsfwxc5vTZ3ugshRFZWlgDU32wQu0HUt+hfBeIyu3bnv6ysLL91NivnrW3OZb1ts3oZwUwf3tqlV9+ZbfP0m2wvAGL58uWqbLVaBSC2bNniIPfkk0+KCRMmtMoxjWx3d+6uuuoqAYjVq1c7yH300UcOv7+bb77Z5dqfP39etdfX1/usd1vc157qPPlZs3oZwWh/e384W/rwlr/Glv9pbvyfN7aZ2fYFndHPHj9+XAAiLCxMNDU1GcoNGzZMAGL79u2Gckb1HcUX+YN169aJe+65x+v9vB0bybqMjAwBiIkTJ4ohQ4YIQGzbts1hn//4j/8QgHjjjTcu1i9dKgSIM1dcIQAxfvx4l/779+8vALFz5063enfG+9osAuMH9zKd8RliVq4r+SNf4Ksvcsb111+v3r1k+/333y8A8etf/9phv3vuuUcAYtdtt9me6zfeaPs/apRpvdvDF+Xn54usrCzx2WefiaysLJHz9ttCgLgAYvyYMao+Pz+/w97XRnUd1RcZyXUEP7tu3ToBiNGjR6s6+Tvy5ENa0xf5FCkls+498sgj/OUvf3HhS+rOKHMiuXPHKWUv57yPLMv/cka+rq7Ocb3y5s3Qkg3LW718kdNrc6e7M2YDy3DkUYkCrgNOmNLMPS6Vbe6uofP18wdm+vDWLr36rmRbR0FsbCzBwcHqS4NEYWGhQxRAW8Hd+XHOviflJKeURN++fV2uveRRkP3Yc1+0hm5mZcz8Xp3rPPlZs3oZwez+y4FjwAigATiAjUdvhRf9evqNGm37gs7oZ4cOHUpwcDD19fWcPXvW4f51PobklDIiOjfrTy8FOnImUHB/7WWkVGRkpIp6db62zpFSZWVlKgKhQdIbOCVfKC4u5ty5c4BjRl4zenkrFxg/dA3bOtMzpDOPjS41zF57+0gp2S4jpUQLv6/ze1qw9EPyWePF8r229kX2yVYk3sVGJ7AY2HngAHfddRdgi/xavny5ShbSUe/rzuKLjOQ6gp+1X74nWqiZJKVBbGys4TxPa/oivzil/va3v6llXWBbPvH666936/XMcgmMhLwgzpxS9nLO+8iy/C+dXVN5ObQMnAE4e9ZnvXyR02tzp7szjIh9/cWlss3dNXS+fv7ATB/e2qVX35Vs6ygICwsjOTmZtWvXqrrm5mbWrl3rdnlea8Ld+ZGEwHLAJeX0JqWcr31YWJjK3ucP2XlbXHtPdZ78rFm9jGB2/1HYJqQagcHYJudXeNmvp9+o0bYv6Ix+NiQkRIWlG2Xg2717t5ocMSI6N+tPLwVkJtCFCxfqtstMoL/97W/Jzs5m3Lhx3HHHHRQVFbWLfu6uvXzJi4qKUmnW5bhJ7uPMKXXw4EH1ga68ZTmysz86dOgQYFt2abTEuzPe12YRGD903WdIZx4bXWqYvfZySXdZWZmLL5I0B87vaS6TUl4s32trX2SfbGU2Ni7fR1pkTjjtU1tb60A50FHv687ii4zkOoKflZNSVVVVKphG8s96WrrXmr7Ir0mp1NRUPvzQlkCytLSUCRMm8Oc//5nU1FT+7//+z5+uuwzcRUp5A+nswpwnoVqI9joKCgoKOH78uCI2l4NCMEfsG0AAnQ2VlZXs3r2b3bt3A3D8+HF2796tMkotWLCAf/zjH/zzn//k0KFD/OQnP6Gqqkpl47sUkNn77LkAAZesKjLlsTPC3UQmBGAeksVpLXDeSDAAv2EmA5+8l4ODg10+IHUW3HnnnbzwwgvMnj1bt90+E2hiYiJvvfUWUVFRvPfeez4dr66ujvLycoc/XyAnA6OiolyiNyXki5QDiXnLy15TS/SUu0kp5wy+AQQQQABmICez7TmlpL8Kk0TmLZDjohAZhdTykk9VFTTrseZeOsiVK2MAC7b1WX9oqQ+geyIqKkqN+SXZudlJqdaERcgYRB8QGxvLhg0bGDNmDO+88w5vvvkmu3btIj09neeee85hUqKroLy8nJiYGMrKynQnmhobGx2ix0aPHk1ubi4bNmxwIP+1l3PeR5bl//vvv59PPvmEpY8+yj3/+MfFgy1eDE4kte7gfAxf5PTaZJ1eWKg9TgFxTnVN2LLtXacjHxERYZpYr61tM1PW2zarl686m5Fx19aVbPP0m2xLrF+/nltuucWl/qGHHlIZ4v7617+qJTPXXnstb7zxBhMnTmyV4xvZ7u7cRUREUFdXR35+PvHx8UqupqbGYaLqxRdf5KmnnnK59sOGDePUqVPs3LmT5ORkn/Rui/vaU50nP2tWL191zs7OVucrG5vf+yG28Hk9ZGVlKZJRb2wzs93atpmVuxR+9qGHHuLDDz/kD3/4A08//bSuzK5du0hKSiI2NlYt+fLGto7gi+xhsVgclu/V19cTFRXF0qVLHZb0PfTQQ5SWlpKRkaHq1q9fz1//+leWLl1qeIz//d//5Xe/+51L/TvvvKObBCYpKYlVq1YBtiQwzc3N7Nq1S2W6nDp1KtXV1WzZsoWXX36Z+Ph4hBCMGzeO++67j/379/Pkk0/y7LPPsn37doa88QaJn33GhUceoe/77xMcHEx2djY9e/Zk27ZtfPTRR3z55ZfMnTuX2bNnu00Cs3nzZiwWi8ckMIMGDVKk6M5JYGbPnk1GRoZDEpi1a9disVhUEpicnBwsFgvz588nIyODqqoqhg0bRmJiIqtXr8ZisZCSkkJJSQk5OTkIIfiP//gPVq1aRUVFBYMGDSIpKYkvvvgCgOuvv95jEpiVK1disVgMk8DExMRw6623snz5csAxCYwQgpkzZ5Kdne2QBGbx4sVYLBaVBGbLli1YLBaVBObkyZP06NGD1NRUPvnkEywWCwkJCfTr14+tW7cihOC2227zKwmMTLpjlARGCMF9992nmwRGCMENN9zgkAQmLS2Nr7/+mvLycpUEJjMzE4vFQnJyMnV1dezfv1/Jrl+/ntLSUvr27cvkyZPJyMhACMF1113ncxKY22+/nQMHDnD69GnDJDBCCKZNm6abBKa5uZmEhAR69OhBYmLiJfdH7Q1v39Pc1T377LO8+OKLPPbYY7z++uuEhIQwceJEtm/frvyr3O/nP/85f/nLXzg2dCiXnzoFH30EDz4oFYJevTzq3dbPWDkG2Y1+ohXn97Ft27ap5d3ddfxgBv7a1lHe08aOHcu+fftYvXo106ZN48c//jFvv/02zz77LM8//7zXdtm3mR0b+XUlqqur6dXyQ1uzZg1z5swhKCiIG264wfCrZGeE2ex7ZWVlKhIhKSlJhXh+8803jB8/XmXfKy0t5eGHH2bFihUUFhZy++23q+x7hYWFfP/730fTNKKjo1V4fUnLgEIiKzOT3MZG7rjjDvbv32+YfW/ZsmUMHDjQ48Dr+PHjNLfM6jsPvCIjI6mrq3MYeMmMTjExMW4npCYDkkFHLuFrwhYpZT+k/a//+i/Gjh3LlVdeyd69e/nmm2+or6/3OPB65513GDhwoMfse3V1deorh3P2vfDwcPr06eMw8PrrX//KwIED1cBrxYoVDBw4UA28srKyuPzyy0lNTVWyCQkJHDlyBCEEhYWFzJ8/36+B1//93/+pLEHuBl6FhYX8z//8j+7Aq7CwkLvvvtsl+94//vEP+vTpowZe7733HgMHDlTZ9/79738zcOBA0tLS+OCDD+jduzf9+vWjurqampoaCgsLueOOO/zKvrd48WJ69eplOPAqLCzkgQce0B14nT17lptuuumSZt+bMmUKnub1f/rTn/LTn/60nTS6iFWrVrlkkWtqanKJlJJyktNFRo307dvXoQ/n/vxZvqenmzcyem2e6pzbZdlIxluY2X8UtoFfIzZuKV/7dae3mW1fYHZ/f6+bUVlv25NekhPDaPmenCwx4pNyp79RfUfBpc4ECpCZmemS0fDo0aMqW+LIkSNVhGl1dTXz588nMzOTMWPGKPk77rhDZeRNlNmCWiK0mpqauPLKKwkLC2PEiBHqo8C0adMcjuusQ3R0tLp27jKB6ukvM4HKNvtMoM79Dhs2jDNnzqhyamoqmZmZTJ482UV2//79ynZ/MoE69wuO3Fq333670j0iIsKl31GjRpGZmUlMTIzLhxfnfvfv36/KkydPJjMzU5XtZeU5zMzM9CsTKNjGbPbnXC8TaGZmpttMoJmZmS6ZQO311rPV+R5oampSfUVFRaltGZ1nnwn0tttuc2sbXIxG0NNBLxNoZmambiZQOQk3fvz4Tp8NtK1gdvxwpmU1SmlpqWqX7xD79+8nLS1N1asVLS3jK/r3h+BgaGqyRXWamJRqr2es2ZUrW7ZsUb+57jp+MAN/bTNb39a2DR06lH379nkdKeXtNTOCX5NSo0aNYsWKFcyePZvVq1fz+OOPA1BUVNTlZuUfe+wxHnvsMTXb527g5ZzOWr7g3XfffURFRTFt2jQlFxkZqdJky4FXQkKCmoyKjo5m/vz5bNy4ka+++orR9umQgeS4OJJbjuUpBfvAgQM9pmAH203obuCll5Zc9mu/9tgeg7ER6AUDG4FobI4vB1di3x/84AcqMuA73/mOQz9GAy9720B/4OVO/1GjRqk254GXc7/25cmTJ3Pq1ClSU1Nd2mQaen9TsIMtGtHdgNrXFOxgW5rlzjaAvXv3qnLv3r1d0s1rmubXwAugV69ehi8LRinY77vvPjRNCwy8DFChw2Ug+RDgYmi6vVxsbKzDpJR9m9wODQ0F/Fu+p6ebNzJ6bZ7qnNtl2UjGWxjtHxsbS0REBHNbJu/XAiVuZCMiIhyWU3pjm5ltX2B2f3+vm1FZb9uTXmaW78kPP0Z8UkbH8vfcdhTIjx5mEB4e7pIW3Qjurr09p5T0LXL5ntxHykii84qKCsUpVWu3jKayslJdQ7PL9zrrfW0GbeFn9eq7im0d/RliVq6r+KO2gtlrL/kzS0tLXXxRY2Ojw37SF4bLSanoaNtEVGmpaV6p9vJFuehHSuU47Scn4LzRzRu9vJXrzH7WSK6j+Fl7snNAEZ17mpRqTV/k16TUc889x3e/+10ef/xxbrvtNvVFbc2aNSpqpbvBPqtWQ0ODcmDOk3T2cs6ZuGRZ/pfOrmdL1BW9e9scnRecUmazfRnJ6bUZyYdgm5AahC0s9E6g2q2072gv24zKetutkWHNTB/e2qVX35VsC8AGvfNjP8iQ/Cz2cv3791cv73369HEIyZVy0pf5EynVFtfeU50nP2tWLyMY7R8fH09OTg6RN94IVitf9OjB9nXr1MBXYseOHdx5550OS5e9sc3Mti/orH7WTKSUvAaeIqXM+tOOhkudCRTcX/utW7cCtkmpAQMGABcnpeQ+zpxSgwYNUi96PQcPJjw8nLq6OjUpVVFRwcmTJwHPk1Kd9b42g8D4oWs9Q8zKdXR/1FYwu6KlT58+aJoGXFxKXFxcjKZppKamqhUt8rmQl5dHcXExBw4cUC/Z1dXVlJeXU1tbi6Zp6vkS2jLGyjlzhpEREYQAq5YuZcJPfuJxRYvUwdOKlh49eij9nVe0DBo0SC1tlStaZL+SL/F32DilJPRWroBtGbg8zoABA8jMzPR5KbHUwdOKltjYWHVM5xUtvXv3Zt26dQ4rWmS/ckWLLMsVLcXFxWRkZJCamqraEhISiIyMRNM0iouLKSws9GtFS2lpKZqmGa5oAdvH/5UrV7qsaCkuLubYsWMuK1oqKipUcMP48eOV/nJFiyynpaVRVVWFpmn069ePfv36KdsOHTpkekWL/Ci0YcMGPvroIxW5vG/fPkpLS92uaCkuLqa4uFh3RUtxcTE7d+40vaLFL04pgLNnz3LmzBnGjRunMqds376d6OhowzS8nRWe1kWWlZWpH/758+fV1+76+np1wZ3l7Lfty/L/L3/5S/74xz+SFxfHSKsVpk2DNWtg+nT48ktTejsfwxc5vTZZZ8+XMhtbtr0x2CamqoBrgTwPx7bnUPEGbW2bmbLetlm9fNXZjIy7tq5kW0fhcWlP2A++cnNzdXlcYmJi1FIKsA2+Tp48ye233054eDglJSVs3ryZAwcOEBoaSlJSEg8//DBHjhwB4JVXXqGmpobg4GBuuukmjh8/TlhYGH/+85/JysriRz/6EVOmTGHMmDGKxwUwtZx4w4YNhISEGA6+4uLiGDlyJBs3bgQcB19CCL773e86DL4GDhyolodKHpeDBw8SEhLC/Pnz1SBj6NChJCYm8sUXXxASEsI111xDU1MTBw8epLGxkfnz5/vM4zJmzBg2bNgAoDv42rNkCZO+/30agV89/DDJLZGz9oOvxsZG7r77bgcel5SUFJXVVg6+Nm3aREhICNOmTSM7O5vi4mKioqKYMmWK0nfYsGEMHz6czZs309jYyLRp03wefE2fPp21a9dSV1dnOPhqbGzk/vvv111O3NjYyKRJkxwGX7fffjvbtm1TPC4JCQls2rQJgOTkZMrKysjLsz09br31Vnbv3k1JSQm9evXi1ltvJT09nZCQEK699lrdwde+fft4/PHHiYiI4N1338VisbgsJ967dy8vv/wyN998M7/4xS/cDr4aGxu58847XQZfH330ESEhIQwePJhbbrnlkvsiZ04pgIkTJzJhwgTefPNNwJYJND4+np/+9Kf86le/8vuY3oyN7OueeOIJ3n33XV588UUiIiJ44oknmD17NsuWLVP7xMbGcv78eQ4ePMhVV11lq09Lg/XrqX73XeKfeorz589z4MABEhMT2bFjBxMmTGDgwIGc9ZClODB+6N7jB2/qPI3Vzerlq85m5brz2Ah890XOdStXriQ1NZWrr76azZs3ExMTQ58+fSgtLWX79u1cf/31ar8//elPPPnkk9QHBRHa3AwFBXDHHXDoEKxbB1OmeNS7vd7TkoAsbHQq9cBhXFeugI1fUK5a6Uj3tVFdR/VFRnIdxc++8847PProo8yYMYO//OUvXHHFFURERFBdXY2lJcutN3bZt5n2RSIAr1BWViYAUVZWptv+ySefqO2jR48KQISHhxvK2W/bl+X/5557TgDiXK9eQoAQv/mN7f+4cab1dj6GL3J6bbIuKytLAGI2CAGiqeW//JttS/Dg9i8iIkLk5+ebtqc9bTNT1ts2q5cRzPThrV169Z3ZNk+/ya4MI9v1zt2BAwcEIGJjY4UQQuTn54vQ0FDD36b8Cw0NFfn5+eKGG24QgPjLX/7is95tcV97qvPkZ83qZQRP+zf87/8KAeJLEBs3bjTdhze2mdn2BZ3Vz9bV1QmLxSIAcfbsWV2Zu+66SwDi8ccfN+zLkz+9lL6ooqJC7Nq1S+zatUsA4tVXXxW7du1Sz9VPP/1UhIeHiw8++EAcPHhQ/OhHPxK9e/d2e068hTdjI/u67373u0rfxx57TADi1ltvddgnKipKAOLYsWMX65OThQCx7sknxfDhwwUgtm3bJoQQ4p///KcAxJQpUzzq3VnvazMIjB+63jPEjFxH8EeXEr76Ime88MILAhBDhw5V7eHh4QIQb7zxhsN+b775pgizf++5cEGICRNs2ytXmtK7vd7TXm/R8RMPY74XX3zRa9180dmsXGf2s0ZyHcXPfvnllwIQ48aNE6tWrRKAiIuL87hfa/oir5fvLViwgOeff54ePXo4kFzq4dVXX/W2+y4FyXUT6cQF5S3Cw8MJAnrL5TIyc5eHL4CXAr/lIpm5RBPwHI6kvv/1X//FD37wA8BGhPbAAw+YyrQXQAAB+A779OtgI0BuaGgwta8MF5ZLaPzhlOoOKCgooLi42KFu2N//Tn/gs4gIHomMJDs7WyUyCKBtEBYWRlxcHKdOneLEiRMuZN9wkffA0/K9joydO3c68CLK8ZnMBDpv3jzOnTvHc889pzKBrlq1Svd8tCfsfZL0S3L5HoAQQi3fcxhLtYyvGiMj6dmzJ3BxSbFZPqkAAgggAHeQS45KS0sBx0QxYXZcdmB7T3OgMu/VC1r8En5QHbQ2QoHvtmx/eCkVCaDDYWhL8pBTp04pPqn2Hh94PSm1a9cu9RKzyykbnD2MQr26Mq6//nq1LQdWeuSp9nL22/Zl+T88PJzBQIgQEBICkq+rqAgaG211Xujlq5xem31dP+BqzGV1mDZtmlqqFx0d7ddLWXvY5qmst21WLyOY6cNbu/Tqu5JtAdigd36cJ6V8gfyt+sMp1RbX3lOdJz9rVi8jyP0LCgoYPXq0Q0bSBGxEog2AVlvL31pkIyIiyMnJUefVX9vMbPuCzuxnL7vsMjUpJRN32EMurfdEdG7Wn14KdORMoOD+2ssseVFRUWpMIMdO119/PQ0NDSojsJwQv/766xWnVML48fRcvRq4OFF+8OBBwLbU1Re9vJULjB+6hm0d6Rnij1xH8EcdGWavvUxQVFlZyXXXXefwPL/hhhsc9gsPD0ctSoqKsmXekxn3TJI9t7Uvio2N5a6QEPo3NnIG+LfBMSIiIhwSDHXU+7qz+CIjuY7iZyXRuVwKD44JstyhNX2R15NS69at090OwAZ7pyUjpfReAO3l7Lfty/J/eHg4aspm6FAYOBCCgqC5Gc6dg8GDvdLLVzmXtmXLiHv6aSgoYEy/fuRim4ASgP2UpF5WB/m1wRvdfNHZrJxem7vrolfW2/bXLrN9eGuXXn1Xsi0AG/TOT2tMSsnEC/5MSrXFtfdU58nPmtXLCHL/4uJil77mtvz/CrjgtE9xcbGalPLXNjPbvqAz+1nJq+UuA19JSxIRT5FSZv1pd4JZcuHo6GgXcuFNmzapa5Kbm6t4ScvKytA0jYqKCsaNG6eOtXLlStLS0sjKyuKyCxcIASotFuWLDh48yJgxYxRXWFxcHBs3bjTkt/v666/ZsWOHR3Lh2tpaRbjrTC581VVXuZALy34lv11WVhY7duxg/vz5ZGRkUFhYyJkzZ0hMTFSyKSkp5OTksGPHDioqKrjssst85rdLSUlR/RqRCzc3NzN06FCWL7fFstvz21VUVNC/f38Hfrvp06erfiW/nSxLcuFDhw5x4MABUlNTVVtCQgKVlZWq3169evlFLrxx40Z27NhhyG9XUVHBiBEjdPntKioqCAoKcuC3u+qqq/j8888Vv9348eOV/snJyRw7dkzdA2lpaWzbto0dO3YghGDIkCFkZGRQUVFBQ0ODaXJhZ367ESNGYLVaOX36ND179nTLb1dRUUHv3r11yYXLy8spLS01TS7c3WD2GWvPA1xcXOyQEdd5P4dJKcmZ4+WkVGs+Y+0jtfPy8tT76P/07g3FxayJjeWfr79O7969qaqqUpnI8/LyGDVqFLGxsQ6Zrbvz+MET/LWto7yn9e7dm6ioKKqrqxWX62A/5xe81cGv7Hs1NTUIIdQLTn5+PsuXLycxMZFpLQSuXQVmB16nT59WgwSZVrGurs4lq0NRUREjR45kxYoVWK1WLBYLoaGhZGVlYbVaiY+PZ926dezbt4+cnByGt+hRGBlJ4YEDJMbGElJUxKr332fCf/6nR2LhVatWsW/fPo8DrwMHDij9nQdejY2N5OTkcPr0acbk5HDrwoXIhNBhVivhQDEQy8VsDu6yOuzZs0edy+bmZk6cOOHzwEva5imrQ3FxserHOatDQ0MD586dcxh4yX7lwEuW5cBr27ZtHD16lNTUVNWWkJDAnj172LdvH1arlf79+/s18FqzZg379u0zHHhZrVYSExN1B15Wq5WoqCiXrA5fffUV+/btUwMvqb/M6iDLaWlprF27ln379tGvXz+KioqUbcHBwT4PvO68807Wr1/Pvn37DAdeVquVQYMG6Q68Tp06RW1tbWDg5Qb79u3j6quvdqhrjUkpGcXgz/I9Pd28kdFr81Tn3C7LRjLewmh/OSm1xIc+vLHNzLYvMLu/v9fNqKy3bUYvTxn4ZFY6T5NS7o7l77ntzHjsscd47LHHFJHp3LlzFZHpjBkzlJymacyfP99h3927d6uldykpKRw9ehSw+Zj58+ejaZq6dhaLhQcffBCLxYJobCSk5cPWIatVjV369u1LXFwcRUVFgI3cfciQIQ7HdNahV69eqq5///5MmjRJtc2bN8+t/oMHD1ZRd3q22fc7bNgwcnNzVTk1NRVN05g8ebKL7NatW5XtISEhzJo1y1B/+/tu+vTpbnUAHJIP3X777Ur3iIgIl35HjRqlMnbZLwvV69e+PHnyZE6dOkVqaqpLmzxPMqPUwIEDVTQKwNy5c7GH/THi4uKYMGGCKkdGRjq022/Hx8eTlJSEpmkEBQVx9913u/SraRojRowALkYDeLqOWVlZDu1BQUGqr6ioKLUtl42OHn1xjcBtt93m1ja4mHZdTwfn8vDhw9E0jdjYWIdoFoD77rsPTdMYP368w6RCABdh9hl7+PBhevToQVVVFTt37lQfjsLCwjh48CDjxo1T+zks35OTUnL5nslJqdZ6xkZHR7tEagP0AWTO9j8XF7PvgQeIiIjgj3/8I//xH/8BQE5OjopY1TQtMH4wAX9tM1vf1rZZLBbi4uI4cuSIeldubGz02S5PbXrwa1IqNTWVOXPm8J//+Z+UlpYyYcIEwsLCKC4u5tVXX+UnP/mJP913KPgy8Prb3/4G2GYfZZ2crNM0TT1UNU1jzJgxACQkJKBpGtHR0cTGxjJ//nwaGho40NL/wPHjGTh2LMTFQVER06+9Fvr25eabb3bQ1/khFhcXZ2rgdfToUcOB1/XXX8/o0aP5trbWgTvKgo1L6jTwI2wcUqOxRUg5Z3WIiIhg0KBBDgMVfwZe9raB/sBLHkdv4CXbnAdezv3al50HXvZtcvDZGgOvwYMHt/rAC2zrhN3ZBrZsVLI8YMAA3UGlPwMvsL0AurMNAgOvtkBrTErJJTT+REp1J8wG/gBciS2K1PMjPoDWhqdJKXkve1q+F0DrQ49Tqr6+3uVrb2hoqKKFCLF72XLmlDpy5AjNzc3ExMSY+sobQAABBOAOMpKourqampoaQJ8n2CFSSkZIyf/tPFbSi9QGmAeEA7uAfS11tbW1ilMxgACGDh2qMnBD+3NK+ZV9r1+/fmL//v1CCCH+8Y9/iLFjx4qmpiaxePFiceWVV/rTdYeFJwb5mpoatf2HP/xBAOJ73/ueoZz9tn1Z/v/000/FQpnR4ZlnbEIzZtjK77xjSm/nY/giV1NTo7I31Dhl15N/1U7ZG95//32RlZUlsrKyxJYtW0RWVpbIz883tN9btJZtnuqMynrb/tpltg9v7dKr78y2ddcMM0IY26537v7+978LQKSlpQkhLmZjMfuXlZUl3nrrLQGImTNn+qx3W9zXnuo8+VmzehlB7u8uG2mzm2ykWVlZrWabmW1/bPNH7lL52TVr1ghAJCYmurQ1NzeLsLAwAXjMAOvJnwZ8kbmxkX2dfea8yspK9Zs4e/asqKmpEYcOHRKA6NOnz8X9cnNtY46wMFFTUyN+9KMfCUD8/ve/F4sWLRKAuOGGG0zp3Znva08IjB867zPEH7nu7o989UV6dWPGjBGA+PLLL0V2drYAxODBg12u/dq1a8U8+S50yy22Dn7/e1v5Rz8ypXdrv6c5/21t0e/nTvVbtmzR7buj3tdGdR3VFxnJdSQ/++CDD6r7wmKxiNLSUo/7tKYvcuak9grV1dX0apkJXrNmDXPmzCEoKIgbbrjBLXdDV4dcigUXOaXsM8noydlv25flfwdOqeEtC/kGDbL9N5mBz/kYvsjJNnffHvW4oyorK0lKSiIpKYmysjKSkpIclqx5o5snvfyR02tzd130ynrb/tpltg9v7dKr70q2BWCD3vlpjUgpGW3iT6RUW1x7T3We/KxZvYzgvL9zNlILF7ORmu3DTJ23276gM/tZ+0gp4UQGXlVVRX19PeA5UsqsPw3AFe6uvb1P2rRpkxpTlpWVsX79evXF3z55zo6vv7Zt9OrF+vXrHSKlvM2815nva08IjB/cy3SWZ4gvcgF/ZAxvrn3v3r0B+OabbxwipZyvvW6klJfL99ry2icAN2CL1P7EqS0rK0t3/85wX3cWX2Qkd6n9bEFBAdnZ2WRnZxMcHKzqBw4cyEcffaTaCgoKvNLfGx0k/Fq+N2rUKFasWMHs2bNZvXo1jz/+OABFRUVqaVt3w4ULFyls5WSU/UXWk7Pfti/L/+Hh4cTJRpmlToalnzmDGTgfwxe5CxcuECcE64GIljr5wuWOO8p+aZU7m83q5ovOZuX02txdF72y3ra/dpntw1u79Oq7km0B2KB3fiQPlD+TUpILzh9Oqba49p7qPPlZs3oZwXn/BMxlIzXqw0ydt9u+oDP7WckFUl1dTXFxMf3791dtkuQ8LCzMIz+dWX8agCvcXXv7F70LFy4QExNDRUUFZWVlqgwQYpdluKaFA4zoaC5cuOAwKSU/iJrJvOdOL2/lAuOHrmFbR3yG+CIX8EfG8ObaS/9TVFSkfFVUVJTue5pbonOTH/Ba69oPGDDApf57Lf9XAUVObYH3NP/gr22X0s/qZYqWOHv2LP/93/+tys6Zoj3pb1YHe/gVKfXcc8/xi1/8gssuu4wJEyaQkpIC2KKmJOl0d4N9dgb5Q9fL2GBf59wuy/J/eHi4IjpXk1JeRkrp6WBabtkyGDeOeQ89xJi77yYBOA78J7AXqMG2Pnk2jtxRgPrK4Ny3kf3ewi/bDNrcXRe9st62v3aZ7cNbu/Tqu5JtAdigd35aI1JKrjH3J1KqLa69v37WrF5GcN4/F9vEvT30IkqN+jBT5+22L+jMfjY8PFzxCzlHcZ8/fx6wRUnZR+Powaw/DcAVeueoX79+Dj4pNjZWvQSWlZURGxurBsv2PC79wsJsG716ERsb6zApdfDgQcB8pFRnvq89ITB+6PzPEF/kAv7IGN5ce/t3GOmrIiMjdd/TXIjOvcy+11bX3gI82LL9T519Au9p/sFf2y6ln3XHP6YHmSnak55m23Th1WJDHZw5c0ZkZ2eL5uZmVbdt2zZx6NAhf7vukPC0LrKiokJtz5o1SwDizTffNJSz37Yvy/9bV626yNtUWWkTWrrUVr7xRlN6Ox/DjFx+fr44+sorNi4Ui8WBO+pRkxw0mzZt8mizWd1a0zYzbe6ui15Zb9tfu8z24a1devWd2bbuypsghLHteufu5z//uQDEr371KyGE7TceHh5u6rccHh4u8vPzxcaNGwUghg4d6rPebXFfe6rz5GfN6mUEub8zp5T8a2z5n2bAKeWvbQE/q4+UlBQBiCVLljjUf/XVVwIQY8aM8diHJ38a8EXmxkYSxcXF6jdQWloqKioqxI033igAsXTpUlFRUSE+//xzAYjrrrtO7Vf98ce239RNN4mKigrxt7/9TQAiNTVV+bOjR4+a0ruz39dGCIwfOu8zxB+57u6PfPFF7ur+67/+S42ZJF/dzTff7HLtc3JyxKvyWf/LX9o6yMy0lZOTTendWtfenlNqNog8u/HHfwTe0xy228sXGcldSj/rC6+sWf3t28z6Ir+W7wEcOXKEv//97xw7dowlS5YQFxdHTk4Ol19+ub9dd0p89tlnKouYjJSyZ7LXk7Pfti/L/9Et4W8lQUH0lcsLvIyUcj6GJzkZ0qey7NnxcDQB/wX8w8RxN27cqDKnubPZrG6edPZHTq/N3XXRK+tt+2uXJ53NyLhr68q2dQcsXLiQhQsXqqV0S5YsISoqijlz5rB27VrKysooLi7m4YcfJjMzE4CkpCSsVisAeXl5VFdXc/jwYZ544gkGDx5MUlIS69evp6ioiEmTJhESEsKGDRsYMGAAN910E+vWreObb75h7969gC0sV2YO7dmzJ9u2bQPgjjvuYP/+/VitVnr06MGsWbNYtGgRYMvUGBsby+LFi4mLi2Pq1Knk5uZSUFBAeHg4c+bMYdGiRTQ3N1NaWsrdd9/Nxo0bAZgyZQoFBQUcO3aM06dP88QTT5Cenk59fT3Dhw8nNzeX8PBwAG666SaKiopYt26dyiz5j3/8g0GDBjF06FASExN5//33iYuLo7q6mvHjx3Pw4EGsVis///nPWbVqFRUVFQwaNIikpCS++OILAK6//npqa2tVutzZs2ezfv16Lly4QGxsLGfPniUkJITjx48D8CVQhy3jTR1wCNdspPJ6REdHs2PHDqxWK48++ijZ2dmcPXuWXr16UVZWRlCQLbA5MTGRmJgYli5dSlxcHNOmTePTTz+lb9++REVFqa+5AKWlpcyaNYvNmzdjtVp58MEHOXr0KPn5+YSFhXHPPfewZMkSGhsbGTFihAPf380334zVauXo0aMEBQXR3NxMeHg4dXV1xMfHk5CQwFdffQXApEmTKC4uJicnB6vVyoIFC8jMzKSqqoq4uDiuvvpqVq9ejdVqZc6cOVRWVnLggC2nbHNzM71796a8vJyBAwdy6tQpQkNDAUhOTmb9+vWKZ6ipqYn+/ftTUlLCuXPn+OEPf8hbb71FXFwc1157LUFBQWRnZwMwa9Ystm/fTlFRETExMQwbNoytW7eyfPlyRo8eTVRUFNu3b+fbb78FbMvDNE2jZ8+ezJgxg8WLFwO2bK59+/Zly5YtWK1WHn74YQ4fPszJkyeJjIwkLS1N6dAds72Z8UUDBgzg9OnTagleUlISzc3NLFmyRPWzefNmDh06RENDA2CLuD9+/LjaR/qbmTNnsu3LL7kdKKqp4d8ZGer3mJ2dTV1dHaGhoWzdupXevXu3ii8aOXIkBw4cUJlH7X1RSEgIjY2NhIWFKV80cuRIPvroI+Li4nR9UUZGBkeOHGHixIkOviglJYXVq1cTHR3tty9KSUlR96VcubBr1y4A7rrrLrZu3UpxcTFFRUX8+Mc/Zvny5QBcc801REREuPVF06dPV/3q+aKDBw+ybds2rrjiClJTU5VsQkICe/bsITIy0m9fNG/ePN5++20GDx7cpr5o/PjxvP3228TFxbn4orS0NN59910GDBigfFFGRgZWq5WZM2ca+qLbbruNZcuWAbbM0tIXATQ0NDB8+HBOnz7tky/69NNPOXXqFFOmTPG4HLm7wsx4X9bJKKJdu3apTNNRUVEuY+GIiAi/l++11ruM1HM2sAzbbALYlkYtAhqA5Xb7BN7T2v5dxkiuI7+nmUFrvqf5NSmVnp7Ogw8+yP33368GA2ALu/7DH/6gHp7dFZJTSi99qDfo0bK84GRQEIqG1Z5TSgjwsOzAW8iQvtF4z4kSQAABtC0ee+wxHnvsMcrLy4mJiWHu3LmKx2/GjBkAaJpGr169HB4IctLmhhtuICoqimnTpnH+/Hklc+ONN6JpGnPnzgVs4bqyzWq1Mn/+fLXcqb6+3qHvESNGqO2bb77ZQV/nh5J8OQPo378/kyZNUm3z5s1T+tvLAQwePJiJEyeiaRoA99xzj2rLz893kB02bBi5ubmqbtCgQQ7tsm9N0xg3bhzjxo1D0zRCQkKYNWuWof5XX3212p4+fbra1jRNTeo///zz3FJbSzhwEnBchX8RERER3HDDDcTHxzNq1Cg0TSMmJoZbbrnFpV9357Bv375q215W0zSGDRum7Bw4cCADBw7kxhtvVP3Ia61na1xcHBMmTFB9zZkzx61sfHw8SUlJaJpGUFAQd999t4uspmnqPhk7dqzqd+bMmW5tzcrKcrDnjjvuUNtRUVEu94gckAPcdtttanvTpk3qXF1zzTUAjBw5Uj2nL7/8cod+nM/38OHD0TSN2NhYNYC3P0/z58934OboLjDji0D/Hpah/cHBwcyYMYPy8nJGjhzJjh07uPLKKxk0aJAipu/Zs+fF+72Fp3PAqFEEBQVx++2383//93+cPHkSgDFjxnD//fcDreOLAI4eParri6Rt9r7IuV9nX5SamoqmaUyePNlFNjo6Wv1W/PFFzv2CbVJD4vbbb1e6R0REuPTrzhfp9Wtfnjx5MqdOnSI1NdWlTZ4Df30R2M6/u99ra/kiZ/3tfRHAgAEDVF9RUVFqWy4ddeeLnPUFmy+SOnznO98xlDXyRffddx+apjF+/Phu6Y9aG3JSqrq62oH/zhn2y/dEz55YwOvle62N3+I+0cpydzsFEMAlhF+TUi+88AJvvfUW3/ve9/j0009V/aRJk3jhhRf8Vq4jwezXwCuvvFK9MMmXN7A9aFJTU9m8ebOqr6mpYcWKFepLTWhoKFlZWVRWVlJeXq6+3A775huGA/nNzRxsiUzoFRzM5bZOKMnPZ39BgeHXwMrKSjRN8/g1MD4+Hk3TOH78OMFAPRdJzSU8caLYo7q6mk2bNpGYmKh0SElJoXfv3uo8jR07lszMTJ+/Bsp+jb4G9unThzFjxqhj2n8NBEhISGDdunUOXwNlv/JroCzLr4GVlZVkZGSQmpqq2hISEhg2bBiaplFZWUlhYaFfXwPr6urQNM3wa2BlZSXNzc26XwMrKys5duyYw9fAe++9l+bmZjUwHD9+vNI/OTmZhoYGVU5LS1P3b79+/UhMTFS2HTp0yOevgXfeeSdhYWEeIxMqKyspLi7W/RpYWVnJzp07A18D3UCP10+PU8pZzr6sty1fDBoaGqivrydM8rv4qZs3Mnptnurc2Wkk4y3k/vHx8eTk5HD2nntg5042RkeTtW6dkjt+/LiKJo6NjXUgjvTXNjPbvsDs/v5eN2/vR7N62Wfgs4d8Hvfr189jH+6O1V05NL2B3jmSL+JRUVFYLBauu+46NmzYANg+6t1555188803gCM3RXyfPraNXr247rrr1GSUhFk+KXd6eSt3Ke9rI7SFn9Wr7yq2daRniD9yAX9kDG+ufUXLhFJoaKgD0bnztbcnOm/q0cP2cu1l9r3WuvZynGc20Yr95Glg/OA9/LWtI/tZM2hNX+TXpFROTo7LVyiAmJgYSktL/em6w8Hs18DDhw+rrxo//elPAdtSEvm1a9q0aUouMjKS+fPnc/jwYfUFKyEhgcOHDxMdHc0111zDlVdeSXnL8pUCi4Wf2n8xiY6G8nL61tV5/Bo4efJkdQyjr4GHDx9m0qRJZGdn0/OZZ5ST9ZRlzx2uu+469TXQXofa2lq1ffjwYb++Btr3C/pfA+Vx9L4Gyrbk5GTDfu3LkydPpn///g5le3tuuukmDh8+7PfXwBtuuMFBB72vgYcPH3b7NfDw4cMuXwPBtizGnW1g+3Ity9ddd52Dbc73rC9fA8H2NdudbWD7Gnj48GG3XwOlDoGvgebRGkTn9l8Jq6qqfJqU6g6IHzaMiP37AQi++26SkpJUW1RUlMO9H0Dbw9OkVN++fQmgfSEJVu39kT3Rub2MXDoHECSXw7SMwZw/THgzKRVAAAEE4A4yUqq8vNyB6NwZ9pFS9RERtpdr++V7bbCixR1iY2OJiIggt7aWsdgipCScgwoiIiLoIyf5AwjgEsOv7HuDBg0iLy/PpX7z5s0OSzm6E2SUjhBCvSw7D4Lt5Zy37cvyf1gLb9SxpiYVyg54xSvlfAxPcv0XLeJ/WupewXOWPT1ERERw+vRpXR2M7PcW3tpmts3dddEr6237a5fZPry1S6++K9kWgA1650dvUsrba79//341EeVrBr62uPae6jz5WbN6GcF+/5INGxhQW0s1MP6ppzzqatTmjW0BP6uP4cOHA7ZlnvbP0ZKSEsBcpJRZfxqAK/TO0Z49e4CLL3m7du1Sk1Ll5eXs2rVLRSfY+5oSmUGxVy927dqlsu9JJCYm+qWXt3KB8UPXsK2jPUN8lQv4I2N4c+3lpNS5c+cclu85X3v7SKn6FpoENSklBNhxPXqjl7dyu3btUpHaB6+8EgsXOaWExUIw0OuVV3jxxRfJysoiJyeHwsJC3b47w33dWXyRkVxH9rNm0Jq+yK9IqUcffZSf/exnvPfee1gsFk6fPs3WrVv5xS9+wW9+8xt/uu6UKCgo4Pjx42RnZ1NTU0NjYyNgc2ZyiRN4nyIxpIWcuAAbj4vkhWHwYMjNtfFK+am3TPN4/Phx8t54gxGvvALAr4D/Z6KPjz/+mKuuuopVq1apSKbY2FgVeh9AAAFcerRGpBTY+F1KSkp8npTqDjjyl78wEdgZHc3NLRxGAVw6yEmpiooKLly4oCKjApFSlw719fWAuUgp+4jM0JaXw1Pl5Rw/ftwlUkoIocZczstjAwgggADMQk5KVVVVGY6fgoKC1KRUnXxHi4qyRUcJYVvC145UE7GxsUS1BI1UR0bSQwgso0fDb3/LyNmzuVzTVPR24D0tgA4Dj/kCDdDc3CxeeOEF0aNHD2GxWITFYhERERHi2Wef9afbDg13aQ3z8/NFRESEwERKxYiICHHw4EG1r6c0s81DhggB4nrn486bZ0s3+tprHvV2l7JR6j0bxG4QtXZpy9/1IU2ktykrjXQzi+6earS7p3TurmmPhTC2Xe/cJSYmCkB8/fXXbuXMXPv4+HgBiO3bt/ukd3dI570vOloIEF/Onm1KV6M2b2wL+Fn3GDhwoMPzSgghbrzxRgGI9PR0j/t78qcBX+RdGvYlS5YIQIwfP17JfPTRRwIQU6dOFRUVFeLXv/61AMRPfvITtV/5LbcIAeKHJsdb+fn5bvXuCve1N3p5I9Mdxg/e1LX3M8RXue7uj3zxRe7qcnJyBCBiYmLEj3/8YwGI//3f/9W99udb3p3yV6262EmvXrb3tCNHPOrdmtc+/bXX1LtcxbffGvYRGD/4B39tu5R+Nisry/R7vvPYyZP+9m1mfZFfy/csFgvPPPMMJSUl7N+/n2+//ZZz587x/PPP+9Ntp4TMVmcGtbW1rLMjvd26datDuyxv3boVGhpUJFQ+qAyHgGMGPg9wPoa93nfW1rIMuAZb6vLglrZVJmzxdBz7spltX2B2fyM5vTYjW5zLetv+2mW2D2/t0qvvSrYFYIPe+dH70ufLtZeRCVVVVa2mmzcyZn6vznWGftYLvZxRUFBAdnY22dnZfPjhh2RnZ7NuyRISW5ZvB8+aRXZ2NgUFBaaO469tAT/rHvZL+CS8ITo3608DcIXeOZLL96Q/2rp1q0Ok1NatW9W4Si6zBCg/dcr238Rxa2trVSS4Wb28lbvU97U3enkj093GD5fqGeJJB2/lAv7IGN5ce3tOKTneiYqKcr32QqhIqVp7nk0vMvD5cu3txx/2Y5CyP/6RYODwkCF8mJXlMP5w7iMwfvAP/tp2Kf2s5B8zg4iICN2VXq3pi/xavicRFhbmsoa/pqZGlwwuABvsieCdB0yyXFxcDKdOYRGCWuAcvk9KFRcXU1BQQOPixQx6+20i8vOpHT6cyjvv5GVsU6D2M5RNwK+BJV7a5c4Ws9u+wOz+RnJ6bUa2OJf1tv21y2wf3tqlV9+VbAvABr3zozcp5cu1lxwuvi7fa4tr76nO0M96oZc9CgoKGD16tMsHiQeAW4DdwLQf/ACwPdBzcnKIj49vU9sCftY9LrvsMrZv3+7A8ygnO8ws3zPrTwNwhdG1l2PF4uJi4uLiANukVHFxseJxaWhoUPsFtbwctkai9a5wX3ujlzcy3W38cCmeIWZ08FauK/ijzMxMnnjiCZqbm/nlL3/JD3/4w1br25trLyfJhRCcbeHvjYyMdL32tbXqhbomNPRiJ15k4PP22rsbf4QDMh/p06dPs+Kxx3jiiSfU+MP5WIHxg3/w17ZL6Wcl/5g7WWdKHr2l8K3pi1plUsoedXV1/PWvf+WVV15RP+AAXCEz9wEumQ9kuU+fPtAyu33SYkEI4Tgp5QXReUNDA0+NGsWnDQ0qk17EkSPcfOSIrrxe2lAzcGeL2W1fYHZ/Izm9NiNbnMt6262R0cJMH97apVfflWwLwAa986M3KeXLtfd3Uqotrr2nOkM/64Ve9igu1o+QndXyP9OuTkZsxMfHt6ltAT/rHs4Z+IQQXhGdm/Wn3QkLFy5k4cKFNDU1AbBkyRKioqKYM2cOa9eupaysjAEDBtCjRw80TQMgKSmJ5uZmFaUWHh7OmjVrKCoqUh/sCgsLKSoq4kzLR7f6+no0TWPmzJmEtvzmzOZdXbVqFadOnWLWrFksWrQIsGWNjY2NpaioCE3TmDp1Krm5uRQUFBAeHs6cOXNYtGgRzc3NjBw5ktDQUKX/lClTKCgo4NixY4SEhNCnTx/S09Opr69n+PDhjBw5UvV70003UVRUpMrz588nIyODoqIiNm3aRGJiompLSUmhsbERTdMoKiqisbGRVatWUVFRwaBBg0hKSuKLL74A4Prrr6e2tpZ9+/YBMHv2bNavX8+FCxeIjY0lJSVF9SvTckvS2bvuuoutW7dSXFxMeXk5tbW1LF++HIBrrrmGiIgIduzYQVFREWVlZWRnZ3P27Fl69erF9OnTVb+JiYnExMSo8rRp0zh48CBFRUVkZGSQmpqq2hISEggJCVG2FRYWcvToUfLz8wkLC+Oee+5hyZIlNDY2MmLECOLj41m/fj0AN998M1arlaNHjxIUFMS8efM4f/48mqYRHx9PQkICX331FQCTJk2iuLiYnJwcioqKaG5uJjMzk6qqKuLi4rj66qtZvXo1RUVFHDt2jMrKSg4cOADYxuWff/455eXlDBw4kPHjxyv9k5OTaW5uVvdAWloa5eXlaJpGRUUF1dXV6roeOnSIoKAgxWs2a9Ystm/fTlFRETExMdx2220sW7YMsGWWjoqKYvv27YDt2bxhwwZOnz5Nz549mTFjBosXLwZsmaX79u3Lli1bKCoqori4mMOHD3Py5EkiIyNJS0vj008/paioiJ07d7pwrXUWNDY2smDBAtatW0dMTAzJycnMnj3blI82A2+eseHh4URERFBbW6t8UWRkpOvzxy4LdE2Q3Sd++wx8PuhlJOdu/DEP6I+Nh/izljr78YfzsQLjB//gr22X+j0tPj7eLe9iUVGRQ+ZoM3qabdOFxwWHOqitrRW/+tWvRHJyskhJSRHLly8XQgjx3nvvicGDB4uhQ4eKl19+2ZeuOzzcrYv0dl3mli1b1L41NTUOfclyTU2NEP/8pxAg1oeGCkAcOHDgouCaNba1yldf7VHvLVu2iN0gmlrWGNv/Nbf82dc1gthl0hZ7zgZ3tpjd9gVm9zeS02szssW5rLftr11m+/DWLr36zmxbd+VNEMLYdudz19zcLIKCggQgTp8+7VbOzLWfNWuWAMQ777zjk95tcV97qjP0s17oZQ89vx8C4kKLH53oZj1+W9oW8LPusXDhQgGI1NRUIYQQFy5cUNfGn3sy4Is826537l5++WUBiPvvv1/JHD9+XI0rampqxH333ScA8corr9h2Sk8XTcHBQoA4DGK2jzwYRnp5K3ep72tv9PJGpjuMH7ypa4tniBkdvJXr7P7om2++EWlpaar8s5/9THzyySem9/fFFxnVDRo0SACib9++AhCffPKJ67XPzRUCRBmI9evXX+xkyhTbe9Wnn3rU29tr7+69c0fL+OOXBn4wMH5oX19kJNcd/Gybcko999xz/N///R+XXXYZJ06cYO7cufzoRz/itdde49VXX+XEiRP88pe/9KXrbgN7Tin5hcq5vHz5chUpdcpiAfA5UmrdunUk4LhET6IBsGBbskfL/2DgdzqyH3/8MVlZWervxRdfdAgJdWeL2W1fYHZ/Izm9NiNbnMt62/7aZbYPb+3Sq+9KtgVgg/P5qa+vp7m5GXCMlPLl2vsbKdUW195TnaGf9UIvT5gE9AaKgB1uZNrStoCfdQ/nSCkZJSW/hnuCWX8agCv0zlFWVhZw0R8tX75cLZepra1lyZIlKhLg8OHDsGwZ3HMPlpaorCuAZcDsVtbLW7lLfV97o5c3Mt1t/NARniFtdT+2JzZu3Mhdd93FkCFDsFgsrFixwkVm4cKFXHbZZURERDBx4kQVKQZw+vRptYwXIC4uDmtLFvLWgLfXXvJKyedFZGSk67VvWZ5XgdN7mhfL91rj2k8ExgO1wDsm+wiMH/yDv7Z1Nz9rBJ8mpZYsWcKHH37I0qVLWbNmDU1NTTQ2NrJnzx7uu+8+goODPXcSgDm0TEpZQ2wrLXU5pYqLoSW1shGOYpsut0cTcBCYA+wDalr+zwZW6PRx1VVXkZSUpP4uv/zyQLrlAALoBJBL90A/pbE38HdSqitDLt37Ami+lIoE4ALnSSm5fEzezwG0L+pbxi32/KP21AbV1dWKUyo0NBR+9zuwWLC0tAdhG8M81076BhBAAJ5RVVXFuHHjWLhwoW77okWLWLBgAb/97W/Jzs5m3Lhx3HHHHRQVFbWzpuYgJ6UkdMdPLcv3ynF6T/Ni+V5r4Kct/zXgfLscMYAAWg8+cUqdOnWK5ORkwLYeOjw8nMcffxyLxeJhzwAkRo0apbavueYahzZZvuaaa+CDDwAojoqC6mpHZ9e3L4SEQGMjFBXB0KGGxyvFFhEluBgZJSOiVgC+zKm6012vbGbbF5jd30hOr81f2/y1y2wf3tqlV9+VbOsOMMPjYrFYqKioIDPTxmwkvzwGBQWxdOlSUlNT2bx5MxUVFaxevZqbb76ZFStWUFFRwYEDBwgNDaWiokLxuAQFBaFpGo2NjWpQtn37dvbu3UvPnj3Ztm0bAHfccQf79+/HarXSo0cPXR4X2a8Rj0tUVBRWq5WNGzcCjjwuMguOPY9LfHy84vuQPC7yOPPnz6eurg5N0xg6dCiJiYmqbdCgQezZs4eDBw9SUVHhFY+LnOSwh5yU+lznun377bfk5OTQ3NzslseloqLChcclMTFR2SZ5XKT+06ZNU3w3UVFRXHPNNUq2R48enDx5Ul1nf3hcrrnmGpYtW0ZdXZ0hj0tFRYVbHpeKigoXHperrrrKgcdl5MiRSv/k5GT69OmjyqNHj2b16tWUlJQghKC6ulqdh2uvvdYjj4u8R8vKyti1axfp6emAjeTcDI9LRUWFLo+L1GGw/FAUgAv0/HWvlhc26U+uueYagoOD6dmzJ5WVlQwbNkxFSo0cOdI2HhKOn9Z85b800stbucD4oWvY5qnOcKzuhV5GaKv7sT1x5513cuedd7ptf/XVV3n00Ud55JFHAHjrrbf4/PPPee+99/jVr37FkCFDHCKjrFYrEyZMcNtfXV2dw7tRebkx25y31955UioyMtL12rdEQrmdlDIRKeXPtZ8NPA/IlGMHvOgj8J7mH/y1rbv5WSP4NCnV1NREmF3Ky5CQkMCXRi8RHh6utp2XDchyRESEipQ61/Il0cHZBQXZlvCdOmXLwGcwKXX5zp1cj20iKg+IB3K4OCHlK9zprlc2s90aOvgip9fmr23+2mW2D2/t0qvvSrZ1Bzz22GM89thjlJeXExMTw9y5c1WEwYwZMwDIy8ujV69ezJ8/H4AjLUkNoqKiVN20adPIy8tTk+Tz5893KAcFBant5ORkRo0aRV5eHjk5OQAMHz6csWPHAjBixAil38033+ygrzyexK233qr67d+/P5MmTVJt8+bNU/rHxcU57Dt48GAmTpxIXl4eAPfcc49qy8vLc+hn2LBhxMTEqOPcdNNNDh8DpA7S3nHjxpGXl0dISAizZs3CHs76X3311QBqAgRsg8IXgSuxTfyH44obbriBpKQk8vLyiIiIcOlX6hMTE8Mtt9ziYJvRObz22mvVtr1sXl4ew4YNU9d14MCBDBw4kBtvvFH1M3fuXLe2xsXFqZeBvLw85syZ41Y2Pj5e2RYUFMTdd9/tIpuXl6fuE3nf5OXlMXPmTAdb7V9A7O/BvLw8RbqZl5dHVFSUw3kA28SVxG233eagwyOPPMJTTz1FcXExQUFBSofY2Fi+853vuLUNbPd6Xl4esbGx3HTTTQ5tUgdPL0PdGXr+WmbUk5NSUiYmJobKykrq6+vVpFSvXr0gIQH27XOYmGrCNpZpTb28lQuMH7qGbZ7qDMfqXuhlhLa6HzsK6uvrycrK4umnn1Z1QUFBTJ06VaWPnzBhgvqwFRMTw5dffslvfvMbt32+9NJL/O53roQj7pIu9O/f3yXpwrfffsu+ffvUx7rz588TFBTEyJEjHbKlg2154sCBA1Xmsn379nFlVhbXYVu+t27dOhISEujZsyf1p05xJVBz7hw7Nm40/D/dQcQAAQAASURBVFgndfCUdEEIgaZpHD9+HLCNPZZhi8yWgQd/Ao7hGGxw9uxZsrKyyM3NpaqqiquvvpqMjAzOnTvHhQsXSExMVDqkpKRw+vRp9QEuKSmJzMxMn5MuyH6Nki706dPH4eOi/cc6sH2QW7dunUPSBdmv/FgnyzLpQk5ODkePHiU1NVW1JSQkqMQZVVVV9O/f36+kC1lZWezbt8/wYx3YxtArV650+VhXVVVFVFSUw8e6e++9l71797Jv3z6VdEHqn5ycTENDgyqnpaVx4MAB9u3bR79+/RgyZIiyLTg42OekC3feeSdHjhxh3759hh/rqqqqGDRokG7ShcrKSmpra80nXfCG8ErCYrGIGTNmiNmzZ4vZs2eLkJAQMW3aNFWWf10RrUV0/uKLL6p9nQn8ZPmTf/1LiKgoIUDcGh8vAJGRkeGo0PjxNhK9lSvdK332rKhq6ed3Xuio9+dMGOpOd72ymW1fYHZ/Izm9Nn9t89cus314a5defWe2rbOSebYGjGx3Pne7d+8WgOjdu7ehnJlr/9JLLwlAPPLIIz7p3Rb3tac6t37WD18k/f7sFmJRmUhCJo5wJmGW/rMtbQv4WWOMHz9eAGLFihXijTfeEICYMGGCqX09+dOAL3Jvu965u+mmmwQg/vSnPznIJCYmCkA888wzYuzYsQIQTz/9tBDp6bbfmcWiErIIEGl+EJ13lfvarF7eyHSH8YM3dW3xDDGjg7dyHckfAWJ5SzIsIYSwWq0CHJM9CSHEk08+6eCHMzIyxBVXXCFGjhwp/v73vxseo7a2VpSVlam/kydPeu2LjOp+/OMfO/iTAwcOuF77v/1NCBDpOCWA+e1vbe9oP/mJoQ3udDCSk+OP3bgmsdJLVmXvBwPjh/b1RUZy3cHPmvVFPkVKPfTQQw7lBx54wJduOhU8LZc5evQooaGh6sufEUJDQ6mvr6empoYVK1ZgtVrVcpmsrCysVivl5eVU5udDCw/MuZbIqrVr13LZZZep5TKTm5sZCuRu2EBWZaXrDHxCAlc+8wxR1dXsAl7w4xyEhoayfft2cnJyVNpjq9XqkPZYlmXaY6vVqtIey7aUlBSVShdQSz18nYGX/XqagW9qanI7A9/Q0OAyAy/7lTPwsixn4K1Wq0p7LNsSEhKoqalB0zSsVqvfaY/PnDnjMe2x1Wp1u1zGarW6LJe59957KSwsRNM0NQMv9Zcz8LKclpamUiL369dPnUOr1epX2uM777xTpXQ2moG3Wq1u0x5brdZOnfa4vSE5peyjXH1FgFPKEb/F9pVSkjTK5dHP4duy6ADaDsOHD2fnzp3k5+dz4cIF4OIysgDaF3qcUoAiO6+urlaRUqGhoTBnDqSnc/6//5tep09zGM/R3hEREcTGxra+8gEEEECb4e6773aJtnWH8PBwh9UnrQ295XsucEd07sXyPV+hl8TK32XNAQRwSeDdnFkARrN9+fn5Yv369SIrK8vhz7kuPz9flJaWqv3st+3L5evX22a9Bw0SU6ZMEYD46KOPHA/66KM2md/9zrE+PV2IsWOFCA21fVkMChLXeBER9fHHH7vYsW/fPheb3emuVzaz7QvM7m8kp9fmr23+2mW2D2/t0qvvzLZ1hK+BlwpGtjufu6+++koAIjEx0VDOzLV/7733BCBmzJjhk95tcV97qnNnpz++SH6prHb6Sin/qt18qWxL2wJ+1hhPPPGEAMTjjz8u/vu//1sAYsGCBab29eRPA77Ive165+72228XgHj//fcdZKZPny4AsXDhQjFs2DABiHXr1jn0lZ+frzu+cv7Lz8831Lur3Ndm9fJGpjuMH7ypa4tniBkdvJXrSP4Ip0ipuro6ERwc7FAnhBDf+973xN13390qx/TFFxnVychw+XfmzBnXa//MM0KAeAPEq6++erGTt96yjQdSUz3q7e21t4+UanYae3iKlAqMH9rXFxnJdQc/a9YX+ZR9LwB9xMfH09zc7JCdTq5Xti/Hx8c7cJHYb9uXT2zYIDtWXwsdZuDhYga+M2cu1rWkTWbfPmiJ3ApqbmYU5uGcZS8pKYlz5865yLnTXa9sZtsXmN3fSE6vzV/b/LXLbB/e2qVX35VsC8AG5/MjI6Wam5sN5cxce38jpdri2nuqc2enP74oNjaWiIgIcnHNtOfMdWMfsdGWtgX8rDHsM/DJFN/2mSmNYNafBuAKvXMks21JTikpIyOlDh48qMY+x44dc+hLcpjpjbmcx1ve6uWtXEe4r83q5Y1Mdxs/XIpniBkdvJXryP4oLCyM5ORk1q5dq+qam5tZu3YtKSkpfvW9cOFCEhMTuf766wHbihZN06irq+OLL75A0zTWrl3L1q1b0TQNTdPIycnh0KFDfPjhh2iaRnV1NWvWrEHTNJYsWUJNTY3i45T4/PPP+fDDDykvL2fZsmU2fqe9ewEb0blMAHPs2DG2tKzyaLhwgY0bN6JpGitXrqS5uVnpkJ2dTUFBgdLh3LlzfPPNN2iaplYbLFq0CE3T2L59Oxs2bEDTNL755hvCw8P5A2CfZsw+iZWEXKGTlZWFpml8+OGHAGRkZPDhhx+yadMmzp8/r3Q4ceIEX375pdJx586dZGZmomka69ato6ysTLXl5eWxf/9+Va6trWXVqlVomsa///1vKisrVb+HDx/m8OHDSrayspJ///vfaJrGqlWr2L59u2rbv38/eXl5qrxlyxbWrVuHpmlkZmbS2Nio+t2zZw8nTpxQ5fPnz7Np0yY+/PBDMjIyAFRbVlaW6ufDDz+ksLCQLVu2oGmaSn4i751t27apFStylYjUUa5I+uSTT9T1OHfunJItKCggOztblbOysli5ciWaprFx40ZKSkqUDseOHWPv3r1KtqGhQV3zr7/+mvLycqV/bm4uBw4cUOWamhql75o1a9i2bZvq99ChQ+Tk5Kh+KyoqWLt2LZqm8cUXX6gEQJqmsW/fPo4eParKpaWlLF++HE3T+Oyzz9RKGU3T2LVrF/n5+eo4xcXFbN68GU3TWLFiBQCffvopH374ITt37nRIXGAEn5bvBeAeZ8+e9brOuf3s2bOwbBkjX3vNVpGTw+TYWL5FZ1Jq0CC5k6qqf+YZQi0WLHZkoM3Aby0WljtlrtGDu3B3M7YZlc1s+wKz+xvJtYVt/tpltg9v7dKr70q2BWCD8/mRL95BQUGGcmauvQxn93VSqi2uvU9+1oOMJ0ii06I33yToT39S9cJiIVgIer3yClm33grYJrDkC3Jb2hbws8YYPnw4APn5+QwYMAAAYeK5aHSsgC/yDL1zVNGypEUuh5EyclKqsLCQmpoawDGjVuC+NofA+KHjP0PM6OCt3KX2R5WVlSoZCcDx48fZvXs3ffv2JT4+ngULFvDQQw8xfvx4JkyYwOuvv05VVZXKxucrzCSAARTFiD12797tkABGykVGRjJ16lTee+89Jfu9732PpUuXEh0dfTFhyZo1gG353pVXXnkxAcwdd8DChYTW1npMABMbG6vq3CWAcdY/NTWVhsWL4cknqcc29mi64grOPPoov7n1Vn4DrFq1igceeECNP5KTkxWVSWpqKpqmMXnyZBcdtm7dqrb1zpm7BDAA06dPd2sbLedI4vbbb9e1TUImMtFrc+7Xvjx58mROnTpFamqqS1tubi7z589XNCa+JoAB2/JO+3a9BDDu9Jc6OCeAARwSFenZunfvXlXu0aOHy7XSNI2rrroKME4A46zTyJEj1XZ4eLhb28A2ntI0TTcBzH333YemaYwfP950EpjApFQrQ4+bwlOdc/sV+/bBSy+hVi2XlfHHsjLy8BwpVVBQwIDDhx1mzcG23jjBaeAdFhbGsmXLHNJYb9y4kTlz5uh+XTRjm1HZzLYvMLu/kVxb2NYaPCVm+vDWLr36rmRbADY4nx85KSWjEtzJmbn2/kZKtcW199bP6t3LvtxT8fHx7MnPB6ABCA0Px3LllfDb3zJy9mzT+hu1eWNbwM8awz5SKiTENgTq37+/qX3N+tPuBE98mzLjVXh4uEvGKznhFBQUxJo1aygsLGT16tWKJ7C4uFhFSskv8zNnzlSclNHR0fTo0UP1O2bMGMW3CXDHHXeoLF7uMl5JfkVPGa+CgoLUcaZMmUJBQQHHjh0jJCSEXr16kZ6eTn19veLblP1Kvk1ZlnybhYWFim9TtqWkpKisUIWFhTQ2NrJq1Sqf+TZlv0Z8m6WlpdTW1rJ8uY39zp5vs7CwkLKyMrKzsx34NmW/km9TliXfZmFhoeLblG0JCQlYLBZlm798m8XFxR75NgsLC93ybRYWFrrwbfbo0YPPP/+c8vJyxbcp9U9OTqaxsVHdA2lpaZSWlqJpGmVlZVRXV6vr6g/fZlhYGBs2bOD06dOGfJuFhYVu+TYLCwsvKd/mzp07HbLHLliwALDxEX/wwQfMmzePc+fO8dxzz3H27FmuvfZaVq1axcCBA9tFP2+fsfacUiEhIYSGhro+f1peusuBIPv3NJmZ3gSnlC/P2Pj4eERWFgBvAGXPPMPzzz/PSDv506dPu7zTBcYP7fsuYyQXeE+zgzdrCwPwvC6yoaHB6zrn9uZrrhGiJbuM/GtqWR/80ksvOXa0datNZvhwIYRtjfFuk5kY0MlKo6erN7YZlc1s+wKz+7e3bf7aZbYPb+3Sq+/MtnUE3oRLBSPbnc/dX//6VwGIe+65x1DOzLWXXAZxcXE+6d0W97W3flbvXvb1vt7bkt30W5OcGG1pW8DPGkP+ZgAxYMAAAYj169eb2teTPw34Iu/GRiNGjHDIxCVlXnjhBQGIBx98UF2rwsJC3b4C97V7BMYPnecZ4u3+gbGRe7T2e9qWLVuUH+rVq5dDm9rv9tuFAPGAM0fhjh2297ChQz3q7dO1r6oSTS3jjxuCg8WFCxe8ss2XbV/Q3f2skVx38LPtwilVUFCgG/YuhKCgoMCfrjstlixZ4nWdc3vz4cO2qSQ7BGHLpGAYKdWyz+9wzMSgt77YG/2N2pzrjMpmtn2B2f3b2zZ/7TLbh7d26dV3JdsCsMH5/MhIKcnj4k7OzLX3N1KqLa69t35W71725Z4qSE/nmupq6oDDTuHL7tCWtgX8rDGio6Pp06cPcPG3ILOweoJZfxqAK/TOkeT0ktGbUkYu39vbwtMCqAgh574C97V7BMYPneMZ4kkHb+UC/sgY3l57+0gpudTY5drbRUrpZt8zMVby6dp//jlB1dUcA6Juvpkvv/zSVL+B8UP7+iIjue7mZ43g1/K9yy+/nDNnziheBomSkhIuv/xyFc4dgHcoHzyYPidPOkxMNWMjzXWZlJLhrvX1UFoKgKQ4FGB7UcJz2uQAAgiga0NOSoWFhfndl/2klBACi8V5wXDXREFBAcXFxQ519c88QzywNjYWa0MD2dnZDvxRAXQ8XHbZZVy4cEGV5f0cQPuivr4ecE2xLielysrKVF1oaGj7KRZAAAF0OphdSmy/DFMuJbZarWiaRmpqKps3b+b8+fMUFRVRU1PDunXr1DFCQ0MV4XV5eblaRjrrzBl6YZuUOnjwIHv37qVnz57s/eor0gBRUcGmDRuwnj7tdimx1MHTUuLa2tqLy0j/9S8igcXAkLg4AJelxLJfuZQ4NzdXEU9nZGRgtVrVUmIpm5KSopZJA2oZrK9LiWW/RkuJ+/Tpo8i0wXEpMUBDQwPr1q1zWEos+5VLiWVZLiW2Wq1qKbFsS0hIoKamRl1Hf5cSSyJ0o6XEYAvYWblypctSYqvV6rKU+N5771VLh+VSYql/cnIyDQ0NqpyWlkZRURGaptGvXz91Dq1Wq19Lie+8807Onz+PpmmGS4mtVqvbpcRWq9W7pcTmg7hcYbFYRFFRkUv9iRMnRFRUlD9dd1h4CkHbvXu313XO7cf//GchQDTLJXwt/9Pcpa7u08cmd+CAyMrKEs+0LNn7t85yPec/5+V7erp6Y5tR2cy2LzC7f3vb5q9dZvvw1i69+s5sW3cNURfC2Hbnc/fUU0+pJTFGcmaufWlpqfIhtbW1XuvdFve1t35W7142OmZ+fr6IiIhw8J+xIGpa/O0Eu/qIiAjDVPRtaVvAz3pGWlqaw3XcuXOnqf08+dOAL/JubBQSEiIAcfLkSQeZjIwMAYj+/fsLQISFhQXuax8QGD90rGeIGbTm/dhd/VFrv6dVV1erZ8VVV13l0Kb2GzpUCBDJIB544AF7ZS5SqVRXG+rt9bWvqBDNERFCgLgWxN69ewPjhw7qi4zkuoOfNeuLfIqUkqR1FouF3/zmNw7EuU1NTWzbto1rr73Wl647PeQXPm/qXNrnzIHLLqP+2WcJP34cRo/mnbg4VnzxBY85R0qBLQPfhQu2DHwxMXyvpfqjVtLfrB2eyma2fYHZ/dvbNn/tMtuHt3bp1Xcl2wKwwfn8yEip1rj29l89KisrCQ8P90s3b2Vaw8/q3ctGx7QnXQaYDSwEIoBqIM5Otra2luLiYrfRUm1pW8DPeoYkOwfbcr5+/fqZ2s+sPw3AFc7nqKGhgcbGRuDi8j3nayqX90VGRgbuax8QGD90rGeIGbTV/RjARXh77SMiIggNDaWhocGtr3K7fM8+QqSyEpyiQj3pYCj32WdYamvJBYoGD+bqq68mvyXpilnbfNn2Bd3dzxrJdTc/awSfOKV27drFrl27EEKwb98+Vd61axeHDx9m3LhxfPDBB7503emxdetWr+uc27du3Qpz5rDsN7+BmhrYvZt/tywvsH8pUrDjlYrav58EoApY1kr6G7Xp6u6mbGbbF5jdv71t89cus314a5defVeyLQAbnM+PnJQ6d+6coZyZax8SEkJERATgG69UW1x7n/ysBxl3mI3Nvw5qKUe0lPVz7bmiLW0L+FnPsJ+U6tevn9+2BXyRZzifI5l5Dy5OSkkZOZCVy3AiIiIC97UPCIwfOu4zxBu9vJUL+CNjmL32n332GdnZ2ezatUvRHjQ1NZGdnc0nn3yi/hfk56vsehU4TUoFB4MM3PCQgc/ra9+y/G8xMP3OO7FYLIHxQwf1RUZy3c3PGsGnSCm5vvaRRx7hL3/5C9HR0b50E4AXkKmrXTil4OKk1Nmz9GtJhbwc8I2COIAAAuiKaE1OKbDx8NTW1lJVVdUq/XUm/BYbz5/8qhOELaHEc9h8bwAdD/Z8YDJCB2wTHsePH1ecCwE+sPaBnJSyWCwukZbOX1edOacCCCCAANoSBQUFPPHEEzQ0NDjU7969m+TkZACeeeYZAF79/e8pbuEAdomUAhvZeXW1x0kpr1BeDi2k5ouA3955Z+v1HUAAlwgWIXTS5wXgFuXl5cTExFBWVqY7GXf+/HmXpQCe6pzbZdm+/uWXX+bpp59m7ty5imhM4Re/gD//Gf77v2n88ENCysqYBvzbhD1ZWVkkJSUZ6uqNbUZlM9u+wOz+7W2bv3Z50tmMjLu2rmSbp99kV4Q9oWdubi7vvPOOC6Fnr169+M53vkNmZiYA77zzDl9//TUPP/ww06ZNU4SeZ86cYdCgQdx8882sWLGC+vp6xo8fT2hoKFu3biUsLIyZM2eyadMmysvLCQ8P56677mLIkCEUFxfz8ccfk5KSwraWCfE77riD/fv3Y7Va3RJ6rlu3jrCwMENCz0GDBpGQkMDGjRsBmDJlCgUFBRw7doympiYeeOABB0LPfv36qYkFSei5f/9+wsLCmD9/vup36NChJCYmkpmZSVhYGImJiYCNnLS+vp7777+fVatWuRB6Hj9+XA1CqwG91+QaQC5mX7p0KWPGjNEl9IyMjGT69OksX26bwrIn9KyvryctLY3s7GxF6Hn99dfz9ddfAyhCzw0bNhAWFsa0adPYuXMnJSUlREVFcdNNN7FmzRoAhgwZwogRI9i8eTP19fVMnz7dZ0LPqVOnsmHDBurq6gwJPevr63nwwQfJzMx0IfSsr69n8uTJDoSet9xyC1lZWZSXlzNw4EBGjhzJli1bAEhOTubChQscO3ZM6bR//35KSkro0aMHU6dOZcmSJYSFhXHttde6JfSsq6vjP//zP/U/6jghNDSUnJwcvv32W8CR0LO+vp6ZM2e6EHp++OGHhIaGMnjwYG655ZZu5YskvB0bHT9+nBEjRhAVFaUmtqVMSUmJg+yVV17J5s2bA+MHLxEYP/h3zZzrzIzVO9L92N3GRmbGRQMGDGDUqFHqGSOJzrdv305YWJgaF+3cuVM97z1hEHAGaLZYCBaCxMRERQ69bds2Zj3+OL0KC9n9179yqG9fn8ZFCxcupKysjKFDhxIVFUXYokXcvXQpB4FrLBZ+/cwz9OzZk+nTp5OXl+dAdL5q1SrCwsIciM7r6+t56KGHyMjIoLS0lBEjRjiMiyQ5eUFBAQC33norO3bs8JnoPD09nbCwMI9E52PHjmXDhg2AK9F5SkoKx48fdyA6/9e//qXGcc7jooMHD3Ls2DF69+5Namoq//znPwkLCyMhIYHw8HD27dvn97ho3rx5ipjdE9H51KlT2bp1q6lx0b333stnn31GXV2dIjpfvnw5YWFhiuh8586dhIWFkZaWxurVq6mpqaFfv34kJiayadMm6uvrmTBhgl9E51u3bqW0tNSQ6NzduOjTTz+lrq6OMWPG0KNHDxITEz37Ii/4rnTx1Vdfiaefflr84Ac/EI888ojDX1eEJ7KujRs3el3n3C7L9vW/+MUvBCDuvvtu14P+6U82Er3YWCFAWEEEmSA5R4foXE9Xb2wzKpvZ9gVm929v2/y1y2wf3tqlV9+ZbeuuZJ5CGNvufO6mTp0qAPHss88aypm99mPGjBGAWLt2rdd6t8V93Rp+1uiYWVlZym/uBtEsyUtb/hpB7DLwre1lW8DPusL+2vnyXPRkW8AXeT822r9/vwBEbGysi0xDQ4PD9bjuuusC97UPCIwfOtYzxAxa837srv6oNd7TvHlmJLSMAWpaEqGkpKQ4dn7ttbZxwpdfGurt7prqJVn5rOWYv3XSJSwszCXJSmD84H67vXyRkVx38LNmfZFPnFISv/vd75g2bRpr166luLiYCxcuOPx1R5w6dcrrOud2Wbavl7wtul96B7Uwm7QsTVgUHEyzCV0jIiKIjY31qKtRmzvd9cpmtn2B2f3b2zZ/7TLbh7d26dV3JdsCsMH5/Mjle87L7Xy99j1beO584ZRqi2vfGn7W7D31BmDBNgoE29K9YOB3pvZuW9sCfrbtYNafBuAKd/7IPlGOlAkJCXFIphARERG4r31AYPzQcZ8h3ujlrVzAHxnD7LU3Cxn3URMaCrhZvgcel++508E5yUpvYFrL9iIn2fr6erVM3ajfwPihfX2RkVx387NGCPFK2glvvfUWH3zwAQ8++KA/3XQp2A+wzNY5t8uyfb18AdSdlMrLcyg+/PTT7D99mvfee48bb7yRN998k/Xr1zNlyhQHOT3uDD1dzdrhqWxm2xeY3b+9bfPXLrN9eGuXXn1Xsi0AG5zPj3wJdA6d9fXay5dGXzil2uLat4afNXtP1bf8r8E2OZWDbUJqham929a2gJ9tO5j1pwG4wvkcSU4pe74oe5no6GjlWyIjIwP3tQ8IjB867jPEG728lQv4I2OYvfZm0TLlRGNEBFRUuJ+U8vABz6wOaUAYsBc4bEI+MH5wv91evshIrrv5WSP4xSnVr18/tm/fzsiRI33totPhUq3RXrFiBbNnzyYlJUWthQZg2TK45x4X+R/26cO7Fy6wZMkS7r333nbTM4AA2hvdjTfBHt7YPnr0aHJzc9m4cSOTJ0/2+9ipqamsXLmSt99+m0cffdTv/jo6srOzFcHpP4HvAS8Bv3Yj78zXF8Clg/21MwNfr1139EVmeVwmTJig+O2SkpLYsGEDP/7xj7nssss4cOAAmzdv5vz58/Tt25ebb76ZUaNGcfr0aQC+853v8OMf/xiAmTNnsnPnTgoLC4mOjmbatGksXboUgDFjxigeFzDHb/fNN98AGPLbjRw5kri4OF1+u5CQEObOnevAbzdy5EjFAWfP4wIwf/58MjIyqK6uVvx2kgMuJSWFsrIyDh48CMDcuXN1+e3AHI/LZ599BuCRx2XKlCm6/HYAM2bMcOC3mz59OkuWLAEu8tvJDEuSx+XUqVNERUWRmpqq+FYSEhIYMGAAmzdvBmwcNf7wuCxbtswjvx3AvHnzdPntACZOnOjC47JmzRrFbzd+/Hg+//xzAMXjsnfvXgDS0tLYuHGj4j+76aabyMjIADDktzPD47Jnzx5Onz5tyOMCcPvtt+vyuAghuOKKK8zzuHQxtIYf9uaZkYrtg1T5mDHEHDjAqFGjOHLkyEWBefNg8WL4y1/gf/7HsC/7hBwShw4d4oEHHlDlL4HpwLPAizp9BMYeAXQ0mP5NerG00AVPPfWU+P3vf+9PF50OntZFfvLJJ17XObfLsn39U089JQCRlJTk2NHYsUJYLA7cJs0Wi9gFol+/fqK2ttatDmb1N2uHp7KZbV/QUW3z1y6zfXhrl159Z7atu/ImCGFsu/O5Gzp0qADECy+8YChn9tp/97vfFYB49dVXvda7Le7r1vCzRse055g43eJrb/GBl6itbQv4WVe0FqeUJ38a8EXmx0bp6ekCEJMmTdKVmThxoroe99xzT+C+9gGB8UPHeoaYQWvej93VH7XGe5o3z4wHWsYDeaNGCUAMGzbMsfMf/MD2fuY09nLGG2+84cIdZf83G8Q+Oz7L/zL5/AqMH9xvt5cvMpLrDn7WrC/ya/lebW0tb7/9Nl999RVjx44ltGU9rcSrr77qT/dtBvlF6bbbblNf2Do6Qt2tVc7NtbknO1iEYDTw4IMPuqRaDiCAALon5PK91vIJ/izf64yIjY0lIiKCUbW1DMaWge8bN7J6fH0BBBDARehxStkjJiZGbUdERLSLTgEEEEDnhX3UJsCSJUt0ozYbGxtVBJ/Mvme1WtE0zSH7nlnIuI+GFj9VVlbG3r17VdTmdadPcyVQcOgQ32ia26jNo0ePOnBH2WM2sAxo5iKf5UJsWf+WO8muXbuWnJwcFbUpbbOP2rRarQBkZGRgtVrZtGkTiYmJSjYlJYXy8nJ1npqbm8nMzPQ5alP26ylqs6mpSR3TOWqzoaGBdevWOURtyn5l1KYsy6hNq9VKRkYGqampqi0hIYGamho0TcNqtVJYWOhX1OaZM2fQNM1j1KYQgpUrV7pEbVqtVo4dO+YStVlYWIimaSpqU+ovozZlOS0tjaKiIjRNo1+/fuocWq1WDh065FfU5vnz51UmSXdRm1arleLiYt2oTavVys6dOx04Ig3h1ZSZE6ZMmeL275ZbbvGn6zbFunXrxMqVK8U999zj9b6eZvt27tzpdZ1zuyzb17/zzjsCEKNGjXLsSCdSSmaB2rt3r6EOZvU3a4enspltX9BRbfPXLrN9eGuXXn1ntq27fg0Uwth253Mnv8B99tlnhnJmr/17s2aJ3SDqg4Ntfig93bTebXFft4af9aRXfn6+OPrYY0KA+ALEihUrRFZWlvr7+OOPRVZWlkv2GzO6mrVDry7gZ43RWpFSnvxpwBeZHxu9/fbbAhwzCtvLzJ07V12PH/zgB4H72gcExg8d7xniCa15P3ZXf9Qa72nePDN+1fLudfzWWwUgoqOjHTt/9lnb+9ljjxnq/fHHH7s9xm4QTRhn/HX3/AqMH9xvt5cvMpLrDn62XSKl1q1b58/ulwxTpkxRs56tjQEDBnhd59wuy/b1AwcOBBwjpQoKCmh88EFGPPkkwmLBIgTN2LJAvRsXxyMNDWRnZxMbG6urg1n9vbHNqGxm2xd0VNv8tctsH97apVfflWwLwAb789Pc3Ky+wA0dOtStnHPZ7bVftoxHMjNpBoKammDfPhu3XXo6zJnjlW6+yLSVn/WkV3x8POda+Gp29unDs3ffjcViUe39+/dn2LBhhn14Oo6/tgX8bNvBrD8NwBXO50gvUspexj5SKjIyMnBf+4DA+KHjPUM8oa3uxwAuwuy1NwtJdB7erx/ge/a9Pn36uG1LAIKc6oKB0Sb0C4wf3G+3ly8ykutuftYIzve419i0aRMPPPAAN954owoH/OijjxSZobfYuHEjd911F0OGDMFisbBixQoXmYULF3LZZZcRERHBxIkTVahZR4Ce3Z7qnNtl2b5ehvTJF8uCggJGjx7NyCefZA6wRwhqsGVjmA381WolOTmZ5ORkRo8erXsezervjW1GZTPbvsDs/u1tm792me3DW7v06ruSbQHYYH9+ZKYrgN27d7uVcy47bxcUFPDRRx9R/atf2SakZKMQCIuF6qefJjs7m4KCAtO6+SLTVn7Wo151dcS0nL+G73zHYULK1P4m5Py1LeBn2w5m/WkArnA+R3qTUvYyzsv3Ave19wiMHzrgM8QD2up+DOAizFz72NhYF0oad+gbHAyAtSW7Xl1dHcKeVsVk9j3nsZk9crEt3bNHE7bMv54QGD+4324vX2Qk1938rBFCvJJ2Qnp6Og8++CD3338/2dnZana4rKyMP/zhD2q9qTeoqqpi3LhxfP/732eOzhf3RYsWsWDBAt566y0mTpzI66+/zh133EFOTo6akbv22mtpbGx02XfNmjUMGTLEa506Apw5pYqLi9UE1XJc1xTbo7a2lgoPM/QBBBBA14V8AQRMD7ScUVxczOjRo6mtreVxXL9oWITAkptLcnIyERER5OTkEB8f77vSHRHffENYYyNngCsDWU07DSQfmDu+DnsE+MDaB9InRUZG6rY7R0oFEEAAAbQX4uPj+fOf/8ykSZMAWLVqFdOnT1ftsrxq1SoeyM6G9HSa7CbYGxoaCAsLsxV69rT99+M97HfYOKUkmrBFSv3O5x4DCKADwqvFhU649tprxT//+U8hhBA9e/YUR48eFUIIkZ2dLQYOHOhP10LYppnF8uXLHeomTJggHrNbl9vU1CSGDBkiXnrpJa/6XrdunSlOqdraWlFWVqb+Tp48abgu8uzZs17XObfLsn39jh07BCDCw8OFEN5zZKxZs8ajre509cY2o7KZbV9gdv/2ts1fu8z24a1devWd2bbuypsghLHt9ufuxIkTAhCRkZE+X/s1a9Z4xW9glH2uLe7r1vCznvSq/tnPhADxTxCnT5/2Smezcv7aFvCz+sjPz3fg/7L/W7Nmjdo24gPz5E8Dvsj82OiJJ54QgHjyySd1Zf7yl78oX/Liiy8G7msfEBg/dLxniCe05v3YXf2Rt77ITJ3htU9LEwLEueefVz6rvLz8ovDy5bZx0g03GOptP8Zy/ruuZZzVBKKmZayVpiMXHh7u8gwLjB/cb7eXLzKS6w5+tl04pXJycrj55ptd6mNiYigtLfWna13U19eTlZXF008/reqCgoKYOnUqW7dubfXjAbz00kv87neuc9HusjpYLBa+/vpr4GJWh6+//pq+ffuqrA7nz5+ntraW++67jxUrVlBSUsKUKVMIDQ0lKyuLkpISHnzwQVavXk1oaCjR0dE0NDQAtkipPXv2cOrUKa/sWLt2LcXFxUydOpXc3FwKCgoIDw9nzpw5LFq0iObmZkaOHMn58+fVtZsyZQoFBQUcO3aMkJAQ4uLi2Lx5M/X19Sqrw9KlS+nbt6/K6vDtt9/St29f5s+fT0ZGBqdOnWLs2LEkJiYq2ZSUFHbu3KlsGjp0KDt27PA5q4Ps11NWh8jISHVtnLM6DBgwgIMHDzpkdZD9yqwOn3/+OX379lVZHfbu3cvQoUNJTU1VsgkJCRQWFlJWVkZJSQn33nuvX1kdVqxYQXR0tGFWh5KSEn7yk5+QmZnpktWhpKSEO++80yWrQ2ZmJlFRUSqrg9RfZnVYv349ffv2JS0tjS+++IKIiAj69etHWFgYX3/9NSUlJdx6661+ZXVYs2YNISEhhlkdSkpKmDdvnm5Wh/PnzzNx4kTzWR26GY4ePaq46OyXytjXO8s5l+237X2O81c78O6rnfMxvZXRa/NU585OIxln1Hz2GZHAwSFD+N7gwT7Z1da2mdn2Be1lm9n7Ue/6GSE+Pt5t5N6WLVtISkry2Ie7Y/l7brsDnM+R3vI9exnnSKnAfe092sLP6tV3Fdva4xniCW11PwZwEa1+7cvLASiur1ftdXV19JLL9kwu3zN6r3uw5f8S4L6W7Y8//pjfXHWVg9yJEydcnnOB8cOl90VGct3NzxrBr0mpQYMGkZeXx2WXXeZQv3nzZkaMGOFP17ooLi6mqanJxcCBAwdy+PBh0/1MnTqVPXv2UFVVxdChQ1myZAkpKSm6sk8//TQLFixQ5fLycoYNG8bcuXOJjrYlAp0xY4Zq1zSN+fPnO/Sxe/duVTdt2jQlFxkZyfz589E0jTFjxgCQkJCApmlER0cTGhqq9vvHP/6h+rvqqqtUylOziI6OVn31799fhaQCzJs3z63+gwcPZuLEiW5tkxNQAMOGDSM3N1eVU1NT0TSNyZMnu8hu3bpVbev161y++uqr1bZ9CK1zv2Cb1JC4/fbb3doGMGrUKFO2OZcnT57MqVOnSE1NdWmTfclUngMHDuTGG29U/cydO9etrXFxcUyYMEGV7a+bs2x8fDxJSUlomkZQUBB33323S7+apqnf4tixY1VbVFSUW9sA9u7dq8oRERG6tl3V8jAcPfoi1eJtt93m1jaAkSNHqu2QkBC3tgEMHz4cTdOIjY3lpptucmi777770DSN8ePHU94yIAjAEfn5+eq+s38BtK93lnMu22+fOXNGySwHTgCXYfs8ZwEWASt80M0XGb02T3Xu7DSScUBxMb2PHQMgxMkHeWNXW9tmZtsXtJdtZu9HvevnK/y1rTV06OpwPkd6k1L2Ms6cUoH72nu0hZ/Vq+8qtrX5M8QE2up+7A5YuHAhCxcuVO9H7oIHTp8+TX5+PnAxeGDLli3k5+c7BA8UFRVx3XXXsWLFCqxWKzExMSp4wGq1cvXVV5OVlcXoEyfoB5ytqiIoKIjm5mZ27drFyJEj2bZtG/3y8pgG1BYXs1zT6NGjB7NmzWLRokWAbQwdGxvLnj17dO0KBuTo+CO7+vz8fG699VaH4IHGxkbS09MdggekbTJ4IDc3F6vVyo033khGRgZHjhyhqamJxMREJZuSksK+ffvUeWpubqakpMTn4AHZr6fggeLiYnVM5+CBhoYG6urqHIIHZL8yeECWZfDAtm3bOHfuHKmpqaotISGBw4cPk5+fj9VqZeTIkX4FD3z77bfk5+cbBg8ACCEoLi52CR6wWq0MGjTIJXhg+/bt5Ofnq+ABqb8MHpDltLQ0duzYQX5+Pv369aOoqEjZ1qdPH7+CB7Kzs8nPzzcMHrBareqcOgcPnDp1irCwMNPBA35NSj366KP87Gc/47333sNisXD69Gm2bt3KL37xC37zm9/403WbQt4wZhAeHk54eLhpebWG2Is653ZZtq+3v6AumR1MwCyPjJ6uRm3udNcrm9n2BWb3b2/b/LXLbB/e2qVX35VsC8AG+/Nj/wLo67W39yHhgMzh9xTwCjAR2+SUHb2nKd18kWkrP2uo19q1BGFLJnG90wSwqf1NyvlrW8DPeg9/bQv4Is9wPkcy+YI9X1RZWZkaPBcWFqr6wsJCKisrVVtZWZnbfv3Vyxe5znxfB8YP5uv8foaYQFvdj90Bjz32GI899hjl5eXExMS4DR5IT0/nnnvucdj34MGDqk4GD6Snp6vggfT0dIfggfT0dKKjoxkyZAj9WsZGlpgYIiMjqaqqYuTIkYwYMcL2UfjgQXjuOSLq6w0/xMbFxenadTswCCgCVtvVT58+ncGDBzsED+jZdvnll6u6YcOGkZycTHp6OmALHkhPT1fBA/aysbGxajs9PZ1Zs2Y59OtN8IB9v+A+eEBPfxk8kJ6ezi233GLYr3158uTJFBUVqeAB+7YTJ05wzz33kJ6e7nfwwPDhwx100AsekPrrBQ+kp6frBg8MGzbMrW0Ahw8fVuWhQ4c6XCtpm7/BA4MHD3Zrm7Q9PT3dbfBAenq6V8EDFiGEmXcIXQgh+MMf/sBLL72kXnrCw8P5xS9+wfPPP+9rtxeVs1hYvnw5aWlpgG35XlRUFEuXLlV1AA899BClpaVkZGT4fUx3sJ+Bz83N5Z133tGdgZ8wYQKZmZnAxRl4mVHBfga+b9++3HzzzSor3tixY9UMPMDMmTPZuXMnhYWFREdHM3XqVCIiIgBYv349ZWVl6odmBi+++CKXX365x+V7cXFxbNy4EXBdvjd37lyXGXi5HM5+Bh5Qy/eqq6sZOnQoiYmJrFmzBoCUlBTKyso4ePAgYPvxr1q1yucZ+M8++wzA4wz8lClTWL7cRgnvPAM/Y8YMsrOzHWbglyxZAqBm4OUSUTkDf+rUKaKiolREGNgeVgMGDFAZB2699Va/ZuCXLVtGXV2dxxn4efPm6S7fA5g4caLLDPyaNWsoLy9XM/Cff/45gJqB37t3LwBpaWls3LiRkpIS+vXrx0033aR+Z9dee61fM/B79uzh9OnThjPwYHtg6c3ACyG44oor6NGjB4mJiZSVlakBSHeBHHx5sn316tVMnz6d6667Tl0vb5GdnU1ycjIA44EdwDkgHjgD9AZuA75ukc/KyjK1JKqzoGr+fHp8+imvAt+/cIHevXtfapUC6GAw+3vsivDW9rvuuovMzEzeeecdfvCDH6iMwmbJ6LtkIoUAAmhFdFd/1O52x8XB6dOQnU2/qVMpKSnh4MGDakKAkychPh7CwsAgqMCdD/wEW6TUX4Cft9QFfGAAnQmmf5Om2a4MUFdXJw4cOCC2bdsmKioqWqNLIYR7ovOf/vSnqtzU1CTi4uK8Jjr3FZ7IuhYvXux1nXO7LDvLhISECECcOnXKa6Lzl19+2ZR9erp6Y5tR2cy2LzC7f3vb5q9dZvvw1i69+s5sW3cl8xTC2Hb7c7ds2TIBiEmTJvl87V9++WXlT37UQrq5qqW8sKX8sUmi87a4r1vLz+pi6VLRGBwsBIhTYWFCpKd7rbNZOX9tC/hZ7+GvbQFf5P3Y6NZbbxWA+OSTT4QQ3idvkf4lcF+7R2D80IGeISbRmvdjd/VH7f6e1rOnECA+f+MNMXjwYAGIXbt2XRS+cOFiUpi6Ord6L168WCXk2Llzp+jZs6foBaIhNFQIEIc++khkZWWJl19+2W1CjsD4oWP6IiO57uBn25zovKGhgenTp/PWW29xxRVXkJiY6GtXDqisrCQvL0+Vjx8/zu7du+nbty/x8fEsWLCAhx56iPHjxzNhwgRef/11qqqqeOSRR1rl+P6isbHR6zrndll2lgkPD6exsdGn5XtmOaj0dDVqc6e7XtnMti8wu3972+avXWb78NYuvfquZFt3gBnuhOLiYioqKsjMzFSRe0II8vPz0TRNRW7m5+ezevVqFblptVo5cOAAoaGhSnbmzJmcP39eHV/GP8mYq/eB/wLmADFAGfDuu++yYcMGJk+erKIkx40bxzXXXKP6NYrcLC0txWq16kZunj59GsAhcrOqqkpFLMrITXmc+fPnc+rUKTRNU5Gbsq26upo9e/Zw8OBBrFYrjY2NDpGbE06dosf3vkdwi62D6+vhnnvY9POfc/1LLzlEbtbW1iodjCI3i4qKqK2t1Y3ctFqtahmTjNysr69X/crITan/tGnTKCoqQtM0oqKiaGxsVLKlpaWcPHmSzZs3Y7VaKSws9Dlys7m52VTkptVqpbm5WTdy02q1cuzYMYfIzebmZj7//HMVuVlTU6P0T05O5sKFC6rc1NSkEjicO3eO6upqdR78idxsaGhgw4YNHiM3rVYrxcXFLpGbUofBOuT3Adjg7K/1OKVao9+22j8wfnBf31Vsa62xuj9oq/sxgIto1WtfX68IzGtDQxXdi0O0U8+eF7crKqBfP7d6yYQcJ06coLKykh8GBxPS0ABXXsmV998PFothhJS/tgXe07yHv7Z1Nz9rCK+mzJwQGxsrcnNz/enCBevWrdP9KvbQQw8pmTfffFPEx8eLsLAwMWHCBPHtt9+2qg5G8DTbp6eLpzrndll2lunbt68AxMGDB73+qvjBBx+Yss/oXJqxzahsZtsXmN2/vW1rjfvSTB/e2qVX35lt665fA4Uwtt3+3L399tsCEKmpqT5f+w8++ED5k+0tX/3utfMx+1rqfmzghyIiIkR+fn6b3Net5WddMHasaJZfOeWfxSLEuHFe6WxWzl/bAn7We/hrW8AXeT82GjdunADE6tWrhRC+R0oF7mv3CIwfOsgzxAu05v3YXf1Re76n7Vi7Vo0Ltq1fL0aPHi0AsX79esfOIiJscidOuNXb/hgrVqwQgNjWEoUlXnzRUNfWsi0wfvAerTV+8FTfUW1rTV/kF9H5Aw88wLvvvsvLL7/sTzcOmDJlCsIDzdVPf/pTfvrTn7baMc3AbFYHmTEMLnJKHTx4kGPHjjlwSoWHh1NTU8OKFSuora2lZ8+eilOqtraWq666isLCQpWJb+zYsTQ3NwO2zGhxcXGEhobS0NDgUffw8HDOnTvnMTJh5MiRREREKP2dOaVuuukmF04paZuMTJBlySlVUlJCfX09iYmJqi0lJcUhouCmm24iMzPTZ04p2a8nTqmrrrpKHdOZU2r8+PGsW7fOgVNK9isjE2RZckrl5eVx9uxZUlNTVVtCQgJhYWFomkZtbS2XXXaZX5xSeXl5HDt2zDAyoba2luuvv143MqG2tpb+/fu7cErJ6yo5paT+klNKltPS0rBarWiaRr9+/bjiiiuUbdHR0X5xSsl70igyoba2lpEjR+pyStXU1BAcHGw6q0N3g/2XtKqqKsAWleD8hc2obL89aNAgwJYdQ1Ix2rNTvQe8CjwC/N2NTrW1tRQXF5viQTCS0WvzVOfOTj2ZgoICiouLAbj28GGCnDsWguZDhzhVUGB4DG/0N2uHXp23276gvWwzez/qXT9f4a9tAV4Pz3A+R60VKRW4r92jLfysXn1Xsa01nyG+oq3uxwAuojWv/TCZJTQkhGFXXKEipVxWtPTqBbW1tkgpE3rt3r2bYcD4ligsHnjAUFezdujVBcYP/qGtxg+dxbbW9EV+TUo1Njby3nvv8dVXX5GcnOzycvjqq6/6032HgtmsDnKpiD12796t6mRWB03TVFYHTdMcsjrIiaiqqiq1n6Zp9O7dm9LSUoYPH84NN9xAXl4excXF7N27l0ceeYRBgwYpwmp7xMbG8s0336i++vfvz6RJk1T7vHnz3Opvn9VBz7aIiAhVN2zYMHJzc1VZEoDLrA72slu3bnWwzblfb7I62PcL7rM66B1HZnXwZJtzefLkyZw6dUqRzdu3yb40TfM7q0NQUJDbbB0yq4OmaQQFBelmddA0TTerQ2Njo1vbwDbxKct1dXW6tvmb1aGiosIwE4mc4HWX1UHTNK+yOnQ3rF+/Xp1T+xdA+3pnOeey/XZubi4REREk1NYSDpQCx+yO9zHw/7Bl4UsEDprUzRcZvTZPde7sdJaZNGmSA9no/hZ7LHb9NgH76utJGT3aIZTejF1tbZuZbV/QXraZvR/1rp+v8Ne21tChs8KbNOwhIbYhZ1JSkvLbGzduJCkpSSUSMYtVq1Zx5swZSktLCQqyTRuPGTOGnj17sm3bNgDuuOMO9u/fj9VqdZuGffHixcTFxXn8YHfgwAGVbMb5g11jYyNhYWEOH+z+9a9/ERcXpz7YrVu3jri4OPXB7siRI0ycOJHExEQlm5KSwurVq4mOjsZqtfLzn//cryQwsl9PS4l//OMfu11K/Oijj7okgZH9yg92S5cuJS4uziEN+xVXXEFqaqqSTUhIYM+ePURGRmK1WnnwwQf9+mAnl8t6Wkq8YMECt0uJ58yZ47KUuHfv3g5JYKT+ycnJrF+/nl69egG2JDCLFy9mwIABnDt3jh/+8IdkZGRgtVqZOXOmX0uJhw8fbmop8cMPP+w2DfuUKVMCH+zcoDXHDzvXrWMmQHQ06zdscD8p1bMnnDtnOCllf4w9e/ZwP9g+iE2ZYiNKN9C1tWwLjB+8R1uNHzqLbd5eMyP4NSm1f/9+lV1JZl2TsFgsersE4AecnZ1ceyw5uEaNGuU229U333zTPkoGEEAAHQ6tEZUQGxtLTk4Oex9/HJYtIzg5may33+bQoUM88MADnMMWOTUR2AMcAH4HLPdf/XZFcXGxAx/EJmAMtjVDFmwTUsHYbPMm8iuAALoifP1gV19fD8CcOXOIiooiJSXFq+NOnz5dfZRxHvTKDzFgm9Cwh14adjMf7I4ePWr4wc45jbl9v54+2NnLRkdHqw8/ISEhfqVht+8X9D/YaZrm8lEKbONJTdOIiYlxScPu3K992fmDnX2bPAet8cFu8ODBrf7BTvInurM1KyvL4TgDBgxQfUVFRbXKBztN0/jOd75jKBv4YKcPsxPk9ryLckWLXBFgv6KlqKhIrWix59rMysrCarVSXl5O1ZkzAFSHhNDc3KzOeW5uLseOHVMT5HOjoggB1q1cScW5c7oT5FKHGbW1vPDZZ6hfa2KiwwS5/UoT5wlywGVFi+zXPku61WoFUBOpmzZtIjExUcmmpKRQXl6ujiN5In2dIJf9elrR0tTU5HZFS0NDg8uKFtmvnCCXZTlBbrVaycjIIDU1VbUlJCQo7kp/uTbnzZvHmTNn0DTNY5Z0IQQrV640xbV57733qtVScoJc6i9XtMhyWlqa4hXt16+fOodWq5VDhw75taLl/PnzHle0uOPa/PTTT7FarezcudP8BLk3awsD8Lwu8tSpU17XObfLsrPM2LFjHTgYJF555RUBiO9+97tu9dbTwVs5M7YZlc1s+4KOapu/dpntw1u79Oo7s23dlTdBCGPb7c/d448/LgDxy1/+0u9rX/HwwzaOgwULhBAXuWBmO/EuNbX8n63DBdMW93Vr+Vlnbps1LXZYQVSD2AUizU2WwfbyRUa2Bfys9/DXtoAv8n5sFBERIQBxooVjxVdOqcB97R6B8cOleYb4g9a8H7urP2rP97Rzn3xiG/Ncc404deqUuO222wQgPv74Y8fOJk2yybnJ3Kv6TE93GD8pPku7/QLjB/d1HdUXGcl1Bz9r1he5UGX4goMHD7Jq1SpWrlyp/j777LPW6LrTQc4+e1Pn3C7LzjLuwkILCgoA29c4b/TyVs6MbUZlM9u+oL1ta2pqora2FqvVSm1trdtt+zpf/8z0YSTjrs253qh8qW1zlznS3/umq8P+/NhHSvn7mxUtX1xwisr8LdBsVw7CFlX0nAfdzOhvpq21/Kw9+gEyRmAyEAVcB6zwQWezcv7a1lX8rF5Zb7s1/IC/tgV8kWfYn6Pm5mYVjegvp1TgvnaPtvCzevVdxba2eIZ4i7a6HwO4iNa89hda3r/o1cvwPU1l4DNYvme1WuF3v0NYLIrH0gJgscDvf2+oq1k79OoC4wf/0Fbjh85iW2v6Ir+W7x07dozZs2ezb98+LBaLIiiXS/fcvUx2RnjDm3D06FHgYljoxo0bOXr0qEtY6DXXXKPCQnv06OEQFnrllVeybds2jh49SnR0NKWlpVS0ODPnsFB5vKKiIlauXKkbFip1MMObIPvT4004efKkQ1io7FeGhcqyPW9CXV0diYmJqi0lJYVdu3ap4zQ3N1NUVORzWKjs11NYaHFxsTqmXlhoVVWVQ1io7FeGhW7cuJELFy4QFxdHQ0MDQggOHDhAVFQUQgj2799PaGgoFouF/fv3I4QgLy+PxsZGGhsbsVgsREVFKdLpkJAQQkJC1OA8PDycpqYmlUKzR48eql892ebmZqXHsWPHqKmpQQhBcHAwYWFhqnzkyBElCzjoK2VlOSwsDECV7WWDgoIcbJNLduUyjMjISOrr62lqaiIoKIiIiAg1GSLPi70s2JYAWywWIiMjHWSDgoKoq6ujubmZQ4cOUVlZyfHjx114E4KCggK8CW5w9OhRtdzBflLKvt5Zzrnssp2cTERLKLLzpFQCuBCCBwOjcYXzMT3pb6bNU507O51l7JdcpGJ7SGbjyJ/li87tZZuZbV/QXrZ5dT86XT9f4a9traFDV4f9OaqpqVH1/k5KBe5r33Q2I2P2fu8qtrXWM6Qj3o8BXERrXvvzx49zBUB0NEePHlW8c7pE52A4KXX06FEm5OZicU72JQTIcZcbXVvLtsD4wXu01fihs9jWmr7Ir0mpn/3sZ1x++eWsXbuWyy+/nO3bt3P+/HmeeOIJ/vSnP/nTdYeDWd6ERYsWOfAQgI00WtZJovNFixYpovNFixY5EJ0vWrSI6OhoBgwYoPZbtGgRQ4cO5fDhwwwaNIgRI0ao9fDyXM+ZM0fxDzivQR82bJjqy4g34fjx4w5le96ERYsWufAm2Pc7bNgw8vLyVDk1NZVFixYp3gR72d69ezvY5g9vgn2/4J7oXO/aSKLzRYsWufAmOPc7duxYhg0bxoABA4iKiqKsrIzevXsDUFpa6rJtX+crzPRhJOOuzbneqHypbQsNDaWoqIgpU6YwePBgwMabsGjRom7Jm2AWkvwXHCel7Oud5ZzLLttHjhBaVwdRUZCQ4LBfLnANjhNTzUAOrnA+pif9zbR5qnNnp5HMvS3/l3rU1r0O3sr5a5uZbV/QXrZ5dT96oZcR/LWtNXTo6tDzR3DxA0VsbKzpjMKhoaHExsa69OuvXr7Kdeb72lu79Oq7im1t8QzxFm11PwZwEa157cPk5FOvXgQFBblESslMvvH19cQC1pwcCmW0uR1iY2NtfSYk0Lx3r+MHPosF7D6WBcYP7us6qi8ykutuftYIFiGcp2TNIzY2lq+//pqxY8cSExPD9u3bGT16NF9//TVPPPGEiljpSpCTUmVlZWpSqr0wa9YsPv/8c959912+//3vq/r+/ftTXFzM7t27GTduXLvq1F3Q1NREbm4uAwYMoF+/fpdanW4HGV2YkJBAcHCwQ9ul/E1eapi1fcaMGXz55Ze8//77PPzww74f8JNP4P774cYboSV5QnZ2NsnJycwGlnGRCFxiNo7L3bKystwmZOgIkPb0BoqAUGzRXrlu5Du6PQG0HwK+yJztBQUFDB8+nPDwcIekAvIFzhNiY2MDyQUCCMADuqs/ale7X3wRnn0WfvADeOcdHnnkET744ANefvll5s+frzL5/gX4H+BF4FmdbiIiImyZfHfuBPuP/xaLLVJq2TKYPbttbQkggDaC2d+kX9NoTU1NKj1qbGwsp0+fBmyZIXJy9L6Pd31IFntv6pzbZdlZRm+tck1NjRrEGQ3S9HTwVs6MbUZlM9u+oD1sa2hooLq62mGpwYULFwy37et8hZk+jGTctTnXG5U7gm3yvNt/Rff3vunqsD8/9pFSfv1m3fBJgS3L3hxgHyA9VHNL2Ug3M/qbaWstPytxN7YJqX24n5DyRmezcv7a1pn9rKey3nZr+AF/bQv4Is/Q80ehoaEOMjt37iQpKUn9nThxQnd7586duv36q5evcp35vvbWLr36rmJbaz9DfEFb3Y8BXESrXftly6j94x9tFRkZfPvUUw7vafaZfOWivV5udKqtrWXx4sU03n032S0UOCI4GMaOdZmQCowf3Nd1VF9kJNfd/KwR/Fq+d/XVV7Nnzx4uv/xyJk6cyB//+EfCwsJ4++23HVLydie4rCM2UefcLsvOMnqTUidPngSgZ8+ehkuh9HTwVs6MbUZlM9u+oL1sE0IovjSwcWEZbdvX+QozfRjJuGtzrjcqdwTb7M+7hL/3TVdGQUEBhw8fVmlgz507B8Dp06eprq5W9bGxsd79ZnUmpWJjY4mIiKC2tpbl2CanAD4HZgALgMda6iIiIoiNjTX10cLf36uRLfZldzLeLt1zp4O3cv7a1tn9rLfPkNbwA/7aFvBFnmF/juSklOQw1JNxLgfua+9hpg9v7dKr7yq2tfYzxBe01f0YwEW0xrXvv2kTvP464bKiuJgbXnmFAzNm8HdwiACFi5NSPQ30qq+vJ+/AAUa3LGASO3diufZaU7qatUOvLuBn/UNbjR86i22t6Yv8mpR69tlnFWnz73//e2bNmsXkyZPp16+fItruKjBLdD5w4EA0TQMuEp2XlJSgaZoD0XltbS01NTWsWLGCkpISDhw4oIjOS0pKKC8vp6GhAU3TiI6OJi4uTrHYnzhxQhGdSwLw2NhYPv30U3r06KFLdC518ER0HhMTo/R3JjqPj48nPT3dgehc9iuJzmVZEp2XlJSwadMmEhMTVVtKSgohISHqOHFxcWRmZvpMdC779UR0PmTIEHVMZ6LzAQMGsG7dOgeic9lvYmIiPXv2pLm5mQsXLtC/f39qampoampSvEhNTU2cP3+eiIgIgoODOX/+PE1NTTQ0NFBXV0ddXR1BQUH06dOHkpIShBCEh4cTFhamCOx79epFQ0MDtbW1WCwW+vbtS3Nz8/9n78zjoyjy/v+ZnJM7hECAkKAcCYQImHCIAqIgNwaCPsiq67X67LO467HuPu7PVVd9PFZd19VldWFZj0UajJwGBDUCIYAcE0ACJIEQEhgIYSbkziSTTP3+mHQx09PT0z0zmcxR79drXqn61rdr6ttV8+3qSh3Q6/UIDw9HeHg43T8pOjoanZ2dMBgM6OrqAiEEDQ0N6OrqQlhYGCIiImi8vb0dXV1ddHPZPn360HxDQ0MRFRVFy89vrs7H+/TpA0II9Ho9QkJCEBoaSm1ra2uDSqWiPiA+Ph4tLS0wGo0ICQlBTEwMnekUERGBoKAgqhsXFwfAvCwvODgYcXFxqKuro7rBwcFobm6m97ClpQUtLS34/vvvsWDBAqxbtw51dXU4cuQI2+hcQHV1NZ0y/sILL1ilPfPMMwBA5Wq1GmvWrLHSsZxxaRVOSREdlEpNTUVZWZnNspvoI0eA//5vPALzyXzzH3oI9957L3Q6Hdra2ujAGCC+HEdq5qdYmiOZvfzFdGIAzOqWKRmUkrukqCdtkxN2Bk/ZJhUXC7tjGZertrGlZI6xvEeWMzft6QjjrF0rR04eSu0Sk/uLbe58hjhLT7VHxnXcUfdZX38NqFRWm5ITlQpzu98phC/jzd1/7c2UAoABAwbgUl4eRgLQhYYi0c52LKz/YF/mrb5ISi/Q/KwkxM3o9XpiMpncna3X0NDQQACQhoYG0fTa2lrFMmE6Hxfq/Pd//zcBQP70pz9R+b///W8CgMyePVuy3GJlUKonxzapuJywM3jCtra2NnLixAnS1tZGZR0dHZJhS1lVVRXRaDQOP1VVVVZlsMzDHlI69tKEcqm4I9ssKSoqIpmZmSQkJITk5OQ4XW6hTltbGzl16pTV/efrx9Fv0p8Rs12j0RAAsj/ff/+9VZ72fpu6Q4cIAYgpLIwQGXVXdf48OaJSEQKQPzkog1qttmn7rvoiKVss40Kdqqoq8lBoKCEAOaWw3J7ys1K2+bKfdRQXC7tql5I87OkxX6Ssb/Ttt98SACQjI8OujjDO2rVy5OSh1C4xub/Y5q5niCu4sz0Gqj/yxHuaKTycEPNuT1afjuBgAoAsX77cqi/28+70bxz0xXbdcgshADmQlmbXPtZ/sC/zVl8kpRcIflauL3LbEQ2EEBBCkJCQILrUJlD4/vvvFcuE6XxcqCO2fK+6uhqA49FIsTIo1ZNjm1RcTtgZPGWbcDqu5alvYmH+Lz9zJTs72+EnPT2d1qkwX3tI6dhLE8ql4mLh6dOn4+mnn7bJ99lnn8W4ceNQWVmJTz/91Olyy9Fxtd0wzBw8eNAqbu+3efqLLwAAdYMHA4K9YMTQ6fX4c/d/EZcDiJDQNRgMNjOtXP29CmVy/Wxqaipe654yvyUkBEVFRdBoNKKfsrIyK9/rKV8kZZuv+1mlzxB3+AFXbWO+yDGW94ifKdXR0WFXRxhn7Vo5cvJQapeY3F9sc9czxBV6qj0yruOOuq9PSjJvQm4BUamg79cPgO1MKTnL9w4ePIiUkycBAC0WJ6TLKatUGus/2A97c//BV2xzpy9yafkeAKxevRp//etfcebMGQDAiBEj8PTTT+MXv/iFq1kzBLgyKMXoPSw3O3QE/3Luq/VZUVGBX/7ylxg8eHBvF4XhZvpUVgIArt1wA+SeP7kRQAWAYQAeAfAPQfpimJf2pQEg990HvPUWkJvrngI7S3MzkrqXFhoXLcJtEp1DBoOhHH5Qiu/TMBgMhqvI3Wals7PTZpsVrVZrs81KbW0t3WZFq9VabbMSOX06cj7/HCaVCkGEgHQv5Vs7fDhQU4OamhpcvHiRlk3O8r3WykoM697O4+KoUeA4TnSbFYPBYHebFQA226zwtvHbrJSXl9PtYLZs2QKtVku3WeF1J0+ejMbGRvo9JpPJpW1W+HwdbbPS1dVld5sVo9Fos80Kn29GRgbi4uJofNasWTh16hS0Wi22bNmCnJwcmpaWloa2tjZwHAetVosrV66goqICVVVVCAsLw5IlS5CXl4fOzk4MHToUqamp2L17NwBg2rRp0Gq1qKioQFBQEJYuXYrLly+D4zikpqYiLS2NDsTcdttt0Ol0dA9VQgi2bt2KlpYWJCcnIzMzEzt37oRWq8W5c+fQ3NyMk92Dkvfccw+uXLkCjuOQlJSE8ePH0/JnZ2fDaDTS+KJFi1BbWwuO49C3b196D7VaLU6fPo2goCC6XcaCBQtw6NAh1NbWIi4uDjNmzKCbkWdmZiIyMhKHDh0CAMydOxd6vR4cxyE6Ohrz5s3Dl19+CQAYOXIkEhISsH//fmi1Wuh0OpSWluLChQuIiIjAokWLsG7dOmi1WmXbrCiYxWXDiy++SKKiosjzzz9PtmzZQrZs2UKef/55Eh0dTV588UVXsvZaHE1BEy5BkSMTpvNxoc4f//hHOi2UZ+bMmQQA+fTTTyXLLVYGpXpybJOKywk7gydsa2trIz/99JPV8jGDwSAZ5v8qXU6l0WhE87WHlI7BYCBdXV3kjTfeIDfccANRq9VkzJgxZO3atYQQQnbt2kUAkK+//pqMGzeOqNVqcscdd5Dq6mqyfft2MnLkSBITE0OWLVtGWlpaiMFgIA899JBNmSsrK21kn3zyidPlFuqILd/j6ydQp6gT4p7le/n5+VZ52vtttt5+OyEA0b/xhqyy8eX4Vfe0dQNA2gByDCC5APllt7yr+6+pe6lfxTvvEI1GQ/Lz80WXtArLJVcmx8/Wfvwx6Rw8mJa34u23ZdkqVQaleq7a5st+1lFcLOyqXUrysKfHfJGyvtHq1asJAHLnnXfa1RHGWbtWjpw8lNolJvcX29zVV3cFd7bHQPVHHntP27CBtI8aRYhaTcjYsaT2n/8kf/vb3wgA8l//9V9WfbFbuvs5FRJ9saL/+R9CAKIBSFNTk137WP/BvsxbfZGUXiD4WY8s3/voo4+watUqvPnmm7j77rtx9913480338TKlSvxj38I/yceGAiXoMiRCdP5uFBHrVYDED99z9HMGrEyKNWTY5tUXE7YGTxlm/C0OMsNuBsaGmzC/F9+g3G5tLW1ieZr+SEWmyt2dnbazauzsxNvvvkmPv/8c3z88cc4efIknnnmGTzyyCPYs2cP1Xvttdfw97//Hfv378eFCxfws5/9DO+//z7Wrl2Lr776Ct9++y0+/PBDdHZ24m9/+xsmTZqExx9/HJcvX8bly5eRkpKCy5cvIzY2Fu+//z4uX76MpUuXStopVW45Oq62G4aZ+vp6q7job3PDBqj37gUARH70kfmIYpnUdf8NB6AGMAbABgAfdcv5h5CKEHQBaPzd75CdnY0FCxaILmkVllGuTMw3VVdXY+/evSguLsa5d99Fv1/+EkHd/90MAzD097/HuXfftfl+e3jKFwll/uRnlT5D3OEHXLWN+SLHWN4jfqZUUFCQXR1hnLVr5cjJQ6ldYnJ/sc1dfXVX6Kn2yLiO2+o+Nxcla9YAbW3AsWO4MH686HsaIG/5XkRhIQDgSJ8+iI62r8n6D/Zl3uqLpPQCzc9K4dKglNFoxPjx423k2dnZsl44fYkVK1YgIyMDEyZMAGCeFspxHNrb27F9+3ZwHIeCggKcPHkSHMeB4ziUlZXh9OnT+OGHH8BxHFpbW/Htt9+C4zjs3buXTh/84YcfcPLkSZSXl9N4Y2Mj9u3bB47jsG3bNpw+fRqnTp0CANTU1ODcuXNYu3YtKruX1NTU1IDjOGzduhUmk4mWobi4GNXV1bQMV69epfnyU/bWr18PjuNw6NAhHD9+nF57+fJlHDx4EBzHIS8vD2VlZdiwYQM4jsP+/ftx5coVmu+FCxeg0WhoHDBPC/3hhx+wd+9e6PV6mnb+/HkcPnyYfs/p06eRn58PjuOwa9cuNDQ00LSzZ8+ipKSExg0GA3bs2AGO4/Ddd9+hubmZ5ltaWorS0lKq29zcjO+++w4cx2HHjh04deoUTSspKcHZs2et4rt27QLHccjPz0dnZyfN9/jx49BqtTAYDLh27Ro6OzvR1NSE2tpaREdHIzo6GklJSTZh/u+UKVMUtbUpU6aI5mv5uXbtGlpaWqDX69HU1ARCCOrr62m8s7MTer0eOp0Ob7zxBv7xj39g/PjxiIuLw89//nMsWbIEH3zwAT0N77nnnsPIkSMxatQo/PznP0dRURHeeOMNjB07FmPHjsWCBQvw3XffwWAwoLOzE0FBQQgLC0N8fDxCQ0NRX1+Pfv36QaVSITg4GBEREQgPD4der4der0draysMBgONd3Z20vLX19fTE/543fb2dmqL8PQ9AFi3bh1++OEHHDlyhE5DZjhHVVWVVZyfakzDGzcC99wDVfegbPjFi8CSJbIHpp4HYDmcy+/CQER0gwGkC2Ri+01ZllGuTJi+b98+pKen44EHHkB2djaafvc7mCzKpwLoIJnYwJgYYmVQqueqbXLCzuAp26TiYmFX7VKShz09d5TB37G8R/b2lFJa92LXuFIuZ/V8uV0rtUtM7i+2KX2GiNnjre2RcZ2erHuxbVYAecv3bujeBufSTTdJaLH+g5TMW32RlF6g+VkpXNpT6sEHH8RHH32E9957z0q+cuVK3H///a5k7XUsX74cy5cvR2NjI+Li4nDvvfciNjYWADBv3jyqx3Ecli1bZnXtsWPHqGzWrFlULyIiAsuWLQPHcRg9ejQAIC0tDRzHITY2FomJifQ6juNwyy23YO3atYiMjMTQoUMRGxtLO3W5ublW+zMIy5CcnExl/fr1s9onxXJGS0VFhdW1AwcOxKRJk2gZlixZYjfflJQUlJeX03hOTg44jsPUqVNtdGNjY61sW7BggVW+wvJnZmbS8Jw5c+yWATCvdeW56667aFisboYPH07T7rjjDrv58gNSffr0QUhICGJiYnDt2jX0FuHh4YiKikJUVBT0ej1UKhXi4+OtdPr27YvS0lK0trZi4cKFVmkdHR24+eab6TrfMWPGoG9f805BgwcPRmRkJLKzswEAISEhGDJkCH766Sear0qlQkhICNRqNf3PEE90dDTi4uKoriWWusHBwVbpQl1+UCs0NJTaOnPmTADAfffdB47jMH78eFkbpjNc4JVXzBt6ds/OUxFijr/6qqz9n9Ig/t8Pfs66ZVoXAE91p5uamqz2ehMrJz9I5ut7vTEY3gQ/KBUWFtbLJWEwGAz3YTkolZiYCLVaDYPBQGdKRcDcr+gSXDc+LAwJHR1oARAueBdhMAIGBUsLbXjyySdJbGwsGT16NHnsscfIY489RjIzM0lsbCx58sknyTPPPEM//oKjdZFdXV2KZcJ0Pi7U+ec//0kAkJycHEIIIcXFxQQASUpKclhusTIo1ZNjm1RcTtgZPGFbW1sbOXnypNWeRl1dXaS5uZk0NzeTpqYmmzD/t6ioSNEeP0VFRaL5Wn5MJhMth2VYyIEDBwgAsnv3bnLmzBn6KS8vJ9XV1XRPqbq6OnrNJ598QuLi4qzyf/nll8nYsWPpd91+++3kqaeesvm+uLg4h3tJySm3UEdsTym+fgJ13wRC3LOn1OHDh63ytPltqtWiRx8TtVqybHw5jlnsG8V/OgFyTrinVPffRQ72WROWUa5MmH748GGr7zhmUQbLch61UwYxPOVnhTJ/8bOO4mJhV+1Skoc9PeaLlPWNfv/73xMANn1Df+0/OIr3ZrtWapeY3F9sc1df3RXc2R4D1R/15nvaxo0bCQBy6623EkLMe+poNBrywZQptF/ROnQo2fPUUwQACQoKIlu2bCF1f/gDIQDJh3mPVylY/8G+zFt9kZReIPhZj+wpVVJSgqysLPTr1w8VFRWoqKhAYmIisrKyUFJSgqNHj+Lo0aM4duyYK1/jU+Tn5yuWCdP5uFBHOC1Uycl7YmVQqifHNqm4nLAzeMo24d5QjY2NdAZPZ2enTZj/GxERIat8PBEREaL5Wn5UFkfRNjQ02M0rOTkZ4eHhqK6uxvDhw+mnX79+SElJsbLFEmKxZ5Vl/nw4KCiInnDiLFLllqPjarthmNnbvVcUj81vMy3N5uhjqFRAunChnTivwDwDiW8tXTD/p/BZALkAfgLosrnVADbLyNMdflZo98buMvAtny/nKzLKI1UGpXqu2ubrflbpM8QdfsBV25gvcozlPeJnSgmXXvtz/8Fb27VSu8Tk/mKbu/rqrtBT7ZFxHU+8p/GzsFNTU5F1/jx+XVRE+xYRlZWY9re/4fm0NJhMJnz22WdQdW9NsROgp6Xx26/IKau7bGN+Vjk91X/wFdvc6YtcWr63a9cuVy73S/g9epTIhOl8XKjjyqCUWBmU6smxTSouJ+wMnrLNcqAGgNWgjFjY1UEbuXlI6URGRuK5557DM888A5PJhClTpqChoQHffvstBg4ciCFDhjjMQ8y2wYMH4+DBgzh//jyio6ORkJBgs2mtK+WWo+Nqu/FlpI4+/umnnxAaGgqj0egwn9DQUOh0OuzcuRPTpk2zOfq4vLwce++8E1N/+okefcz/3XvnnbjYvfQ4OjoaBw8eBADMnj0bJSUlKCoqAgBsgnnw6SWYl8KVwTzQs7m7DJsAPAHgnwBmQHxq+44dOzBw4EB69PGlS5cAWB99XFdXR/ezszz6mF+2W1FRAY7jMHjwYGRkZNjspZXV/VcH82akwnLu2LEDsbGxkkcf8/vhAZA8+ri2thYGgwGbNm0CYH30sVarRUNDA4qLi+nRx01NTTRf/uhj3rZZs2bhwoUL4DgOkZGRaG1tpbr19fW4cOECioqKXD762GQyYePGjWhvb5c8+lir1dLjo+UcfWwymbBt2zY0NjYiKSkJ9fX1tPzZ2dl0v0TA7A927tyJuro6XL16Fa2trfQ+jBs3zumjj41GI/bs2YNLly45dfQxX4aBAweCIY6lv+YHpVSCwW5/7j8otc0dzzc5eSi1S0zuL7a5q6/uCj3VHhnX6cm679+/PwDBnlKvvAITLLYH6D7UZWl5Od4C8M3GjeA3tvgWwIfz59NL1Wo1ysrKrN7zerJdMz+rHFdtCzQ/K4VLg1KW8C/swk5GoJGcnKxYJkzn40IdvV4P4Lqz40/es5zxoqRcSvXk2CYVlxN2Bk/ZFhwcbBW33A9DLOyO/TLk5CGlExYWhtdeew39+vXDm2++iXPnziE+Ph5jxozBSy+9RE8UDA0NtbrO8ncsZtvTTz+N5cuXIyMjA21tbaisrMQNN9ygxDSXbXO13fgyUnvcPfzww7jzzjvx7bffIisry+ba4uJiKk9MTMT58+cxbdo0AOa93AoLC+kedxMnTsTUadOAqVPR+vvfI1qrRWtyMqLfeQdTFy+2ynfo0KE0PG3aNNxwww147bXXzIMvMA8+2eNzAP8H4AaYB7DyBOlz5szBwIED6R53hd2n1FjucdfZ2UntAMx+saWlhcqys7Ot0i33qRsKgN91bQqAcpEyzpkzh+5BZ2+Pu8LCQqvvAMT3uCssLIRarRbd466wsBBxcXFWe9yJ5Ttx4kQqu+mmm2jYUrewsBApKSm0XpOSkpCUlIRbb72V5nPvvfda5WtZpuTkZEycONFuGSx1U1NTkZWVhcLCQgQFBeHuu++20S0sLKTtZMyYMaL5CuM1NTV2bYuMjLS6DwCQbjGDb8aMGXbLCwDDhg2TZRsADBkyBIWFhUhMTLQ5vIIvQyDubyc1QF5QUICGhgb0798fiYmJdHCxpqYGgPk3y3EccnJyUFRUBL1ebzVArtfr6QC5Xq8Hx3GYP38+2tvb6d6bAwYMoPnaGyDXarWIiorCggULsH79egDmdpKYmEjznTlzJsrLy1FdXY3w8HDk5uZi/fr1MJlMGDZsGGJiYuj3TJ8+nQ6Qh4SEIDk52WqAfNiwYTRffoCcjy9btgxbtmyBXq/H3r17kZGRQdMmT56M4OBgcBxHDwTZsWMHmpqaMGDAAGRlZWH79u0AgAkTJkgOkE+ePJnmKzVAzh9CIjZArtfrbQbI58yZQ/PlB8j5+KxZs3Dq1Cno9Xps2bIFOTk5NC0tLQ3R0dHUNlcGyJcuXUr/ASA1QK7X6+0OkOv1epsB8gEDBlgNkI8fP56WPzs7G6GhobQNLFq0iP4DoK2tDa2trbReT58+7fQAeUJCgqwBcv4gG+EA+bp166DX63HkyBG6ZyjDmp58T+P/OWs5KEXKyuzuVwkA02A+mbgatntqiu1n6eq7jFi5lYSdwVvfQd3xHuGqbXLl3mqb0jqTRMHSQlH+9a9/kdGjR5OwsDASFhZGRo8eTVatWuVqtl6Lo3WRer1esUyYzseFOtu2bSMASFZWFiGEkKVLlxIA5L333nNYbrEyKNWTY5tUXE7YGTxhW1tbGykpKbHa08hoNEqG+b9VVVVErVbL2t9HrVaTqqoq0XztIaVjL00ol4pL2eYKSmwT21OKr59A3TeBEGnb7bV3V3+zSn6v/H4Kws/HH39s0/b/1L3fwkEZe0q5w8/+8MMPNP/3ur97u8RvU86eUp7ys0KZv/hZR3FX26OScinRY75IWd8oJydHtO/ir/0HR/HebNdK7RKT+4tt7uqru4I722Og+qPefE87dOgQAUBSUlKovHnYMJt9NU0AOd3dt/hLt2ylzL4H6z/Yl3mrL5LSCwQ/65E9pV566SU89dRTWLhwIfLy8pCXl4eFCxfimWeewUsvveRK1j7Lzp07FcuE6XxcqOPK8j2xMijVk2ObVFxO2Bk8ZZtwTymxvZYsw/zf1NRUlJWVQaPROPwIp+m6uu+SvTShXCouZZsruGqbq+3G37F3f1z9zSq57/zsGeFH3z3r05IVAAwAJsI8W0kKd/jZAwcOADAv1Xu0W/Y3B9/rCE/5IqHMn/xsT7ZHJeVSosd8kWMs7xG/fO/s2bN2dYRx1q6VIycPpXaJyf3FNnf11V2hp9oj4zqefE8DgP133YUgmPfOBMwjTSoA/WGepT2rW/6tC+WXa4eYjPlZ1+ip/oOv2OZOX+TS8r2PPvoIq1atsprmfvfdd2PMmDH49a9/jVdffdWV7L0KuVPU+enoAJCVlQWTyQStVmszRb22thZtbW02e7hoNBpotVo0NjZCp9PRKeomk4kuWWlqasK5c+dQVmae6BkbG4vCwkLJKep8GRxNUTcYDHanqAOwmaLO58tPUefj/BR1rVZLp6jzaZMnT0ZjYyP9Hn56tbNT1Pl8paao9+nTB11dXfQ7LaeoA+Y9RXbt2mU1RZ3PNyMjA9HR0ejq6sK1a9fQr18/tLW1wWg0or6+HvHx8TAajdDr9VCr1SCEQK/Xw2g0wmg0or29HVFRUYiJiUGfPn1QV1cHQgjCw8MRFhaGpibzYbExMTE0H5VKhYSEBBoPDw9HeHg4XR4SHR2Nzs5OGAwGGI1GEELQ0NCArq4uhIWFISIiAg0NDfT7u7q66KBanz590NnZCb1ej9DQUERFRdHviYqKAiGExi11+TbA29bW1gaVSkXXDMfHx6OlpQVGoxEhISGIiYnBtWvXAJg3bw8KCqK6cXFx6Orqgl6vR3BwMOLi4lBXV0d1g4OD0dzcTO9hS0sLWlpa8P3332PBggVYt24dtFotm6LuR1yFeRnfEwB+C6DIQ9/7MIA4AKWQ3ylkMBjOww9KuWOJO4PBYHgLYoNS+WFh+AjAh/36IbmpCYbkZFypqMANAE4DCIN5oCrC88VlMLwL+ZO4bImLiyPl5eU28rKyMqsj5f0JR1PQKioqFMuE6XxcqGM5LbSjo4MEBQURAOTy5csOyy1WBqV6cmyTissJO4MnbGtrayM//fST1fIxg8EgGbaUOYucPKR07KUJ5VJxb7BNbPkeXz+BOkWdEGnb7bV3V3+zrv5eCSFk7969okta07unsXcBZLidJa32yuBItnfvXqslhO+99x5RAaSs+zv/x8HSWjnL9zzlZ4Uyf/GzjuI91R5dtY35ImV9o5tvvpkAIP/+97/t6gjjrF0rR04eSu0Sk/uLbe7qq7uCO9tjoPqj3nxPq6yspP0WnhkzZlj5O41GQx4RWc5HALJYRt+D9R/sy7zVF0npBYKfleuLXJop9eCDD+Kjjz7Ce++9ZyVfuXIl7r//fley9lmam5sVy4TpfFyoo1abz2dob2/HpUuXYDKZEBYWRk97UFoupXpybJOKywk7g6ds4zcF5/GF0/fspQnlUnFvtc3VduPv2Ls/rv5m3XHfY2NjUVZWBp1OZyV///33kf+f/2ABgJLoaIR2dKDzhhsQduQIYLGsVamfra6uxowZM9DR0WGVPhdAGoB6mGdp2UOtViMxMdGhXZ7yRUKZP/nZ3miPrtrGfJFjLO8RP2uXCE609ef+g7e2a6V2icn9xTZ39dVdoafaI+M6PVn3lqfvEUKgUqnoRvr8ATIA8BRgdSKfCuZTh1+C9KEw9soq1w4xGfOzrtFT/Qdfsc2dvsilPaUAYPXq1cjMzMQvfvEL/OIXv8BNN92EVatWISgoCM8++yz9BAq881EiE6bzcaGO5bRQ/uS9wYMH09MelJZLqZ4c26TicsLO4CnbjEajVdxyjymxsHAPKmeQk4eUjr00oVwq7q22udpu/B1798fV36w77vvJkydF95t68skncahbJ6y5GUEdHQgrKwOWLAG6TyuyVwYpmU6nsxqQWgzgGICvu+N7AFgeXLtmzRrJvd6k7JKDq75IKPMnP9tb7dEVPeaLHGN5j/jle5cuXbKrI4yzdq0cOXkotUtM7i+2uauv7go91R4Z1/HEexohhG59wZ82mpGRQXXTYPsCbnkin9Lyy7VDTMb8rGv0VP/BV2xzpy9yaaZUSUkJPVq8oqICgPmI8cTERJSUlFA9y+PlGc5jOSilZJNzBoPB8AUmTJiA6JAQkM5O0KcGIYBKBbz6KpCb6/J3LAawEdf/S0kA5HTL+f9Qjho1ij7bGAyGe+EHpfg+DYPBYPgDlj6tvb2dvpTfcMMNiI6OpmnlAG6C9cBUF4Ayj5SSwfBOVEQ4f9pNlJSUIDMzsyey7lUaGxsRFxeHhoYGxMbG2qQbjUaEhoYqkgnT+bhQR6/XY+DAgVCpVHj99dfx//7f/8PPf/5zfPbZZw7LLVYGpXpybJOKywk7gydsMxgMOHfuHIYOHUqXUZpMJjpLTSxsKXMWOXlI6dhLE8ql4t5gm8FgQGVlJW688UZ6//n6cfSb9GekbLfX3l39zbr6e5UqGwAYQ0IQKrZsU60GumfOKfWzxcXFyM7OBmCeISXWGTwB4ObuuEajcWpQylN+VijzFz/rKN4b7VGOHvNFyvpGUVFRaG1tRWlpKdLT00V1hHHWrpUjJw+ldonJ/cU2d/XVvaU9Bpo/sjyQqry8HP/6179ED6S6+eab6alg/IFUR48ehUqlsjqQKj4+HtOnT8fmzZtBCMHYsWPpgVSEECxYsACHDh3C1atXERsbizvuuAObNm3CAw88AAA4cuQIVqxYgU8++QSzZs3CCy+8AK1Wi5qaGux99llshLnvEWzxdzGAzQK7NBoNzpw5Qw+kSkpKwv79+wHYHki1aNEibN261epAqoKCAqhUKnogVXl5OQgh+NnPfoYtW7agpaUFKSkpyMjIwM6dO6FSqTB58mTU1dXRA7UWLVqEgoICpw+k2rp1K1QqlcMDqW677Tbk5+cDsD2Q6q677sKJEyesDqT68ssvoVKpkJGRgbi4OOzfvx8qlQqzZs3CqVOncOHCBURFRSEnJwdr166FSqVCWloaEhIS8OOPP4IQghkzZqCiogJVVVUICwvDkiVLkJeXh87OTgwdOhSpqanYvXs3AGDatGnQarWoqKhAUFAQli5diq+++gpGoxGpqalIS0vD999/DwC47bbboNPp6D3Mzc3Fzp070dLSguTkZGRmZmLnzp0ghOCWW25Bc3MzHcS85557sGPHDjQ3NyMpKQnjx49Hfn4+VCoVsrOzYTQacfz4cahUKixatAi7d+9GfX09+vbti0mTJmH79u0ghODmm29GUFAQiouLAYC22draWsTFxWHGjBnY2L0KITMzE5GRkTh0yLxeYe7cuSguLsaVK1cQHR2NefPm4csvvwQAjBw5EgkJCdi/fz8IIZg1axZKS0tx4cIFREREYNGiRVi3bh1MJhPS0tIQFRWFjIwMx77I8TZX8mlsbCT//Oc/ycSJE0lQUJA7s/YaHG3WlZ+fr1gmTOfjQp26ujq68d3jjz9OAJAXXnhBVrnFyqBUT45tUnE5YWfwhG1tbW1Eo9FYbbR97do1ybClzFnk5CGlYy9NKJeKe4NtYhud8/UTqJt5EiJtu7327upv1tXfq6M8mocNI12CTUCJSkXI2LGS10vJNBoN9Z2twry7P60KNzVXapdcPVefIb7sZx3Fe6M9ytFjvkh+38hkMhGVSkUAkP/85z+iOmJx1q6VIycPpXaJyf3FNnf11V3Bne0xUP1Rb76nEUJIcHAwAUAuXrxIfvWrXxEA5H//93+pXlVVFVGr1WQxQI529z2OAmSRyCbnYge9sP6DfZm3+iIpvUDwsx7Z6JynsLAQq1evxoYNGzBo0CDk5ubi73//uzuy9jkaGxsVy4TpfFyoYzkt9MyZMwDkL98TK4NSPTm2ScXlhJ3BU7axjc69yzZX242/Y+/+uPqbdcd9l8oj4q23EHTvvfQ/hwDMw0Yvvyx5vVxZBYDRACwXlbtr2rynfJFQ5k9+1tvaoxw95oscw98jfgNgPiymIxZn7Vo5cvJQapeY3F9sc1df3RV6qj0yrtPTdR8eHo7W1lar5XuWm5ynpqbSg15MAE53yyfs2IEX58yx+p7ExESb9zzWf7Av81ZfJKUXaH5WCqcHpWpqavDpp59i9erVaGxsxH/913+hvb0dmzdvttrMLdBISkpSLBOm83GhjuWgVHl5OQD5g1JiZVCqJ8c2qbicsDN4yrbg4GCruOXUabGwq9PT5eYhpWMvTSiXinurba62G3/H3v1x9TfrjvsulUfQPffgX3PnYvw33yAzKAgh/GCwxQusM36Wpw7mASmC6yfeBAN4RZEF4njKFwll/uRnva09ytFjvsgx/D3i95MCgJSUFFEdsThr18qRk4dSu8Tk/mKbu/rqrtBT7ZFxnZ6ue8tBKX5/ZeF2NqmpqTbvb/X19bK2DWD9B/syb/VFUnqB5mclUTSPq5sFCxaQ2NhYsmzZMpKfn086OzvN065CQsjJkyedydJncDQFTUzuSCZM5+NiOvy0UP4j937Lnb4rpSfHNqm4nLAzeMK2trY2UlJSYrV8jG/39sKWMmeRk4eUjr00oVwq7g22iS3fs/ydSP0m/Rkp2+X6KKW/WXfcZ6k8qqqqyKpVqwgAEh0dTS48+ighADFGR5MTX39NNBoN2bNnj82Udql7wC/fW9y9VK8TIGUS0+adXb7nKT8rlPmLn3UU7432KEeP+SL5faOLFy8SACQkJCRg+g+O4r3ZrpXaJSb3F9vc2Vd3Fne2x0D1R739njZgwAACgOzYsYMAIEFBQaS1tVVWueXA+g/2Zd7qi6T0AsHPyvVF0rsM2+Gbb77BY489hldeeQXz58+3mUHij6xYsQIZGRmYMGECACAvLw8cx6G9vR3bt28Hx3EoKCjAli1bwHEcOI5DWVkZTp8+jZUrV4LjOLS2tuLbb78Fx3H45JNP0NbWBo7jsHLlSpw8eRLl5eU03tjYiM8++wwcx2Hbtm34+uuvwXEcQkKsJ7f9+OOPqKurQ2FhITiOw9atW2EymWgZiouLUV1dTctw9epV7Nu3DxzH0c3N1q9fD47jcOjQIWzYsIFee/nyZRw8eBAcxyEvLw/btm2j6fv378eVK1dovhcuXIBGo6FxANiyZQtWrlyJvXv3Qq/X07Tz58/T7+A4Dl9//TXy8/PBcRx27dqFhoYGmnb27FmUlJTQuMFgwI4dO8BxHL777js0NzfTfEtLS1FaWkp1m5ub8d1334HjOOzYsQNbt26laSUlJTh79iyNb968Gbt27QLHccjPz0dnZyfN9/jx49BqtWhubsa1a9fQ2dmJpqYmXL16FfX19QCAq1evQq/Xo6WlBdeuXYNer8fVq1dhNBrR3NwMvV6Pa9euAQDq6uqg1+vR3NyMjo4O6PV66PV6dHR0oKWlBXq9HnV1dVb5Njc3083u9Xo92tvbqe7Vq1dBCEF9fT30ej2amproUbRXr15Fe3s7Wltb6bUmkwk6nQ56vR6NjY3o6uqi32MwGNDW1kbjlroNDQ30O2pqatDS0gKDwUDz7erqQmNjI9U1mUw0rbW1FQaDAbW1tbh69Sotn16vR319PQghVrrt7e1W97ClpQUtLS10A8F169Zh5cqVOHLkCLRabY///n2Rbdu2yZJLxcXC9vJ1R9mqq6uRnp6Oxx9/HADQ3NyMG/79b+wHENLcjPqFCzExOxu333470tPT6Smk9vK0lCUC+Lg7/GeYj16OhHlz880uW2S/DEr1HNkhJlMadgZP2eZN7VGunjvK4O/w94ifKRUZGely3Ytd42y5XNHz5Xat1C4xub/YpsTPWsZ9oT0yrtPTdc+vauE3lx46dCgiIiKcKpdSPdZ/8E5fJKUXaH5WCqeW7xUVFWH16tXIzs7GqFGj8OCDD+K+++5zJiufYfny5Vi+fDkaG82nWdx77710B/l58+ZRPY7jsGzZMqtrjx07RmWzZs2iehEREVi2bBk4jqPrjdPS0sBxHGJjY5GYmEiv4/Ndvnw53YchPj4ejz76KADziQCWCMuQnJxMZf369cNtt91G05YuXUrDFRUVVtcOHDgQkyZNomVYsmSJ3XxTUlJQXl5O4zk5OeA4DlOnTrXRjY2NtbJtwYIFkuW3nPo6R7Dm2jJfwHwqAM9dd91Fw2J1M3z4cJp2xx132M3XYDDg2rVr6NOnD0JCQhATE4OOjg7Ex8cDMC8z69u3L9Xt27cv9Ho9QkNDERoaanUUbMLu3cArrwDl5UBaGvq+/DI96j4sLAxRUVFU1zJfAFbh8PBwREVFQa/XQ6VS0bJY6ur1eoSHh2PHjh34v//7P5SUlCA4OBjZ2dn46KOPMGzYMOzevRt33HEHrl27Rk+2O3jwIO644w5UVlYiJiYGX3/9NZ5++mn8/e9/xxtvvIHy8nKcPXsWcXFxeOaZZ/D111+jvb0dt99+Oz744AOMGDECAOh1n3/+OZ5//nl63fnz5/G73/0OJSUlMBqNGDduHP76179aTV0ODw+n9zAqKgpRUVGYOXMmAOC+++4Dx3EYP3482z/Bj9DpdDAYDFayLgD3AzgOYAqAiwDiAJQbDOj88kvgueccZ0wI/gGgP8yn7LljqR6DwVCO5aAUg8Fg+BvCQSl/PImewegJnJopdcstt2DVqlW4fPky/vu//xvr1q3DoEGDYDKZ8N1336Gpqcnd5fQZ+GPHlciE6XxcTIcfNADk7ydlrwxK9eTYJhWXE3YGT9kWFhZmFY+KjARaWoCWFkQBNmFLGf2sXQssWQKcOAEYDOa/S5aY5UJde3m0tJgXIfHlsBjEEsKntbS04Nlnn8WRI0dQUFCAsLAwLF682Gbzdh7L/+rwebS2tmLFihX417/+heLiYvTv3x8PP/wwjhw5gq1bt+LAgQMghGDevHkwGo30+tbWVvz5z3/Gv/71L5w8eRL9+/dHU1MTHnroIRQVFeHHH3/EiBEjMG/ePBvfIWWbq+3G37F3f1z9zbrjvivN4zyA1d3hJAARAG4CMPR3vwO6Z3yK5Xm7Xg+MHYubb7kF9wLoBPAQgA6J71Kr1UhMTFRUPh5P+SKhzJ/8rDe3R7m/KYYt/D2yHJQKpP6Dt7ZrpXaJyf3FNnf21Z2lp9oj4zqeek/TaDQArDc5V1oupXqs/+CdvkhKL9D8rBQunb4XFRWFRx99FI8++ijKysqwevVqvPXWW3j++edx1113YevWra5k75NYvozLlQnT+biYjuVm58JNQpWWS6meHNuk4nLCzuAp24SQlhagXz8AgNpCrhb8Fb+YWP+9/35RNbt5NDcD3QM2xGKAyvZrzGnCGW4fffQRUlNTcerUKcnrLMNGoxHvv/8+Jk2ahLa2Nly8eBFbt27Fvn37cOuttwIAvvjiC6SkpGDz5s2499576XX/+Mc/MHbsWJrnnXfeiba2Njr4tXLlSsTHx2PPnj1Ws+akbHO13fg79u6Pq79Zd9x3Z/K4E9c3JwfM/1EhKhVUr74K5Oba5rlxIwb9+teASgVVdzsKAXADAG3//nRGX0VFBYYNGwbAPFN00qRJigb8nbHLHb5IqW/1FT/rze1R7m+KYQt/j9ra2gCY//ERSP0Hb23XSu0Sk/uLbe7sqztLT7VHxnU89Z5WWVkJQP5MKdZ/8F8/K6UXaH5WCqdmSomRnp6Ot99+GxcvXqR7CgUiP/30k2KZMJ2Pi+lYDkopeXESK4NSPTm2ScXlhJ3BU7Z1dFjPr7A8Rag3kSoHn3bmzBksW7YMQ4cORWxsLEaNGgUAVnvyWGK5hIrPIywsjL68t7a24vTp0wgJCaHLOwHzksH09HScPn2aysLCwjBmzBir/K9cuYInnngCI0aMQFxcHGJjY9Hc3GxTHinbXG03/o69++Pqb9Yd992ZPNJwfUCKR0UIUFYmnucrr4AAVrMKTQBeAvDYY4/BZDIhKysLnZ2dyMrKomFnB6REy+CEnqvPEF/3s97cHuX+phi28PfIcqZUIPUfvLVdK7VLTO4vtrmzr+4sPdUeGdfx5HsaIH+mFOs/+K+fldILND8rhUszpcQIDg7GokWLsGjRIndnzYDzg1KMHiAy0jxjCYBer6f7PfFhSxnllluAkyetXpShUgGZmcCBAzZfIZoH/90KWLhwIYYMGYJVq1Zh0KBBqKurw5QpU9DR0UH3u7KclSQ2uh0REQGVSjgs4Bix6x566CFcuXIFf/vb3zBkyBCEh4dj8uTJNgN/DAZPOcxL9oT/SekMDUXJ3r2orKxEcXExEhMTEaTTIbmkxGYQKwjmDc7Hjx+P0tJSu4OyDAajZ2B7SjEYDH/G8j0tODgYaWlpvVgaBsOHkHUmIIPi6FhDsWM/HcmE6XxcTGfChAn02PI1a9bILrec40gd6cmxTSouJ+wMnrCtra2NnDx5krS1tVFZV1eXZNhSRtmwgRCAEJXK+u/GjaLlEs1DgU5XVxfR6XQEACksLKTyPXv2EABk06ZN5NSpUwQAOXnyJE3/+OOPCQBSWVlJurq6yCeffELi4uKsbCsvLycAyL59++h1Op2OREREkLy8PEIIodcJiY6OJp9++imNV1dXEwDkr3/9q6htbW1t5NSpU1b3n6+fQD32mBBp2+21d1d/s67+XqXy0Gg01L8JP4vNQ7mks/tvV/dfAhAtQMoA0gqQCwBp6pabLHT4a49a5KlWq0lZWZnDcrlqlxI9V58hvuxnHcU93R7l6jFfJL9v9MknnxAAZO7cuQHTf3AU7812rdQuMbm/2ObOvrqzuLM9Bqo/6u33tHnz5tE+xqhRo2SXm/Uf/NfPSukFgp+V64uE/3RmuEhhYaFimTCdj4vpODtTSqwMSvXk2CYVlxN2Bk/ZJjwVzHJTbrGw6Ib/ubnAhg3AmDGAWm3+u3EjsHixaLnkHBogpdPU1IQ+ffqgb9++WLlyJc6ePYsffvgBzzzzDNUZPnw4Bg8ejD/96U84c+YMtm3bhr/85S8ObRsxYgRycnLw+OOPo6ioCMePH8cDDzyA5ORk5OTkSJZ5xIgR+Oyzz3D69GkcPHgQ999/v+iRuVK2udpu/B1798fV36w77rszeWwCkAvz6XltAH4C8DyAWgCDAIyAeQP0wQCiAdTAvNyvq/v6LgDBsD55z2Aw4Ntvv3WpXJZ4yhcJZf7kZ725Pcr9TTFs4e+R5Z5SgdR/8NZ2rdQuMbm/2ObOvrqz9FR7ZFzHk+9pcpfu2SuDUj3Wf/BOXySlF2h+Vgq3L98LdOrq6hTLhOl8vK6uDtXV1dDpdNBoNOjXrx/a29upXmNjIz1yNDExUXKQSqwMSvXk2CYVlxN2Bk/ZJjyprrOzUzJsKbMiN9f8kYHdPGTqdHZ2IigoCOvWrcNvfvMbZGZmIj09Ha+99hodOAoNDcU///lPPP/88xgzZgwmTJiAP/zhD3j00Ucd2vbJJ5/gqaeewoIFC9DR0YFp06Zh+/btCA0NlSzz6tWr8eijjyIrKwspKSl444038NxzzymyzdV24+/Yuz+u/mbdcd+dzWNT98eSBwD0g/V+UyYAVwD8CuY9pNIBlME8ILVZcH1jY6PL5VJ6vau+SCjzJz/rze1R7m+KcR1hH6a8vByAeXCKlwHmPow/9x+8tV0rtUtM7i+2udJXV1IuKXqqPTKu0xN1X11dTf1ZS0sL1UtISKDvaYD0uxrrP/ivn5XSCzQ/KwUblHIzYvv/OJIJ0/l4V1cX0tPT6QydF154wUrP8pQytVqNsrIyu85OdF8ihXpybJOKywk7g6dsCwoKsoqHhIRIhi1lziInDykdPm3mzJlWJ+01NDRY7SF12223WW1I19DQgEceeYSGH374YTz88MNoaGiwyrdPnz74/PPP7X4/f52Qm2++Gbt370ZcXByV3XPPPYpsc7Xd+Dv27o+rv1l33Hd31t0w2G6AHgTzxuhig1hCLNugr/giocyf/Kw3t0e5vymGmerqart9mG+++QbffPMNlanVaqxatcrqetauXUNOHkrtEpP7i23O9tV9oT0yruPuurf0c8L3tJUrV2LlypU0LvWuxvoP/utnpfQCzc9KomhxIcPhusiWlhbFMmE6Hy8qKrK7v4rYR6PR2C23WBmU6smxTSouJ+wMnrCtra2NlJSUWO1p1NnZKRm2lDmLnDykdOylCeVScW+wTWxPKb5+AnXfBEKkbbfX3l39zbr6e5XKo6qqiqjVakV+75hgfymxvaOkPkVFRQ7L5apdSvRcfYb4sp91FPd0e5Srx3yRuO1Se8Q5+i0Swtq1q8jJQ6ldYnJ/sc3Zvrq3tsdA9UeefE9raWlR7Ofsvaux/oP/+lkpvUDws2xPqV5iy5YtimXCdD6+Z8+eHi2XUj05tknF5YSdwVO28Xth8NTX10uGLWXOIicPKR17aUK5VNxbbXO13fg79u6Pq79Zd9x3e3mkpqairKwMGo0Gr7/+OjQaDTQaDdasWWM3r1dgnhkltXeUFJZ+1ld8kVDmT37Wm9qjXD3mi9yDsM/D2rVryMlDqV1icn+xzdm+ui+0R8Z1eqrue6JcSvVY/8E7fZGUXqD5WSnY8j0Gg8FgeA2pqal0cCorK8uhPr8BuqO9oxgMBoPBYDAYDIb3wQalZLJixQqsWLECXV3m/8fn5eUhMjISubm5KCgoQENDA/r374/09HRwHAcAyMrKgslkQnNzMziOQ05ODoqKiqDX6wGYZ95s3rwZzc3NOHnyJEJDQ6HRaNDc3IzGxkabPYwcsWPHDly8eBELFizA+vXrAQDp6elITEykZZg5cybKy8tRXV2N8PBw5ObmYv369TCZTBg2bBhSU1Np+adPn47q6mqcO3cOISEhGDduHDZs2ICOjg4MGTIEw4YNo/lOmTIFtbW1NL5s2TJs2bIFzc3N2Lt3LzIyMmja5MmTER8fT7/npptuQn5+PpqamjBgwABkZWVh+/btAIAJEybAYDDgxIkTAIDFixdj9+7duHbtGhITEzF58mSa78033wwAOHr0KABg4cKFOHDgAHQ6Hfr06YOMjAyr71Sr1Th8+DAA82lwu3btQk1NDWJiYjBnzhyab0ZGBqKjo2EymXDt2jX069cPbW1tMJlMqK+vR3x8PEwmE/R6PdRqNcLCwqDX62EymWA0GtHe3o729nYEBQWhT58+qKurAyEE4eHhCAsLoyfMxcTEwGg0wmAwQKVSISEhAYQQ6PV6hIeHIzw8nG7KHB0djc7OThgMBphMJhBC0NDQgK6uLoSFhSEiIgINDQ0wmUxob29HV1cXnenVp08fAIBer0doaCiioqJo+aOiokAIoXFL3ZCQEERERFDb2traoFKp6KaO8fHxaGlpgdFoREhICGJiYnDt2jUA5pOWgoKCqG5cXBxUKhX0ej2Cg4MRFxdHN8SLiIhAcHAwmpub6T1saWlBS0sLvv/+eyxYsADr1q1Dc3Mzjhw5gqioKEW/k0Bh3LhxsuRScbGwvXzdUTalOjxy9o6yR3p6ulPfKYbc66X0xNIcyZSGncFTtnlre5TSc0cZGNa/RYC1a1dx1c/68zPEVT9rGfeF9si4jrvrXriKwp3lUqrH+g/2477Wf/AV29zpi9iglEyWL1+O5cuXo7GxEXFxcbj33nsRGxsLAJg3bx7VKysrw7Jly6yuDQoKop2tWbNmUb2IiAgsW7YMZWVlND0tLQ1lZWWIjY1FWlqaojLOmTOHziwQlmHatGn0O/r164fbbruNpi1dutSq/JZpAwcOxKRJk2jakiVL7OabkpKC6OhoGs/JybGyzVK3vb2dhsvKyqw2bRcrf2ZmppWd9soAACNHjqThu+66y8o2Yb7Dhw+naePHj7ebr8FgQEtLC+Lj4+mAS2hoKNRqNQDzgBIfNhgMiImJgcFgQGhoKEJDQxEdHU3zTUhIsPoey43gwsLCrAZZoqOjab5C3fDwcERFRdFBrPj4eJt8DQYDPZ42MjKSpkVFRVnla1l+AFCpVDRuqWswGGi+vMzyOv43IVZeoW5kZKRd23j7+HsYGRmJqKgozJw5EwBw33330bZleXpaoCBnkDw4OBiDBw9Gfn4+gOuD5EVFRTh27BgdJK+qqkJ1dTWmTZtGB8lNJhNCQ0Op7vz581FSUoJjx47BZDJh+PDh+OqrrwCYjzyOjo7GwYMHAQCzZ89GSUkJtFotoqKiRAfJ+XylBsljYmIQGxuLwsJCVFZW9ti9vHbtGo4fP45Tp06hubkZI0aMwI4dO5waJO/fvz8d+JYaJAeAG2+8EZs2mYfSLAfJm5ubMWjQIBQXF9NB8qFDh9J8MzIyEBcXR+/hrFmzUFpaimPHjiEyMhIjR46kurGxsYiOjkZRURGam5uRkJCAiooKVFVVISwsDEuWLEFeXh46OzsxdOhQpKamYvfu3QDM/k+r1aKiogJBQUEYN24cNm7ciPb2dqSmpiItLQ3ff/89APNBCTqdDmVlZWhubkZ6ejry8/PR0tKC5ORkZGZmYufOnWhubkZ4eDj9RwwAjBkzBtu2bUNjYyOSkpLQp08fWv7s7GxcvHgRx44dA2Buazt37kRdXR2CgoIwZMgQeh/GjRuHoKAgetLRggULcOjQIdTW1iIuLg4zZszAxo0bAZifJ5GRkTh06BAA83N3z549uHTpEqKjozFv3jx8+eWXAMzPk4SEBOzfvx/Nzc3o168fSktLceHCBURERGDRokXYt28fjh07hoEDB7qvYQYgKpXKKm75jzk5YWeQe72UnliaUCYVFwu7apfcPJTaJSb3F9scyezZ6QvtkXGdnqr7niiXUj1XbWN+Vjmu2hZoflYKNijlZoqLi23+2+dIJkzn46WlpT1aLqV6cmyTissJO4MnbAsNDYXBYEBraysiIiIAAC0tLXRQRSxsKXMWOXlI6dhLE8ql4t5gW2trKwBzPfC42m58GTmD5BzHISYmxmYg9tixY1Q2a9YscByH2bNnAzAPBnMch9GjRwMANBoN1e3s7KTpoaGhNvkOHTqUhqdNm2aVJtSNjo6mMnuD5BzHITk5GcuWLUNxcbHNqTbuora2FmPHjsXYsWPBcRxCQkKcHiTnZ4laIjZIznEc1Gq16CA5x3GIi4vDHXfcIZmv5T00GAw0bKnLcRxSUlJovSUlJSEpKQm33norzefee++1a2tycjImTpxotwyW8dTUVGRlZYHjOAQFBeHuu++20eU4jraTMWPGiOYrjFu2QaFtkZGRVvcBsJ5tM2PGDLvlBYBhw4bJsg0AhgwZAo7jkJiYiClTplilRUVFYdmyZWyAHNYD5EVFRYryKiwsRFRUFB0g12q16OzsRGhoKL7++msUFxdj/vz5+Pbbb1FcXIzY2FjU19fTgUhnBsj5fB3NIj958iT9HuEs8s7OTpSUlFjNIufz5WeR79q1C8XFxXQW+ZkzZ1BbW4uMjAyqO3nyZOzevRvFxcXQarUYNmyY0wPkkydPpvlKDZDX1tZiyJAhogPkWq0WAwYMsBognzNnDs2XHyDn47NmzcKpU6dw8OBBlJaWIicnh6alpaXh+PHj1Lb4+HinB8iXLl2Kbdu2obi4WHKAXKvVYsSIEaID5FqtFqGhoVYD5CaTCWfPnqUD5OPHj6flz87Oxp49e2gbWLRoEXbs2IHi4mJcvXoVKSkp2LJlC7RaLUwmk9MD5EajETU1NQ4HyLVaLfr27WszQL5u3TpcvHgRTU1NbBa5Hdz5nubOfqin3tOEMn95T3MUFwu7o/5ctU2u3FttU1pnUrBBKQZDBsHBwbh27Rpqa2sBmGf5dHR00KOuxcKWMmeRk4eUjr00oVwq3tu26fV61NbWIj4+HsHBwS59J8M3SUxMhFqtdrnNCVGr1YiJiXFrngxGICE1QC4cvHNE//797Q6Q8wPUgNkfiA1U8igZILfMV2oWeUVFhdW1lrPIOY6zmUVumW9KSgrKy8tpPCcnBxzHYerUqTa6sbGx1HZXBsiF+QLuGSAXy9cyPnXqVFy8eBE5OTk2afw9cHWAHDDff8t0dw2Qz58/366tlgPkgLm98nlFRkbS8KhRowA4P0B+++23S+pKDZDfd9994DgO48eP9+lBcn6QdcaMGXRWNoPB8G9UhBDS24XwJfiOV0NDg81SJQBoamqyeclxJBOm8/G9e/fadKik0Gg0djcGFiuDUj05tknF5YSdwVO2NTY2oqWlhZ4Ix/83zF7YUuYscvKQ0rGXJpRLxb3Btvj4eAwYMMBqeQdfP45+k/6MlO322rurv1lXf69SZZPSqa6upkvfWlpaUF1djQceeED2d65atcrKP7a0tGDIkCHo06ePz/kiocyf/Ky3tkcpPeaLxH0RP8NELoWFhXSgBmDtujf8rJw0f7XN2b66t7ZHX/ZHu3fvRlNTEz777DPFg1KefE9ramrCmTNnFPk5e+9qrP/gv35WSi8Q/KxcX8QWHrsZfgquEpkwnY/zU4p7qlxK9eTYJhWXE3YGT9l2+PBhDBw4EGlpabjxxhtRW1uLG2+80W7YUubsR04eUjr20oRyqXhv25aWloaBAwfa7Dfiarvxd+zdH1d/s+6473LyEOrw//3OyspCR0cH/W+0XDo7O+n1fB6pqak+6YuEMn/ys97aHqX0mC9yD8I+D2vXruGMn5WT5q+2OdtX94X26GtMnz69x2Yx91Td90S5lOqx/oN3+iIpvUDzs1Kw5Xtuhl/epUQmTOfjRqNR9pIVtVqNxMREReVSqifHNqm4nLAzeNq24OBgBAcHo6amhu6JJBa2lDmLnDykdOylCeVS8d62zd6SPVfbjb9j7/64+pt1x32Xk4ej3+uIESMU+Uej0Siavy/6IqHMH/2sWLw326OUHvNF4ihZdiv1G5UbdoZAb9dK7RKT+4ttzvbVfaE9upPCwkK888470Gg0uHz5MjZt2oRFixZZ6axYsQLvvPMOampqMHbsWHz44YdWyy97E3fXvdK+iL13NdZ/8F8/K6UXaH5WCjYo5Wbi4uIUy4TpfHzYsGEoKyuDTqdDUVGR5P4MiYmJSE1NVVQupXpybJOKywk7g7fa5qpdcvNQapeY3J9sY5jx97pPTU2l/hGAqI/kZYmJiSgpKRHN3xd9kVDG/KxruGob80XiWP5GpX6fACR/o3LDzhDo7Zr1H+TL7NnpC+3RnbS0tGDs2LF49NFHkZuba5O+fv16PPvss/j4448xadIkvP/++5g9ezbKysrQv39/AOaj4js7O22u/fbbbzFo0KAeLb+76573c5s3b3a4j57UuxrrP/ivn5XSCzQ/KwlhKKKhoYEAIA0NDaLpBoNBsUyYzseldJQi93opPTm2ScXlhJ3BW21z1S65eSi1S0zuy7Y5+k36M1K2B0LdK5H5k58VypifdQ1XbWO+yD19I9Z/8H4/Kyb3F9v87RniCX8EgGzatMlKNnHiRLJ8+XIa7+rqIoMGDSJvvvmmorx37dpFlixZ4lDPYDCQhoYG+rlw4QJ7T1MgY37WNdzVf3Ak91bb3OmL2J5SboY/5lWJTJjOx6V03FEupXpybJOKywk7g7fa5qpdcvNQapeY3J9sY5gJtLoPJD8rlDE/6xqu2sZ8kWNY/8E72zXrP8iX+fIzxFN0dHRAo9Fg5syZVBYUFISZM2fiwIEDPfKdb775JuLi4ugnJSUFAJCXlweO49De3o7t27eD4zgUFBTgyy+/BMdx4DgOZWVlOH36ND788ENwHIfW1lZ8++234DgOH3/8Mdra2sBxHD788EOcPHkS5eXlNN7Y2IiVK1eC4zhs27YNX331Fc33p59+wrlz52i8rq4OhYWF4DgOW7duhclkomnFxcWorq6mZbh69Sr27dsHjuNoXa5fvx4cx+HQoUNYu3Ytvfby5cs4ePAgOI5DXl4eNm7ciA0bNoDjOOzfvx9Xrlyh+V64cAEajYaWHwC2bNmCDz/8EHv37oVer6e658+fx6effkq/56uvvkJ+fj44jsOuXbvQ0NBA086ePYuSkhIaNxgM2LFjBziOw3fffYfm5maab2lpKUpLS6luc3MzvvvuO3Achx07dtA64zgOJSUlOHv2LI2vX78eu3btAsdxyM/PR2dnJ833+PHjOH/+PI3r9Xrs3bsXH374IbZs2QIANE2j0eCLL76g9+HKlSvYv38/OI7Dhg0brNrOwYMHcfnyZVoGrVaLQ4cO0fIA5qWqHMdh3759uHr1KtWtrq5GcXExjW/YsAFbt24Fx3EoLCxEXV0dLcO5c+fw008/UV2j0YiPPvoIHMfhhx9+QGNjIy1/eXk5Tp48SeNtbW34+OOPwXEcvv32W1r2Dz/8EKdPn0ZZWRnNt6mpCQUFBeA4Dtu3b0d7eztNO3HiBCoqKmi8vr4eq1atAsdx+Prrr9HV1UXTjh49iqqqKvo9/GxojuOwefNmAMC6devw4Ycf4siRI9BqtbJ+y2z5nkJI92GF9o5abW1ttUlzJBOm83EpHaXIvV5KT45tUnE5YWfwVttctctRmeXo2EvzJ9v4dBKAB4lK+aNAqHslMn/ys0IZ87M93x6l9Jgvck/fiPUfvN/Pisn9xTZ/e4b0hj/S6XTo6upCUlKSlTwpKQmlpaWy85k5cyaOHz+OlpYWDB48GHl5eZg8ebKo7h/+8Ac8++yzNN7Q0IDU1FTMnj0bsbGxaG9vt1pWl5eXh5ycHKs8+vTpg/nz56OzsxO33HIL1TMajZg/fz7y8vLoYBcfB4DIyEjMnz+f6t97771W+fJpgHnJ4rhx4wAAzc3NVmmWZQCAm266CTfddBMAs0+dO3cu1Ttx4oTVtaNGjaIHv+Tl5UnmGxcXhxEjRiAvLw+NjY244447oNPpMHbsWBvdkJAQK9sWLlxo1zYAdFliR0cHbr31Vio3mUxW+QKgSzRNJhMmTZpE5VL3MC8vz+qUw9bWVpt8LeNjx45FeXk57rjjDjQ2NlqlHTt2jNZjREQEMjMzkZmZSe/37Nmz7do6cuRIjBw5kurGxcVZpVuG4+PjMXz4cFr+BQsW2OSbl5eHxMREJCYm4oYbbgAAtLW1ISYmxq5tlnGj0Yjo6GibdpiXl4fk5GSrMhFCMGHCBJpHe3u7TT1axiMiImi8paVFVDcvLw9hYWEYM2YMxowZQ+/LvHnzkJeXh7S0NNm+SEUCsffkAhcvXqSOicFgeA8XLlzA4MGDe7sYHoX5IwbD+2C+iMFgeAs96Y9UKpXVRueXLl1CcnIy9u/fbzWI9Pvf/x579uzBwYMHe6QcljBfxGB4J458EZsppZBBgwbhwoULiImJsTmiHgAmTJiAw4cPK5IJ0/k4/7exsREpKSm4cOECYmNjnSq3WBmU6smxTSouFvZX2woKCly2y1GZ5ejYS/Mn2wghaGpq6vHNMb0RKX8UCHWvROZPflYoY36259ujlB7zRe7pG7H+g/f7WTG5v9jmb8+Q3vBHiYmJCA4OxpUrV6zkV65cwYABAzxSBvaexvoPYnFv7z84knurbe70RWxQSiFBQUGSo3zBwcE2DcCRTJjOx4Xy2NhYpxuXWBmU6smxTSouZbO/2uaKXY7KLEfHXpq/2Raop19J+aNAqXu5Mn/ys0IZ87M93x6l9Jgvck/fiPUfvN/Pisn9xTZ/fIZ42h+FhYUhOzsbBQUFdPaUyWRCQUEBnnzySY+Ugb2nsf6DWNwX+g9Scm+1zZ2+iA1KuZnly5crlgnT+bjYde4sl1I9ObZJxaVsdoVAt02pXWJyf7KNYSbQ6j6Q/KxQ5i115kjPl/2slB7zRY7x17q3l+YrtrH+g3yZLz9D3ElzczPOnj1L45WVlTh27BgSEhKQmpqKZ599Fg899BDGjx+PiRMn4v3330dLSwseeeSRHi2XXAKt7ln/QTrsKj3Vf/AV29zpi9ieUj4Av5FaQ0ODSyOe3oi/2uavdgH+bRtDGn+ue2ab7+GvdjHk4a/17692Acw2f2D37t244447bOQPPfQQPv30UwDA3//+d7zzzjuoqanBuHHj8MEHH1htaO1v+HPd+6tt/moX4Lu2sZlSPkB4eDhefvllhIeH93ZR3I6/2uavdgH+bRtDGn+ue2ab7+GvdjHk4a/17692Acw2f2D69OkOT9F68sknPbZczxvw57r3V9v81S7Ad21jM6UYDAaDwWAwGAwGg8FgMBgeJ6i3C8BgMBgMBoPBYDAYDAaDwQg82KAUg8FgMBgMBoPBYDAYDAbD47BBKQaDwWAwGAwGg8FgMBgMhsdhg1IMBoPBYDAYDAaDwWAwGAyPwwalfJzFixejT58+uOeee3q7KG7lwoULmD59OjIyMjBmzBjk5eX1dpHcRn19PcaPH49x48YhMzMTq1at6u0iuZXW1lYMGTIEzz33XG8XheFh/NEfMV/k2zB/FJj4oy8C/NcfMV/E8FeYL/I9mD/qHdjpez7O7t270dTUhM8++wxfffVVbxfHbVy+fBlXrlzBuHHjUFNTg+zsbJSXlyMqKqq3i+YyXV1daG9vR2RkJFpaWpCZmYkjR46gb9++vV00t/DCCy/g7NmzSElJwbvvvtvbxWF4EH/0R8wX+TbMHwUm/uiLAP/1R8wXMfwV5ot8D+aPegc2U8rHmT59OmJiYnq7GG5n4MCBGDduHABgwIABSExMRF1dXe8Wyk0EBwcjMjISANDe3g5CCPxlbPjMmTMoLS3F3Llze7sojF7AH/0R80W+C/NHgYs/+iLAf/0R80UMf4X5It+D+aPegQ1K9SKFhYVYuHAhBg0aBJVKhc2bN9vorFixAjfccAPUajUmTZqEQ4cOeb6gTuBO2zQaDbq6upCSktLDpZaHO2yrr6/H2LFjMXjwYPzud79DYmKih0pvH3fY9dxzz+HNN9/0UIkZ7sRf/RHzRb7niwDmjwIZf/VFgP/6I+aLmC/yR5gv8j1fBDB/5Kv+iA1K9SItLS0YO3YsVqxYIZq+fv16PPvss3j55ZdRXFyMsWPHYvbs2aitrfVwSZXjLtvq6urw85//HCtXrvREsWXhDtvi4+Nx/PhxVFZWYu3atbhy5Yqnim8XV+3asmUL0tLSkJaW5sliM9yEv/oj5ot8zxcBzB8FMv7qiwD/9UfMFzFf5I8wX+R7vghg/shn/RFheAUAyKZNm6xkEydOJMuXL6fxrq4uMmjQIPLmm29a6e3atYssWbLEE8V0CmdtMxgMZOrUqeTzzz/3VFEV40q98fzP//wPycvL68liKsYZu55//nkyePBgMmTIENK3b18SGxtLXnnlFU8Wm+Em/NUfMV/ke76IEOaPAhl/9UWE+K8/Yr6I+SJ/hPki3/NFhDB/5Ev+iM2U8lI6Ojqg0Wgwc+ZMKgsKCsLMmTNx4MCBXiyZ68ixjRCChx9+GHfeeScefPDB3iqqYuTYduXKFTQ1NQEAGhoaUFhYiPT09F4pr1zk2PXmm2/iwoULOH/+PN599108/vjjeOmll3qryAw34q/+iPki3/NFAPNHgYy/+iLAf/0R80XMF/kjzBf5ni8CmD/yZn/EBqW8FJ1Oh66uLiQlJVnJk5KSUFNTQ+MzZ87Evffei+3bt2Pw4ME+4Qjl2LZv3z6sX78emzdvxrhx4zBu3DicOHGiN4qrCDm2VVVVYerUqRg7diymTp2KX//617jpppt6o7iykdseGf6Jv/oj5ot8zxcBzB8FMv7qiwD/9UfMFzH8EeaLfM8XAcwfeTMhvV0Ahmt8//33vV2EHmHKlCkwmUy9XYweYeLEiTh27FhvF6NHefjhh3u7CIxewB/9EfNFvg/zR4GHP/oiwH/9EfNFDH+F+SLfg/mj3oHNlPJSEhMTERwcbLOx2pUrVzBgwIBeKpV7YLb5Hv5qF0Me/lr//moXwGxj+Cf+XPf+apu/2gX4t20Mafy57pltvomv28YGpbyUsLAwZGdno6CggMpMJhMKCgowefLkXiyZ6zDbfA9/tYshD3+tf3+1C2C2MfwTf657f7XNX+0C/Ns2hjT+XPfMNt/E121jy/d6kebmZpw9e5bGKysrcezYMSQkJCA1NRXPPvssHnroIYwfPx4TJ07E+++/j5aWFjzyyCO9WGp5MNt8zzZ/tYshD3+tf3+1C2C2+aptDGn8ue791TZ/tQvwb9sY0vhz3TPbmG1eR+8e/hfY7Nq1iwCw+Tz00ENU58MPPySpqakkLCyMTJw4kfz444+9V2AFMNt8zzZ/tYshD3+tf3+1ixBmm6/axpDGn+veX23zV7sI8W/bGNL4c90z25ht3oaKEEKUD2UxGAwGg8FgMBgMBoPBYDAYzsP2lGIwGAwGg8FgMBgMBoPBYHgcNijFYDAYDAaDwWAwGAwGg8HwOGxQisFgMBgMBoPBYDAYDAaD4XHYoBSDwWAwGAwGg8FgMBgMBsPjsEEpBoPBYDAYDAaDwWAwGAyGx2GDUgwGg8FgMBgMBoPBYDAYDI/DBqUYDAaDwWAwGAwGg8FgMBgehw1KMRgMBoPBYDAYDAaDwWAwPA4blGIwGAwGg8FgMBgMBoPBYHgcNijFYDAYDAaDwWAwGAwGg8HwOGxQisFgMBgMBoPBYDAYDAaD4XHYoBSDwWAwGAwGg8FgMBgMBsPjsEEpBoPBYDAYDAaDwWAwGAyGx2GDUgwGg8FgMBgMBoPBYDAYDI/DBqUYDAaDwWAwGAwGg8FgMBgehw1KMRgMBoPBYDAYDAaDwWAwPA4blGIwGAwGg8FgMBgMBoPBYHickN4ugK9hMplw6dIlxMTEQKVS9XZxGIyAhxCCpqYmDBo0CEFBgTXOzvwRg+E9MF/EfBGD4S0Eqj9ivojB8C7k+iI2KKWQS5cuISUlpbeLwWAwBFy4cAGDBw/u7WJ4FOaPGAzvg/kiBoPhLQSaP2K+iMHwThz5IjYopZCYmBgA5hsbGxtrk15cXIysrCxFMmE6H5fSUYrc66X05NgmFZcTdgZvtc1VuxyVWY6OvTR/sq2xsREpKSn0txlISPmjQKh7JTJ/8rNCGfOzPd8epfSYL3JP34j1H7zfz4rJ/cU2f3uGBKo/Yu9prP8gFvf2/oMjubfa5k5fxAalFMJPBY2NjRV1dpcvX7aRO5IJ0/m4lI5S5F4vpSfHNqm4nLAzeKttrtrlqMxydOyl+aNtgThNW8ofBVLdy5H5k58Vypif7fn2KKXHfJF7+kas/+D9flZM7i+2+eszJND8EXtPY/0Hsbiv9B/syb3VNnf6oiDlRWRIIXbDHcmE6XxcSscd5VKqJ8c2qbicsDN4q23u6AjIyUOpXWJyf7KNYSbQ6j6Q/KxQxvysa7hqG/NFjmH9B+9s16z/IF/my88QxnUCre5Z/8F+2Jv7D75imzt9kYoQQhRdEeA0NjYiLi4ODQ0NLo9AMhgM1wnk32Qg285geBuB/HsMZNsZDG8kUH+TgWo3g+GtyP1NsplSbmbz5s2KZcJ0Pi6l445yKdWTY5tUXE7YGbzVNlftkpuHUrvE5KtWrUJxcTH9/OUvfxENr1q1Sna5XCm3HB13lMGfEd6f6upqm/oUi/N1LMzD29t1IPlZoYz5Wddw1Tbmi+xjz+8IZdXV1az/AM+3a3f0H/zFNn9+hjCuE2h1z/oP9sPe3H/wFdvc6YvYnlJupq2tTbFMmM7HpXTcUS6lenJsk4rLCTuDt9rmql1y81Bql1BeXV2N5cuXw2g0Ovyu0NBQzJ4926ttY5gR1nF6ejoMBoPD6/g6Tk1N9al2HUh+VihjftY1XLWN+SJxlPgdtVqNt99+20rG2rVreKL/4CjuS7b58zOEcZ1Aq3vWf7Af9ub+g6/Y5k5fxAal3IzYMaSOZMJ0Pi6l445yKdWTY5tUXE7YGbzVNnccSSsnD6V2CeU6nU7WgBQAGI1G6HQ6r7aNYUZYx3JeDIHrdZyamupT7TqQ/KxQxvysa7hqG/NF4ijxOwaDAZGRkVYy1q5dwxP9B0dxX7LNn58hjOsEWt27q/9QXV0NnU7nsHyJiYlITU2VXWa5er7sZ6X0As3PSkIYimhoaCAASENDg2j61atXFcuE6XxcSkcpcq+X0pNjm1RcTtgZvNU2V+2Sm4dSu4RyjUZDAMj+aDQar7LN0W/Sn5Gy3dU6Fubh7e06kPysUMb8rGu4ahvzReK2K/U733//vVWerF27hif6D47ivmSbvz1DAtUfsfc0ZTI54aNHjxK1Wu3Qhy8GyHGVipjCwwkZM4aQDRs8apu3+iIpvUDws3J9EdtTys189913imXCdD4upeOOcinVk2ObVFxO2Bm81TZX7ZKbh1K75Obr7He6Mw9nbGOYcXcdeXu7DiQ/K5QxP+sartrGfJF7OHjwoFWctWvX8FT/wV9s8+dnCOM6gVb3SvsP/D6AK1eutNprVDjrdTGAYwBau/++BWAjgExCoGpvB06cAJYsATZuDHg/K6UXaH5WCr8alPrTn/4ElUpl9Rk5ciRNNxgMWL58Ofr27Yvo6GgsWbIEV65c6cUSMxgMBoPBYDAYDAaD4Vl0Oh0dfDp69ChGjBiB7OxsvPDCC8jOzkZ2djb+8Y9/WF2zGOYBqJsARHT//V+Yp0vRgQVCAJUKePVVzxnD8G2UTeTybl5++WUyevRocvnyZfqxnFb2y1/+kqSkpJCCggJy5MgRcsstt5Bbb71V0Xc4moJ2/vx5xTJhOh+X0lGK3Oul9OTYJhWXE3YGb7XNVbvk5mFPp6qqiuTn5xONRmPzsZTn5+crXtrV27ZZpgXqFHVCpG23vHfOLt/zxnZtLy2Q/KxQxvysa7hqG/NF7lm+l5+fb5Una9eu0RN+VkzuL7b52zMkUP0Re0+TL6uqqiLh4eGK/DQAcgwgXeZhJ8cftTrg/ayUXiD42YBdvhcSEoIBAwbQT2JiIgCgoaEBq1evxnvvvYc777wT2dnZ+OSTT7B//378+OOPbvv+uro6xTJhOh+X0nFHuZTqybFNKi4n7AzeapurdsnNQ0yHP/VowYIF9D8dlh9L+aJFi3qkXO7IQ2mdMa7j7jryhnYtlRZIflYoY37WNVy1jfki99DQ0GAVZ+3aNXrqGeuvtvnzM4RxnV6p+40bgbFjgYgI89+NG2WVQQw5dc8vwSsuLsa+fftoeNu2bfjiiy+wZs0afPHFF9i0aRPa29sdfqflUr0KmGdGiQ0gEKFApQLS0wPez0rpBZqflcLvBqXOnDmDQYMGYejQobj//vtRXV0NANBoNDAajZg5cybVHTlyJFJTU3HgwAG7+bW3t6OxsdHqI0VpaalimTCdj0vpKEXu9VJ6cmyTissJO4O32uaqXfbysHzYFBcX45tvvrGKFxcXY+/evbJPPers7HRLuXoiD6V1xriOu+uop9u1Ep1A97NCGfOzruGqbcwXuYfz589bxVm7do2eesb6q23+/AxhXMfjdb9xo3lvpRMnAIPBaq8l0e9zMIDlqO75f0rz/3i+//77rf4h/cADD+CPf/wjHnjgATz99NNW1wv3iVoM4L9gvVRvKMyDB8IBqC4AKgAmSyEhwMsvB7yfldILND8rRYgibS9n0qRJ+PTTT5Geno7Lly/jlVdewdSpU1FSUoKamhqEhYUhPj7e6pqkpCTU1NTYzfPNN9/EK6+8YiPPy8tDZGQkcnNzUVBQgIaGBvTv3x+dnZ3gOA4AkJWVBZPJBK1WC47jkJOTg6KiIuj1etTW1qKtrQ2bN2+GVqvFyZMnERoaCo1GA61Wi8bGRuh0OnAch9jYWJhMJprv6NGjER0dTTcFnT17NkpKSqDVahEVFYUFCxZg/fr1AID09HQkJibSMsycORPl5eWorq5GeHg4cnNzsX79ephMJgwbNgwGg4F+z/Tp01FdXY1z584hJMTcVDZs2ICOjg4MGTIEw4YNo/lOmTIFtbW1NL5s2TJs2bIFWq0We/fuRUZGBk2bPHkyGhsb6feYTCbk5+ejqakJAwYMQFZWFrZv3w4AmDBhAgwGA06cOAEAWLx4MXbv3o1r164hMTERkydPpvnefPPNAICjR48CABYuXIgDBw5Ap9OhT58+6Orqot950003Qa1W4/DhwwAAo9GIXbt2oaamBjExMZgzZw7NNyMjA3FxcTQ+a9YsnDp1ClqtFlu2bEFOTg5NS0tLQ1tbGziOg1arxZUrV1BRUYGqqiqEhYVhyZIlyMvLQ2dnJ4YOHYrU1FTs3r0bADBt2jRotVpUVFQgKCgIS5cuxeXLl8FxHFJTU5GWloZ169bht7/9LYxGo1V7fOGFF+z/MNzMjh07EBYWhtOnTyMoKAjFxcUAgAULFuDQoUOora1FXFwcZsyYgY3dD9PMzExERkbi0KFDAIC5c+dCr9eD4zhER0dj3rx5+PLLLwGYB4sTEhKwf/9+aLVa6HQ6lJaW4sKFC4iIiMCiRYuwbt06aLVaHDlyBFFRUR6zncFgMBgMBoPBkMUrr5hnDJHuYRzLvZZyc611+QEsXp8fwNqwwVYX5n9S63Q6Gq+srITJZHL4T+nFAF4GkAagHAD/lrsR5kGlIABjuuP84JPlLBZepwtAsMXfPwP4OYCBAJCQAPzrX8DixUD3uxeDIYWKEGIz285fqK+vx5AhQ/Dee+8hIiICjzzyiM00xYkTJ+KOO+7An//8Z9E82tvbra5pbGxESkoKGhoaEBsba6Pf1dWF4OBgRTJhOh+X0lGK3Oul9OTYJhWXE3YGb7XNVbvEvrO4uBjZ2dku5ekq+/btw6RJk9xum1IdPq2xsRFxcXF2f5P+jJTtlvdOabvRaDTIysryWLtWqhPoflYoY36259ujlB7zReK+SKnfOXToECZMmEDjrF17n58Vk/uLbf72DAlUf+TIbo/XfUSEeYaUAFNQENqHDkV4dTUMQ4ZAP3Mm+q9Zg7CmJqgs9IhKhbYRI1DaPbDT1dWFpKQkAOaJB3JXRfDwm5TzA0v833YAYYDVd0vRDuA0gHQAZTAPbG0G8DsAbwPAww8Dn3xCyxzIflZKLxD8rFxf5HfL9yyJj49HWloazp49iwEDBqCjowP19fVWOleuXMGAAQPs5hEeHo7Y2FirjxT8DB8lMmE6H5fSUYrc66X05NgmFZcTdgZvtc1Vu+TkITbV1hn4mXByeOqpp/CXv/zFZsmg8MMvnbWHnPujtM4Y17G8P4mJiVCr1bKuCw0NpXvx9Va7dqQT6H5WKGN+1jVctY35InGU+B21Wk1nRPOwdu0aPfWM9Vfb/PkZwriOx+s+Lc0880lAkMkE9dmzCOroQMSZM0j56COECwakAEBFCFTl5XQJ3sSJE5Geno4TJ04oHpACzDOk+IEoWPwNh/iAlAmCJXkwz4w6DeBmAJHdfzd3p9F1HB0dVD/Q/ayUXqD5WSn8avmekObmZlRUVODBBx9EdnY2QkNDUVBQgCVLlgAAysrKUF1djcmTJ7v1O5XKhOl8XErHHeVSqifHNqm4nLAzeKttrtjFT8k9ceIEkpOTqfz06dM0LPxvx03d8VwAmxR+3zPPPIP77ruPxnfs2IE5c+ZYhYuLi/GrX/0KR44cwZEjRxzmqVarUVZWhtTUVNF0OfdHaZ0xrmN5f1JTU1FWVgadTocdO3YgJiYGv/nNbwCYl7J++umnVHffvn20ztzdrsXK5oxOoPtZoYz5Wddw1Tbmi8QR+p05c+bgk08+wd///ncsXLgQt9xyC33OJCYmYt++fVbXs3btGj31jPVX2/z5GcK4jsfr/uWXzUvwuiEqFVSEgOD6IJAK5mVyXTD354UzRoQ5GwwGulUJIL4cb5OI/HvY36ScH3iyTOsCUA3gRtgu1bPd2MYMHZSy2GYk0P2slF6g+Vkp/GpQ6rnnnsPChQsxZMgQXLp0CS+//DKCg4OxbNkyxMXF4bHHHsOzzz6LhIQExMbG4te//jUmT56MW265xW1lGDRokGKZMJ2PS+m4o1xK9eTYJhWXE3YGb7XNWbv4TQr5/4DY2y9K7L8dXQBegvJBqREjRiArK4vGm5qaaJwPZ2Vloby8HO+8846sPA0GA3Q6nd1BKTn3R2mdMa4jvD+pqalITU1FU1OT1YbCsbGxNnUvloer7VqqbEp1At3PCmXMz7qGq7YxX2QfS7+TlZWFPXv2AABiYmJw2223WfmeyspKq2tZu3aNnnrG+qtt/vwMYVzH43WfmwvcfTewdSsQHIy2YcMQUl6OMIGaCuY+fAiuD/zwffx+AN4D8KyF/osvvgjA/j+o/wzgf2G9R9TY7mstB8QA6cGnZ7t1X4LtUj0xSEgI0NlpNVMq0P2slF6g+VlJiB+xdOlSMnDgQBIWFkaSk5PJ0qVLydmzZ2l6W1sb+dWvfkX69OlDIiMjyeLFi8nly5cVfUdDQwMBQBoaGkTTr127plgmTOfjUjpKkXu9lJ4c26TicsLO4K22OWuXRqMhMD8z7H4GAqTTvA2izafVwbVin927d8uybffu3Yry1Wg0du2Uc3/k1Jmj36Q/I2W7vXt37do18vbbb9M6uv322+1e5852LadscnUC3c8KZczPuoartjFfJL9vtGLFCgKALFmyhPUfJMLe6mfF5P5im789QwLVH3nle9qdd5r76KtXE41GQ44BpEvQd+8EyFGALO7+29r99+8WOle65ce69RIAUimSl6n7I3w/MAGkzuL7LP8uEvnuRTL6+Q888ADRaDT0o3vnHfP3zZsn7944qAepNF/xRVJ6geBn5foiv9pTat26dbh06RLa29tx8eJFrFu3DsOGDaPparUaK1asQF1dHVpaWrBx40bJ/aSc4ZtvvlEsE6bzcSkdd5RLqZ4c26TicsLO4K22uWqXGCEAnoH5PxXBED+StcyJfIXLJuzZJtRzBTn3R2mdMa5j7/588803qK2tpfFLly7Zva6n2nVP1H0g+VmhjPlZ13DVNuaLHMPfo/DwcADmmbSs/2A/7K1+VkzuL7b58zOEcR2P1z0hQPcp1eieGfoKrq9uAKyXxG2C9V5NTwL4Z7defwARuH4ynh7ADbBdjqeC+P5QKgBqmLf5OAGgrfvvYphnPgm/e7O4RQBAN7eOj4+nqymysrLQd+BAs4LFTKlA97NSeoHmZ6Xwq+V7DIavIDzG1RLLfaMsuQ3AP2B+GAHmwad0yF/nzWDwWA5KdVh0HBgMBqMn4QelhCchMxgMhl9y/jxQXw+EhQEZGUBJCTbBPDAkd0ncLbDersNywMkA203KTQA6YD5NT7hHVBnMg09Kt/kICwvDxo0bMbB70InjOLz77ru2m62Hhpr/WuwpxWDIQsEsLgZxPAXNcrmgXJkwnY9L6ShF7vVSenJsk4rLCTuDt9pm7/uqqqqIWq12OCV2cfcU3TaA6C2m314FyKMAUTk51Vb4UavVpLCwUJZtmzdvdtvyPTn1JqfOAnWKOiHSttu7d2fPniWzZ8+mdTRkyBC71ylp10pwV90rkfmTnxXKmJ91DVdtY75Ift/oyy+/JADI1KlTWf9BIuytflZM7i+2+dszJFD9kde9p331lbn/np1NCJG3RYfw0yqyFI90vx8strMc7y2JZXpyvvMvf/kLXZK3efNmUlVVZWXWO++8QwCQBx980NreTZvM5Zs82fG9kbjnctJ8xRdJ6QWCnw3I5XveQGtrq2KZMJ2PS+m4o1xK9eTYJhWXE3YGb7XN3vfpdDqHx7jyGxfeBPNU24Ru+bcw/1fl3zA/NRxNtX3zzTeh0WhsPuvWraPhsrIyxMfHy7LNmeNn7SGn3pTWGeM69u5Pa2ur1UyptrY2u9cpadfuKJtcnUD3s0IZ87Ou4aptzBc5hr9HljOlWP/Bfthb/ayY3F9s8+dniKcoLCzEwoULMWjQIKhUKmzevNkq/eGHH4ZKpbL68Cdw8tTV1eH+++9HbGws4uPj8dhjj7n1REGP171g6Z4zlOP66Xg8XQBKATrrSrgc73k78s0yvk+tViMzM5MuyRs6dKjNoUVqtRqAyHuByEypQPezUnqB5melYINSbqakpESxTJjOx6V03FEupXpybJOKywk7g7faZimrrq5GcXExiouLcfr0aSwGcAxAa/ffxd16yQCWA/gM5kEnyx+oCeb15HV2rbBGrVYjKirKaq03/zGZTDScmpoq27aKigqZ3+4YOfWmtM68ha6uLrz44ou48cYbERERgWHDhuG1114DIdd3ASOE4KWXXsLAgQMRERGBmTNn4syZM24rg737U1JSYjUoJezsKWnX7i6bXJ1A97NCGfOzruGqbb3pixy9BMrxMz39Eghcv0eWg1Ks/2A/7K1+VkzuL7b58zPEU7S0tGDs2LFYsWKFXZ05c+bg8uXL9MNxnFX6/fffj5MnT+K7775Dfn4+CgsL8cQTT7itjB6vezcMSkntQQXY/we1pfzkmjX4RX4+1qxZg1/96ldYs2YN8vPz8frrr9N/UvPhsrIy6PV6SdvsDkqFhZn/WmwNEeh+Vkov0PysFCGKtBkMhiTV1dWorKxEcXEx/Xv58mXk5ubSvXvsHd/K7xFljyA76b/61a/w2GOP2cgTExPdujE5Qz5//vOf8dFHH+Gzzz7D6NGjceTIETzyyCOIi4vDb37zGwDA22+/jQ8++ACfffYZbrzxRrz44ouYPXs2Tp06RR/2PQEhxGpQiu3twmD4LvxL4KOPPorc3FybdDl+5v7778fly5fx3XffwWg04pFHHsETTzyBtWvXur28bE8pBsN/mTt3LubOnSupEx4ebveQqdOnT2PHjh04fPgwxo8fDwD48MMPMW/ePLz77rtuOebeoxACaDTmsAuDUkr3oBKiVqsxdepUOtspKCgIy5YtAwA0NjYiq7tsZWVlNOzo/cGuL2d7SjGcRf7KQgYhjtdFGgwGxTJhOh+X0lGK3Oul9OTYJhWXE3YGb7FN7l5Rx2B7fCv/6QLIXoBcFNHhj4sV5nfgwAHFNjtbbwcOHHDbnlJy6k1OnXnjvgnz588njz76qJUsNzeX3H///YQQQkwmExkwYAB55513aHp9fT0JDw8nHMfJ/h4p2+3du5qaGpt66ujoEL1OLOzq71VuHq7+XoUyf/KzQlkg+Vlh2FPtUUrPW3wRALJp0yYal+NnTp06RQCQw4cPU51vvvmGqFQqotVqZX+33L7R/v37CQBy4403sv6DRNhb/ayY3F9s87dniLf5I0IIeeihh0hcXBzp168fSUtLI7/85S+JTqej6atXrybx8fFW1xiNRhIcHEw2btwo63u96j3t4kVzHz44mJDWVkKI/H1lnf2sWbOG7gWl0WjIgQMHbPaDckf/gd8fcNq0adYJ+/aZbR42TPreiOCvflZKLxD8LNtTqpcoKChQLBOm83EpHXeUS6meHNuk4nLCzuAttsnZKyoNwGiIr5s1wrx8byqAX0N6qq4lhw4dsvt99mx2tt5KS0tlz+JRq9VITExUXDa5Oq62m57k1ltvRUFBAcrLywEAx48fR1FREf0PYmVlJWpqajBz5kx6TVxcHCZNmoQDBw7Yzbe9vR2NjY1WH3vYuz9bt24FcP2/XID1um9Hv1N33PeeqPtA8rNCWSD5WWHYU+1RSs9bfZEcP3PgwAHEx8fTWQkAMHPmTAQFBeHgwYNuKwt/jyz/u876D/bD3upnxeT+Yps/P0O8hTlz5uDzzz9HQUEB/vznP2PPnj2YO3cuurrMvd2amhr079/f6pqQkBAkJCSgpqZGNE8l/SLAw3XPz5LKyAAiIgAAqampKCsro0vmPv30UwBAQkIC8ruX1/EfPq6EUaNGWW3XUVdXZ7MflDv6D/y7gJyZUoHuZ6X0As3PSsGW77mZhoYGxTJhOh+X0nFHuZTqybFNKi4n7Ay9ZVtFRQWKu9eKHzt2DEOGDLFKXwzgZZgHoi4BqAeQbef7uwCcBMA/cuVO1VWr1VCpVLCHPZudrbfw8HCUlZVhzZo1VptT/uMf/8Dq1auxcOFC/OlPfwJgXj4ofBDKKZtcHVfbTU/y/PPPo7GxESNHjkRwcDC6urrw+uuv4/777wcA2rlKSkqyui4pKcluxwswb1z/yiu2Q5N5eXmIjIxEbm4uCgoK0NDQAJ1Oh6amJuTn5wMA3Uvs2LFjAIDk5GScP38eJpMJ27Ztw+LFi7F582ZotVoMGTIEoaGhOHXqFBoaGjB//nxUVFSA4zhcuXIFd911F7766isAwOjRoxEdHU1fYGfPno2SkhJotVpERUVhwYIFWL9+PQAgPT0diYmJNN+ZM2eivLwc1dXVCA8PR25uLtavXw+TyYT6+npotVoUFhYCAKZPn47q6mqcO3cOly5dwrx587BhwwZ0dHRgyJAhqK2tpXtTTJkyBbW1tfR7li1bhrKyMjQ0NGDw4MHIyMigaa2trTh+/DhOnToFrVaLWbNmYceOHWhqasKAAQOQlZWF7du3AwAmTJgAg8GAEydOAAAWL16M3bt349q1a0hMTIRer6dluPnmmwEAR48eBQAsXLgQBw4cgE6nQ21tLQwGAzZt2gQAuOmmm6BWq3H48GFotVrcdtttKC4uRk1NDWJiYtDQ0EDzzcjIQFxcHC3/rFmzUFlZCY7jEBkZidbWVqpbX1+PCxcuoKioCFqtFtnZ2aioqEBVVRXCwsKwZMkS5OXlobOzk25kunv3bgDAtGnToNVqUVFRgaCgIJhMJmzcuBHt7e1ITU1FWloavv/+ewDAbbfdBp1Oh7KyMmi1WsyZMwf5+floaWlBcnIyMjMzsXPnTmi1WowcORLNzc04efIkAND219jYiKSkJOh0Olr+7OxsXLx4kca7urqwc+dO1NXV4erVq2htbaX3Ydy4cQgKCqI+ecGCBTh06BBqa2sRFxeHGTNmYOPGjQCAzMxMREZG0gF9o9GIPXv24NKlS4iOjsa8efPw5ZdfAgBGjhyJhIQE7N+/H1qtFhMnTkRpaSkuXLiAiIgILFq0iJaBPyrbW5DjZ5x5CQTMLyKWLyOOXgR5f205KBXI/QdH9rjj+dZTz1h/tc2f++rewn333UfDN910E8aMGYNhw4Zh9+7dmDFjhlN5KukX9e/f3+o5zfeLeB+ek5ODoqIi6PV61NbWoq2tzaZfpNFooNVqMWXKFNovio2NRX19Pc2X7xe1fPYZbgLQPno0DhYWWvWL+OVxvB8NCQlBY2MjZs2aRftF7e3tmDp1KkJDQ2GUsRwuNDQUhw4dQllZGYYMGYJhw4ZR2/h+UXl5ObRaLebNm4ctW7bgzJkziImJseoXTZ48GRcuXKD2mEwm5OfnW/WL9u/fD8Dc3kpKSmi/KHfYMIQDaGtsRNF332Hy5Mk0X6l+UZ8+fVBXV0e/07JfBJif07t27aL9ojlz5tB8xfpFp06dwqlTp2A0GpGTk0PT0tLSUFNTA47jXO4XLV26FKWlpWhoaJDsFwHmrTO2bt0qq190zz33oLy8HA0NDUhKSsL48eNp+bOzs2E0Gml80aJFOHPmDDiOQ9++fek91Gq1uPHGG53uF82dOxfnzp0Dx3FO9YvWrVuHixcvon///oiKinLYdgE2KOV2hJ07OTJhOh+X0nFHuZTqybFNKi4n7Ay9YVt1dTV++9vf2n1ICPeNGtYtNwE4AmAirs9+sjcLalP3Z82aNRg1ahReBPCiQCcxMVFyc2x7NrtSb6mpqZg0aRJddw4AOTk5WL16NSoqKqzkUsipN6V15i18+eWX+OKLL7B27VqMHj0ax44dw9NPP41BgwbhoYcecjrfP/zhD3j22WdpvLGxESkpKbj33nsRGxsLAJg3bx4A838oYmJi6L4BPP369QMADBgwAFevXkVTUxMmTpyIiIgILFu2DAUFBRg9ejQA88AK31HMyMjAjBkzUFBQgNDQUJt8hw4dSsPTpk2zShPqWubbr18/3HbbbTRt6dKltPzJyclW1w4cOBCTJk2i/31ZsmQJTWtra7Pq1KakpKC+vp7KxowZY5XOl6GgoABjx47F2LFjUVBQgJCQECxYsECy/JmZmTRsOThbUFBg07EeOXIkDd91111UT61W2+Q7fPhwFBQUIC4uDnfccYdkvpb3cOTIkTRsqVtQUICUlBRar0lJSUhKSsKtt95K87n33nvt2pqcnIyJEyfaLYOlbmpqKrKyslBQUICgoCDcfffdNroFBQW0nYwZM0Y0X2H8woULdm2LjIy0ug+AeeCTR6q8ADBs2DCa1+233y6pO2TIEBQUFCAxMRFTpkyxSuPL4Ghgxp9Q+iIYFxcHjuPoQFdbWxsdgORfBHU6HXbu3Ilp06Zh8+bN0Ol0OHnyJEJDQ6nu/Pnz0dbWRl8E+/bta/MiqGSAnM9XaoB82LBhiIiIoN9jOUAeEhKC/v37Ww2QDxs2jObLvwjy8WXLlmHLli3Q6XTYu3cvMjIyaNrkyZNBCAHHcdDpdOjs7HR6gHzy5Mk0X6kXwebmZrsD5DqdDg0NDVYD5HPmzKH58i+CfJx/EdTpdNiyZQtycnJoWlpaGtRqNbXtypUrLr0IXrt2DRzHSb4I6nQ6+jItfBHU6XQ4d+6c1Ytg3759rQbIx48fT8ufnZ2NoKAg2gYWLVqE5uZmcByHlpYWtLa20no9ffq00y+CsbGxsgbIdToddDqd6IugTqfDkSNHZL8I9iZDhw5FYmIizp49ixkzZmDAgAFWe14CQGdnJ+rq6uzuQ6WkXwSIP8suXbpEZbNmzaJ6Yv2itLQ0FBQUIDY2lvaL7OXLzxYKnzzZbr9ox44dAMyzWHmZsF909uxZ6HQ6AObVEfxzWUhpaSl+9rOfWcksn5EpKSnIzs6mfaicnBwUFBRg6tSpNrrDhw+XtG3u3Ll46623QAhBZmbm9X7RqVMAgIjgYNrnET6nxfpF9r5n+PDhNM2yXySWr2V86tSp6OjooHHLNL5v6Gq/CADGjh1rVQaxfpE92+z1iwCzL7ZnG2D+hxIfz8zMtKmrgoICjBo1CoBz/SLAPOvOnm2AdL/ovvvuQ0FBAcaPHy+/b6RgaSGDOF4X2djYqFgmTOfjUjpKkXu9lJ4c26TicsLO0Bu2aTQayTXdJwFiEtkv6lR3+uLu/aFau/8ucnJfJmfscmSbMC4WFurz+xSpVCrZ+xfIqTc5tvX2vgliDB48mPz973+3kr322mskPT2dEEJIRUUFAUCOHj1qpTNt2jTym9/8Rvb3SNlu79799a9/JQDIokWLSFJSEgFAjh8/LnqdnLp3BnfVvRKZP/lZocxf/aww3pvtUUrPW3wRBHu4yPEzzu7hYjAYSENDA/1cuHBBVt+ourqaACChoaEB238Qxn3Jz4rJ/cU2f3uGeJs/EuPChQtEpVKRLVu2EEKu73F35MgRqrNz505Fe9x51XtacrL5HWDvXrvl3bhxIwFAJk2aZFfHUVml0nqq//Djjz8SAOSGG26wTjhzxmxzTIysMjsqq1Sar/giKb1A8LNsT6legl8qo0QmTOfjUjruKJdSPTm2ScXlhJ2hp22rrq5GcXExPvzwQxQXF6O4uBinT5+2m9cjAEYBEC6qCwJwQ3fY8phWy+NbnUGpXWJypfUm1E9KSsKQIUNACIGGX0PvQrnl6LjabnqS1tZWBAVZu9fg4GCYTCYAwI033ogBAwZYrbdubGzEwYMHMXnyZLeUwd79KSoqAgCrKbUtLS2i18mpe3eWTa5OoPtZocwf/KyceG+2Ryk9b/VFcvzM5MmTUV9fb+W3f/jhB5hMJkyaNMlu3uHh4YiNjbX6SMHfI375ntFopPvbCXXE4qxdK6ennrH+aps/P0M8RXNzM44dO0a3CaisrMSxY8dQXV2N5uZm/O53v8OPP/6I8+fPo6CgADk5ORg+fDhmz54NwDwzY86cOXj88cdx6NAh7Nu3D08++STuu+8+t52857G6v3IF0GoBlQoYO9Zuefi9aJubmx0X3k5ZpdJ6qv/A7ylls5euyJ5Sge5npfQCzc9KEaJIm8EIMKqrq5Genk6d7gsvvGCj8xaA3wBQw7w8L7hbTmA9MNUF895QSggNDZXcLNybmDhxIqqqqnDo0CGbKbaBxsKFC/H6668jNTUVo0ePxtGjR/Hee+/h0UcfBQCoVCo8/fTT+L//+z+MGDGCHtU+aNAgLFq0qEfL1tg9jbZ///6IjIwEYL3ROYPB8B2am5tx9uxZGudfAhMSEpCamurQz1i+BH788ccwGo1ufwm0xPKAhc7OTrfnz2Aweo8jR45Y9f/4ZXUPPfQQPvroI/z000/47LPPUF9fj0GDBmHWrFl47bXXrPzCF198gSeffBIzZsxAUFAQlixZgg8++MDjtrhM93JZpKUBMTF21fj3i1B+MMdHsLvReViY+W9Hh4dLxPB5FM3jYjicglZaWqpYJkzn41I6SpF7vZSeHNuk4nLCztCTtjlapvdW99I84VK9n7r/dgr+LlJ4nOsPP/zgdrvE5ErrTSzfd955x7w0cfFih2WWKptcHT6tt6eoi9HY2EieeuopkpqaStRqNRk6dCh54YUXSHt7O9UxmUzkxRdfJElJSSQ8PJzMmDGDlJWVKfoeKdvt3bvZs2cTAOSDDz4gEydOJADo1HnhdXLrXinuqnslMn/ys0KZr/tZufHebI9Ser3pi3bt2iX6HHnooYcIIfL8jF6vJ8uWLSPR0dEkNjaWPPLII6SpqUlROeT2jQwGAy3j4cOHRXXE4qxdK6cn/KyY3F9s87dniDf2jTyB17ynvf66+Z1g2TLJ8q5YsYIAILNmzZLUkyqrVFpP9R8qKysJABIREWGdcPXq9fehri6HZXZUVqk0X/FFUnqB4Gfl+iI2U8rN8MtzlMiE6XxcSscd5VKqJ8c2qbicsDN4yjbA+kS9cpiX6QlnRBGYNzaXc3qeGPxxrgAklwlKldNRmqv1JpYvv9SD37DTEXLqzRnbvIGYmBi8//77eP/99+3qqFQqvPrqq3j11Vd7pAz27o9erwdgvXzPcqaUM3XvrrLJ1Ql0PyuU+ZOfdYcvUoqrtvWmL5o+fToIIXbT5fiZhIQErF27tieKR+HvURj/X3TYLvvw5/6Dt7Zrb+k/KIU9Q3yzb+QNeKzuuze6h4PDf3g/aOkbpfCW/oPl8j1CyPWTwC3tMBqB8PCA97NSeoHmZ6Vge0q5GX4dtRKZMJ2PS+m4o1xK9eTYJhWXE3YGd9nG7x3FfzZt2mQ1KMSfqHcTgIjuv2Gw3TtK1Z3uzL5RarXaarmeHNuU1pmYXGm9ieWblZWFoKAgaLVaaLVa+wV2UDa5Oq62G3/H3v25dOkSAPM+YPzyPcs9pZype3eVTa5OoPtZocyX/KwjmTt8kVJctY35Isfw90ilUtGXL3/qPziSeWu79pb+g1LYM8S+HvNH0nis7hUOSsndU8pb+g/8kktCiPVSbMtliN1L+ALdz0rpBZqflYLNlGIwAOh0Oqu9o8R4GYAJ10dy+b9iM6XaHHxfWFgYNm7ciIEDB1rJExMTkZqaqqToXkNUVBQyMzPx008/4fDhw0hOTu7tIjFEsNxTSmymFIPBYPQk4eHh6OjogNFiI1wGg8HoDaqrq1FZWYlifhCpG0tZZWUlqqur5ffPr10DKivN4ZtvllRVOlPKW+BnSgFmG+ieWMKZUgyGXBQsLWQQx+siW1paFMuE6XxcSkcpcq+X0pNjm1RcTtgZlNpWVVVF92ziP6tXr7bZk2MxQI4BpBUgpy32hRL7mAR/35TYJ0qj0ZCqqiq32aa0zsTkSuvNXr6/+MUvCADy/PPPSxdaIg+5OnxaoO6bQIi07WL3rqOjg7bJq1evkocffti8N9pbb4lep6TuldAT7TqQ/KxQ5o1+Vm5aT/kiJbhqG/NFyvpGiYmJontK+UL/QW6ar7Rrb+o/KIE9Q1jfyB5KfFFVVRVRq9UO93oFQNRqNe27O6z7ggLz+8GNNzos73PPPUcAkKeeekqWfd7Sf+jq6rLqT1qhUpntv3zZYZkdlVUqzVd8kZReIPhZub6ILd9zM/xx60pkwnQ+LqXjjnIp1ZNjm1RcTtgZlNjGn6aXnZ1t9XnsscesdIVL9Ubi+ql6lnQBuALzzCh+htRbAP4g0OP3ieI/cv/bIsc2pXUmJldab/byVbKvVE/ZxjAjdn90Oh0AICgoCAkJCXSmVIvF8j1n697VsinRCXQ/K5R5m59VktZTvkgJrtrGfJFjLO8Rv+zj4MGDdnWEcdauleNr/QclsGcI6xs5i+X90el0kiskLDEYDLQP5bDuZS7d4/MFgKtXr8oqh7f0H4KCgujsKJt7yM+W6p4pFeh+Vkov0PysFCGKtBkO4TcRViITpvNxKR13lEupnhzbpOJyws6gxDa5D6A3YB5kshy15ZfpdcE8QMX//SWk94sS7hOlBDm2Ka0zMbnSerOX78SJEwEAhw8fhslkQlCQ/XHvnrKNYUbs/ly5cgUA0K9fPwQFBdE9pSyX7zlb966WTYlOoPtZoczb/KyStJ7yRUpw1TbmixxjeY/4QSn+BU9MRxhn7Vo5vtZ/UAJ7hrC+kbO4s/3ZrXsnBqWs9mWS8d1y03qy/6BWq2E0Gm3fq0JDgfZ2uqdUoPtZKb1A87NSsEEpN5OQkKBYJkzn41I67iiXUj05tknF5YSdwdH11dXV0Ol00Ov1oqfZWZ6odxbAGZhPzBPbwLwdwGnYP1FvzZo1uHbtGm699Vbs378ft956q0v7RMm5N0rrTEyutN7s5ZuRkYHIyEg0NTWhrKwMo0aNcqrccnRcbTf+jtj9qa2tBWDeTwqA6Ebnzta9q2VTohPoflYo8wY/K0evJ54hnmqPUnrMFznG8h7xg1IRERF2dYRx1q6V42v9ByWwZwjrGzmLO9ufaN1v3Ahs2GAO/+tfwMiRQG6u3bz4AZ24uDhF3y03rSf7D+Hh4WhqakJ7e7t1gmCmVKD7WSm9QPOzkihbXchwtC6ytbVVsUyYzseldJQi93opPTm2ScXlhJ1B6npH68UXd+8B1SXYE0oYJt17Sh11sOZco9GI1l9P2CZHx16aq/Um9Z1Tp04lAMgnn3xiV8dRHnJ0+LRA3TeBEGnbxe7df/7zHwKAzJgxgxBCyNtvv00AkJ///Oei1ymte7n0RLsOJD8rlPW2n5Wr1xPPEE+1Ryk95ouU9Y3GjRtHAJAtW7bY1RHGWbtWji/2H+TCniGsb2QPJb5Io9HI2k/Kso9vmYdN3W/YYL3nLL+30oYNdsu7ZMkSAoD89a9/lWWfN/UfBg8eTACQI0eOWCckJZntPn7cYZkdlVUqzVd8kZReIPhZtqdUL7F582bFMmE6H5fScUe5lOrJsU0qLifsDFLXO1quJzxRTwXzk6cG15fqAdeX6r0iUQ5+mZ5Y/TmLnDyU1pmYXGm9SX2n3H2leso2hhmx+yNnppQrde9K2ZToBLqfFcp628/K1euJZ4in2qOUHvNFjrG8R/xMqcLCQrs6wjhr18rxxf6DXNgzxL4e80fSuLP92dT9K68AKot1FoSY46++ajcv/h1FbCWH1HfLTevJ/gN/Ap/o8j2AzpQKdD8rpRdoflYKtnyP4Tfwy/QsceTkR8F63yjAPBgVByAXwEsQX6q3Zs0aVFVVYc6cOQCAHTt24IEHHkBqair27dvnmiE+Dr+vlJzNzhmeRTgoxW903mqxpxSDwWD0JPyglJEdF85gMPyJ8nLzQJQlhABlZXYv4Qd0wvglbz4E78vtLt/r3lOKwZADG5RyM2PGjFEsE6bzcSkdd5RLqZ4c26TicsLOMGbMGHqqnqNNzPn9o9IBNAMQewR0wTwItan7I8aoUaMwbtw4jB49GoDZMfP7RonVn7PIyUNpnYnJldab1Hfyg1LHjx+HwWCg/0lRUm45Ou64v/6M2P3hB6WSkpIAQHSjc1fq3pWyKdEJdD8rlHnKz7qq1xPPEE+1Ryk95oscY3mP+BeZgQMH2tURxlm7Vo4v9h/kwp4hrG/kLO5sfzZ1n5YGnDhhPTClUgHp6XbzamtrAwAMHz5c0XfLTevJ/oPcmVKB7mel9ALNz0rBlu+5Gf54TCUyYTofl9JxR7mU6smxTSouJ+wMoaGhsk7VWwxgI4CbAKgBWJ6Hp2SZnuX3SoVdtUtuHkrrTEyutN6kvjM1NRX9+/dHZ2cnjh496lS55ei44/76M2L3x95MKcvle77argPJzwplnvKzrur1xDPEU+1RSo/5IsdY3iN+UKqrq8uujjDO2rVyfLH/IBf2DGF9I2dxZ/uzqfuXX7YdkCLELLcD/+7C/5NQ7nfLTevJ/oPcmVKB7mel9ALNz0rBBqXcjEajUSwTpvNxKR13lEupnhzbpOJyws4g93rh/lHojlcCOAGgrfvvYlxfpicGv3eUI3tctUtuHkrrTEyutN6kvlOlUsnaV6qnbGOYEbs/9vaUspwp5avtOpD8rFDmTX7W088QT7VHKT3mixxjeY/4F5mKigq7OsI4a9fK8cX+g1zYM4T1jZzFne3Ppu5zc4Gf/9wsCAoCxowxn8a3eLHdvPhBqaqqKkXfLTetJ/sPcmdKBbqfldILND8rBVu+xwgIogBkwnYUNgjAAABD7Vy3Zs0ajBo1CoB536g5c+YgMTGR7R3lgIkTJ+Lrr79m+0p5GVeuXAEgvdE5g8Fg9CRsTykGg+ENJCYmQq1WO1xpAVz/h7RDRoww/33sMWDlSofqvrynlN1BKbanFMMZlB0OyHB0rKGY3JFMmM7HpXSUIvd6KT05tknF5YSdoaGhweZY18UAOQaQVoCUAuRC9/GsJsujWgHSCZCjdo5+DQ8PJ1VVVU7b5o5jeOXkobTOxOTutm3nzp0EABk+fLjissnVsSyL1G/Sn5GyXSgzmUxErVYTAOTcuXOEEEJOnDhBAJB+/fqJXudL7TqQ/KxQ5ik/66peTzxDPNUepfSYL1LWN3rkkUcIAPLyyy/b1RHGWbtWjq/2H+TAniGsb2QPpe9pVVVVZM+ePUSj0ZC3336bvgM89thjRKPREI1GQ/bs2SP6PiBa9y+8YH7H+PWvZZV34MCBBADZu3evbPuUpPVk/2Hx4sUEAPnoo4+sE6ZONd+DvDyHZXZUVqk0X/FFUnqB4Gfl+iK2fM/NHDlyRLFMmM7HpXTcUS6lenJsk4rLCculuroaxcXFKC4uxtq1a61O2bPcOyoCQBqAwQCaYD5Zr6tbrwu2+0etWbMGGo0GGo0Gn3zyCd283BnbXK0zuXkorTMxubttGz9+PADg7NmzqKurU1Q2uTruuL/+jPD+NDc30/9mSc2U8tV2HUh+VijrKT/rqAxK9XriGeKp9iilx3yRYyzvET9TqrKy0q6OMM7atXJ8tf8gB/YMYX0jZxHen9TUVHR2diIrK8tqJlRjYyOysrKQlZWFzs5O0fcB0brnZw3ZOeRHCN8vO3v2rFPld5TWk/0HuTOlAt3PSukFmp+Vgi3fczP88hglMmE6H5fScUe5lOrJsU0qLicspLq6Gjqdzkp2+fJl5ObmosPOtFDh3lEqmP/tUQXgpe5POswn7L0C6/2jRo0ahaysLABAmeAIV6W2uVpncvNQWmdicnfblpCQgBEjRuDMmTM4dOgQ5syZo6jccnTccX/9GeH94feTCg8Ppxuc839bW1tBCIFKpfLZdh1IflYoc9XPysFbnyGeao9SeswXOcbyHvGDUvX19XZ1hHHWrpXjq/0HObBnCOsbOYtUPTc2NlKZ5buHorp3clDK8rul8Kb+g92NzgV7SgW6n5XSCzQ/KwUblHIzsbGximXCdD4upeOOcinVk2ObVFxO2JLq6mqkp6dLrvVeDPMgVBqAcgDbIb53lArAMACbuj9iCNeLu2qbq3UmNw+ldSYm7wnbJk2aJDkoJcxDbACytrYWxcXFVjJ+Ty933F9/Rnh/+EGp+Ph4KrM87cVgMCAiIsJn23Ug+VmhzBU/KxdvfYZ4qj1K6TFf5BjLe8S/yKhUKrs6wjhr18rx5f6DI9gzRHm9McxI1bPlwJDlP74V1b2CQSlCCNra2gCY/5krB2/qP8idKRXoflZKL9D8rCRK1hYyHK+L7OjoUCwTpvNxKR2lyL1eSk+ObVJxOWFLpPaJOgaQt7r3heoS2S/KMiy2d9SaNWvoWnGNRkMOHjxotV7cHba5Wmdy81BaZ2LynrDtgw8+IADI/PnzHZahqqqK7nfk6KNWq0lVVRW9PlD3TSBE2nZhHW3evJkAIBMmTKCyzs5Oel+vXr1qc50vtetA8rNCmSt+Vi7e+gzxVHuU0mO+SFnf6MUXXyQAyC9/+Uu7OsI4a9fK8eX+gyPYM8Sxbb3hj/bs2UMWLFhA90natGmTVbrJZCIvvvgiGTBgAFGr1WTGjBmkvLzcSkev15Of/exnJCYmhsTFxZFHH32UNDU1yS6DK+9pzz33HO0TzZw50+41knV///3md4+//MVhWQ0Gg00fzBHe1H94+umnCQDy/PPPWycsWWK+BytWOCyzo7JKpfmKL5LSCwQ/y/aU6iW++uorxTJhOh+X0nFHuZTqybFNKi4nbA/hPlE3AfhfmD25cJlePRzvHcUv0+M/FRUVVuvF3WGbq3UmNw+ldSYm7wnbJk6cCAA4dOgQCCGSZdDpdLJOPwHM/5HR6XRuub/+jPD+8DOlOjs7qSw4OBih3dOsW1tbba7zpXYdSH5WKHOXn5XCW58hnmqPUnrMFznG8h7xM6VKS0vt6gjjrF0rx5f7D45gzxDl9eYJWlpaMHbsWKxYsUI0/e2338YHH3yAjz/+GAcPHkRUVBRmz55t1f+7//77cfLkSXz33XfIz89HYWEhnnjiCbeVUaqeLWdKnTt3zu41knWvYKaUpd3bt293qC9WFkdpPdl/sLt8TzBTKtD9rJReoPlZKdjyPYZPINwnynIgyhIVgHAAubC/d5TsY10ZLjF27FiEhobi6tWrOH/+PG688cbeLlJAww9KxcXFWcnDw8NhNBqtNjtnMBiMnoJ/kbEcIGcwGL7P3LlzMXfuXNE0Qgjef/99/PGPf0ROTg4A4PPPP0dSUhI2b96M++67D6dPn8aOHTtw+PBhemDOhx9+iHnz5uHdd9/FoEGDerT8TU1NNMz/o04xTgxKqVQqhIT43iu53eV7gj2lGAw5BOxMqRUrVuCGG26AWq3GpEmTcOjQIbfkO3r0aMUyYTofl9JxR7mU6smxTSouFbY8TY//WJ6olwbxxiqcf9MF8yDUJgA3A4gEcHLNGryo0WDdunXQaDQoKyuzmRXVE7a5Wmdy81BaZ2LynrBNrVZj3LhxACD6+/JUmw5UhPeHH5QaNmyYldxys3Phdb7UrgPJzwplSsPO4K3PEE+1Ryk95oscY3mP+EEpyz3thDrCOGvXyvHl/oMj2DNEeb31NpWVlaipqcHMmTOpLC4uDpMmTcKBAwcAAAcOHEB8fDwdkAKAmTNnIigoCAcPHnRLOaTq2d6eUorqXsGgFL+flFqtRmZmpozSe1f/gR+UcjRTKtD9rJReoPlZKXxvWNYNrF+/Hs8++yw+/vhjTJo0Ce+//z5mz56NsrIyelS6s0RHRyuWCdP5uJSOO8qlVE+ObVJxe+HGxkZMmjTJ7vItFYAmmJftWcIvyxP+fUWgxy/Vi4+Px9ChQ0W/oydsc7XO5OahtM7E5D1l28SJE3H48GEcOnQIS5culV1uObjj/vozwvvDn4IxcOBAKzn/YsjPlPLVdh1IflYoUxp2Bm99hniqPUrpMV/kGMt7xA9KmUwmuzrCOGvXyvH1/oMU7BmivN56m5qaGgBAUlKSlTwpKYmm1dTU2LyHhYSEICEhgeoIaW9vtxoUcXSKnVQ9W17b3NxMTyVWVPf8u0y3n5OCf+9Rq9U+2X/gfbmjmVKB7mel9ALNz0oRkINS7733Hh5//HE88sgjAICPP/4Y27Ztw7///W88//zzLuV98OBBm4EPRzJhOh+X0nFHuZTqybFNKm4vXFhYaOPQ+FP10gEYAMR3y/klfPwA1J8BzIb4Mr3ets3VOnNUZjk69tI8ZdvEiROxYsUK0ZlSnmrTgYrw/vAzpa5du2alx+/3xc+U8tV2HUh+VihTGnYGb32GeKo9SukxX+QYy3vEv8jwPklMRxhn7Vo5vt5/cLbccnQC7Rniz7z55pt45RXhv6OBvLw8REZGIjc3FwUFBWhoaED//v1x6dIlOusqKysLJpMJ27ZtQ3JyMurr6+n1HR0duHbtGnbu3AmtVou5c+ciNDQUGo0GWq0WTzzxBLZt24bExETExsaivr4eBw8exKxLl9AXwOX6euzmOADA7NmzUVJSAq1Wi6ioKCxYsADr16/H+fPnAQBhYWHYuHEjkpOTMXPmTJSXl6O6uhrh4eHIzc3F+vXrYTKZMGzYMJw8eZKWf/r06aiursa5c+cQEhKCzs5OHD16FB0dHRgyZAiGDRtG850yZQpqa2tRXl4OrVaL5557Dlu2bMGZM2cwadIkZGRkUN3Jkyfju+++o6enmUwmnDp1Ck1NTRgwYACysrKwfft2nDhxAoDZl3Pdti5evBg1ly7hBgDnysvRv7mZ5nvzzTcDAI4ePQoAWLhwIQ4cOACdToc+ffpAp9NR22666Sao1WocPnwYAGA0GlFVVYWamhrExMRgzpw5NN+MjAzExcXR+KxZs3Dq1CkcPHgQI0aMQE5ODk1LS0vD8ePHcfDgQWi1Wjz44IOoqKhAVVUVwsLCsGTJEuTl5aGzsxNDhw5Famoqdu/eDQCYNm0atFotKioqEBQUhKVLl2Lz5s0YOHAgUlNTkZaWhu+//x4AcNttt0Gn06GsrAyAua9dUlKClpYWJCcnIzMzk7at3NxcNDc34+TJkwCAe+65B1u3bkVSUhKSkpIwfvx4Wv7s7GwYjUZ88803SE5OxqJFi/D111+jf//+6Nu3L2pra6lt8+fPR1BQED3FfMGCBTh06BBqa2sRFxeHGTNmYOPGjQCAzMxMREZG0ve1uXPnYvv27ejbty+io6Mxb948fPnllwCAkSNHIiEhAfv374dWq8XDDz+M0tJSXLhwAREREVi0aBHWrVuHixcvYvr06XRFhiMCblCqo6MDGo0Gf/jDH6gsKCgIM2fOpNNHLVE6As9wHX5Tc34Aip8A+zWAFNgOQLk2jMjoSfjNzjUaDYxGI91Um+F5+BdA4RGtYd3TrJ3eP4HBYDAUwPaUYjACjwEDBgAwz9q2nLF95coVutXDgAEDbAarOzs7UVdXR68X8oc//AHPPvssjTc2NiIlJQX33nsv7e/MmzePpnMch2XLllnlcezYMSxbtgwvvPCClbyjowPLli0Dx3F0KVJaWho4jkNsbCwSExNpXjTf118HAAy84QYsmzGD5jVt2jSrvJctW4Yff/wRgHkbheTkZJpXv379cNttt1Fdy5UGFRUVVuUfOHAgJk2aRMuwZMkSq++xzDclJQXZ2dl0ACknJwccx2Hq1Kk2urGxsVa2LViwwKb8bW1t+OSTTxAeHm5VphtGjAAADE1OBqKjrfIFzIMaPHfddRcNi9XN8OHDadodd9xh1zZhfOrUqbh48SLdv8wyrby8nNYrP/Bz66230nzuvfdeG1stv4N/twHM998y3TKcmpqKrKwsWv67777bJl+O4+gg8pgxY2haUlKSXdsA4KeffqLx/v3727RDjuMwatQoAEB6ejq9boZFmxSWF7De4qNv3752bQOAIUOGgOM4JCYmYsqUKVZp9913HziOw/jx42WPnaiI2LFYfsylS5eQnJyM/fv3Y/LkyVT++9//Hnv27LFZs/ynP/1JdAT+X//6l+gI/IgRI7Bv3z4A10fgDx8+jNDQUOTk5KCoqAh6vR6RkZGYNWsWNm/eDKPRiOzsbDoCbzQasWjRIhQVFaGhoQGxsbEYP348fvjhBwDmNZrR0dG0rPZG4AFzQ0xMTMTu3bsRGhrqcAQ+JiYGx44dA2A7Aj9jxgzs2rXLagR+586dCA0NpSPwJ0+eRGhoKJYtW4YtW7agoaEBN954IzIyMrBt2zaEhoZi8uTJ0Gq1qK6uBmB2vpZO6RjMp+tZ7iFlAvATzPtEKeX1119HVlYWxo4dS0e7hSPwt956K86dO2c1Ar927VqEhobSEfjCwkKEhobSEfjKykrExcUhJycHn3/+OUJDQ5GWlga1Wo2ffvoJRqMRs2fPdmkEft26dSCESI7AG41GPPDAA8jPz7cZgTcajZgyZYrNCPzXX3+N9vZ2OgK/efNmhIaG0hF4jUaD0NBQLFq0CN9++y1aW1vRt29fjB49GoWFhTAajZgwYYLDEfivvvoKTzzxBFpbW7F161Y0NzcDMI/A//jjj7h27Rqio6MxYMAAKyfviDfeeIP+dyQqKgoZGRn0txJINDY2Ii4uTtT2uro6JCQk0Hj//v1x9epVFBYW0g4IANx5553YtWsXPv/8czz44INW14mFhfk6g5w8pHTE0hzJhOli9rhqm9zre9I2OWFn8JRtUvHebI9Serxc6vfo7ziy3fLebdq0Cbm5uZgwYYLVLFqldS92jVICvV0rtUtM7i+2+dszpLf9kUqlwqZNm7Bo0SIA5pkigwYNwnPPPYff/va3AMx+o3///vj000/pRucZGRk4cuQIsrOzAQDffvst5syZg4sXL8ra6FyJLxLKEhMTodfrqfz06dMYOXKksrofPhyoqACKigCLgSUxdu3ahTvvvBMZGRnYu3evz/Uf1q5di/vvvx8zZsyg7ycAgBdeAN54A3jqKeD99wPez0rpBYKfle2LiBNUVVWRwsJCsmPHDqLRaIjBYHAmm15Bq9USAGT//v1W8t/97ndk4sSJNvoGg4E0NDTQz4ULFwgA0tDQIJr/nj17FMuE6XxcSkcpcq+X0pNjm1R8z549pKqqimg0GrJq1Sqi0WiIRqMhf/zjHwnMe5YTAKQdIETk02qhI/ejVqtJVVWVR2wThl2tM7l5KLVLTN6Tts2cOZMAIP/85z/tfodGo1FUrxqNhl7f0NAg+Zv0Z6Rst7y/nZ2dRKVSEQBk48aNVnpTpkwhAMjHH39sc50vtetA8rNCmdKwM3jLM0QY9lR7lNJjvsix7Zb3btu2bQQASUtLs6sjjLN2rRx/6D8oLZtcnUB4hvSGP2pqaiJHjx4lR48eJQDIe++9R44ePUr74W+99RaJj48nW7ZsIT/99BPJyckhN954I2lra6N5zJkzh9x8883k4MGDpKioiIwYMYIsW7ZMdhmU+CKhLCwsjAAgoaGhBAD58ccfRa+RrPvBg83vLUeOOCzr9u3bCQCSlZXlk/2HDRs2EABkypQp1gkvv2y+B//zPw7L7KisUmm+4ouk9ALBz8r1RbKX750/fx4fffQRXSNILCZYhYWFYerUqXjiiSewZMkSBAUFSeTUuyQmJiI4OJhu+stz5coV0amh4eHhdKq5HLRarWIZH66uroZOp0NRURGio6PpXwBW4cTERJvT45wpl1I9ObZJxY8fP47Zs2eL7h91DOYT9hoAhIl8N3+qnj349djCTZwt71VP2iYWlnvPpZCTh1K7xOQ9advEiRPx/fff49ChQ3jiiSdklVsO7ri//ozl/dHr9dRn8xua8wjlvtqu5fpZYVxKRyme8rNCmdKwM3jDM6Q326OUnrf7IrEZ3+np6SgtLQVg3qT2t7/9LdatW4f29nbMnj0b//jHP2w2JHYFy3vE96mES4aV1r3YNa6Uy1k9X27X3t5/UFo2uTqB9gzxFEeOHLFaYsUvq3vooYfw6aef4ve//z1aWlrwxBNPoL6+HlOmTMGOHTvoKW4A8MUXX+DJJ5/EjBkzEBQUhCVLluCDDz5wWxnt1XN7ezs9cW/w4MGorKyke0wpqnsFp+/x70MRERE+2X+wu9E5f/pe90bnge5npfQCzc9KIWtQ6je/+Q0+++wzzJ49G//3f/+HiRMnYtCgQYiIiEBdXR1KSkqwd+9evPTSS3jllVfwySefYMKECYoK4inCwsKQnZ2NgoICOqXUZDKhoKAATz75pMv5i23m5UgWFRWF6upqpKen0x82v67Zcn0zH1ar1SgrK1M0MCV3kzEpPTm2ScU7OztFB6Qs94+yPGHP3ql6a9asoetkAWDPnj1YsmSJw/vRk7aJheXecynk5KHULjF5T9rGL8sTLo21zKOyslJ2fmq1GomJibh48aLsawIRy/vL79HQt29fm6mzvB7/guir7VqOnxVLk9JRiqf8rFCmNOwM3vAM6c32KKXnjjL0NKNHj7ZaXhEScr3798wzz2Dbtm3Iy8tDXFwcnnzySeTm5tKtCNyB5T3iX2S6urrs6gjjrF0rxx/6D0rLJlcn0J4hnmL69OlWkxaEqFQqvPrqq3j11Vft6iQkJGDt2rU9UTwA9uvZct+b5ORkq0EpRXWvYFCqra2tW1Xtk/0HfjDR7ul73YN8ge5npfQCzc9KImf61vPPP090Op0cVfLNN9+QDRs2yNLtLdatW0fCw8PJp59+Sk6dOkWeeOIJEh8fT2pqahxe62gKWldXl2JZV1eXU8uXlCBWBqV6cmwTxisrK+kyvf/85z82dhwDSJdgmV4XQM4B5Gj3kr2jAFkkYXtv2SasQ2FYbrmkkJOHUrvE5D1p26VLlwgAolKpSGNjo01era2tJC0tjQAgd999N20vGo2GHD582Cqu0WjoNHD+erZkRtx2yzoqKCggAEhGRoZN3f3mN78hAMjzzz9vc50vtWs5flYsTUpHKZ7yRUKZ0rAzBLqfldLzdl/08ssvk7Fjx4qm1dfXk9DQUJKXl0dlp0+fJgDIgQMHZH+Hkr7RoUOHCACSkpJiV0cYZ+1aOf7Qf1BaNrk6gfAM8VZ/1NM4+5529uxZAoBER0eTu+++22rbCUV1HxJifp+5eNFhWVevXk0AkPnz5/tk/2Hv3r0EABkxYoR1wvvvm+9B97LLQPezUnqB4Gfl+iJZ6+zefPNN9O3bV9Yg15w5c5CbmytLt7dYunQp3n33Xbz00ksYN24cjh07hh07drhlqjq/wbgSmVi6u5H7HVJ6cmyzjFdXVyMtLQ3Z2dnIzs7Gg/+fvTMPj6LK/v4nIUsnZGEJJAgEBEkggEgCagRxAQEBB4gi4rj+dHxHUWd0dNTRcR1Fx3EbZ9zGdUQbRLYRFFAEBQmLCSBhSRA0DYEkRkgCCdnv+0d3Vao71dVV3UlId9f3efrJveeeunVO3cqpW6fOPff661scPwTnhOY46knYk5pHO/4u81JmvXxGdXOtq5VbY1z19GFULzV6W+rWq1cv+vbtixBCToqu7OPxxx+noKCAXr168cEHH5Ceni7/9u/f71RPT0+XI+La4//Gn6G8PtJy5Z49e7a4boWFhUBzpJS/3tdG7ayaPr7q1l62yJVmtOwNgt3OavH5gy3av38/Z5xxBgMGDOC3v/2tvNGItLnKhAkTZN7BgweTnJysuiOxt1BeI+nrekVFhVse17p5XxtHIMwfjMqmlyfYniEmmuFunKVIqbi4OLp06QIgR0rpHvuGBvsPDC/f88f5g95IqWC3s1p8wWZntWA4+dOpU6ec8gAUFhby8ssvs3r1aqNdnVbceeedFBYWUltby5YtW+TtNE20HsrKyqh3rCd2RQTwL7zLH2XC/yAt4VPutASwbds2/vGPfwDw5ptvyhMBE60Laflez549W7RJS2lcc02ZMGEiMHDeeefx/vvvs2rVKl5//XV++uknLrzwQk6cOEFxcTEREREtbG9iYiLFxcVu+6ytraWystLppxeSzWmQXt5MmDBh4jRDzSnl6jj3iNra5rIBp5RFB29HhFunlEtOKRMm9EB3onMJ06dPJysri9///veUl5dz3nnnER4eTllZGS+++CK33357W8jpN0hNTTVMU2tvbeg9hxafHt20jp8JPAakYs8hFa1oc5c/yhVSPiG959TL541u7sZQKrfGuOrpw6heavS21u3cc89l8eLFTk6pM888k5tvvpmmpiZ++9vfcsUVV+iW3xsZggk2m42mpiY5Mu2HH36Q25T0hIQE+vbtCzRHSvnrfW3Uzqrp46tu7WWLXGlGy94g2O2sFl9Ht0WXX365XD777LM577zz6NevH5988glRUVFe9Tlv3rwWydMBFi1aRHR0NFlZWaxdu5aKigp69uxJv379sFqtAHJUen19PVarlenTp7Nx40YqKipYvXo148aNY9myZVRUVLB7927Cw8OpqKjAarUydepUhBBYrVbi4uIYOHCg3O/QoUOJiYmR8xdOmjSJvLw8ioqK6Ny5M9OmTZO/3KamppKQkCD3O2HCBAoKCrDZbERGRpKVlcXChQtpampi4MCBJCYmyue5+OKLsdlsHDx4kLCwMFJTU1m8eDF1dXX069ePgQMHyv2OHTuW0tJSuT5nzhyWL19ORUUFGzZsIC0tTW7LzMwkOjoaq9VKRUUFDQ0NrFq1ihMnTpCUlER6ejqff/45AKNHj6ampoZdu3YBMHPmTNavX8/x48dJSEggMzNT7nfkyJEAbN++HYArrriC7Oxs+cNhTU0NS5cuBWD48OFYLBa2bdtGRUUFFRUV5ObmUlxcTGxsLJMnT5b7TUtLk7f5tlqtTJw4kT179lBRUcHy5cuZPn263JaSkkKPHj1k3UpKSjhw4ACFhYVERERw5ZVXsmjRIhoaGhgwYADJycmsX78egHHjxlFUVMSBAwcIDQ1l9uzZVFVVYbVaSU5OJiUlRc6XNmbMGMrKysjPz6eiooKmpiZWrFhBVVUVvXv3ZtiwYaxevZqKigoOHjzIyZMn2b17NwADBw5k5cqVVFZWkpiYyKhRo2T5MzIyiI2Nle+BGTNm0NDQgNVqpbGxkerqanlc9+7dS2hoqPycnTZtGlu3bqW0tJT4+HjGjx/PkiVLABg2bBjR0dHy3Khv37588803HDlyhJiYGKZMmcInn3wC2CMYu3XrxqZNm6ioqKCsrIx9+/Zx6NAhoqKimDFjBgsWLKCiooLvv//eL3LdnQ64ew4dOXIEgNjYWOLj44HmSCnd8welc0bHJlnKnFL+OH+QPjDUKp1x0CJSypw/GJ8/+IturfqeZmRtoRBCdO/eXeTl5QkhhPjPf/4jzj77bNHY2Cg++eQTMXjwYKPd+R08rYuU8t0YoRUWFrZ5Tik1GYzy6dFNWVfqNFORL0qZP+pJR5ta/qj58+e7zSd0unVzrauV9cqlBT19GNVLjd5Wukn39ltvvSUAkZiYKI/lNddcIwDRtWtXsWPHDkPyK9uCNW+CEOq6FxYWCovFosuOWCwW8cADDwhATJ8+XT5e2ZdruaPe13rsrFqbFo9RtJctcqUZLXuDYLezWnz+aItGjRolHnzwQTnf3PHjx53ak5OTxYsvvuj2+JqaGlFRUSH/Dh06pHtudPToUTnPYFNTkyqPa928r43D3+cPWjCfIebcyB28fU/76KOPBCDGjx8vXnjhBQGIa6+9VvUYt2N/+LD9/SYsTJesjzzyiADEnXfe6ZfzB5vNJgARERHh3PDxx/brMH68R5k9yarV5i+2SIsvGOxsq+aUUqK6uprY2FgA1qxZQ1ZWFqGhoZx//vlybpJghtpuNZ5orbnDjTvoPYcWnx7d3B3/GM077EloBK4AlqKeP2rIkCFu8wnplVkvnze6uRtDqdwa46qnD6N6qdHbQjdpR8mMjAxuu+02wJ7bSMoxtmDBAgCOHz/O+eefL+c40SO/XhmCEWVlZS1Dqd2gpqaGgwcPAs3L9/z1vjZqZ9X08VW39rJFrjSjZW8Q7HZWi8/fbNHJkyc5cOAAvXr1IiMjg/DwcNauXSu35+fnY7PZyMzMdNtHZGQkcXFxTj8tKK+R9HVdCOG0hM/o2KsdYxTBfl931PmDJ5jPEHNu5C3cjbNy+Z4UKSUt39M99gZ23gPnnFL+OH+QbHldXZ3zrosukVLBbme1+ILNzmrBsFPqrLPOYtmyZRw6dIjVq1czceJEwJ6zxNOkxERgw2az8dNPP5Gbm0tubi579+6V2wbT8mbrhH0pn4nAhFHnSFlZWRtLZEIN4Y7JgzJXoAkTJgIH9913H9988w0///wzmzZtYubMmXTq1Ik5c+YQHx/PLbfcwr333su6devIycnh5ptvJjMzk/PPP79N5IlULGtpsezDhAkTJk4DtBKd64ZBp5Ry+Z4/Qim3ky2XnFJmTikTRmAkjEsIIRYtWiTCw8NFaGiomDBhgkx/5plnxOTJk41253fwFIJWWlpqmFZaWtrmy/fUZDDKp6WH1pKhVBD1Lsv2BIgGx3I9X3Vsa9301NXKeuXSgp4+jOqlRm8L3VrjntajW7CGqAuhrrvR6z5v3jwByFvG++t9rcfOqrVp8RhFe9kiV5rRsjcIdjurxdfRbdHs2bNFr169REREhOjdu7eYPXu2+PHHH+X2U6dOiTvuuEN07dpVREdHi5kzZ4qjR48aOoeRuVFDQ4Nsf8rKylR5XOvmfW0c/jx/8ATzGWLOjdzB2/e0hx9+WADirrvuEl999ZUAxLBhw1SPcTv2339vf8fp00eXrLfccosAxNNPP+2X84fa2lrZljstAf/8c/t1SE/3KLMnWbXa/MUWafEFg51ts+V7V111FTabje+//95px73x48fz0ksvGe0u4FBQUGCYptbe2tB7Di0+LT3cRcX0AlbTnFG/UfHXaEJzb2TWy6dn3LTqauXWGFc9fRjVS41+OnTTA290M2EM0pdAKVLKX+9ro3ZWTR9fdWsvW+RKM1r2BsFuZ7X4OrotWrBgAUeOHKG2tpbDhw+zYMECBg4cKLdbLBb+/e9/c+zYMaqqqliyZAlJSUmtKoPyGnXq1IlOnToBzl/XjY692jG+yOUtnz/f1/46fzCfIebcyFu4G2e15XvS/Ej32PuwfM8f5w9SpD1oR0oFu53V4gs2O6sFw04pgKSkJGJjY/nyyy/l0MPRo0czePBgb7oLKKjlxfFEs9lsJCQk6A7fNOKw0ZLBKJ9e3WYCO4BTwAGgH1AA3ATsctB3OfiWKY6bP38+OTk55OTkkJ+fr5o/yqjMevn06KZVVyvrlUsLevowqpca/XTopgfe6NZRUFRUxHXXXUf37t2Jiopi+PDhfP/993K7EIJHH32UXr16ERUVxYQJE9i/f3+7y3nixAmgOaeUv97XeuysWpsWj1G0p531NE5aZW/QUe2stFzc0681bIlee2qiJVyvkdquTUbHXu0YX+Xyhs+cPwSGboH8DDHRDHfjLM2FYmNjWyzf0z32XjqlLBaLX84fQkJC5HdXp8CEiAj7X0dOqWC3s1p8wWZntRDmmcUZv/76K1dffTXr1q0jJCSE/fv3M2DAAG655Ra6du3KCy+8YLTLgEKkyhagnmiRkZEkJyeTn59PWVkZX3/9NWvWrOHLL78E4L///S8lJSVceumlgH0bd70OGy0ZjPLp0W0msISWSc1fBD5w/NxBSmxuFO2lm1ZdraxXLi3o6cOoXmr006GbHnijW0fA8ePHGTNmDJdccglffPEFPXr0YP/+/XTt2lXm+fvf/84///lPPvjgA84880z++te/MmnSJPbs2dOu+QWkbaOlSCl/va/12Fm1Ni0eo2gvW+RKM1r2Bh3RztpsNv70pz9RryNvhcVicfuxw1fdOrIt6ihQG9fq6monp5TR55DaMb7K5Q2fOX8IDN0C+RliohnuxlktUurkyZM0NDToH3sfckr56/whMjKSmpoazUipYLezWnzBZmc1YWhxoRDi+uuvF5MmTRKHDh0SMTEx4sCBA0IIIVatWiXS0tKMdud3aK812lOnTpXX6a5Zs6ZNz2UUhYWFIicnx+k3f/58AYgdIBpdckc1esgdhWNr+tbYvtJEx0Fb50mT0BHzJjzwwANi7NixbtubmppEUlKSeP7552VaeXm5iIyMFFarVfd5WiOn1MqVK9W39DVhooOjvWyMXnREW9ReMKp7UlKSfc6wY0cbS2bCRHAiWO2Rt3pPmDBBAGL+/PlOuZJ+/fVX/Z18+qn93Udj/qfEpZdeKgDx8ccfG5K1IyExMVEAYufOnc1Eg7m1TAQ22iyn1Jo1a3juuefo06ePE33QoEEUFhYa7S7gsHDhQsM01/aFCxdy8uRJuX78+HHVPnyVyyjfwoULsdlspKamkpGR4fS77rrrAEih5ZrQUFrusnfnnXfKS/XmzZtnaLmeEZn18ukZN626WtnXMdPbh1G91OinQzc98Ea3joD//e9/jBo1ilmzZtGzZ09GjhzJf/7zH7n9p59+ori4mAkTJsi0+Ph4zjvvPLKzs9tV1s2bNwP2LX0bGhr89r72xs564jGK9rJFrjSjZW/QUe1sa8BX3TqyLeoocL1G0hdU5dd1b8Y+UO/rjmpn1eiBolsgP0NMNMPdOCsjpSIiImQbVVFRoX/sfcgp5a/zB9Xley6RUsFuZ7X4gs3OasGwU6qqqoro6OgW9GPHjpkho0BTU5Nhmmt7U1OTvLYZ7Gua1frwVS6jfE1NTW4Tmks4hP3TghKNQL4LrVevXqSnp5Oenk6/fv28dkhJcvnKp2fctOpqZV/HTG8fRvVSo58O3fTAG906Ag4ePMjrr7/OoEGDWL16Nbfffjt33303H3xgX8BaXFwMQGJiotNxiYmJcpsaamtrqaysdPr5CinhMNiX8Pnrfe2NnfXEYxTtZYtcaUbL3qCj2tnWgK+6dWRb1FHgeo3UnFLejH2g3tcd1c6q0QNFt0B+hphohrtxVjqlwO4oAvV3MLdj70NOKX+dP6jZctecUsFuZ7X4gs3OasFwTqkLL7yQ//73vzz11FOAPclZU1MTf//737nkkkuMdhdwUO5oo5fm2j5w4ECnSKny8nLOOeecVpfLKJ+nPmIcvxDsjqkQ3O+yp4y00yubt3Lp4dMzblp1tbKveuntw5sx6wi66YEv9+PpRFNTE6NGjeKZZ54BYOTIkeTl5fHGG29w4403et3vvHnzeOKJlntWLlq0iOjoaLKysvjhhx8IDw/XlWcnPDycTp06ERoaSlNTE/PnzyckJITdu3cTHh5OeXk5VquVqVOn0tjYiNVqpaamhvr6ej799FMAhg4dSkxMDFu2bAFg0qRJ5OXlUVRUROfOnZk2bZr8tSQ1NZWEhAS53wkTJlBQUIDNZiMyMpKsrCwWLlxIU1MTYWFhFBUV8e233wJw8cUXY7PZOHjwoDx5XLx4MXV1dfTr14+ePXtitVoBGDt2LKWlpfJ55syZQ1VVFVarlT59+pCWlia3denShZ07d7Jnzx7Ky8tpaGhg1apVnDhxgqSkJNLT0/n8888B+4YeNTU17Nq1C4CZM2eyfv16jh8/TkJCAn369JFlGDlyJADbt28H4IorriA7O5uysjJqa2upqalh6dKlAAwfPhyLxcK2bdsoLy+noqKC3NxciouLiY2NpX///nK/aWlpxMfHy/JPnDgRAKvVSnR0NAMHDpR5w8PDOXToEBs3bqS8vJySkhIOHDhAYWEhERERXHnllSxatIiGhgYGDBhAcnIy69evB2DcuHEUFRVx4MABQkNDGThwIEuWLKG2tpbk5GRSUlL46quvABgzZgxlZWXk5+fLE/gVK1ZQVVVF7969GTZsGKtXr6a8vJyDBw9y8uRJdu/eDUD//v1ZuXIllZWVJCYmcsYZZ8jyZ2RkEB0dLdf79u3L6tWrOXbsGPX19XI+Dr1YtWoV+fn5DBs2jOjoaLZu3QrYP5J88803HDlyhJiYGKZMmcInn3wCwODBg+nWrRubNm2ivLycsrIy9u3bx6FDh4iKimLGjBnyWPTq1cuQPMEEV3stvcgoP3IZfQ6pHeOrXN7wmfOHwNDNm7m6Jx6jaI+5erDD3Ti7OqW6dOlCeXk55eXl+sd+2zZ7xYucUu1li1xpvtpZPZFSwW5ntfiCzc5qwui6wF27domePXuKyZMni4iICHHVVVeJIUOGiMTERPHjjz96vd7QX+BpXeThw4cN01zbDx8+LM444wx5PfODDz6o2ocR6D1ei+/w4cOaOTw+dOSQKgXxA4hqRy6pGSq8X3zxhWHZ2lo3TzStulrZV7309mFULzV6W+hWWFgoLBaLrlwv7nKK6dGtI+ZNSE5OFrfccosT7bXXXhNnnHGGEEKIAwcOCEBs377diWfcuHHi7rvvdttvTU2NqKiokH+HDh1S1b2wsFB88cUXLXK/5eTkONELCwvF4cOHRUxMjADEjz/+6Lf3tTd21hOPUbSXLXKlGS17g45oZ1srp5SvunVkW9ReMDo3GjVqlADEZ5995pYnWO9rI3JpwZ/nD55gPkP8c27UHvD2PS02NlYAYv/+/UIIITIyMgQgli5dqn/s//EPey6l667TJeuZZ54pALF582a/nT+ce+65LWy5sNns1yEy0uPxnmTVavMXW6TFFwx2ts1ySg0bNoyCggLGjBnD9OnTqaqqIisri+3bt5veeZC/6huhubZ/++23LSKl1PrwVS6jfFptNwDXYY+MmgmcDUQDI4FlKvy5ubmGZfNGLr18esZNq65W9lUvvX14M2btoZu0o6SUO8z19/TTT8tldznFvL0fTzfGjBlDfr7zotWCggL69esHwJlnnklSUhJr166V2ysrK9myZQuZmZlu+42MjCQuLs7pp4bk5GSOHz8uL5FV/pT05ORkvv32W3lJdlVVld/e197YWU88RtFetsiVZrTsDTqqnW0N+KpbR7ZFHQWu10htyYc3Yx9qnfoIAADzL0lEQVSo93VHtbNq9EDRLZCfISaaoXZ91q9fL6dNkeZVDQ0NgPo7mNuxl6KFdKazUS7f89f5g1rUqxwp5Vi+F+x2Vosv2OysFgwv3wN7Qt5HHnnEm0NN6IAQooVTqiMjBXjNUX4M+M4Dv8ViITY2tm2FMtEhkJyc7DZfWH5+Punp6e0sUfvgnnvu4YILLuCZZ57h6quvZuvWrbz11lu89dZbgH3Z8x//+Ef+9re/MWjQIM4880z++te/csYZZzBjxox2l7dz586APaeUCRMmTLQ1VPOQmDBhwsRpgNKhIjmlpI915eXlLfJ/anRk/+vF8j1/heryPSmnlBDQ2HgapDLhlzAUx+XAt99+K37729+KzMxMOTTrv//9r9iwYYM33fkVPIWgHTlyxDDNtf3HH390WnIwadIk1T6MQO/xWnxHjhxxWi4xE8ROEI2OZXs/gAh1WS7x6quvykuFVq1aJS8Z0tL/dOnmiaZVVyv7qpfePozqpUb3Z906aoj6Z599JoYNGyYiIyPF4MGDxVtvveXU3tTUJP7617+KxMREERkZKcaPHy/y8/MNnUNLdyNjP3ToUAGItWvX+tXYG6G5u8f90Ra50oyWvUFHtLOttXzPV906ui1qDxidG11++eUCEO+++65bnmC9r43IpQVz/hDcz5COaI8ee+yxFnY5NTVVbj916pS44447RLdu3UTnzp1FVlaWKC4uNnQOb97Tvv/+ewGI8PBw0dTUJIQQ4vrrrxeAePzxx/WP/f3325et/elPumSVUlz8/PPPfjt/mDZtmgDE22+/3UysrLRfBxCiujro7awWXzDY2TZbvrd48WImTZpEVFQUubm58leuiooKOalvMMNmsxmmubYXFBQ41cvLy1X78FUuo3zKtpnAEmA49i0chaM83eWY2NhYealQly5d5CVDWvobRWvr5o6mVVcr+6qX3j6M6qVGDyTdOgqmTZvGrl27qKmpYe/evfzud79zag8JCeHJJ5+kuLiYmpoavvrqK1JSUlrt/EbGXoqUqqqq8tuxN2pn1fTxF1vkSjNa9gYd1c62BnzVraPboo4A12ukFinlzdgH6n3dUe2sGj1QdAvkZ0hHwtChQzl69Kj827hxo9x2zz338Nlnn7Fo0SJ584msrKxWPb/a9dm/fz9gj5IKCQlxalN7B3M79gYipYQQcnRRVFSU384fNCOlAOrrg97OavEFm53VQqghbuBvf/sbb7zxBv/5z38Il9aMYs+hoswTFKw4ePCgYZpru2suGmnHotaWyxOfzWYjNzdX/q1du5a9e/cC9mV6Tdh32IPmnfYedemvqKhItW8t/Y3CG930tLnStOpqZV/10tuHUb3U6IGkmwk7jIy9FKZeXV2tPvZLlpBy9dUQFWX/u2RJm8iml6c17KzavewvtsiVZrTsDTqinU1ISHCah2jBYrGQkJBgWGY9fKYt8gzXa6TmlDL6HFI7xle5vOEz5w+BoVsgP0M6EsLCwkhKSpJ/kl2uqKjgnXfe4cUXX+TSSy8lIyOD9957j02bNrF58+ZWO7/a9ZGCAZSpRaQdjCsqKvSPvQGnVJ0j35Kd3eK38wfJKeW0FFv5XK6rC3o7q8UXbHZWC4ZzSuXn5zNu3LgWdGmL6mBHWFjLS+qJ5truupX78ePHVfvwVS4tPpvNRmpqqrPnW4E0Wno0OwGprrROnVRl0NLfKIzqprfNlaZVVyv7qpfePozqpUYPJN1M2GFk7JWRUspJWVhYmN0BdeWVdAkJASHocugQXHklLF4MXn7BbIuxN2pn1e5lf7FFrjSjZW/QEe1scnIy1157LR988AEJCQmsXLmS66+/noKCAv75z38yZswYmT8hIcFtfjtfdTNtkWe4XiM1p5TR55DaMb7K5Q2fOX8IDN0C+RnSkbB//37OOOMMLBYLmZmZzJs3j+TkZHJycqivr2fChAky7+DBg0lOTiY7O5vzzz9ftb/a2lonO1JZWal5frXrI713KTePiYmJAeyBAbrH3oBTSsonZWe3+O38QTXReWgodOpkzydVXx/0dlaLL9jsrBZChBDCyAEDBgzgrbfeYsKECcTGxrJz504GDBjAf//7X5599ln27NljSAB/Q2VlJfHx8VRUVLjd+cpXfPfdd4wdO5bIyEhqa2uJiIigpqamRUhpWyI3N5eMjAzVthuA92mOkpLQCOzCvuMe2I2su13VTJhoLbTH/2RHRWvpfvXVV7No0SJeffVV7rzzTufGESNg1y57dgAJISFw9tmwY4fX5zRhwlcIIRg9erS8m+df/vIXLr/8clatWsW7777LzTff3K7ymLZIv+633XYb//nPf3jyySf561//2g4SmjARXOiI9uiLL77g5MmTpKamcvToUZ544gmKiorIy8vjs88+4+abb26x+cG5557LJZdcwnPPPafa5+OPP84TTzzRgv72228THR1NVlYWa9eupaKigp49e3LuueeyYsUKANLT02lqauKtt97i5Zdf5oILLuCxxx7j119/ZefOnTz33HOkpaXxyCOPcPbZZxMeHk5OTg4AU6dO5fvvv6ekpIS4uDgmTpzI0QsvJHnLFooefJDa3/2OLVu2ADBp0iTy8vIoKiqic+fOTJs2jTfffJM77riDkJAQfvrpJzZt2gTAhAkTKCgowGazERkZSVZWFgsXLqSpqYmBAwfSu3dveVeziy++GJvNxsGDBwkLC2PWrFksXryYuro6+vXrx8CBA/n6668BGDt2LKWlpXJU2Jw5c1i+fDnV1dX06dOHtLQ01qxZA0BmZiYVFRXyO/2sWbNYtWoVJ06cICkpifT0dD7//HMAPv/8c+bPn8/MmTOZNWsWM2fOZP369Uz4zW8Iq6+navdu/rdzJwAjR9rfELdv3w7AFVdcQXZ2NmVlZXTt2pWLL76YpUuXAjB8+HAsFgvbtm0DYMqUKeTm5lJcXExsbCyTJ09m0aJFAKSlpREfH092djYAEydOZM+ePRw+fJjo6GimT5+O1WoFICUlhZ49e8rLRi+99FIOHDhAYWEhERERXHnllSxatIiGhgYGDBhAcnIy69evB2DcuHEUFRVx4MABQkNDmT17NkuWLKG2tpbk5GRSUlL46quvAPsKsrKyMnn10+zZs1mxYgVVVVX07t2bYcOGsXr1agDOO+88Tp48ye7duwG46qqrWLNmDZWVlSQmJjJq1ChWrlwJQEZGBvX19fzwww8AzJgxg2+//ZZjx47RvXt3xo4dy/LlywE455xzCA0NlVeyTZs2ja1bt1JaWkp8fDzjx49niWPlw7Bhw4iOjmbr1q0AXH755ezcuZMjR44QExPDlClT+OSTTwC7s7hbt27yPXvZZZexb98+Dh06RFRUFDNmzGDBggUIIRg0aBCdO3cmLS3Nsy3Sne3KgWeeeUakpaWJzZs3i9jYWLFhwwYxf/580aNHD/HPf/7TaHd+B0/Juj799FPDNNf2hx9+WAAiKSlJTgT40Ucf+SS3mgxafO4SyM4G0SAlr1OUm0JChACx9IYb5MTmhYWFbvXU0r+tddPb5krTqquVfdVLbx9G9VKj+7NuHTGZZ3tBS3cjY3/jjTcKQDz77LMtx9tiaU5YqfxZLF7L3Rb3tVE7q3Yv+4stcqUFq53duHGjAITFYhG//PKLEEKIm266SQDimWee0SWvJ5n18Jm2yPjc6M477xSAePjhh93yBOt9bUQuLZjzh+B+hviDPTp+/LiIi4sTb7/9tvjoo49EREREC57Ro0eLP//5z277qKmpERUVFfLv0KFDht/T7rjjDgGIKVOmyLS//OUvAhDp6en6x/6KK+zzo//8R1txIcRPP/0kABEdHe1WLr3ya7W19fzh3nvvFUDLMYqLs1+L/fuD3s5q8QWDndVriwzHdj344IM0NTUxfvx4qqurGTduHJGRkdx3333cddddRrsLOCjXCOulubafPHkSsC+J/OWXX2hsbPR5aaSaDHr5ZmLPITUECMceIfUmsAb4K/Yle2LQIKKffZZTNTWkp6fLx3733XeqfWvpbxS+6KbV5krTqquVfdVLbx9G9VKjB5JuJuwwMvbS8r3q6uqW452Soh4pleq6WNd32fTytIadVbuX/cUWudKMlr1BR7SzL7/8MgDXX3+9nJckKSkJgOLiYl3yepJZD59pizzD9RqpLd8z+hxSO8ZXubzhM+cPgaFbID9DOiq6dOlCSkoKP/74I5dddhl1dXWUl5fTpUsXmaekpES262qIjIyU7YkeqF2fEydOAM7L9yIcybrLy8v1j70Xy/eknEz+On9QTXQOzXml6uqC3s5q8QWbndWCoUTnjY2NbNiwgblz53Ls2DHy8vLYvHkzv/zyC0899ZShEwcq+vXrZ5jm2i69IHbt2lU2zPHx8a0ulx4+5S57ETQv2VvjoI8EooF9VivMnNnieHd6aulvFN7q5qlNSxfXulrZV7309mFULzV6IOlmwg4jY69MdN5ivB97DIRAckkJR24pHnus1WXTy9MadlbtXvYXW+RKC0Y7GxkZKYed/+EPf5Dp3jilfNXNtEWe4XqN1JxS5vzBP56xgapbID9DOipOnjzJgQMH6NWrFxkZGYSHh7N27Vq5PT8/H5vNRmZmZqudU+36SPZI6ZQ666yzAHuic91jb8ApJTlxJKeOv84fVBOdQ/MOfPX1QW9ntfiCzc5qwZBTqlOnTkycOJHjx48TERFBWloa5557rpwMzgQMHDjQMM21XXpB7NGjh+yU8nU9uJoMevgew77LnvJGacQeIaXneHd6aulvFN7q5qlNSxfXulrZV7309mFULzV6IOlmwg4jY69MdN5ivLOy7EnNHV+9GpOT7cnPZ85sddn08rSGnVW7l/3FFrnSgtHOfvXVVzQ1NXHRRRcxdOhQmS45pUpKSnTJ60lmPXymLfIM12uk5pQy5w/+8YwNVN0C+RnSUXDffffxzTff8PPPP7Np0yZmzpxJp06dmDNnDvHx8dxyyy3ce++9rFu3jpycHG6++WYyMzPdJjn3BmrXR9rFVbnRi/RcKS8vZ8CAAap9tBh7L5xSUVFRbuXSK79WW1vPH1QTnYNTpFSw21ktvmCzs1ow5JQCeyKsjr7d6OmElFDOCM21fdeuXYA9SWHXrl0B2LBhQ6vLJcFms5Gbm0tubi7vvPMOubm57N27F4AU9O2y5+487vTU0t8o9B6vxadn3Izq5qteevswqpcaPZB0M2GHkbFXRkqpjn1WFkXDhwOw45JLfHJIacmml6c17KzavewvtsiV1tHtrPSMkZ4vyp+SZrPZdNmikydP8sEHHwD2JLhKeBMp5eu4mbbIM1yvkZpTypw/+MczNlB1C+RnSEfB4cOHmTNnDqmpqVx99dV0796dzZs306NHDwBeeuklpk2bxpVXXsm4ceNISkqSI2JbC2rXR0r+rQwAkJJxNzY28sUXX6j20WLsfYiU8tf5g9vle4pIqWC3s1p8wWZntWA4p9Tf/vY37rvvPp566ikyMjLkL+wSOsoOD/4MpaGSvPdVVVVtci6bzUZqaqqTMXn44YflcingGnzXCOS3iTQmTJg4HVBGSrlDZe/ekJtLXFGR8RMsWQJPPAEFBZCSQp9LL4U5c7wV14QfwfUZo3y+SJBoFouFv//97x77/OCDD6iuriYlJYURI0Y4tXnjlDLR/lBzSpkwYSKwsWDBAs12i8XCv//9b/7973+3k0R2SPmdlO+wkZGRdOrUicbGRqqrq/V15ENOKX+FW1uuiJQyYUIXjOVhFyIkJET+hYaGyj+pHujwlEHeZrMZprm233zzzQIQd955p7jqqqsEIJ588kmf5FaTQQj3u+wBwgKixLHTVqPLbnszXHhzcnJUz+NOTy39W0s3I3x6xs2obr7qpbcPo3qp0f1ZN3/YYaatoKW7kbF/9913BY6dZ9yNfdlLLwkB4tT55+uWr7CwUBx4/nmnHTqlvweef95pp0698rtrM2pn1e5lf7FFrrSObGe1njFqv5UrV7rtz2azicbGRjFo0CABiH/9618tznf8+HG5r+rq6jbVzZVu2iL9c6PXXntNAGLmzJlueTryfe2pLZCesZ7ogaJboD1DgtUeefOedumllwpAvPPOO0583bt3F4D48ssvVftoMfZ9+9p3nNu2zaOcixcvFoAYM2aMW7n0yq/V1tbzh/fff18AYvLkyc4NI0bYr8WaNUFvZ7X4gsHO6rVFhpfvrVu3Tv59/fXX8k+qBztKS0sN01zby8rKABBCyMv3jhw50upyecKfgJ7AL0AecArYhT35+TKd53Gnp5b+RqH3eC0+PeNmVDdf9dLbh1G91OiBpJsJO4yMvTJSyu3YO3Y365SvL07S5oiQOXH//TQBIY7d+0KEoBGovP9+MjIyyMjIYNCgQaxcudJpWde3334rL+nSo5tRO6t2L/uLLXKl+Yud1YPjx4+77a+0tJQvvviC/fv3ExMTw4033tjifPHx8fKXW715pXzVzbRFnuF6jdS+rpvzB/94xgaqboH8DDHRDLXrIz13lJFSpaWlcl5f13mI27H3IaeUv84f9Oy+F+x2Vosv2OysFgw7pS666CLNX7BDWpdshObaLg3iyZMnZYN46NChVpdLC72Ahxzlu4ER2HfZG0lLh5TFYpG343Y9jzs9tfQ3Cr3Ha/HpGTejuvmql94+jOqlRg8k3UzYYWTslTml3I39roYGCAkh/Phx+OUXj+cvKyujtqaGoXjOS1dXV8e0adNkJ1VGRgbXXXcdGRkZpKamtpgQtoadVbuX/cUWudL8xc7qQWFhodv+CgoKeOWVVwD7XCQmJqbF+UJCQgwv4fNVN9MWeYbrNVJzSpnzB/94xgaqboH8DDHRDLXrc+zYMcDZKVVQUCDvfL5v3z7VPlqMvQ85pfx1/uB2+Z4ip1Sw21ktvmCzs1ownFPqhx9+UKWHhIRgsVhITk6Wb1AT3kFpqCSnVFvllHKHeUBnYBOgXAE+f/58hgwZItdXrVrFddddR3JycrvKZ8KEidaD5JTSsjONkZHQvz/89BPs2QOKjxA2m42ysjK6fP01SW+9haWwkDN79iQb9w+ZKuAa4EHsGyoUAE8AS134ampqKCsrM21MB4U09hJ++ukncnNz5bq0aUZr4PDhw3z55ZeEhoYyceJEt3xJSUkUFhaaeaU6MNxuI27ChAkT7QwpZ5Ry9z1Afgczc0q5h55IKRMmdMHQ4kIhWuSScv1FRkaKG264QZw6dcpo136B9lijPXbsWAGIRYsWyXkXsrKy2uRcavk+RjnyRglHWdkm5Y4yYaKjIFjzJgjRerpv3rxZAKJ///7ajNOm2W3Dv/8tkwoLC4XFYhEzXfLPNTn+1rvko2tU2BdlXfo7UyXP0Pz58+X8U1p5qEy0L6SxxzFuO0BUO/6qjaOen9Yz5ne/+50AxFVXXaUp1/Tp0wUgXn/99dZWWROmLdKv+2effSYAMXr06DaWzISJ4ESw2iNv9E5ISBCAyMvLc6LPnDlTAOK1117z3ElDQ/Pc5pdfPLL/4x//EIC4/vrrdcvZEfH1118LQKSlpTk3TJhgvxbz558ewUx0GLRZTqmlS5cyaNAg3nrrLXbs2MGOHTt46623SE1N5eOPP+add97h66+/5pFHHjHadUBg+fLlhmmu7UVFRcwExs6dy21/+AM7gOTvv291udzhZcffDwBPZ3XtV6uup+wN9B6vxadn3Izq5qteevswqpcaPZB0M2GHkbFXLt/TGvvKPn0AKP3mGzn304YNG6ipqeExoInmpXoh2L0MPwFZ2PPRnQJ+AB4F6h18oYq/jY42V0hL+ZQ/12V9Ru2s2r3sL7bIlXa67GxZWRk1NTXMBJYAw4Eox98l2PMPGsX69etVz1tWVsYHH3wAwB//+EdNW2R0+Z6v42baIs9wvUZqSz7M+YN/PGMDVbdAfoaYaIba9SkvLwecl+8tX75cjpTatGmTah/KvlYsXtzM4MXyPX+dP7iNlJKW79XVBb2d1eILNjurBcNOqaeffppXXnmFW265heHDhzN8+HBuueUWXnrpJV544QV++9vf8uqrr7J0qesijOCAWoinJ5pr+8XHjrEE6FlaSqf6eoYDL9ls9m3VW1EuJWYCO4BaYAxQA/zFi3616nrK3kDv8Vp8esbNqG6+6qW3D6N6qdEDSTcTdhgZe2Wic3djb7PZuOeddwDY/cknTrmfwL4Ez/WBEgL0wb4kbyTNeemewu6AckUnYAjN9qja8VfNuSEt69PSV8vOqN3L/mKLXGmn2866OiS1HIye4Dqxlc771ltvUVdXR0ZGBhdccIGmLTLqlPJ13ALFFv373/+mf//+WCwWzjvvPLZu3dpqfbteIzWnlDl/8I9nbKDqFsjPEBPNcL0+tbW1NDQ0AM5OqerqatkpVVFRodqHsq9aJY8Xy/f8df7gcflefX3Q21ktvmCzs1ow7JTatWsX/fr1a0Hv168fu3btAuCcc87h6NGjRrsOCPRxRBIYobm233vypOoEnyefbFW5JCi/ckc4aBbgPC/61arrKXsDvcdr8ekZN6O6+aqX3j6M6qVGDyTdTNhhZOyVkVK9e/dW5Y2KimJnvT2+KU2l3wLsjgklGgF3e/Xlq/ADROJd1I1RO6t2L/uLLXKlnW47q+aQdE1mrxc///yz0y6MVVVVbNmyhZdeegmAGTNmsH37dsIdE141uYw6pXwdt0CwRQsXLuTee+/lscceIzc3lxEjRjBp0qRW28nL9RqpOaXM+YN/PGMDVbdAfoaYaIbr9amsrJTLMTExTnxSovOQkBDVPpzG3rHhE506QZjnlM2ukVL+On/Qk+g82O2sFl+w2VlNGF0XeM4554gbb7xR1NbWyrS6ujpx4403inPOOUcIIcTGjRs95yZpA/Tr169Ffop58+Y58ezcuVOMHTtWREZGij59+ojnnnvO0Dk8rYssKyszTHNtP+WSc0X+WSyGZPUkgxD2nFI7VPK8NIDYriPfh2u/WnU9ZW+g93gtPj3jZlQ3X/XS24dRvdTo/qxbsOZNEEJbdyNjX1lZKf+PHzp0SJV37dq1IlphI7q72IaZKjZEgJjhJnfQTNRzTTXR0vbpsUdG7azavewvtsiVdrrsrJSTMF9l3NyNWWv9IiMjRWFhoapcS5cuFYA4//zzvdbNCF8g2KJzzz1XzJ07V643NjaKM844o8Ucyh2Mzo22b98uANGrVy+3POb8wTeY84e2s7PKeke9H/3ZHvkCo7boxx9/FIDo3LlzC76XX35ZAGLGjBmqfSj7Ovb99/bnn0s/7jB37lwBiEcffVRVLnfoaPOHAwcOqF4/ce219uvx4otBb2e1+ILBzrZZTql///vfrFixgj59+jBhwgQmTJhAnz59WLFiBa+//joABw8e5I477jDadavgySef5OjRo/LvrrvuktsqKyuZOHEi/fr1Iycnh+eff57HH3+ct956q9XOv2bNGsM0ZbmpqUk1gqAREKnefHd2LwNAQkICqej7yh0eHk6C9CXATb9adT1lb6D3eC0+PeNmVDdf9dLbh1G91OiBpJsJO4yMfVRUlFz//PPPVXk3b95MNfYcUdAyWmopsNBRbsSeQ2omsMyNfEtpmWtqJvYlxK7QE3VjxM4q6/5oi1xpp9POxjp+Ug4xsI9/J+y7KRqB69doLdTW1lJWVqYql9FIKV/Hzd9tUV1dHTk5OUyYMEGmhYaGMmHCBLKzs1vlHK7XSO3rujl/8I9nbKDqFsjPEBPNcL0+UqSUcumexCdFSv30008t2lz72vT11/aCzt30XCOl/HX+oCdSKtjtrBZfsNlZLXiOL3TBBRdcwE8//cRHH31EQUEBALNmzeLaa6+Vt9K8/vrrjXbbaoiNjZUnpK746KOPqKur49133yUiIoKhQ4eyY8cOXnzxRW677bZ2llQdVVVVPIF9uYrAPtFvwj7Br7rvPjq38vmSk5OpGzyYpn37nBxTIiQEMWgQOVarTPvuu+/MbdlNmAhAhIWFERERQV1dncct2ncDZwJDgQ0ubdLC7t8B7+k471LHT4l87Ev2nOwRsF9HfybaGULwH6AXUAqUAGdhH8MnaOmQvOOOO7jlllucaKtWrWLy5MkAHD16lGnTpvksltIpJYQw5OwKRpSVldHY2EhiYqITPTExkX379qkeU1tb62QrlEtg9MDti4wJEyZMtCNOnDgBtHRKAXJOqaqqKo/9dHLkpcJh2zzBNaeUv0KSv6GhgYaGBsKkpYtSTqm6utMkmQl/g2GnFNgdP7///e9bW5ZWwbPPPstTTz1FcnIy1157Lffcc4/8D5Kdnc24ceOIkLy3wKRJk3juuec4fvw4Xbt2bdGf0YlXZmamYZqyfPLkSZYCV4WEsDAujk4VFZQCtwMvX3ih104pNRkkHLv7bpKUkW0hIYQIQfSzz5Keni6Tu3Xr5rFfrbqesjfQe7wWn55xM6qbr3rp7cOoXmr0QNLNhB1Gx75z587U1dWRlpamynv22WcDsAeYRstIqa7AaEf5Sx/klpzyUrSN5JwPAToD7qaGRuyssu6PtsiVdrrsbMLixaRj30nxCmCrhz4uv/xyp2cK2J8r/fv3ByA3N7dV5JKcKzU1NVRWVspfu430YYQvGG3RvHnzeOKJlrFwixYtIjo6mqysLNauXUtFRQU9e/ZkxIgRWB0fudLT0+W8ozU1NVRXV7Nx40aqq6tZvXo148aNY9myZVRXV7N7927Cw8Oprq7GarUydepULBYLVquVuLg4Ro8eLfc7dOhQYmJi2LJlC2Cf3+Xl5VFUVETnzp2ZNm0aCxfa4zlTU1NJSEiQ+50wYQIFBQXYbDYiIyPJyspi4cKFNDU1MXDgQAYNGiSf5+KLL8Zms3Hw4EHCwsLIzMxk8eLF1NXV0a9fPwYOHCj3O3bsWEpLS+X6nDlzWL58OdXV1WzYsIG0tDS5LTMzk549e2K1WqmurqahoYFVq1Zx4sQJkpKSSE9PlyNZR48eTU1NjZzLdebMmaxfv57jx4+TkJBAZmam3O/IkSMB2L59OwBXXHEF2dnZlJWV0alTJ2pqauTNiYYPH47FYmHbtm1UV1dTUVFBbm4uxcXFxMbGMnnyZLnftLQ04uPj5frEiRPZs2cP1dX2XVynT58ut6WkpDBw4EBZt5KSEg4cOEBhYSERERFceeWVLFq0iIaGBgYMGEBycrK8E+e4ceMoKiriwIEDhIaGMnv2bBoaGrBarSQnJ5OSksJXX30FwJgxYygrKyM/P5/q6mqamppYsWIFVVVV9O7dm2HDhrF69Wqqq6s5ePAgJ0+eZPfu3fI1XblyJZWVlSQmJjJq1ChZ/oyMDHr16iXfAzNmzCAsLAyr1Srfn9K47t27l9DQUNmeTZs2ja1bt1JaWkp8fDzjx49niWPjomHDhhEdHS1vKjB8+HC++eYbjhw5QkxMDFOmTOGTTz4BYPDgwXTr1o1NmzZRXV1NWVkZ+/bt49ChQ0RFRTFjxgwWLFhAdXU133//vbyBiQlnuNprd5FSmZmZ/PzzzwAIIVq0ufY1QlrNYjBSSopU99f5g9KpVltb2+yUUkRKBft7mhaf+Z7WDK+cUh9++CFvvvkmBw8eJDs7m379+vHSSy8xYMAApk+f7k2XrYK7776b9PR02Wg/9NBDHD16lBdffBGwfzU988wznY6RJq/FxcWqTimjE6/OnTvL4e7p6ek0NTXx7bffEhcXx/Tp09m4cSO//vqr/FVy2bJlVFZWMnbsWMLDw1mxYgUAX8bGsv+CCxj8xRdYLRaW1dRw7scf079/f68mXqtXr5ZfOAsLCykuLiYiIoJLL72Uv/z3v/wPe5Lzxk6dOJaYyL7Zsznr/POxbdkiT7xSUlJaTLxWr15NXFycPPH6/vvviYuLkydexcXFpKWlkZaWJvNmZmaya9cu+TqlpqaSl5fn9cRL6ldr4tW1a1cSEhLkcyonXgD9+/fnp59+cpp4Sf1KEy+pLk289uzZQ1JSEtOnT5fbUlJSqKioIDs7m8rKSmbMmOHTxGvt2rVER0drTrwqKyv53e9+pzrxqqys5LLLLnOaeF111VV8++23ZGdnyxMvSf6MjAzq6+vZuHEjcXFxzJgxg40bN5KdnU337t3p0qWLrNu4ceO8nnhdfvnlbNmyhezsbM2JV2VlJVdeeaXqxKuiooKMjAxz4uUGrrvFuKNL9ejoaI4fP84vv/yiynvy5EnAHikF9kgpJS7F7kTaAxzWkGv+/PkcP36cP/3pT9SpfEGTlvU9in3J3mHgDOzRU9uABuzROAVA7Ndfg8PJoaavkuZOby0eo9B7vBafJz3UaEbL3qDF8Tt20OeFFwB4EM8OKWi+hzT79VUu7JP8uLg4KisrKS4u9uiU8nXcfNXhdCMhIYFOnTpRUlLiRC8pKXEbef7QQw9x7733yvXKykr69u3LrFmz5Je7KVOmyO07d+5kzpw5cr179+4ANDY2EhkZycSJE9m5cycjRowAYM6cOezcuZOhQ+2W5tSpU3LbgAED5LJrv1K7hHHjxjm1ufKOGjVK7qtHjx6MGTNGbps9e7Zb+Xv16sV5550nt1155ZVu++3bty9hYWFyffr06U66KnkrKioYP348O3fuJCwsrEXkoKv8w4YNk8tSxKGaDGB/tkq47LLLZNktFkuLfs866yx27txJfHw8l1xyiWa/yvqFF15IXFycqm7SNdy5cyeJiYkkJiZywQUXyP3MmjXLra69e/fm3HPPletnn322kwxK3uTkZNLT09m5cyehoaH85je/adHvzp075ftE+uCyc+dOpk6d6lbXU6dOcfHFF8ttKSkpjBgxgp07dxIdHS33O2TIEMA+t5Uwfvx4t7oBDBw4UJbhoosu0uTt168fO3fuJCEhgbFjxzq1XXPNNfK9ZTR6MVjgaq/dOaUqKirkZ4frtVSbP1QdO2YveLl8z1/nD5GKyLDa2trmObkiUqq9dNOqq5Vb49ndVvMHf9HN6JhpwkjCKyGEeO2110RCQoL429/+JiwWizhw4IAQQoj33ntPXHzxxUa784gHHnjAY8LTvXv3qh77zjvviLCwMFFTUyOEEOKyyy4Tt912mxPP7t27BSD27Nmj2kdNTY2oqKiQf4cOHdJM1vXxxx8bpinLubm5AhBnnHGG2DVjhhAg5nftKgCxbt061XPqwT//+U9hsVhUr9//ORLT5jnqFotFFBYWeqWbVl1P2RvoPV6Lry1081UvvX0Y1UuN7s+6BWsyTyG0dTc69ikpKU5JN115n376aQGIUQ57cdTFjrzloL/owV7n5OSIjz/+WBQWFoqcnByn3/z581WPGQ3ihEsidHlzhsWL3eqrZWfU7mV/sUWutHa3s5WVQgwaJASI/xlITv70009r9islTtf7k+4lNUj38/r1643p5gVfINiic889V9x5551yvbGxUfTu3bvVEp27Xjvl5gpVVVWqPOb8wTeY84e2s7PKeke9H/3ZHvkCo7bo9ddfF4CYOXNmC76DBw8KQERERKj2oexr3Z//bJ+TpKfrkvOSSy4RgLBarapyuUNHnD906tRJAKKoqKiZKF2PP/0p6O2sFl8w2Fm9tshwpNSrr77Kf/7zH2bMmMGzzz4r00eNGsV9991ntDuP+NOf/sRNN92kyaP8KqbEeeedR0NDAz///DOpqakkJSWpfgkE3H4NjIyMdPICtzWktc0xMTE0OLznXRyhkOXl5T71K3nlXSFlAPvQ8bempoaysjIzf5QJE0GE6OhowHOOl72Ov0lAN8DxbZCJjr9aaQ0tFgsJCQnk5+eTnJys28ZsA44Ag7Av4wN7zikREsKphx5inyPSMTc3l4SEBNN2tSJsNhtlZWXy9UUI+j/yCN327+dYTAw3qUQ/qcFisch5J9sDSUlJFBQU6E52Huy49957ufHGGxk1ahTnnnsuL7/8MlVVVdx8881tcj7Xr+uS/TFhwoSJ9oQUBaX2fJIiperq6qirq3NK/+KKTvX19oKXkVL+DIvFQlVVlfP80cwpZcIojPnMhLBYLOLnn38WQggRExMjR0oVFBQIi8VitLs2xfz580VoaKg4duyYEMIe5dW1a1dRV1cn8zz00EMiNTVVd5+evH319fWGacryypUrBSAyMjJEw8svCwHi26QkAYh3331Xt5yu2LJli+qX5mRF1EEfly/Q3uimVddT9gZ6j9fiawvdfNVLbx9G9VKj+7Nuwfo1UAht3Y2O/ZgxYwQgPvnkE1VepQ35yWE3xjrqKY56DYgoB23+/PktIqGkCEx3shUWFrqN6KyWIqNcftUufMpITy07o3Yv+4stcqW1lZ1VG49bHNe9HkSmgh4RESFWrFghtmzZ0mLcpbH3pIc3kVLu9Lr66qsFIF5++WWPevo6boFii1599VWRnJwsIiIixLnnnis2b96s+1ijc6OmpiZ5HI8eParKY84ffIM5f2g7O6usd9T70d/tkbcwaosefvhhAThFikp89fX1sp0qLS1t0Yeyr4YPP7TPSy69VJecI0eOFIBYtWqVqlzu0BHnD926dRPgsuroiSfs1+P3vw96O6vFFwx2Vq8tUm5wpAtnnnkmO3bsaEFftWqVvI76dCA7O5uXX36ZnTt3cvDgQT766CPuuecerrvuOjlX1LXXXktERAS33HILu3fvZuHChbzyyitOeRF8xapVqwzTlGUp50ZMTAy7HFuQxjp2DvIlUmrTpk2q9N86/q5HOw+Mq5zuaFp1PWVvoPd4Lb620M1XvfT2YVQvNXog6WbCDqNjL0UqbN68WZU3Ly9P/qLnmldqkuPvBuAU9q9mF154Ienp6U4/KYLJnWzJycnk5+eTk5PDSy+9RE5ODjk5OcyfP58C7DuRKtGIfac3JaRIT9fzuNPbH22RK80XO2uz2cjNzVX9bdiwgZqaGmYCO4Aa4C3HcQ8D2Yp+6urq6NWrF6WlpS3GXRp7vboZgbvjlTvweduHXr5AsUV33nknhYWF1NbWsmXLFjlnUmvA9RqFhIQQ7viSLn1dN+cP/vGMDVTdjNhZZd0f7kcTzXC9Pu5231u1ahVhYWFyBJXyHUxt7Hd9/7294GWklD/OHyRIOjityFFESgW7ndXiCzY7qwXDy/fuvfde5s6dS01NDUIItm7ditVqZd68ebz99ttGu2s1REZGsmDBAh5//HFqa2s588wzueeee5wcTvHx8axZs4a5c+eSkZFBQkICjz76KLfddlurySEZNyM0tXJMTAwnHbs9dG4Fp1R1dbUq/QbH3w9VW52hRzetup6yN9B7vBZfW+jmq156+zCqlxo9kHQzYYfRsZecUsrEhEreqKgo8vPzmT9/PqP27YMPPyQNeOaZZ7jj889h40aG3H03OTfe6HEJndbYScv68vPznXZqc92VD8fflttQqJ/Hnd7+aItcad7aWZvNRmpqqtul3QAzsV/3JuxLJiX86Ia/NXQzAnfHG3FK+Tpupi3yDLVrFBYWRn19veyUMucP/vGMDVTdjNhZZd0f7kcTzXC9Pu4SnUt88fHxnDhxQnVupOyrXkqGrtMpderUKQe7RVUuvfJ7amur+YMS0nJsp+V7it33gt3OavEFm53VgmGn1K233kpUVBSPPPII1dXVXHvttZxxxhm88sorXHPNNUa7azWkp6c7feF3h7PPPpsNGza0mRxquak80ZRlZaRUrIMe3WSPDzh+/LjXckk73SgxChiMPbJhsY4+9OimVddT9gZ6j9fiawvdfNVLbx9G9VKjB5JuJuwwOvbSjinKnAmuY5+cnExmZiaJZ5wBH37IUCDknHOI/9vfAOj9f/9Hb8WOSEZl0+JZSvOufGnYdwutxx7Bo6cPd3r7oy1ypXlrZ8vKyjQdUgCP0dIh1Qj8FbuzSo+sWm1KWkJCAhEREaq7MroiIiKChIQEt7u7GHFK+Tpupi3yDLVrFBkZyalTp+QXGXP+4B/P2EDVzYidVdb94X70R/z73//m+eefp7i4mBEjRvDqq6867cDoLVyvjzunlMTXpUsXDh8+7BQYoDb2XSRnlMFIqaioKFW59Mrvqa2t5g9KeIqUCnY7q8UXbHZWE4YWF7qgqqpKlJSU+NKF38HTusjy8nLDNGX5b3/7mwDErbfeKk6sXCkEiLIePQQgrr/+eq/lXr9+fYt8HK84coN85CZXhze6adX1lL2B3uO1+NpCN1/10tuHUb3U6P6sW7DmTRBCW3ejY3/rrbcKQDzyyCOqvE5jv2WLECCOgNj/n//Y8wYkJgrR2KhLbqNjr5ZraI0O+6VlZ9TuZX+xRa40b+2snhxOp3Tm8pKuu6+67dq1yykX1fr161XLu3btctunEEJ8/vnnAhAjR450K4+WXEb4TFvk3dyod+/eAhDbtm1T5THnD77BnD+0nZ1V1jvq/ejP9mjBggUiIiJCvPvuu2L37t3id7/7nejSpYuud06jtmjChAkCEB9++KEqn5Rv89NPP23Rpuzr1KOP2p+P//d/unTs0qWLAER+fr6qXO7QUeYPSrjmxxJCCPH66/brkZUV9HZWiy8Y7Gyb5ZRSIjo6mp49e/rSRcDh888/N0xTlpXL9zY6cndZHDs6lPuwfO+7775zqocB1zjKH+rsQ49uWnU9ZW+g93gtvrbQzVe99PZhVC81eiDpZsIOo2MvRUr98MMPqrzKsW9KTQWgF9Br/Xo7w2WXQai+R4qvYw9wP/YInmuBDB19uNPbH22RK62t7Gxn7NForlDL5aXnPHp027Vrl1MuqiNHjqiWd+3apXk+I5FSvo6baYs8Q+0aNTQ0AM1LPsz5g388YwNVNyN2Vln3h/vR3/Diiy/yu9/9jptvvpm0tDTeeOMNoqOjeffdd33u2/X6uIuUkvi6dOkCOL+DqY39/rw8e8HL5Xv+PH+Qlu+5i5QKdjurxRdsdlYLupbvjRw5kpCQEM+MYN8y2oTXUC7fa3D8k4c7ljL4snzPFZOAnkAx8GWr9WrChAl/hZRTSs/SqfLGRk4A/YDoxY7Fv5MmaR3S6tiJ3aF+I/AP4JJ2PXvgoyuwEpA2yZaW8Ek5vbRyeXUESE6p0tJSGhsb6dSpk4cjTLQ3wsLsU1CnPCQmTJgIatTV1ZGTk8NDDz0k00JDQ5kwYQLZ2dkt+Gtra51siORk0gt3TikJak4pNXRyBBDocUoJIWSZLTqdWB0Zqsv3FDmlTJjQA11OqRkzZsjlmpoaXnvtNdLS0sjMzATsuzXt3r2bO+64o02E9CeMHj3aME1ZlpxSsbGxDHXsfBPmMFy+REoNHTrUqX69468V+0uGHujRTauup+wN9B6vxdcWuvmql94+jOqlRg8k3UzYYXTspUgp5cTM3dj/8ssvHMDulAqRJiETJvgsm1GevwKzgYuBacAKjT7c6e2PtsiVZqRss9nk3Qn37t2rKkMisAY4G/gVeA57RFoq9gipJ4BlBuTXq4enuhFb1KNHD0JCQmhsbOTXX3/VjOr2ddxMW+QZatcoPj6eoqIi+eXMnD/4xzM2UHUzYmeVdX+4H/0JZWVlNDY2kpiY6ERPTExk3759LfjnzZvHE0+0/EyyaNEioqOjycrKYu3atVRUVNCzZ0+GDh2K1WoF7PmIpQ/+mzZt4txzz2Xjxo38+uuvhIaGcurUKUpLSwH48ccfKSgoICcnh6qqKiorK4mIiMBqtRIXF0emw3m1+8ABGn/4gZiYGLZs2QLApEmTyMvLo6ioiM6dOzNBMV/Kz8+npqaGqqoqrFYrEyZMoKCgAJvNRmRkJFlZWSxcuJCmpiYGDhzIgAEDZPkvvvhibDYbBw8eJCwsjNGjR7N48WLq6uro168fAwcOlPsdO3YspaWlFBQUUFVVBcDy5cupqqpiw4YNpKWlybyZmZl0797d6TqtWLGCEydOkJSURHp6uhwFM3r0aOodjqf169czffp01q9fT+zWrYwBGk6dkvsdOXIkANu3bwfgiiuuIDs7m7KyMrp27cqIESPkcw4fPhyLxcK2bdsASEtLY926dRQXFxMbG8vkyZPlftPS0oiPj5frEydOZM+ePVRVVbF8+XKmT58ut6WkpNC/f3+sVitVVVWUlJRw4MABCgsLiYiI4Morr2TRokU0NDQwYMAAkpOTWe9YETBu3DiKioo4cOAAoaGhzJ49m7q6OqxWK8nJyaSkpPDVV18BMGbMGMrKysjPt8eVZ2Rk8L///Y+qqip69+7NsGHDWL16NVVVVRw8eJCTJ0+ye7d9b+urrroKIQRWq5XExERGjRoly5+RkUF9fb1cnzFjBqGhoVitVrp3787w4cNl3fbu3UtoaKgcMDRt2jS2bt1KaWkp8fHxjB8/niVL7NlBhw0bRnR0NFu3bgXg8ssvx2KxYLVaiYmJYcqUKXzyyScADB48mG7durFp0yaqqqooKytj3759HDp0iKioKGbMmMGCBQuoqqri+++/l98vPEGXU+qxxx6Ty7feeit33303Tz31VAueQ4cO6TppIEMtaawnmrKsXL53yrEUJrSxkQh8c0pFR0djsVi4vKaGJ4BhDnqRCq/FYiEhIUFTZnc0rbqesjfQe7wWX1vo5qteevswqpcaPZB0M2GH0bGXIqUkx7grr3Lsy8vLnZd1WSywaRNkZfkkm1GeQ8DLwIPAIgctH4j9+mtIT9e0M2r3sr/YIlea3rKe3faSga+AQcARYCKwG3je7RGeZdVqaytbFBYWRkJCAr/88gvFxcWaTilfx820RZ6hdo1cI6XM+YN/PGMDVTcjdlZZ94f7MZDx0EMPOe20XllZSd++fZk1a5b8kW3KlClye15eHnPmzJHr0u7kV199NdHR0UycOFHmi4qKYvTo0Xz55ZeEh4eTkpJCSkoKeXl5xMXFkZqayrBh9jeqY++/D8DQjAw4+2wABgwYIJ9n3Lhxcln5Pnf++ecTHh7O+eefL/fVo0cPxowZI/PMnj3brfy9evXiPEcQQ15eHldeeaXT9VH227dvXzIyMshzLDWcPn06eXl5cruS9+TJk07XYtq0aU79KmWQ3hlHjhyJxWJh8uTJUF0N//oXYU1NTv2C3akh4bLLLnOrG8BZZ50lt11yiXNMvGu/yvqFF15I165dVXWTzpOXl0diYiKJiYlccMEFcj+zZs1yq2vv3r2dEu5nZGQ4yaDkTU5OlneRzsvL4ze/+U2LfvPy8uT75GzHfSOV3ekG9mg7qT506FBV3YYMGQJAqiPlBsD48ePd6gYwcOBAuTxo0CC3ugH069ePvLw8EhISGDt2rFPbNddcI99beqMXDeeUWrRoETfccEML+nXXXcfixXr2cAtsSHkujNCUZeXyvR8OHJDpnfFt+V5ZWRm2l19mCdh3zMKemfYfwIHnnycnJ4ecnByefvpp8vPzVbdz16ObVl1P2RvoPV6Lry1081UvvX0Y1UuNHki6mbDD6NhLXzJKSkpUeZVjH/7ZZ0xXdlJTA1deCUvU9mPTL5tRHgBHFgcsjt9wYMD998OSJZp2Ru1e9hdb5ErTW1bbbW8m9h0Mq4G9QA52h9RB4ELsDikj6Eh2Vm9eKV/HzbRFnqF2jaSv65JTypw/+MczNlB1M2JnlXV/uB/9CQkJCXTq1MlpLgL2uYm7XTzj4uKcflpQXp+mpiY5GMD1OIkvPj4ewGmnV7Wxr5Dk1bEcT8onFRoaKjvnO/r8QQvS8j2npdiKnFLBbme1+ILNzmrBsFMqKiqqRdJssCfSDoR1sacbyuV7IixMXpMbA1RVVcmTOG/Q47XXnLb2DgEICWHA/Ply8tgzzzxT1SFlwoSJwIaRnFJnffwxTa7EkBB48snWFwz7JNXd80VKeC4hFBAhIVQ/9BA//fQTubm52Gy2NpHL3zETWILdkReFfXleAmDD7pA6aKAvdxG2pxNGkp2baH+YOaVMmDDhioiICDIyMli7dq1Ma2pqYu3atXLamNaCMjI8NjZWlUdvTqlQAzmlpI9DUVFRunM2d2SoJjo3c0qZMAoDOwMKIYSYN2+esFgs4q677hIffvih+PDDD8Wdd94poqOjxbx584x253fwtK3hqVOnDNOU5bPPPtu+3fmaNXZ6t25CgBjs2HL7l19+8UruU6dOicaICNWtvYXFoimrEd206nrK3kDv8e2tm6966e3DqF5qdH/WzZ+3PfYVWrobHfvFixcLQGRmZqryKse+PizMoy3RgjdjX1hYKHJyckROTo7YtGmTWLFihYiIiBDVanKAqHbYTEBYLBZ522U1fYzI5atenvh8fYZolXNycuRrAogdIBpdrlsTiF0KHuVv/vz58hi4/goLC1tFt9a0Rddff70AxHPPPeeWx1MfevhMW+Td3Gjq1KkCEG+99ZYqjzl/8A3m/KHt7Kyy3lHvR3+2RwsWLBCRkZHi/fffF3v27BG33Xab6NKliyguLvZ4rBFbdOjQIQGIsLAw0dTUpMq3cOFCAYhx48a1aFP21TBtmv056rBnWtizZ48ARPfu3VXl0sLpmj9o4bbbbhOAePLJJ5uJa9far8fQoUFvZ7X4gsHO6rVFhiOlHnzwQT744ANycnK4++67ufvuu8nNzeW9997jwQcf9NY3FjCQkqEZoSnLypxS69evh5gYABIcXmhvl/CtX7+eo7GxCNeGkBBQrDVVk1WrzZWmVddT9gZ6j29v3XzVS28fRvVSoweSbibsMDr2asv33I19SZcu6pFSClvijWxaPNLa/PT0dCoqKujVqxd1dXUUQAtZGrHnlpJQU1PDmjVrVPv3R1vkSvPWzqbQMlw6BBioIld4eDgXXnihPAauPynCtiPZWb2RUr6Om2mLPEPtGknLYaRIKXP+4B/P2EDVzYidVdb94X70N8yePZt//OMfPProo5xzzjns2LGDVatWtUh+7g2U10fKdaMWsSTxqS3fUxv740eO2AsGIqWUEeD+Nn9QQoqUcop6VURKBbud1eILNjurBcNOKbAng/vuu+84duwYx44d47vvvuPqq6/2pquAg5rTyBNNWVYu3zt+/Dg4XhS7O/7h9SQ7t9ls5ObmOv22bNnCyspKOZcU2Je4IAQoEtlrOb306KZV11P2BnqPb2/dfNVLbx9G9VKjB5JuHRHPPvssISEh/PGPf5RpNTU1zJ07l+7duxMTE8OVV17ZIoeCLzA69tLyvVOOXAeuvMqx/zQtjVCgSZrEqdgSb2TTy6NsewL7g0y5i2gnB10J10SLaveyv9giV5q3dnY/tPhQoXTozZ8/X843+MILL+ha2t2R7Kxep5Sv4+ZPtuh0Qe0aCWG/+6QXGXP+4B/P2EDVzYidVdb94X70R9x5550UFhZSW1vLli1b5GTevkJ5faRAALX0ABKf2vI9tbFvciRMN5JTSnlef5s/KCHp4bR8T8opVV8f9HZWiy/Y7KwWdO2+J4QIiDWv7QG1nBqeaMqyMtF5QkJCc6RUVBRUVnp0SrnbXSkaKHCUjwDdsL+Q9HrzTXrMnKkpqxHdtOp6yt5A7/HtrVtr5FfR04dRvdTogaRbR8O2bdt48803nXbVALjnnntYuXIlixYtIj4+njvvvJOsrCzVnH3ewOjYS5FSyrx17sb+g6govgHe7tOHbr/8Yo+QeuwxUNgSb2TTy6NsWwpkAY9i31U0DPgWWOZyjDSxdO3DH22RK81bO3sYOBu7YyoEu0NK6dAbMmSIvHPMr7/+6lZmT7JqtbWlLdLrlPJ13PzFFp1OqF2jGMf8RnJKmfMH/3jGBqpuRuyssu4P96OJZiivj/SxSi2flMSnFimlNvaRDie70ZxSanLplV9PW1vNH5RQdUpJkVJ1dUFvZ7X4gs3OakLPmsIhQ4YIq9UqamtrNfkKCgrE73//+4DOLeVpXeSJEycM06RyfX29QJE76sSJE0JcfLEQIB5NSRGAWLhwoaZ8rjlDpN8jjnwhB0FEKOg5OTkeZTWim1ZdT9kb6D2+vXXzVS+9fRjVS43uz7p15LwJJ06cEIMGDRJffvmluOiii8Qf/vAHIYQQ5eXlIjw8XCxatEjm3bt3rwBEdna27v61dDc69tL5u3btqsqrHPv09HQBiBUrVuiWVY9senlOnDihautGOuxcLYieLm0bNmxQ7d8fbZErzV15z549cs6nDRs2iPnz58vX4wZFHqkDjhxc20HMcPN88Ec7u3btWgGItLQ0r2XWw+cPtqit4c3c6NZbbxWAePTRR1V5zPmDbzDnD21nZ5X1jno/Bqs9MmKLPv30U4FLLk1XvqNHjwpAhISEiMbGRqc2ZV8Nw4bZn6lr1niUceXKlQIQo0aNUpVLC+01fzByX//tb38TgLj11lubibt22a9Hz55Bb2e1+ILBzrZqTqlXX32Vf/zjHyQlJTF79myef/55PvroIxYvXszbb7/Nvffey7nnnss555xDXFwct99+uzHPWADhs88+M0yTylVVVTItJibGTnd8SQxzfEnUs3zPFT2BPzvKDwFae2upyarV5krTquspewO9x7e3br7qpbcPo3qp0QNJt46EuXPnMnXqVCZMmOBEz8nJob6+3ok+ePBgkpOTyc7ObpVzGx17KVLqhCOc3ZVXOfa//PILAD169GhV2fTyuGvbDmQDEcCtLm3ffvutah/+aItcaWplm83GiBEjyMjIICMjgwsvvJDrrrsOgJHAGw7+x7HnkIp20Jd5IbNevva2s3ojpXzVzR9s0emG2jUqKioCmiOlzPmDfzxjA1U3I3ZWWfeH+9FEM5TXR4qUqpaW3qnwSVHWQgh5fqQ29lVSNLGXy/c60vxBq6wGzeV7dXVBb2e1+ILNzmohTA/T+PHj+f7779m4cSMLFy7ko48+orCwkFOnTpGQkMDIkSO54YYb+O1vf0vXrl0NCWCiGdLSvU6dOslJ4ySnVLxj62RvnFKPA7HAVmChz1KaMGFCDxYsWEBubi7btm1r0VZcXExERESLJWWJiYmaL9C1tbVOiSRd8yT5AimnVENDAw0NDfJ27WooKysDvHdKtSVeAzKB/wc8h3OuqWBCWVmZ01JMCd2xL3mMAj4DnmxnudoTklPq2LFj1NbWNj9XTXQISDbGKTmuCRMmTLQTlInO3cFisRAWFkZDQwMVFRXycj5XhErPWy+X7/kzPCU6N2FCD3Q5pSSMHTuWsWPHtpUsAYGRI0capkllyQPfuXNnQkJC7PS1awHo5VjvbDRp2GDgd47yfTr41WTVanOladX1lL2B3uPbWzdf9dLbh1G91OiBpFtHwKFDh/jDH/7Al19+qZpA01vMmzePJ55wTeENixYtIjo6mqysLNauXUtFRQWdOnXixIkTrFixAoD09HSampo4efIkVquV6dOns3HjRk6ePMnq1asZPXq03F9OTg5du3aVeadOnUpYWBhWq5Xq6mr5K9+6des4ceIEMTExbNmyBYBJkyaRl5dHUVERnTt3Ztq0aSxcaHeHp6amkpCQIPc7YcIECgoKsNlsREZGkpWVxcKFC2lqaiImJoaioiI5wuniiy/GZrNx8OBB1a+a8rUAXgSSgWnAcge9vr4eq9VKnz59SEtLk2Xo3bs3O3fuZM+ePZw8eZKGhgZWrVrFiRMnSEpKIj09nc8//xyA0aNHU1NTw65duwCYOXMm69ev5/jx4yQkJDBkyBCsVivQfH9u374dgCuuuILs7GzKysoQQlBTU8PSpUsBGD58OBaLhW3btnHy5EkqKirIzc2luLiY2NhYzj77bLnftLQ04uPjZfknTpxIZGQkVquV6OhoRo4cidVq5aeffpKvyUzgMSAVqMf+kWI/cD0tE51LiIyM5PDhw+Tn5xMaGsrIkSNZsmQJtbW1JCcnk5KSwldffQXAmDFjKCsrIz8/n5MnT9LU1MSKFSuoqqqid+/eDBs2jNWrV3Py5EkOHjzIyZMn2b17t6z7ypUrqaysJDExkdTUVFnXjIwMEhISnHRfvXo1x44dIyQkhOrqavk6nHPOOYSGhpKbmwvAtGnTyM3NpVOnTjQ2NnLo0CHZQTxs2DCio6PZunUrACkpKXzzzTccOXKEmJgYpkyZwieffALYIxi7devGpk2bOHnyJGVlZezbt49Dhw4RFRXFjBkzqKqqwmq10qtXL7f3ZbBDzV737dsXaH6RMecP/vGMDVTd9M7VXev+cD+aaIby+khOKckWKZGYmCg/Tzp37kxFRYX8DI+IiCA3N5eIiAhsNhvJycnIMz0dHz/Udt9rL1vkSmsNO+spUirY7awWX7DZWS0YckqZaFtIkVJSxAIgR0rFhdpXWuqNlJJeQoZhT1y7BdjQWoKaMGFCEzk5OZSWlspJogEaGxv59ttv+de//sXq1aupq6ujvLzcKVqqpKREju5Qw0MPPcS9994r1ysrK+nbty+zZs0iLi4OgClTpgCwb98+YmNjmTNnjlMfISEhDB48GICJEyeyb98+Bg8eLG9oIYSgX79+JCUl0dTUJPMOHz6cwYMHs9bhKI+MjOTmm2+WN8EYMGCAfI5x48Y5ndNVhgsvvFDut0ePHowZM0Zumz17tix/7969nY7t1asX5513Hvv27XPrmKoF3gEeBO6g2Sk1bNgwrrzyyhYySPqPGDGCffv2ERYWxrRp0zTlHzZsmFyePHmyXN63b18LXklPgMsuu0zms1gsLXjPOuss9u3bR3x8PJdccolmv8prmJaWJpcl3tzcXB5++GFmAkuAJuy7FEpT4H8DFYr+5s+fz5AhQ+R6QkKC0257+/btIysry+11SU5OJj09nX379hEaGspvfvObFrz79u2T7xMp8f++ffuYOnWqW12bmpqcrtukSZPkcnR0tNN1ALvjU8KECRPo1asXhw8f5vjx4y2u4cCBA+W+MjIy3OoG0K9fP/bt20dCQkKLj3Njx45l8ODBrRq5GAxQ/bpuwoQJE+0EKRhA2nRBgs1m4/LLL6euzjnhyTXXXNOiD4vFQn5+Pr0lO2YgUqo1P1qeTmgmOq+vt2evNGHCA3TllDKhH9JXcSM0qaxcvifTHXleQhz5pvQ4paSXkOHYHVICOM9B90Z+rTZXmlZdT9kb6D2+vXXzVS+9fRjVS40eSLp1BIwfP55du3axY8cO+Tdq1Ch++9vfyuXw8HDZwQOQn5+PzWYjMzPTbb+RkZHExcU5/dzB6NiHhITIDnHJ4aM29ps3bwbsziRvd2Vt67F/E7sTZiIwyEHLz89X7cMfbZErTUuHx2h2SEloAm5y6U/aaU/6KR1SnmTWy3c67KyevFK+6taRbVFHgdo1Ki0tBZqdUub8wT+esYGqmxE7q6z7w/1oohnK6yN9SFDm0gT78ndXh5Q71NTU2FMaSA4ZL3NKdbT5g5H7WvUDgxQpBez4/nvN4/Wcx5/trBZfsNlZLZiRUh0IklPKKe+Fw3vf2fHyp2f5nutLiLTV96PYc4mYMGGibREbG+sUTQP28O/u3bvL9FtuuYV7772Xbt26ERcXx1133UVmZibnn3/+6RBZlrGqqspp0wVXSJO4051PKiEhAYvF4vxlzoGfgZXAFcDtwF8sFtUtn4MBKbT8+hSKfSlfMEBvsnMT7Y9wx0uLGSllwoSJ0wFpPuNzxJIQdArinFKakVJAaGOwZvc0YQj6NwY0IYT2toaFhYViw4YN8hbcyq24lfXCwkLV7Rs//vhjAYhx48Y10195RQgQheefLwBx3nnnacqXk5MjqhVbfSt/1S5bpOOy5bdSFjW0xXacns6pB8G+1Wiwb+nsL9seX3TRReIPf/iDXD916pS44447RNeuXUV0dLSYOXOmOHr0qKE+tXT3Zuz79+8vALF58+YWbVL5zTffFIC47LLLDMmqRza9PFJbYWGhqp39+OOPxWSH3avr3FnY9u71u+28jdD27NnT4jrMnz9fAGIPiCaXZ0EDiO0engWnS7fWtkW33nqrAMSTTz7plcx6+PzNFrUFjGzDLuHVV18VgLjiiitUecz5g28w5w+ta2f97RkSrPbIiC2aOnWqAMS//vUvJ56cnJwW70tav9xNm5qfsTqu98MPPywAcffdd6vKpYW2vK+9tbNr1qwRgBgxYkQzsbZWviYnDh3SPF7PefzZzmrxBYOd1WuLzOV7rQSbzUZqaioXXnihvAW3cituZT01NZXly5fLx0pbwEuRUtKOSdnZ2XKkVH2FPfuHnuV7BdgjpZRoBPJVeF2htR29WpsrTauup+wN9B7f3rr5qpfePozqpUYPJN06KtavX8/LL78s1y0WC//+9785duwYVVVVLFmyRDOflFF4M/adHcuFpUgptbHPyckBfIuUaq2xl/IYpaenc+rUKbk8ZswYjo0aRTEQXlVFn2HDqBk8mIP/+Ae5ubnk5uby3//+F5vN5pe2SEmz2WyMGDGixfPmuuuuozsQjz1aVjiOa8S+rLtlunzvZdbLdzrsrJ5IKV918zdbdDqgdo0OHToENEdKmfMH/3jGBqpunmju9PSH+9FEM5TXR4qU8jWSNlS51M/L5XunY/7gTVkN0gof1UTnwPdBbme1+ILNzmrBK6fUgQMHeOSRR5gzZ46cE+CLL76Qd9MJRpSVlakuI1FDTU0NhYWFTsdCs1NKytNSVlYmO6XCHX17Wr6XkJDAvPBwp4F19xJisVhISEhooYc7qLW50rTqesreQO/x7a2br3rp7cOoXmr0QNLNhB3ejL1rTim1sZcmb744pdpi7CWa9IGg9/ffI7n4Qhob6VZUxID77+dvDufN3LlzSU1NZd++fYbk8lZmvXx6bJGSVlZWJn/IUMIC/A84AygFdgOngF3Y8wsu0yWpPpn18p0OO6vHKeWrbqYt8gy1ayTNmSSnlDl/8I9nbKDq5onmTk9/uB9NNEN5fSSnlNoz1AhCpCXIISFOzhh3UEt0fjrmD96U1aC6fC8kBMLsWYLKHb4CTwhUO6vFF2x2VguGnVLffPMNw4cPZ8uWLSxZskR2pOzcuZPHHnvMaHdBC2WC4q5duwLNifbi4+Ob6Y7IhWjHzgXl5eUIjV0MkpOTef6HH2h0GIJa4GT//nx+6638NSeHHMUvPz+/RTJbSRY1qLW50rTqesreQO/x7a2br3rp7cOoXmr0QNLNhB3ejL3klJIipdTGXnqB9MUp1RZjL9GkDwRSbj0JoTTn1pNQU1PjlKzdX2yRO9qzQDV2vU8CFwDHgYuxb3wRDYzEuEPK3fmM8p0OO6vHKeWrbqYt8gy1ayTtPCrZFHP+4B/P2EDVzRPNnZ7+cD+aaIby+kjvXYmJiT71KUdKWSx2Z4wHqOWUOl3zh9aws253UnXklerqsruhOwSqndXiCzY7qwlDiwuFEOeff7544YUXhBBCxMTEiAMHDgghhNiyZYvo3bu30e78Du7WRRpdf7xp0yb52FOnTgkhhLj//vsFIOedOXXqlBDr1wsBon7QIPnY6upqbSEXLxYCxAEQaUOGOJ3DE7T41NpcaVp1PWVv0FF181UvvX0Y1UuN7s+6BWveBCG0dfdm7KdMmSIA8e6777Zok8rTpk0TgHjjjTe8lrst7muJJtlivbn11Gyxt2gvW6SkSfo+69DPNX/URzqeRxaLRRQWFnYI3VrbFm3cuFEAYuDAgV7JrIfPtEWedVe7dsuXLxeAOOecc1R5zPmDbzDnD61nZ9Xa1fTpSPdjsNojI7YoISFBNaei0Xe6vE8/tT9zu3bVJeO1114rAPHSSy+pyqWFtryvvbWz+/btE4Do0qWLc0N8vBAgan74QfN4PefxZzurxRcMdrbNckrt2rWLmTNntqD37NnTDBk1gHXr1snlpUvte+JJUWdSnoWlS5fKkVK1v/5KaKh9uDzuwLdkif0PcMVvfuN0Dk/Q4lNrc6Vp1fWUvUFH1c1XvfT2YVQvNXog6WbCDm/G3nX5ntrYFxQUAL5FSrXF2LvS9ObWU7PF3qI9bJHNZiM3N5cXX3yR3Nxc9u7dC8Dd2GfHym+0Apjh0tf8+fOdImbdRc0akVkv3+mws3oipXzVzbRFnqF2jbZu3Qo0f1035w/+8YwNVN080dzp6Q/3owk7bDab/OzMzc2V8/QuWLBApuXm5nL06FFD/TpFSumAWk6p9rJFrrTWsLOSHu4ipb5atUrzeD3n8Wc7q8UXbHZWC2GGuLGHWx89epQzzzzTib59+3Z69+5ttDsTCkhhpE5bkzpCHsNqa+nSpQvHjh2jvLycM844Q72TujrEihWEAEuB5x1OKRMmTJjwBNdE52qQcjD44pRqDzyB3TEv5dQD7xJ8dyRI+bKk0P+HH35YbrPg7JDCUXfdcHrIkCGkp6e3pZgdCtKyjKqqKk6ePEmMzmUEgYT+/fs75bEEmDdvHg8++KBc/+GHH5g7dy7btm2jR48e3HXXXfz5z39uU7nCHblXWrzImDBhwkQrQ/n8VD47AZ5//nmef/55uR7hcKboRYhBp5Ta8j1/hjLRuRCiOS2Cw8Z3amg4XaKZ8CMYjpS65ppreOCBByguLiYkJISmpia+++477rvvPm644Ya2kDEgcdZZZ8nl4cOHA82RUgMHDmymO14Sw2tr5bWZmjvwrVtHSEUFR4EfExI477zznM7hCVp8am2uNK26nrI36Ki6+aqX3j6M6qVGDyTdTNjhzdi7Rkqpjb3ksPLFKdUWY+9KWwpkYU/sLaUw/ZmW+ZTUbLG3aGtbpLWhRi3NO+xJENiTm7cG/NXOxsTEyM5Wd9FSvurmD7boySef5OjRo/LvrrvuktsqKyuZOHEi/fr1Iycnh+eff57HH3+ct956q9XOr3aNBg8eDDQ7pcz5g388YwNVN080d3r6w/1owtiGVHV1dbLT3BMsFgtdJWeUQaeUMgihvWyRK6017KykhxDCOWm8w7k3qH9/zeP1nMef7awWX7DZWS0YjpR65plnmDt3Ln379qWxsZG0tDQaGxu59tpreeSRR4x2F7SQvMrQ/M8sOaWkROcWi0WOlAptaCAhLo4DeFi+51i6twyYesUVdOrUyekcnqDFp9bmStOq6yl7g46qm6966e3DqF5q9EDSzYQd3oy9a6SU69jX19fLEZ2uO3e2hmx6efT8v4LdMbUU6AIcAfoD5wFbFDxqtthbtJctUsNBII3mJXzS33/qksgz/NnOJiUlceDAAYqLi52ckHpk1sPnD7YoNjZWXsroio8++oi6ujreffddIiIiGDp0KDt27ODFF1/ktttua5Xzq12j2NhYoNkpZc4f/OMZG6i6eaK509Mf7kcTxvHaa6/JUcWHDh3ijjvu4MiRI7z99tskJCTQt29fDh06xMiRI0ncs8d+kA9OqfacPxi1rZ5kU86jamtrmyPNHI69SB3J3z2dx5/trBZfsNlZLRiOlIqIiOA///kPBw8eZMWKFcyfP599+/bx4Ycfyg4QE56xe/duubxt2zagefnekSNHmumOl0SAJMcEzm2kVGMjYtkywL5s5TeKpXvSOTxBi0+tzZWmVddT9gYdVTdf9dLbh1G91OiBpJsJO/SO/RdffCHnUaioqACgsLCQ3NxcPvnkE7ntiy++4NdffwUgNDSUbt26tbpsenn0/L8qUQ584ii7vmKr2WJv0V62yBXjsDukmmiOmDqFfTe+h3RJ5Bn+bGc95ZXyVTd/sEXPPvss3bt3Z+TIkTz//PM0KJZTZGdnM27cOKclK5MmTSI/P9/tR7Da2loqKyudflpQu0b79u2T+1LjMecPvsGcP/huZ7XuNTV9Our9aMI4SktLSU9PJz09nerqagYNGgTYl9xVV1fL9OTkZJAisHS+hKvllGrP+YNR2+pJNqVTyikazfFMyc/L0zxez3n82c5q8QWbndWC4UgpCX379pWjpXbt2sXx48fNbUh9hBQp5eRZjIiwe5rr60lyRE25dUpt2kRIaSnHgeyICJZddlnbCmzChAm/hs1m409/+pNzuDWwaNEiFi1aBDTnLQoPDyc1NRWA7t27yxsv+AveBG4ErgHuAbRfof0DM4HHAClAeg1w+ekTp8NCT7LzQMbdd99Neno63bp1Y9OmTTz00EMcPXqUF198EbBfF9c8oVIuruLiYtW53bx583jiiZYZ2hYtWkR0dDRZWVmsXbuWiooKevbsSUNDA1arFYD09HSamppkJ3dtbS1r1qyhqKiI1atXM27cOJYtW0ZRURG7d+8mPDycoqIirFYrU6dOpaysDKvVSlxcHE1NTXK/Q4cOJSYmhi1b7LGQkyZNIi8vj6KiIjp37sy0adNYuHAhAKmpqSQkJMj9TpgwgYKCAmw2G5GRkWRlZbFw4UKampoYOHAgNTU18nkuvvhibDYbBw8eJCzMPo1evHgxdXV19OvXj4EDB8r9jh07ltLSUrk+Z84cli9fTlFRERs2bCAtLU1uy8zMpLKyEqvVSlFREQ0NDaxatYoTJ06QlJREeno6n3/+OQCjR4+mpqaGXbt2ATBz5kzWr1/P8ePHSUhIIDMzU+535MiRgD33K8AVV1xBdnY2ZWVllJaWUlNTIyekHT58OBaLhW3btlFUVERFRQW5ubkUFxcTGxvL5MmT5X7T0tKIj4+X6xMnTmTPnj0UFRWxfPlypk+fLrelpKRw6tQpWbeSkhIOHDhAYWEhERERXHnllSxatIiGhgYGDBhAcnIy69evB2DcuHEUFRVx4MABQkNDmT17NkePHsVqtZKcnExKSgpfffUVAGPGjKGsrIz8/HyKiopoampixYoVVFVV0bt3b4YNG8bq1aspKiri4MGDnDx5Uv4w0dTUxMqVK6msrCQxMZFRo0bJ8mdkZHDixAn5HpgxYwalpaVYrVZ++eUXqqur5XHdu3cvoaGh5ObmAjBt2jS2bt1KaWkp8fHxjB8/niWOVQ3Dhg0jOjpaTvpfX1/PN998w5EjR4iJiWHKlCl88on9k8rgwYPl/+GioiLKysrYt28fhw4dIioqihkzZrBgwQKKior4/vvv5cjnjoSOmt9OD/r27QvYo6ZabAxi0CkVaDmlQkNDiYiIoK6uzjlHoCNSKtTMKWVCD4xsDSiEEH/4wx/E22+/LYQQoqGhQYwZM0aEhISIzp07i3Xr1hntzu/gblvDwsJCYbFYBDq33961a5d8bHl5uRBCiH79+glArF271okuunYVAsQjV10lAPHUU0+pC/fHPwoB4gMQU6ZMcWqS+/IALT61NleaVl1P2Rt0VN181UtvH0b1UqP7s27Buu2xENq66xl7o9sev/766wIQQ4YM8UnutrivJZqWTrtACBC3K2jr1683JJe3Muvl06vbTIcujY6/TY6/Mz08ewoLCzukbnrq3tqiuXPnCkA8/PDDhmXWw3c6bNEDDzzg8f917969qse+8847IiwsTNTU1AghhLjsssvEbbfd5sSze/duAYg9e/ao9lFTUyMqKirk36FDhzR1V7t2BQUFsqxNTU3m/EEYu689wZw/+DZmrjR3enbU+7Ejzo369esnnnzySXH06FH5d/LkSbm9oqJCJCYmit/+9rciLy9PWK1WERUVJd58803d53Cnt9H5juvc4KGHHhKAmDt3bsuxf+89IUCIyy/XJWP//v0FILZs2eJ0Dj1oy/vaFzsbGxsrALF///5m4rnnCgHi5IIFHo/3dB5/trNafMFgZ/XaIsOfuj/99FNGjBgBwGeffcbBgwfZt28f99xzT4vdDIIJycnJ5Ofn88Ybb8jbbPfp0weA++67r8X227/88ot8rPQ1RYqUkr4iSHRpCV+CwwMvRUpJW4Pn5uaSm5NDreML4BLgnHPOkdskPj3Q4lNrc6Vp1fWUvUFH1c1XvfT2YVQvNXog6WbCDr1jbwSS7fF15722GHuJlpCQ4HYdu5S2+f85/losFqetn/3FFoE9QqqJ5jX4Idh3GnxUwfOXv/xFfu688cYb5Ofnt/zCqxP+bGc9RUr5qtvpsEV/+tOf2Lt3r+ZvwIABqseed955NDQ08PPPPwP261NSUuLEI9Xd5aGKjIwkLi7O6acFtWskLd8De2Jhc/7gH8/YQNXNE82dnv5wP3YkSPntpJ8yokuZ327o0KFcc8013H333XJUZ3tCaZ9yc3OdIqVajH0rLN9rz/mDUduqRzZJF6fle45IqYOKa6mFQLWzWnzBZme1YHj5XllZmTxJ+fzzz7n66qtJSUnh//7v/3jllVeMdhdQSE5OJi4uTk6M16dPHw4fPkxjY2OLLbi/++47uSxNlKWcUpJzSp5AO5btdXf8wx8/ftxpa9OZ2HOHRGJ/KYnCnpD+mWeeAeyG4u9//zuXXHKJRx20ljeotbnStOp6yt5A7/HtrVtrLBXR04dRvdTogaSbCTv0jr0RtJZTqi3GXqJJHwjKyspYtWoVkydPBmDBggWEnzzJqddfZwTwzPTpnP2737Fz5075wZmdnc3AgQO9dty0ly0CSKVlUshODrqEzp07y88eXxxS7mQwyne67Kwnp5Svup0OW9SjRw+v/w937NhBaGgoPXv2BCAzM5OHH36Y+vp6ecepL7/8ktTU1FZLy6B2jY4dOyaXa2trzfkDxu5rTzDnD77bWa17TU2fjno/diQ8++yzPPXUUyQnJ3Pttddyzz33yMtg3eW3e+6559ymiamtrXVaMuYpv51eSMuLwX5NlU6pFmPfCsv32nP+YNS26pFNyivltHzPMY6VimuphUC1s1p8wWZntWDYKZWYmMiePXvo1asXq1at4vXXXwfsW4ibic6bd5MBe94VwCmhqBpfbGwsdXV11NXVAc0vfDKPwynV1TFZLC8vl7c2nYk9MqrJ0VcoYMWe7Hapg1ZTU0NjY6Nh+fW0udK06nrK3kDv8e2tm6966e3DqF5q9EDSzYQdesfeCKSkx746pdpi7JW05ORkkpOTOXLkCOnp6dhsNl5++WXq6+tJwZ5bqufy5UxbvhzAKcr3qaee8tqB05q2yGazUVZWBtijVnJzc9m7d6/MVwm4Tn8bgXxFPTo62rBs3sisl+902VnJKeUaDaQllxG+jmyLsrOz2bJlC5dccgmxsbFkZ2dzzz33cN1118kveNdeey1PPPEEt9xyCw888AB5eXm88sorvPTSS60mh9o1Ur5g1tbWmvMHjN3XnmDOH3wbM1eaOz394X7sKDid+e127NhhSNYTJ05w6tQpli1bRklJiex0+fHHHykpKZE3eLBarYzcsYPBwMEjR9hitXrMbyc5pVavXs2JEydISEigpKREV3670NBQt/ntYmNjW+S3k/qV8tsVFBTIz8Lly5dTUlIi57eTeDMzM6mrq5PP07lzZ1asWKGZ307KTVpRUcGqVas4fvw4l1VWkgCcOHbMY367rl27Eh0dLZ9Tmd8O7E6vdevWOeW3k+SV8ttJdSm/XUlJiZzfTmpLSUkhJCQEq9VKSUmJz/ntpByHWvntAGJiYvjf//7XIr9dSUlJi/x2V111FcePH8dqtcr57ST5MzIyqK+vl+szZsygvLwcq9VK9+7diYqKknXzJb/d5ZdfLufR08pvV1JS4ja/XUlJibH8dsZWFwrx2GOPifj4eDF48GCRnJws5yR45513xPnnn2+0O7+Dp3WR9fX1cvnGG28UgJg3b54mX319vTh27Ji8jrmqqsqZ56KLhACx4a67BCAuvfRSeW30DkVOEenXAGK7y9po5bplLSjl0tPmStOq6yl7A73Ht7duvuqltw+jeqnR/Vm3jpg3ob2gpbuesTeaY2HWrFkCEI888ohPcrfFfa1FU+p5gcNOngQR50bPnJwcA9rok1kvX319vccchVkKey/Z/wbH3xlu7H4w29lt27YJQPTp08ewzHr4OrItysnJEeedd56Ij48XFotFDBkyRDzzzDPy3E3Czp07xdixY0VkZKTo3bu3ePbZZw2dx8jcSEkLCwsTgDh06JA5fxDG7mtPMOcPrfcMUWtX06cj3Y/tZY/8Jb+d0fmO6/NT+Z4m9S2Pw2OP2Z/Jt9/u8Xo1NTXJ/ZSWljqdQw/a8r72xc4OGzZMAOKrr75qJk6bZp+fvPWWx+M9ncef7awWXzDY2TbLKfX444/z9ttvc9ttt/Hdd9/JnuNOnTo57Z7Q2nj66ae54IILiI6OpkuXLqo8NpuNqVOnEh0dTc+ePbn//vtbRCmtX7+e9PR0IiMjOeuss3j//fdbVU5pxypojpRSLtVT41u0aJG8dC8iIoLljq/3Mo8jUireEYmm3KI5Bc9LOADZc2tEfj1trjStup6yN9B7fHvr5qteevswqpcaPZB0M2GH3rE3gtZavtcWY6+XtgmwAZ2BMmAH9l3sWgOtZYukSFg1DAbed5SXAT8Ap4Bd2PVY5mizWCzyV1ojsnkjs16+02VnlZFSTU1NLdp91a0j26L09HQ2b95MeXk5p06dYs+ePTz00ENOW3gDnH322WzYsIGamhoOHz7MAw880KpyuBt75ZIPc/7gH8/YQNXNE82dnv5wP7Yl/CW/nVa+SVeoPT+7dOkiR3y8/fbbMh0Aacmajv6Vz3alPO1li1xprWVnVZfvOVb45CiupRYC1c5q8QWbndWC4eV7YA8rc8WNN97oTVe6UVdXx6xZs8jMzOSdd95p0d7Y2MjUqVNJSkpi06ZNHD16lBtuuIHw8HA5t9JPP/3E1KlT+f3vf89HH33E2rVrufXWW+nVqxeTJk1qdZklp5SUI0oLEo9q2K3DCMY4qtKLIUAB9u3AlY4p1yUcJkyYMNEaaK3le6cTMwFpYV44dvu5BMiieclzR8RM4AlgKHZ7vwu4Cru9v+OOO7jlllv4KzDakUcrISFB9YNIMELKnVRfX8/x48flZ7OJ04/IyEiqqqqcX2RMmDDhN/CX/HZSvsn58+fLuSYlKPNPAqrPz5CQEPr27cu+ffuc8k0BhnJKKZ1SypxS/g7VROeOnFKhKmlsTJhwhVdOqaqqKr755htsNpucB0nC3Xff3SqCuUJaL+wusmnNmjXs2bOHr776isTERM455xyeeuopHnjgAR5//HEiIiJ44403OPPMM3nhhRcAGDJkCBs3buSll15qNadUWlqaXE5ISNDFl5aWJjulYmJi5DaZxxEpJa3IVDqlnsD+QiWhEXuklOvqandfKbTk0tPmStOq6yl7A73Ht7duvuqltw+jeqnRA0k3E3boHXsjaC2nVFuMvV6a6651oTTvWuerU6q1bJFrDkApd6DAvsuewO5M+w12mS+88EI5oXmnTp3kHXKVUbXBbGcjIiLo1q0bx44do7i4uIVTylfdTFvkGe7GXvl13Zw/+MczNlB180Rzp6c/3I8dAR0hv11ycjJTp06Vn5ESlM9NCWrPT8kpJdkt+Vp74ZTq1KmTnODdqS8PaMv72hc7qxUp1UvjfdiTrFpt/mKLtPiCzc5qwbBTavv27UyZMoXq6mqqqqro1q0bZWVl8pK5tnJKeUJ2djbDhw+XE+KBPbHc7bffzu7duxk5ciTZ2dlMmDDB6bhJkybxxz/+0W2/Rnd1iI+Pl8takVJKvvj4eA4cOADYnVJSm8zjiJSKdiw7KC8vl5cgLAUeAf6G/UVrF3aH1DKX88XExKAHSrn0tLnStOp6yt5A7/HtrZuveuntw6heavRA0s2EHXrH3gikSZqWw10P2mLs9dL0Lnn2Bq1li5S7kkFLR1oIzo40pX037aw6kpKSZKfU0KFDdcush8+0RZ7hbuyVLzKuy3PM+YNvMOcPrfsMcaenP9yPHQGRkZEsWLCAxx9/nNraWs4880zuuece7r33XpknPj6eNWvWMHfuXDIyMkhISODRRx/ltttuazU5fBl7aQMUKThA5pGcUi7LotVw6tQpgBZLCdvLFrnSWsvOqkZKOZxS0To3QgtUO6vFF2x2VguGnVL33HMPV1xxBW+88Qbx8fFs3ryZ8PBwrrvuOv7whz8Y7a7VUFxc7OSQAucdG7R4KisrOXXqlGoYpd5dHSoqKujZsydHjhwhOzsbaN51r7CwEKvVyvTp09m4cSO//vorpaWl3HbbbSxbtoyioiKnidmnn37KbbfdxmeffUZCQgKji4s5C7A5dl4SQvDjjz/Ksuxx/N0MjHFzfb766itOnDjhcVeH3bt3y4bFdVeHhoYGcnJynHZ1+PTTT+ndu7e8q8O6devo3bs3c+bMYfny5ezfv5/zzjuPtLQ0mTczM5PVq1fL676bmprIy8vT3NVh165dAMycOZP169dz/PhxEhISyMzMlPv1tKtDWVmZPDauuzrU19fz008/Oe3qIPUr7eog1aVdHbZs2cKgQYOYPn263JaSksLOnTuJioqiqKiI66+/3qddHZYsWUKvXr00d3UoKiri3nvvZcWKFS12dSgqKiIrK6vFrg7Lli0jMTFR3tVBkl/a1eGLL76gd+/ezJgxg+XLl9OzZ0+6d+9OaWkp2dnZFBUVMXXqVJ92dVixYgXdu3fX3NWhqKiIm266SXVXh8OHD3PxxRfr39UhyJCdnU3//v016QkJCYSHh8u7pmghPDy81XJKuZNNL49am16a2pLnJlpnybMevTzxZWdnk5rq7CIbgrYj7YcffmDatGkt+nZX9gatpZunMdKqq5X1ypWUlMSePXtUtyj2VTdfr20wwN3YK+c+RsfeXb++ymWU73Te197KrIdH7/0eKLp5ornT0x/ux44AKb+dJ0j57doKvox93759AeSd/GQeLyKlXN8528sWudJay85qLd87dPAgehZfBqqd1eILNjurBcNOqR07dvDmm28SGhpKp06dqK2tZcCAAfz973/nxhtvJCsrS3dfDz74IM8995wmz969exk8eLBRMVsNDz30kJMXv7Kykr59+zJr1izZqTJlyhS53Wq1MmfOHADy8vIA+z+oRJs4caLMFxUVxZw5c7BarXLkU//+/enduzdxcXEkJCQwZswYOjnWNfeMjpZfIJWJAKWFCC4rnJ3Qs2dPWYYePXowZkyz+2r27Nly+cCBAzIfQK9evTjvvPNkma+88kqnfiUHFNjDWgsKCuT69OnTsVqtXHjhhS144+Li5LLVapVfqCQoZQC7U0OC61pwZb+A0/1y2WWXyWXl2Eg466yz5LZLLrlEs19l/cILL+Tw4cNMnz69RZt0DaStPBMTE7ngggvkfmbNmuVW1969e3PuuefK9V69ejm1K8vJycmkp6djtVoJDQ3lN7/5TYt+rVarvHTz7LPPltsSExPd6gb2l1yprrx3pGtotVoZMmQIgNML9Pjx493qBjBw4EC53L17d7e6AfTr1w+r1UpCQgJjx451arvmmmuwWq2MGjXKY/SiCfdITk7mhRdecLIH77//Pq+++iqdO3fmoYce4vLLLwfsS6QfeughwPdIqdMJacmztNRZYHf4KLeC2Ov4ACAhISFB/kLa3rgce+4rV5i5A41BisJRc0qZOH1QXfJhwoQJEx0QklOqNXJK6U267i/QWr5n5pQyoQuG9gYUQiQkJIiCggIhhBCDBg0Sq1atEkIIsXfvXhEdHW2or9LSUrF3717NX21trdMx7733noiPj2/R11//+lcxYsQIJ9rBgwcFIHJzc4UQQlx44YXiD3/4gxPPu+++K+Li4nTL7Glbw7KyMrl89OhRAYjQ0FDR2Njolq+srEy8/vrrAhAzZsyQ23bs2CEsFou427HV98duti19wNH+nsbWpmvXrtWln1IuPW2uNK26nrI30Ht8e+vmq156+zCqlxrdn3XriNuwtxe0dPd27I8cOSLCw8MFILZv3y7TN2/eLAARExPjs9xtcV9r0Vy3gp4JYjuIahDFDvtZDqK/G/tpsVhEYWFhq+il5CssLBQ5OTlOv7Vr14r58+cLQIwCcdIhnwDR4PJ3hop9N+2sOu69914BiPvuu8+QzHr4TFtkbG6kpI0ePVoA4n//+585fxDG72stmPOH1nuGqLWr6dOR7sdgtUfe2iItmlRes2aNAERqaqozz+TJ9uf0++97lO+7774TgDjrrLM8yqBXfq02I/e1L3b25ptvFoCYN29eM/Hee4UAUX333R6P93Qef7azWnzBYGf12iLXFQEeMXLkSHnJ00UXXcSjjz7KRx99xB//+EenaBY96NGjB4MHD9b8RThC/zwhMzOTXbt2UVpaKtO+/PJL4uLi5ERbmZmZrF271um4L7/8kszMTENya2HPnj1yuVu3boB9eZoyObkr3549e5wSnUtt27Zto6amBikjlbusUFLMgrtIKYvF0iJHiR759bS50rTqesreQO/x7a2br3rp7cOoXmr0QNLNhB3ejv2PP/4oR8GtWrVKpufk5AC43W65NWTTy6Pn/1Wrj6XASCAa6ANsAuIBK+rhwzU1NZSVlfkksyufzWYjNTWVjIwMp9+/xo9n2HXXUeOQqzOwGpiFPWfgKcffmTTnDjx48KCqDKadbYZWpJSvupm2yDPcjb3y67o5f/CPZ2yg6uaJ5k5Pf7gfTTTDl7GXIqUOHTrkzGMgUspdTqn2skWutNays1qRUr/qjFAOVDurxRdsdlYLhp1SzzzzDL169QLg6aefpmvXrtx+++388ssvvPXWW0a70w2bzcaOHTuw2Ww0NjayY8cOduzYITtzJk6cSFpaGtdffz07d+5k9erVPPLII8ydO1f+R/n973/PwYMH+fOf/8y+fft47bXX+OSTT7jnnntaTc7Dhw/L5YiICGJjY4GWoZ5KvsOHD8t6xMbGym2Sg63KwefOKSUt3xt/9dXk5OS0+OXn5+vKGeMql542V5pWXU/ZG+g9vr1181UvvX0Y1UuNHki6mbDDl7GXlnpK+dkAeTOG6OjoNpNNL4+e/1clTcqdpYYG4FqgHDgfOAxUAzuwO36MwIgtKisrc869QPMue8OBSJqX7f0X+JRmR9pInDezUH6MMe2sOrScUr7qZtoiz3A39soXGXP+4B/P2EDVzRPNnZ7+cD+aaIYvYy85paqrq6moqGjmaYWcUu1li1xprWVntXJKVbsEZrhDoNpZLb5gs7NaCDPEDYwaNUou9+zZ0+lLelvi0Ucf5YMPPpDrUlLrdevWcfHFF9OpUydWrFjB7bffTmZmJp07d+bGG2/kySeflI8588wzWblyJffccw+vvPIKffr04e2332bSpEmtJqfrC1tCQgInTpygrKyMQYMGqfJFR0c7RUpJbdI/+EkHn7t0zpJTquugQfRzbAvuCuXLpRH5PbW50rTqesreQO/x7a1ba7y86+nDqF5q9EDSzYQdvoy95JQqKiqS6dLXry5durSZbHp59Py/KmnJycm89tprpCvs4/z58+VtpguB/wD3A9JWGMOxO4iysEdW6YGvtugxnHfZA3vuqPuBj930ZbFY6Nmzp2rfpp1thuSUUuZj1JJLDXr/p0y0hLuxVzqlpB2L1Y4x72vjMOcPrfcMUWtX06ej3o8mmuHL2Hfu3Jlu3bpx7NgxDh061MzTCjml2ssWudJay85q7b4X4fFoz+fxZzurxRdsdlYTxlYXmjC6RnvUqFECEJ999pkm32233SYA8cQTT8g0KQ/KRY78Ibvd5DvZ6Gg/8Pe/+6SbCRP+iGDNmyBE2+m+atUqAYjBgwfLtGeeeUYA4qabbmrVc50uuOaZ2gGiSZG/ScrdtN3RnpOT4/M5lTmkpLxRyt8pl/NLv2oQ8+fPb5F/KicnR1euKxNC/PDDDwIQPXr0aLNzmLbIuO4zZ84UgHjttdfaSDITJoITwWqP2lrvESNGCEB8/vnnzcTBg+3P6/XrPR4vPfsvu+yyNpHvdOGxxx4TgLj99tubic8+a78uN998+gQzcdrRZjmlSkpKuP766znjjDMICwujU6dOTr9gh9VqdapLu1S55iNR8lmtVqfle1KbFIUmLd/zFCnVEB+vWy5v+NTaXGladT1lb9BRdfNVL719GNVLjR5Iupmww5exlyKl8vPz5fwHGzduBFrastaUTS+Pnv9XV5pru2uUbwoQ4nJ8J0DaW3Lv3r3k5uY6/Ww2m9vz2Ww2J96VK1cyaNAgOXfUdddd53RsHPaoKFdIu+wNGTKE9PR0+Zefn096ejrJycmmndUBKVKqrKysxXJ2X3UzbZFnuBt7ZaSUOX/wj2dsoOpm9Bmipk9HvR9NNMPXsZeW8Nlstma6FzmlXJfvtZctcqW1lp3VipT6uaDA4/GezuPPdlaLL9jsrBYML9+76aabsNls/PWvf6VXr16EhLhO400oIYWjt9g+1AXK5Xst2hx/PeWU0nJKmTBhwoReJCUlkZCQQFlZGXv27CEjI4PKykoAOU9eoKEA+5I95ZcaAUgZiFydSGCfhOXn55OcnOxEl5KYu+aMcoc47MnMpQ8P0hK+RuyOsSeAv+pVxIQqunfvTqdOnWhsbOSXX37hjDPOON0imaD5RcYpOa4JEyZMdFAok50PHTrUTmyF5Xv+DlVb7sgpFdKo9snNhAlnGHZKbdy4kQ0bNnDOOee0gTj+j5SUFKe65JRyjS5Q8qWkpHDixAnA7pSS2vr16wdoJzoPAbo5yo0auV5c5fKGT63NlaZV11P2Bh1VN1/10tuHUb3U6IGkmwk7fBn7kJAQhg8fzrp16/jhhx/IyMigqalJs9/WkE0vj57/V1eaa7tkXyU8gT2HlOQIEtjtazLwT2Ac9miqAgfvUuyTy127dsn2vampidzcXPbu3StPPGdizxXleqxET3WcszP2HVSfAa530PMd/Mto6ZQyaluD3c6GhobSs2dPjh49SnFxsZNTylfdTFvkGe7G/ptvvgHsLzLm/ME/nrGBqpvRZ4iaPh31fjTRDF/HXumUmjnTsR1KKzil2ssWudJay85KUa9qkVJxOh1wgWpntfiCzc5qwbBTqm/fvgghjB4WNFAmnIXm5XuukVJKvp49ezpFSkltXbt2BZojpSKxD1iDop8u2F+gQDtSylUub/jU2lxpWnU9ZW/QUXXzVS+9fRjVS40eSLqZsMPXsT/77LNZt24du3btApqjOV2dOa0pm14ePf+vrjTXdsm+SliKPan5o9gdQgVAGTAeuIvm6CXXBOhZWVnU1dWpyintpud67GvAHbRMav408BLwompv+nQz7ax7JCUlyU4pvTLr4TNtkWe4G3vl8j1z/uAfz9hA1c3oM0RNn456P5pohq9jL0VGHzp0qJnuxfI9V6dUe9kiV1pr2Vmt3fcsofqyBQWqndXiCzY7qwXDOaVefvllHnzwQX7++WejhwYFpLwrEtwt31Pybdy40SmnlNS2Y8cOoDlSClrmlZKW7p0AhOOfX49c3vCptbnStOp6yt6go+rmq156+zCqlxo9kHQzYYevYy/llfrhhx8AOHLkCNA628y2xdh7orm2S/ZViaXASCAaOAe4DPjF0Raq+NsIvADsAMrr6tgBPOuoVzv+zsTuZGpyORbsDillHQffDS0kcg+jttW0s815pVydUr7qZtoiz3A39kqnlDl/8I9nbKDqZvQZoqZPR70fTTTD17FXRkpt3OjYasqLSCnXnFLtZYtcaa1lZ5W2XIYjUqr8l1/UDtElq1abv9giLb5gs7NaCNPD1LVrV6fcUVVVVQwcOJDo6GjCHTechGPHjhkSINDhLtG5K5TL9yTExsZisVioqamhHgjH7pSqUBwnOaWOKc5lwoQJE75Cckrt3LkTIYRsowIlp5TSvrqDQH3ZdCfgTJwjoEbQMiJKq1/XbIyhNCdVN9E2cOeUMnH6oLrkw4QJEyY6KJROKSEEKCOlzZxSqpFSoWZOKRN6oGcrv/fff1/3L9DhaVvD4uJip/pXX30lADF06FC3fMXFxaJLly4CEHv37pXbiouL5S3E62JihACRt3ix03bg+19+WQgQtcOGacrtKpc3fGptrjStup6yN+iouvmql94+jOqlRvdn3YJ122MhtHX3deyrqqpEaGioAMSBAwcEdl+K2L9/v89yt8V97YmmpmdhYaFYs2aNbE/XrFkjb9cs/XaAaLR/CzX8a3L8lLQGENUqfTaA2K44r/IXGRkpCgsLdelm2ln3eOihhwQg7rrrLt0y6+EzbZHxuZFEe+qppwQgbr31VnP+ILy7r43IZYQnGOYPRmju9Oyo92Ow2iNvbZEWTVmura0VISEhAhC7du0Sory8+VleU+NRvjvuuEMA4rHHHvMog175tdqM6OaLnV25cqUAxKhRo5qJS5bY31FHj/Z4vKfz+LOd1eILBjur1xbpWr5344036v4FOw4cOOBUdxcppeT78ccfnZbvSW0HDhwgOTmZ9PR0mhxhnkP793faFvwsR3LziF69DMnlDZ9amytNq66n7A06qm6+6qW3D6N6qdEDSTcTdvg69tHR0fTp0weAr7/+GoCIiAhKSkraTDa9PHr+X11panomJyfTuXNn2Z527tyZIUOGOPE9QfOSPRR/9aAee0SU8thO2BOnu/Yp7bInYf78+eTk5JCTk8PHH3/cYoc/o7bVtLPuI6V81c20RZ7hbuyVSz7M+YN/PGMDVTdvniGeeIyire5HE83wdewjIiLo1s2+xdTWrVubl+7ZGz2eX8op5bp8r71skSutteysatSr43rUOt5xPSFQ7awWX7DZWS3ozinV1NTEc889x5gxYxg9ejQPPvig/I9lohmFhYVOdWVOKaFIEK/k+/HHH2losKcvj4mJkduUPLVhjpWWrv/YUq4qD0v3XOXyhk+tzZWmVddT9gYdVTdf9dLbh1G91OiBpJsJO1pj7Hs5nN1r164FoEePHthstjaTTS+Pnv9XV5o7PT3ZIikB+i7glOPvz9iX6inhuv1HI7BH5diZwINu6MsUxw8ZMkR2ljnlaPCgm2ln3cOdU8pX3Uxb5Bnuxl7plDLnD/7xjA1U3drqGWIEbXU/mmhGa4x9vGNjqby8PNkp1RAeDopUN+7gbvlee9kiV1pr2VnV5XuOFD8N1dUej/d0Hn+2s1p8wWZntaDbKfX000/zl7/8hZiYGHr37s0rr7zC3LlzDZ0sGBDh4iWXnFINDQ1UVlaq8klbrQN07txZblPyNEoedXdOqe7d0YKrXN7wqbW50rTqesreoKPq5qteevswqpcaPZB0M2FHa4z9mWeeCTRHSvXo0aPDjr0nmjs99dgiZQL0kcC9tIx0CqHZUaWMfHI9dpmbPiW6GozoZtpZ95CcUq7Rfr7qZtoiz3A39kqnlDl/8I9nbKDq1pbPEL1oq/vRRDNaY+ylXcUqKipkp1STzuvuzinVXrbIldZadlY10bnjuE46c0oFqp3V4gs2O6sJvesKzzrrLPHGG2/I9S+//FJERESIxsZGvV0EBLxZox0dHS3nZVHDTz/9JAARFRXlvpNx4+zrlT/5xJn+//6fne6yNtmEiWBBsOZNEKLtdV+2bJlTbqMJEya0yXk6EnJyclTzOrn+ZjpyQFU7/j7rUp+how93P4vF0iKHlAnfkZ+fLwARFxfXJv2btsi47u+9954AxOTJk9tIMhMmghPBao/aQ+8//vGPAhD333+/EDt32t/DkpJ0HTt58mQBBFwe5l27dglA9OjRo5m4caP92gwadPoEM3Ha0ao5pQBsNhtTpkyR6xMmTCAkJETeJtyEHYsWLWpBk9YNK/NKKfkWL14MNO+8J7UpeY46dr7yNlJKTS6jfGptrjStup6yN+iouvmql94+jOqlRg8k3UzY0Rpjf/jwYae2Hj16dNix90Rzp6crT0JCgq5dcVwjnR5Ef+STEhEREaxYsULOH/Xss8+Sn5/vlEPKiG6mnXUPKVKqsrKSasVyAl91M22RZ7gbe+XXdXP+4B/P2EDVrbWeIb6gre7H9sDTTz/NBRdcQHR0NF0c+W5dYbPZmDp1KtHR0fTs2ZP7779fTl8iYf369aSnpxMZGclZZ53F+++/36pytsbYSzvNf/fdd3KkVJXOaCApUso1p1R72SJXWmvZWWnepBYpVVVe7vF4T+fxZzurxRdsdlYLYXoZGxoaWkzUw8PDqa+vN3TCQIercQV78vJff/2VXyUHkguflORcckpJbUqeeikErqrKuXPJ0eXBKaUml1E+tTZXmlZdT9kbdFTdfNVLbx9G9VKjB5JuJuzwZextNhtlZWUcP36c6Oho+QVeCMH+/fvJzc0F7Bs5uCbg9kU2vTx6/l9dae70duVJTk4mPz+/xeYUe/fu5brrrvMotxbmz5/PkCFDWLVqFZMnTwZaXkNXh5Sa7GpyGyl7g0Cws7GxsURFRXHq1ClKSkrk5am+6mbaIs9wN/ZKp5Q5f/CPZ2yg6tZazxBf0Fb3Y3ugrq6OWbNmkZmZyTvvvNOivbGxkalTp5KUlMSmTZs4evQoN9xwA+Hh4TzzzDMA/PTTT0ydOpXf//73fPTRR6xdu5Zbb72VXr16MWnSpFaRszXGXnK6lZWVOeeU0gF3y/fayxa50lrLzqomOndck5Agt7NafMFmZ7Wg2yklhOCmm26Sbzqw33i///3v6dy5s0xbsmSJIQECDQMGDGhB69GjBz///LOTU0rJ17VrV8A+YVa2KXksPXrYC14mOleTyyifWpsrTauup+wNOqpuvuqltw+jeqnRA0m3joB58+axZMkS9u3bR1RUFBdccAHPPfccqampMk9NTQ1/+tOfWLBgAbW1tUyaNInXXnuNxMTEVpHB27GPjo4mNTXVeWLhwIIFC1iwYAEPP/wwYJ9UqTlRvJVNL4+e/1dXmju91XiSk5O9crZpwWKxcOGFF5KcnEx9fT3p6emqfL7qZtpZ9wgJCSExMZGff/6Z4uJi2Snlq24d2RZ1FLgbe8n5W1tba84f8O6+NiKXEZ5gmz+05jPEW7TV/dgeeOKJJwDcRjatWbOGPXv28NVXX5GYmMg555zDU089xQMPPMDjjz9OREQEb7zxBmeeeSYvvPACYN/wY+PGjbz00kut5pRqjbE/++yzAeecUmGOwAJPcOeUai9b5EprLTsr6VNXV0dTUxOhoaFypFS4YqMvLQSqndXiCzY7q4VQvYw33ngjPXv2JD4+Xv5dd911nHHGGU60YIfai8wZZ5wBOC/fU/JJEVLSX6lNydNZckq5RkrpXL6n9wVLi0+tzZWmVddT9gYdVbfWeKnV04dRvdTogaRbR8A333zD3Llz2bx5M19++SX19fVMnDiRKsX/7z333MNnn33GokWL+Oabbzhy5AhZWVmtJoO3Y2+xWFQdUmqoqalpEVHki2x6efT8v7rS3OndmrZIifnz58tL8nJycpycd22pm2lntaG2A5+vunVkW9RR4G7slZFS5vzBP56xgapbR3iGtNX92BGQnZ3N8OHDnT68TZo0icrKSnbv3i3zTJgwwem4SZMmkZ2d3WpytMbYSx+VysrKaHREkoc7Ags8Qdq53nX5XnvZIldaa9lZZdBKXV2dveCIlOqk2NBLC4FqZ7X4gs3OakG3U+q9997T9Qt2rF+/vgVNWvoiRUrZbDbee+89cnNzyc3N5fPPPwfsu/Dl5ubKbZ9++qncR6HkfFJGSgmh2ymlJpdRPrU2V5pWXU/ZG3RU3XzVS28fRvVSoweSbh0Bq1at4qabbmLo0KGMGDGC999/H5vNRk5ODmD/uvbOO+/w4osvcumll5KRkcF7773Hpk2b2Lx5c6vI4O3YSzK2Jdpi7D3R3Omt1xbpzTUFzVFR6enp8k/5cG5L3Uw7qw01p5SvunVkW9RR4G7slU4pc/7gH8/YQNWtrZ8hetBW92NHQHFxcYtIcKku2WN3PJWVlbIzxxW1tbVUVlY6/bTQGmO/Z88ewsLCaGxspPzoUQCOK/IUasFdpFR72SJXWmvZWaU+8odNR6RUk84PnYFqZ7X4gs3OakH38j0T3kNalldWVobNZpOXxkhLYCRs3ryZjIwMAB5++GHCw8OZPn06ycnJNEgeaKVTqroapIRyHpxSJkyYOH2oqKgAoFu3boDd8VNfX+/0RXDw4MEkJyeTnZ3N+eefr9pPbW2tUxJJT5MvE62H5GT1XFNKSLmivM21ZaLtoeaU8mc8/fTTrFy5kh07dhAREUG5SkJZm83G7bffzrp164iJieHGG29k3rx5hIU1TwHXr1/Pvffey+7du+nbty+PPPIIN910U5vLr7qNuAkTJjoEHnzwQZ577jlNnr179zJ48OB2kqgl5s2bJy8dVGLRokVER0eTlZXF2rVrqaiooGfPnjQ0NGC1WgF7xFNTUxNFRUVYrVamT5/Oxo0b+fXXXyktLeXUqVMsW7aMoqIidu/ezS+//MKmTZsoLS0lISGB4uJi/vfJJ9wMnKyv5x1HbqyMjAwGDRrEli1bAHu0V15eHkVFRfJ88Ouvv+bHH38kNTWVhIQEWYYJEyZQUFCAzWYjMjKSrKwsFi5cSFNTEwMHDqSmpkaW/+KLL8Zms3Hw4EHZni9evJi6ujr69evHwIED5X7Hjh1LaWkpBQUFFBUVAbB8+XKKiorYsGEDaWlpMm9mZiaVlZXyeZqamlixYgUnTpwgKSmJ9PR0OaBi9OjR1NTU8MMPPxASEoIQgs8//5yQkBB6h4QwDntOKavVysiRIwHYvn07AFdccQXZ2dmUlZXRtWtXGhsb5XMOHz4ci8XCtm3bAKivr2fdunUUFxcTGxvL5MmTZXnT0tKIj4+X6xMnTmTPnj0UFRWxfPlypk+fLrelpKRw6tQprFYrRUVFlJSUcODAAQoLC4mIiODKK69k0aJFNDQ0MGDAAJKTk2Xnyrhx4ygqKuLAgQOEhoYye/Zsjh49itVqJTk5mZSUFL766isAxowZQ1lZGfn5+YA9DdL//vc/qqqq6N27N8OGDWP16tUUFRVx8OBBTp48KUcMXnXVVZSUlGC1WklMTGTUqFGy/BkZGdTX18v1GTNmUFpaitVqpXv37vI1LCoqYu/evYSGhsp5YKdNm8bWrVspLS0lPj6e8ePHy2mXhg0bRnR0NFu3bgXg8ssv59dff8VqtRITE8OUKVN47bXXOHHiBP379yc+Pp6dO3dSWlpKz549+fnnnykpKSEyMpJZs2axadMmioqK+P77753SPGkhRAidCz1NAPaXwPj4eCoqKoiLi2vRXlRURO/evZ1oTz31FI8++iizZs3iwQcflB1PepCTk0N6ejrlTzxBl8cfhzlz4OOP7Y2FhdC/vz08srYWQkLc9qMml1E+tTZXmlZdT9kbdFTdfNXLk8x6eNy1BZJunv4nTzeampr4zW9+Q3l5ORs3bgTg448/5uabb27xInbuuedyySWXuJ0EPv7446qTr7fffrvF5CsqKorx48ezYsUKoHnytXnzZiwWizz5Kioq4owzzmDcuHEsW7aM/Px81XO4w4IFCxg9erTq5Ktz585MmzaNhQsXAsiTr7Vr12KxWDQnXwkJCaSlpfHtt98CzpOv+vp6brjhBqfJV2xsLHl5eQDy5OuHH37AYrEwZ84cPv74Y0JCQujTpw9paWn873//w2KxcNZZZxEREcGePXuoqanh+uuvZ9WqVZqTr127dgEwc+ZM1q9fz/Hjx0lISKB///58//33AJqTr/DwcKZNm8bSpUsB58lXTU0NWVlZ5ObmypOv4cOHs2nTJgB58rVu3TosFgsTJ05k8+bNVFZWEh0dzahRo+Rr1rNnT1JSUti4cSM1NTVMmTLF68nX2LFj2bJli7zMyt3kq6amhhtvvJEVK1a0mHzV1NRw0UUXOU2+LrjgAvLy8qisrCQxMZE+ffrI0XoZGRmUlJTIu0Cee+65/Pjjjxw7dozIyEgmT57MwoULsVgsnHPOObomX4sXL2bx4sVcc801/OY3v5HHqqSkhCNHjsiTr08++QSwO4u7devGpk2bqKmp4YorrmDfvn0cOnSIqKgoZsyYwfvvv09kZCS9evXikksuaVdb9Nhjj9GlSxcOHz7MO++808Ip1djYyDnnnEPS/2/vzOOjKNL//0lCkkkISZCBJEKC3IdIQqJi5BAVhRWQexVPPFAUVEBlYVUQXcBdXYXFA1yXwy8YEUHQwA8PICABOQJBjhAgRAYhJAxH7nvq98ekOz093T3dM5PJTOd5v179mqqnq2vq6ap+uqam6qnoaLz//vu8c+FJkybZOBfu1asXJk+ejGeffRbbtm3DtGnTsHnzZtV+XJzpG124cAFmsxkJCQmIiopCRkYG9R+88B3rSK4X3RzJ5PT01vbojr7R5cuXbfzhStGxY0cEcZsxwepTatq0aXa2aM6cOfj++++RmZnJy3Jzc9GxY0ccOnQIffr0wcCBA5GYmIhFixbxaVasWIFp06bxgzlipP6si42N1WyLHNV9bW2tpL/NSQA+h3XH3dF1MiV/m5GRkSgsLMSpU6fQpUsXxTJI0ZDt2lU7GxISgoqKCvzxxx9o3769dTMuzv2MxaL4O9UdunmrLVJK5yt2VjipxhFc+w8ICNBmixihicLCQgaAFRYWSp7ft2+fneydd95hANjdd9/NMjIyGADVR0ZGBmOMsbN//ztjAGMjRtRnnJFhlUVHOyy3VLm0ppM6J5YpxdWEncHTutXU1LDy8nK2b98+Vl5eLhsWypw91OShlEbunFiuFG9s3WpqahTrzNEz2dhMnjyZtW/fnp0/f56XrVmzhgUFBdmlve2229jMmTNl86qoqGCFhYX8cf78eVnd5dq7o2d21apVTtkoLah5Zl19XsUyOb190RaJZXq0s1JxqbBWvZYuXcoAsAcffFBVmZXKJpY3pi1asWIFi4iIsJNv2bKF+fv7s0uXLvGyzz77jIWHh7PKykrGGGMzZ85kN998s811Dz30EBsyZIjq73emb7Rv3z6WlZXFALDIyEi2adMmlpGRwR+rVq2SDG/atEkxXy3opV2rLZeWNM6+Q3xVN729QxrLHjmyRfn5+bxs2bJlLDw8nFVUVDDGrLaoV69eNtdNmDDBI7ZISbZv3z7Z328vWZ2psBSVfaOgoCAGwKZPKFcGteV3VTctYSUiIyMZAHby5Emr4Pp16+9UgLG6940SerWzSul8xc46M36h1Rap9ilFqCMnJ8dOJvYp5Qx53DIdoaNzlTvvyZVLazqpc2KZUlxN2Bk8qVteXh5OnTqF3Nxc+Pv7Izc3VzYslDl7qMlDKY3cObFcKd7Yup06dQp5eXlgokmdrrYbTzB16lSkpqZix44daNeuHS+Pjo5GVVWV3T+J+fn5/PIiKYKDgxEeHm5zyCF3fxw9s9yslIZETd25+ryKZXJ6+6ItEsv0Zmfl4lJhrXpJLd9zVTdvtkUN5VxYqx8Xubrnlu+Vl5dj3LhxSEpK4o8nn3xSMjxu3DiYTKb6fDdsAOLjgZAQ66eGXaD10q7VlktLGmffIb6qm57fIZ7AZDIhMzMTJpMJtbW1yMzMRGZmJkrq3I7cf//96NmzJx5//HEcOXIEP/74I958801MmTKFtwOTJ0/G2bNnMXPmTJw8eRKffvopvvnmG0yfPt1t5XRH3QvhPCmp8ZpksVh4J+Bin1J66D/YLceuc3QOAOCcnyugVzurlM7X7aw7ryefUm7G399+nI/74ejKoFQtt0uD0KeUSifncuXSmk7qnFimFFcTdgZP6daqVStcv34dbdq0QWhoKAoLCxEZGQkAuH79ul1YKHMWNXkopZE7J5YrxRtbt8DAQBQUFAAAYmJi+HOutpuGhDGGl156Cd999x3S0tL4rec5kpKSEBgYiG3btmHs2LEAgOzsbJhMJiQnJ7ulDHL3R8sz21Co+Q5Xn1exTE5PX7RFYpme7KzWd4hWvbhBqfz8fMVySaH2mfIm3OFcWLxLFKDdj4vQVwi3lPjixYv4f//v/wGw7tYk/uNBjurqaqxevRrx8fFot38/sGgRmJ8f/BgDO3oUfmPH4tdp03DzW285XEp88eJFVX5cKisrZf24+Pv72/lx4fLllhJz8QkTJmDTpk24ePEi78eFO5ecnIzi4mKkpKTg4sWLqKmpcXopcXJyMp+v0lLiy5cvo6KiQnIp8cWLF1FYWGizlHjo0KF8vtxSYi7O+XG5ePEi78eFO9e1a1feF87Fixdd9uNy6dIlh35cLl68yPvCES8lvnjxop0fFwDYvHkzv5T41ltv5cuflJSEkpISvg2MGjUKly9fRkpKCsxmM8rKyvh6dcWPS01NDb8br9JS4osXL8JsNtstJf76669x8eJFTX5c3MWcOXOwatUqPs61ux07dmDQoEEICAhAamoqXnjhBSQnJ6N58+Z48skn8c477/DXdOjQAZs3b8b06dOxePFitGvXDl988YXqZcRqcEf/QYiWQSnhMkPxoJQe+g+cTmJH5wCA6mqH13t7/0FtubSkc0dfvbF1c9v1Ls/tamI4Mx02NzeXAWDBwcHs4MGDzi2N2bbNOv1ROMX+44+tsjFj3KwlIaampoadOHGCmc3mxi5Kk8RsNrMTJ05ILuXzxuV7L7zwAouIiGBpaWksLy+PP8rKyvg0kydPZnFxcWz79u3s4MGDLDk5mSUnJ2v6nobQ3dklxgThC/zxxx/8+9hisbg1b3c9j3/7298cPndZWVk218gtmZk0aRK7//77bWSlpaUMANuyZQtjjLEuXbqwBQsW2KTZvHkzA2Bjs4RoWUqshNls1mRv7OxO796M+fnVLxEBrPH4eE3lIAi94Y19I0/QUHrL9Y3m19mdj1T0ja5cucKfr66udmv5vIFu3boxAGznzp1WgcVSb5cFS8gJ38OV3wa0fK+R2CAxbTw9PR2AdYRcjYMwKXbU7T7g7EwpqXJpTSd1TixTiqsJO4MndKuurkZZWRlCQ0N52bVr1xTDQpmzqMlDKY3cObFcKe4NunH3vVrwT4ur7aYh+eyzz1BYWIhBgwYhJiaGP7h/6QHgo48+wvDhwzF27FgMHDgQ0dHRbtVJLi9Hz+z27dvdVgY51Ojpqi0Sy+T09jVbJCXTi511FJcKa9WLmxFUWVnJO851VTd326JXX30VWVlZikfHjh1V5RUdHW0zKwyonyXGzRqTSxMeHi45SwrQtpQYkK97brmHs9RmZVl/8ghhDKjb8cgRemnXasulJY2z7xBf1U3P7xCiHnfUvRC5mVJZWVk4dOiQzcEtZ2rWrJnN7qeOvkNtusbuP9gt3/Pzq58tpWKmlF7trFI6tfJly5bZtKUPPvhAMrxs2TKYTCYbmdzBLYN3VTd3XU/L99yM1LbGfn5+CAoKkvQho5YybgqccFCK25pcxaCU2u2WldJJnRPLlOJqws7gKd0YY/AT7BxhsVgUw0KZs6jJQymN3DmxXCnuDbr5SezY4c1biDMVy1AMBgM++eQTfPLJJw1SBrn74+iZDQ4OhsFgUL3DhlGFTzu1ZVObRs3zKpbJ6e2Ltkgs05Od1foO0aqXwWDglyBfunQJkZGRLuvmblvUunVrtOZ2LHKR5ORkzJ8/n9+2GQB+/vlnhIeHo2fPnnwablkYx88//+y2pcSAfN27OihVFBODlufP2w5M+fkB3bo5XS6t6byhXastl5Y0zr5DfFU3Pb9DiHrcUfdC5AalHnvsMbu0nL0TL91z9B1q0zV2/8Fu+R5g9StVVaXKp5Re7axcOpPJhJMnT/JLfYUI5ZWVlXjppZds/piXo1mzZggICFBVLqVdIuXKrAWt19OglJuRqtj27dvzvgucHZSK4v4VddLRuVyD05JO6pxYphRXE3YGT+km/ldD2JmWCrva2Vabh1IauXNiuVLcW3Vztd3oHbn74+iZTUxMRHZ2NsxmMzIzM5GQkAAAfFgoMxqNTtWDmmtcfV7FMjm9fdEWiWV6srNa3yHO6BUVFcUPSnXv3t1l3RrTFplMJly9etXGuTAAdO7cGWFhYTbOhf/1r3/h0qVLks6FP/74Y8ycORNPP/00tm/fjm+++QabN292Wznl6r5Zs2bw8/NT7U9KzKXnn0fLN96wFTIGzJ3rdLm0pvOWdq2mXFrSOPsO8VXd9PwOIepxR90LccanlNSglB76D3YzpQDrTKnSUlUzpfRqZ6XSmUwmdOvWDRUVFXhD/A6rg5MHBQWpGpACrH7pampqVKWtqKiA2WxWZetzc3NV5Sl3vRpoUMrNdO3aVVLWqlUrlwalburVyxqoqABqa4GAAE3L96TKpTWdnG5q42rCzuAp3VwZlDKZTDBzM9sUEP/I97VBqfT0dEyePBknT57EsGHDsHHjRqfKrSaNq+1G78jdHzXPbOvWrREXF4fY2Fh+xgYXFsrcXTa1adQ8r2KZnN6+aIvEMj3ZWa3vEGf0io6ORnZ2Nu/o21XdGtMW+YpzYbm69/PzQ3BwsNOuDYyTJgFnzwL/+1+98NNPgdGjnS6X1nTe0q7VlEtLGlfeIUphb9VNz+8Qoh5n6/78+fOS+WkZlOKQWhath/6D7EwpQNVMKb3YWanffBUVFTYzorKyslS/96pU3DtnycvLk5ypBdSX+ejRo5g6darmvLXeX/Ip5Wa4HUDEMm6Ji8VikRwhlyIwMJC/bttvv9Wf4GZLaRiUkiqX1nRyuqmNqwk7g6d0ExsP4RbYUmHukxsNF251LXd069bNZo2vo222HaWROyeWK8WlwoMGDcK0adPs8p0xYwYSEhKQm5uLlStXOl1uNWlcbTd6R+7+uPrMuuO+q8nD1edVLJPT0xdtkVimJzvrifbI+VLiBqVc1a0xbdHKlSvBGLM7Bg0axKdp3749tmzZgrKyMly+fBkffPCB3Z8sgwYNwuHDh1FZWYmcnBxMnDjRreVUqntXZt7+8ssv9j6lNCwp1lO7VlMuLWnoHaKfdwhRjzvqXogzg1JSvwP10H+QHJTS4FNKD3ZW7jff4MGDbeJSyzsbgzFjxsj+JuXKPHHiRJQI3QepROv9pUEpD9FKMHCUnZ2N+fPn4+DBgwgLCwMArF69GhkZGcjIyMD8+fORkZGBf//73/ysGUtgoHV2FFDvV0rDoBTReJjNZtWj4dxUSl8lJycH99xzD9q1a4fIyMjGLg5BEIQd4kEponFxeTl43ZJFxMRYPzMyXMuPIAhChNFolBxMcteglB6QXL6nYaaUHtDym88b0DILK4gbYHSAs/5m0VBbB+oVR9sanjt3TlL2/PPPMwBs7ty5vCwnJ4cBYIGBgayystIuD2Fe586dYyw83LqtZna2VdiihTV+8qTDckuVS2s6Od3UxtWEncETupWXl7Pff/+dlZeX87KKigrFMPfpyjaawnzlUEpTUVHBamtr2YIFC9hNN93EDAYD6927N/vqq68YY4zt2LGDAWA//PADS0hIYAaDgd19993MZDKxLVu2sO7du7MWLVqwCRMmsNLSUlZRUcGefPJJuzLn5ubayVasWOF0ucVpysvL2YkTJ2zuP1c/TXXbY8aUdZdr764+s64+r2rzcNUWiWVyevqaLZKS6cXOOoq7qz0uXLiQAWBPPvmkpjwcPVNki7T3jRhjLDY2VtM7UviePHfmDGNBQda+0OzZ1s/77lNdbj21azXl0pKG3iG+/Q5pqvbIFVskJxPWdUZGBktNTeU/83r2ZAxgD2mwX7fddpuqMqgtvzt0UxtW4rHHHmMA2AcffFAv7NbNapd37XJ4vS/ZWXFb4I7Vq1drfp/5yiHWVUr/jIwMu/ur1hbRTCk3IzXLxWw28yOGV+pmN5nNZn4NZ6dOnWxGH7k8hHmZzWagblYVSkutI87Fxda4iplSamffKKWT001tXE3YGTylm3i3uOrqapSWlqK0tBSFhYV2Ye6zvLxcVfk4ysvLJfMVHkywXEHJoV1NTQ0WLlyIL7/8EkuXLsXx48cxffp0PPXUU9i5cyef7t1338XHH3+MPXv24Pz583jkkUewaNEifPXVV/j222/x008/YcmSJaipqcHixYvRt29fTJo0CXl5ecjLy0NsbCzy8vIQHh6ORYsWIS8vDw899JCinmoc8Sml8eUZZZ5A7v64+sy6476rycPV51Usk9PTF22RWKYnO+uJ9iieKeWqbmSLHKNU99y/6+IlhXIEBQXxfarSgwet/aGIiHo/UhkZ9kv6NJRLazpvaddqyqUlDb1D9PMOIepxpe7j4uKQmJiImJgY/jOszm656lNKD/0HbgaY5EwpFcv3vMnOmkwmHDp0SPLYvHkzunTpgqSkJAwfPlxxWd5oAJkAyuo+1Xk79E64di88pGTcKi+ttogGpdxMdna2pIxbvsdVUHZ2NjLqppjHcFPORXkI88rOzq4flCopAa5etYb9/ICWLZ0ql9Z0crqpjasJO4OndBPvfHD16lWEhYUhLCwMUVFRdmHus3///qrKx9G/f3/JfIVHWVkZn15pmmhhYSEWLFiA5cuXY8iQIejYsSMmTpyIcePGYdmyZXy6WbNmoV+/fujTpw+eeeYZ7N69G5999hn69OmDpKQkjBs3Djt27EBFRQUiIiIQEBCA0NBQREdHIzo6GgEBAYiOjoafnx8iIiIQHR0t+dIVomZ6q1IaV9uN3pG7P64+s+6472rycPV5Fcvk9PRFWySW6cnOeqI9igelXNWNbJFjlOqeG5R6/vnnkZGRgZdffhkA0LNnT2RkZODDDz8EAERGRuK3337DBx98wHd6r6elWTNLSAB697b+ALp6FTh3zulyaU3nLe1aTbm0pKF3iH7eIUQ97q57/7oBGFeX7+mh/8DZckmfUiqWiXmLnXXkC3j48OGqlr2NBrABwC0AQuo+N8C3B6bEuNMW0e57HkI8UwoAP1OqQ4cO6jJp3tz6WVpa70+qZct6X1MEISI3NxdlZWW47777bORVVVX8Lk2AtfPPERUVhdDQUHTs2NFGtn///oYvMEEQRAMg3A3n2rVrAIA///wThw4dQm5uLv8+Fu+ASjQ83A+00NBQJCYm4t133wUAJCQkwGg0ol+/fmjRogWuX7+OtLQ01NbW8vXlf/QoAKCoUyeEBwcDvXoBhw8Dhw4BN93UKPoQTROTyWRjS+QgG6Mv/Or+sCafUg5231MxU8pbcIdfqBsAfALrujduBpA/gFoAcwB851LuOsXpxZRNFEfrImtrayVlmzdvZgBYnz59GGOM1dTUsFatWjEA7LfffpPMQ5hXbW0tYwMGWNflrlvH2M6d1nCXLqrKLVUurenkdFMbVxN2Bk/oVl5ezo4fP27j06i2tpaVlJSwkpISVlxcbBfmPnfv3q1pze7u3bsl8xUeFouFL4cwLGbv3r0MAEtLS2OnT5/mj1OnTjGTycT7lLp69Sp/zYoVK1hERIRN/nPnzmXx8fH8d911113slVdesfu+iIgIh76k1JRbnEbKpxRXP03VbwJjyrrLtXdXn1lXn1e1ebhqi8QyOT19zRZJyfRiZx3FnW2P586dYwaDQZX9NRgMsn4mHD1TZIu0940YY+zOO+9kANi3337LLBYLi4qK4uOO6m2bdaEee7ZZM2u9PfOMtW/097+rKrcvt2tHNISdlZLrRTdX3iENbWOc0a2p2iNXbJGcTKnuK9q2ZQxgfTX08x966CFVZVBbfnfp5mr/4e9//zsDwF5++eV6Iffb9dtvHV7vLXZWqy9g4dERYEsAVlr3bpI6yrzAP5Qzh9DnsZY6I59SjURqaqqkTDxTauXKlbhy5QqaNWuG8+fPS+YhzCs1NdV2phS3TlPlzntS5dKaTk43tXE1YWfwlG5i31BFRUVo3rw5mjdvjpqaGrsw9+loGZuYkJAQyXyFh5+fH5++sLBQNq+2bdsiODgYJpMJnTt35o/WrVsjNjbWRhchTOCPQ5g/F/b390dtba0mvcQolVtNGlfbjd6Ruz+uPrPuuO9q8nD1eRXL5PT0RVsklunJzjZEe3TXDqhqnynCHqW655Z87N27F7m5ucjPz0dgYCBycnIc1ltC3eeBmhprvSUlWQUqd+Dz5XbtiIaws1JyvejmyjukoW2MlnRkj5Rxd90H1Pk+VVP7nN88qZlSeug/uDpTqjHtrNCHVFZWlsOyArb+ok4BSAdwGsBUAKF1covomloAziywVetzsVmzZqp3tFW7m54S7rRFPrN8b/78+di8eTMyMzMRFBSE69ev26UR/lDnSElJwcMPP8zH09LSMGPGDBw/fhyxsbF48803MXHiRLeVs7S0VFIm9il1/PhxAMDNN99s56uIy0OYV2lpqa1PKW4tq8pBKalyaU0np5vauJqwM3hKNyZynCoclJEKuzpoozYPpTShoaF47bXXMH36dFgsFvTv3x+FhYX46aefEBMTg/bt2zvMQ0q3du3aYd++ffjjjz8QFhaGG264Af7+2sa4XdXN1Xajd+Tuj6vPrDvuu5o8XH1exTI5PX3RFollerKzjdEe1aL2mSLsUap7rgNdUlKCPXv2AACSkpIcboYRC+sSiSoAJzihcFCKMavfTY3l0prOW9t1Q9hZKbledHPHO8RVGqo9EvW4u+6b1f2Ge2HaNNz2+OMAgHXr1uG9997DnXfeiSVLlvDXrVmzBh9++KHkoJQe+g+Sjs41+JRqLDvL+ZDSsmSP8xdlgXVZXpe6AwC2APgAQGRdmloAAYLPeaq/xYrBYMCsWbMwYsQIXrZ161YMHTrULpyeno6RI0di9erVvEyOvLw8DB8+XGNpbHGnLfKZQamqqiqMHz8eycnJ+N///iebbsWKFTaVEBkZyYdzc3MxbNgwTJ48GWvWrMG2bdvw7LPPIiYmBkOGDHFLOdu2bSsp4walysrKUFFRwc+YSkpKsruGiwvlbdu2rZ8pVVICfmeZuhlYzpRLazo53dTG1YSdwVO6BYh8dwlHmKXC7hiBVpOHUpqgoCC8++67aN26NRYuXIizZ88iMjISvXv3xpw5c/gdBQO5fzLqEA7wSuk2bdo0TJkyBT179kR5eTlyc3Nxk0b/Ha7q5mq70Tty98fVZ9Yd911NHq4+r2KZajvrAp6yRWKZnuxsY7RHtah9pgh7lOqeG5QKCwvD3r17AQDJyclo06aNYp4JdZ8nAPB/7d1yi9XPptkM/PknIJgRrLZcWtN5a7tuCDsrJdeLbu54h7hKQ7VHoh63133dQEbCHXcgMTERgHWm0HvvvYc//viDlwHA+vXrAUjPlNJD/0HS0bmGmVKesrPNmjXDoUOHUFpays+MEg9IjQYwF0BXWGdBzYPVD1QEgGGw9xcFWAeoTtWd5xgDqw+pbrDOkJoHYKPg/JtvvonRo+1dnx86dIhvO0aj0a4tlZSU8HFxOC4uDv3797dJL4Uj/3dqcKstUlzc54WI/d0IAcC+++472WtnzpzJbr75ZhvZQw89xIYMGaL6+x2ti7xy5YqkzGKxsICAAAaA/fnnn2zw4MEMAPv444/truHiQvmVK1cYmzLFuh71rbcYe+01a3jGDFXlliqX1nRyuqmNqwk7gyd0Ky8vZ8eOHbPxaVRdXa0Y5j5d8TUgzFcOpTRy58RypbiSbq6gRTcpn1Jc/TRVvwmMKesu195dfWZdfV7V5uGqLRLLVNtZF/CUnRXL9GJnHcWdbY9a/UNI+U1Q+i6yRc73jRhj7K9//SsDwBYsWMASEhIYALZu3Tq2fft2xXp6q84/xwpxvfXube0fKfQHlcqlNV1jtWtHNISdlZLrRTdX3iENbWOc0a2p2iNXbJGcTLbuzWbG/P0ZA9jVEyf480VFRXxdFxQU8PLp06czAGzWrFmqyqC2/Gr1kJK5s/+wbNkyBoCNHDmyXjh2rNUef/qpw+s9YWfPnTvHgoODFZ/P0XXvllrRZwbAKiHvK4pBm78og8HAjhw5okrfhrCz7vCF505bpDufUlOmTIHRaMTtt9+O5cuX2yy52rt3LwYPHmyTfsiQIfw/c1JUVlaiqKjI5lDixx9/lJT5+fnZLOHjdjJLSkqyu4aLC+U//vij7fI9bvc9lcv3pMqlNZ2cbmrjasLO4CndxD6lpHwtCcPcZ1xcHLKzs5GRkeHwyM7OttmVxVW/S3LnxHKluJJuruCqbq62G70jd39cfWbdcd/V5OHq8yqWqbazLuApWySW6cnONkZ7VIvaZ4qwR6nuuX/XDx48iN9//x2AdaaUUt8MqJ8plSk+ocGvlJ7bdUPYWSm5XnQTy0wmE5YuXcr7mRGGhfE1a9ZoV8CJMqtNR/ZIGXf2H37asgWoW3GwLT2dP9+iRQt06tQJAHDkyBFezs3GkZoppYf+A2fLbZbvaZgp5W47u2bNGrvn9ddff7UtnwRzUb8sD4LPRABBAI4DyId6f1GrV6/G/PnzJX/zce58tOrmDjvr6PepsMzi36dy5VJ7TgqfWb6nhnfeeQf33HMPQkND8dNPP+HFF19ESUkJXn75ZQDApUuXEBUVZXNNVFQUioqKUF5eLumQeuHChZg3z37157p16xAaGooxY8Zg27ZtKCwsRJs2bVBTU4OUlBQAQGJiIiwWCy5cuICUlBS0atUKBQUFWLZsGYqKiuDv74+TJ0/CbDbj+PHjCAwMREZGBi5cuICioiKYzWakpKQgPDwcFosFv+fkoDeAKyYTDIWFaA5g/9mz6Hz1Ko4dO4YLFy6gefPmGD58ONauXQsA6NatG4xGI1+GwYMH49SpUzCZTAgODsaYMWOwdu1aWCwWdOrUCRUVFXz5Bw0aBJPJhLNnz/IO1tavX4+qqiq0b98enTp14vPt378/CgoK+PiECROwadMmXLhwAb/++it69uzJn0tOTkZRURH/PRaLBampqSguLkZ0dDQSExOxZcsWAMBtt92GiooKHK3b9nn06NFIS0vDtWvXYDQakZyczOfbp08fAMDhw4cBACNGjMDevXthNpvRsmVL1NbW8t95yy23wGAw4MCBAwCA6upq7NixA5cuXUKLFi0wdOhQPt+ePXsiLCwMtbW1uHbtGlq3bo3y8nJUV1fj+vXriIyMRHV1Na5cuQKDwQDGGK5cuYLq6mpUV1ejsrISzZs3R4sWLdCyZUtcvXoVjDEEBwcjKCgIxcXFAKwvMS4fPz8/3HDDDXw8ODgYwcHB/KBoWFgYampqUFFRgerqajDGUFhYiNraWgQFBSEkJASFhYX899fW1vKDai1btkRNTQ2uXLmCwMBANG/enP+e5s2bgzHGx4VpuTbA6VZeXg4/Pz9+zXBkZCRKS0tRXV2NZs2aoUWLFvzW6yEhIfD39+fTRkREoLa2FleuXEFAQAAiIiJw9epVPm1AQABKSkr4e1haWorS0lL88ssvGD58OL7++mtcuHABBw8eRHNuWStBEAThc3A/ZLKzs2GxWBAXF6dq2n+fus9M8YnERGDFCsANSxOIponQx8wbb7zBy4VhLh4YGGgnJ5oGAYKBFovIDUZ8fDxycnJw5MgRfkKE0qCUHpB0dK7Bp5Q7MZlMePXVV238NoufU/ESvQ8ABAPoBdtleRzVAG6BdeCJ8ymlxl9Ujx494O/vL7mcLl0wmNkYxMXFSQ42AdZ3sqMlgG7F4dyuBuRvf/ubw+liWVlZNtcoLd8T89Zbb7F27drx8S5durAFCxbYpNm8eTMDwMrKyiTzqKioYIWFhfxx/vx5xSloOTk5srIBAwYwAOyxxx5jAFivXr0kr+HiQnlOTg5jH35onR74yCOM3XmnNbxunaPbIFsuremUdFMTVxN2Bk/oVl5ezn7//Xeb5WMVFRWKYaHMWdTkoZRG7pxYrhT3Bt2klu9x9dNUp6gzpqy7XHt39Zl19XlVm4ertkgsU21nXcBTdlYs04uddRR3tj26a2mNo2eKbJFzfaMpU6YwAPySiocffpgxxtimTZtk6yhCsFwiQlxve/ZYz0VFMWaxKJbbl9u1IxrCzkrJ9aKbUObKlvANYWOc0a2p2iNXbJGcTK6N5+7fz9uhnNOnbdLMmzePAWCPP/44L3v44YcZALZ48WJVZVBbfrV6SMnc2X/YuHEjA8CSk5Prhc88Y71Hot/fUrjTzjp6hsVL9CwOluXVAOywRB6H65bsHQbYKIVlb2rtqRrdxHFvt7NqbVGjzpR69dVXHe5817FjR6fz79u3L959911UVlYiODgY0dHRyM/Pt0mTn5+P8PBwyVlSAPgZKmopKSmRlXHL937++WcAsHFKJpVeKC8pKal3dF5aqnn5nlS5tKZT0k1NXE3YGTylG+cUnMMXdt+TOyeWK8W9VTdX243ekbs/rj6z7rjvavJw9XkVy1TbWRfwlC0Sy/RkZxujPapF7TNF2KNU9+IlH8nJyQDsl8wLia/7zAVgt8g7Ph7w9wfy84GLFwGFWVd6btcNYWel5HrRzZVyBQQEuKVf1FDt0RP4yi7p7uw/lNetBkBQEErKymzSJCQkAFC/fE8P/QdJR+caZko5q5vJZILZbMbp06f5dpeVlcWnk3Ja/h5g46ica5nlAL4F8Dgcz4L6DsAPzZph48aNiImJwVsA3hKlMRqNiIuL45emq9VZr3ZWiUb1KdW6dWt0795d8XBlB7PMzEy0bNmSf0iSk5Oxbds2mzQ///wz3wFyB1JrQzmZsW6nPG5gLKnO74H4Gi4ulB8/flzap5TK3ffk1qxqSaekm5q4mrAzeEq3atF6aGGHWSqs1KFWi5o8lNLInRPLleLeqpur7UbvyN0fV59Zd9x3NXm4+ryKZartrAt4yhaJZXqys43RHtWi9pki7FGqe/Eff3feeScAICcnRza/hLrPTKmToaFAz57WsAO/Unpu1w1hZ6XketHNlXL961//0pRebgCrodqjJ+B2SX/hhRcU061YsQJ5eXn8MWrUKP4ct0v63XffjczMTEybNg3PPvusW/1kubP/cObYMavAYLBLEx9vHTrPyspCVd2AjNKglB76D5LL9zT4lHJGN26pbVJSEh5++GEkJSUhKSkJjz32GID6ZXa9AYTUfW6AdYDKfojUyhOw7pp3FNZBqqN1+WysO7969Wre19KHH36IYcOGITExUfLglsZp7T/o1c4q4TM+pUwmE65evQqTyYTa2lpkZmYCADp37oywsDD88MMPyM/Pxx133AGDwYCff/4ZCxYswGuvvcbnMXnyZHz88ceYOXMmnn76aWzfvh3ffPMNNm/e7BEdWolmNWlep8kNShUXA3X+d9TOlCIIgiCIpojRaITBYLDb8lkKg8HA/4FENBwmkwm5ubk4dOgQrnB/ssE6QGWxWHDo0CFcv34dwcHBkk5pE+o+M+s+7eotMRE4dszqV+rBBxtKDYIAYPXfqtbGAMDixYvxf//3f5Izh3wVzv/uypUrFdNFRkYiOjpa8tzSpUvRoUMH/Pvf/wZg9cWze/dufPTRRxgyZIhby+sOeJ9SEoNMcXFxiIyMxPXr15GVlYX4+Hjd+5SSdHTewD6lzGaz4nP3Yd2nn+iTieKAraPy7+oOKXr06MH/hs/OlnJtTjiDH2OC7em8mIkTJ2LVqlV28h07dmDQoEHYunUrZs+ejTNnzoAxhs6dO+OFF17ApEmT4O9fPyEsLS0N06dPx4kTJ9CuXTu89dZbmqaFFhUVISIiAoWFhQgPD7c7X11djUCBszuTyYRLly6hWbNm+PLLL7F48WL+3K+//orQ0FDU1NQgOjqaH03l8hDmVV1djcBdu4DBg61T0S9csGZSUQGoWF4oLpcz6aTOiWVKcTVhZ/CEbhUVFTh79iw6duzIv0wsFgvftqTCQpmzqMlDKY3cObFcKe4NulVUVCA3NxcdOnTg7z9XP46eST2jpLtce3f1mXX1eVUqm9o0amyRWCanp6/ZIimZXuyso7gr7ZGb3i+mqKgIf/nLX1BRUYHPP/8cQ4YMkXX66eiZIlukrm8kdCLtiODgYKxfvx6tW7fmN9uoqalBx3HjYDx/Hn8NCsIr27cjNjbWtt7+8x/glVeA4cOBH36QzV+p/QjbTE1NDf/9eXl5NkuTwsLCEBsbayOvra1Fq1atEBMTY3e90WhETEyMT9pZKbm3vEPEz7jwngsR33+pPA8dOsSvZlBDRkYGjEYj39+X4+eff8asWbMAAM899xyef/55m/PiMnNLf8SoqbfGskcrV67EtGnTZJfv3XjjjaisrETHjh0xefJkPPXUU/zg3MCBA5GYmIhFixbx16xYsQLTpk1Tveuz1t9pamRybbxm7140u/NOIC4O1WfO2OVx1113YdeuXVi1ahWeeOIJ3HHHHdi3bx++//57jBgxwmEZpPDm/sPhw4eRmJiIG2+8ERe436l//zuwcCEwbRrw0Ucu6ZaXl2f3jJ8+fZqfFSVFLaSXhXG764mX6AlnRMmRkZHBD0q5Wm++Zme1pNFsizT4uyKYY2ddqampfPjcuXPMYDCocnrIOUIT5iHMKzU1lbHffrM6XPPzs342b6663MK8nE0ndU4sU4qrCTuDJ3QrLy9nGRkZNo62r127phgWypxFTR5KaeTOieVKcW/QTcrROVc/TdWZJ2PKusu1d1efWVefV7V5uGqLxDI5PX3NFknJ9GJnHcUbqj0OHTqUAWDjxo1TTOfomSJbpK5v5IzjeeH1m7/7jlkCAxkDWBzAvvzyS/sv3L3b2k+KiVEsd2pqKjt37hzLyMiwOVJTU1lQUFCDOLkOCgpic+fO5b9r0aJFiv0/Z2kIOysl94Z3iJb+dnBwsM39F9YDF169erVTjsvV6Pbuu++qzlf420BJf6lzjWWPlDakeuedd9ju3bvZoUOH2HvvvceCg4NtnH57YkMqd/Yf0t97z2pnunaVzOOll15iANiMGTMYY4zFx8czAOynn35SVQa15Verh5TMnf2HEydOMADshhtuqBfOnWu9Ry++6PB6pe9Zvny5qmd8NMAy65yPH1FwYF6r0lG5o2fS1XrzJTurNY1WW+Qzy/d8haKiIj7saEqhkIqKCpjNZsTFxfF5CPMqKioC2re3RrjJbRqW7gnzcjad1DmxTCmuJuwMntKNHJ17l26uthu9I3d/XH1m3XHf1eTh6vMqlsnp6Yu2SCzTk51tjPbIzbb+7rvvcP78ecTGxkqmU/tMEfa4s/35nTwJv+pqlBsMMFVUYPny5Xj88cdtL4iPB/z8gLw861E3Y0nM2bNnMW7cONm+mpSDXLklHWqpqqrCvHnz+OVOADBz5kxs2LABR44cQUxMDP8pN1NGDQ1hZ6XknnpmhTOhuPvDkZWVpbq/XVlZaXf/3YUa3R544AG89ZbYHbI0wt8Gar/HnfZo1qxZ+Oc//6mYJisrC927d1eVn1DvPn36oLS0FO+//z5efvllp8u4cOFCybpct24dQkNDMWbMGGzbtg2FhYVo06YNrl69ipSUFABWNyoWiwVZWVkoKirCyJEjsXv3bly5cgUFBQUoLy/Hxo0bceHCBdx0000IDAxERkYGLly4gAEDBqDAZAIAFFVV4fr163y+N998M8LCwvg2eeDAAezatQsFBQUAgKCgID5tt27dYDQa+TIMHjwYp06dgslkQnBwMMaMGYO1a9fCYrGgU6dOKCgo4K8dNGgQTCYTzp49i2bNmqGmpgbr169HVVUV2rdvj06dOvH59u/fHwUFBTh16hQuXLiAYcOGYdOmTTh9+jTCw8PRs2dPPm1ycjL+/PNP/nssFgtSU1NRXFyM6OhoJCYmYsuWLQCA2267DRUVFTh69CjvM7msrAwpKSkwGo0YyBiCAZzJykLNyZMArDOqAGDEiBHYu3cvzGYzWrZsiWvXriElJQVmsxlRUVEIDg7m/RKZTCaHzzjnP4qbBXUL5P1GnYPyEj2OJUuW8M9UYmIiqqqqkJ6ejr179+Khhx5CdnY2ioqKEBcXh65du+KXX34BAPTr1w9ms5lf3scYw/fff4/S0lK0bdsWvXr1wo8//ogLFy6gR48eKCkp4XUdN24cTp8+jZSUFERFReHWW2/l6yYpKQnV1dV8fNSoUThz5gxSUlLQqlUr/h5euHABHTt2hL+/Pw4dOgQAGD58OPbv34+CggJERETg3nvvxYYNGwAAvXr1QmhoKPbv3w8A+Mtf/oLc3FykpKQgLCwMDzzwAL755hsAQPfu3XHDDTdgz549uHDhAvr27YuTJ0/i/PnzCAkJwahRo/D111/jzz//RFRUFJpzG7U5gAal3ExUVJTb8hDmFRUVVe9TikOD3wu15VJKJ3VOLFOKqwk7g6d0CwgIsIkLpytKhV2dNqk2D6U0cufEcqW4t+rmjmdNz8jdH1efWXfaOGfTqHlexTI5PX3RFollerKzjdEeb7vtNgwaNAhpaWlYunQp5s+fL5lO7TNF2OPO9te+zqdmWZcuwNGjSEtLw6ZNm+yW0I2KjETza9dgiYtDRYcOyBo/HifrHKBHRkYiJiYGeXl5qKiokBx8Aux/4GyA1QEuJNJzP27kBrKUBriqqqowfPhwAMAbb7zBfwYFBWHDhg38AIyWQaqGsLNScmefWaklteKlkYC1rgBgzJgxvMNooP4+eROesgXO1Jsz+MIu6bNnz8aMGTP4eFFREWJjYzF+/Hh+qdADDzzAn9++fTvuuecemzzy8vJ42f3338+nCwkJwYQJE7B9+3bcfPPNAICuXbti+/btCA8PR4e65zK8TRvExMTY5fvcc8/hv//9L06cOIEBAwbwfdrmzZtjwoQJNmkTExP561u3bo1+/frx5x566CE+XFJSYvM9MTEx6Nu3r6xuwnxjY2ORlJSE7du3AwBGjhyJ7du3Y8CAAXZpu3Tpwoel8hWXv1evXrh48SKmT5+O6urq+vN1A1Cd4+KAusFL4SDmfffdx4e3b9+Ozp07q17eLWYu6u01YB2QYjKfM6QyEGEwGPDggw8q2tyEhASbeyO8L3FxcfwyP7l7uH37dv4Z6t27N3+ud+/eNumFdQNYnwsufsstt9jV1fbt29GjRw8A1oFPjnvvvdeuDEI6derEh3v27CmrGwC0b98e27dvh9FoRP/+/W3OPfzww9i+fTtuvfVW9QPlmuZxEQ6noAnlzkxRF+YhzKuwsJCxggLb6Yf33aep3K6mkzonlinF1YSdwRO6lZeXs2PHjtksH6upqVEMC2XOoiYPpTRy58Rypbg36Ca1fE/4nCg9k3pGSXc1NspRXCrsjvusJg9XbZFYJqenr9kiKZle7KyjeEO2x/Xr1zMAzGg02tgZpbJJlYVsUcP0jfjr169n1ZGRjAGsoG75hdQ1oyWWajCAvSdY2pFZl260KA33WSAIC/O5JpP+m7pD6tyvMnLu+8VlkrsXQUFBLDU11W7pmdQSr4aws1JyNc/suXPn2M6dO1lGRgbbuXNngy6P1HI/3XWI++9KOPvbQGu9eePyPTH/+Mc/WMuWLfn4zJkzWa9evWzSTJgwgQ0ZMkT192uxRWplcm28dOVKq20YOFAyj7KyMhYQEMAAsD///JO1adOGAWBHjx5VVQa15Verh5TMnf0Hs9nMt9vq6mqr8KOPrPfokUccXl9YWKjp+RA+61kAqxHZa+6ogONleqtXr1ZlV6XKrAYt7VFK7st9dbW2yDVPxYQd7tjJj8tDmNfmzZvtZ0ppWL6ntlxK6aTOiWVKcTVhZ/CUbuXl5TZx4b95UmEpJ49aUZOHUhq5c2K5UlwqfOXKFbvljGqora3lr3NVN0/tmumryN0fV59Zd9o4Z9OoeV7FMjk9fdEWiWV6srON1R4ffPBBxMbGwmw2Y+3atbLptMiJetzS/jZsAMaORUDde6EVrDOXRkuknwvrP+Yc/nXxv8E64ykE9TOf/gfrrxJ/QVoAaA17B7n+ACJF6bjP8XWH1Ln+EnJW990bJMr0Hqw7C5bVfXI6cjOquG3PuaNLly7YvHkzDh06xB8ff/wxTHXLi+TQ+rwK5SaTif8e4ff+4x//wJo1a7BmzRrMnj0bK1asQJcuXXDXXXchKSkJd911F4YPH24z68ldcMt3xPdTqo24i8DAQH7nR0/ZAmfqraExmUzIzMy02SU9MzMTJSUlAIAffvgBX3zxBY4dO4YzZ87gs88+w4IFC/DSSy/xeUyePBlnz57FzJkzcfLkSXz66af45ptvMH36dLeV0539hyP79lkFBoNkHiEhIfwslSNHjijuvqeH/oNQL34HPm7Fg8LzLrQlWVlZkmlGw9YmvgfbZ707rI7KxdQCyALQB0Bo3edGiXIPGDAAiYmJNoeaWamu1ltT66srQcv3fAmDAfD3B7jBAA2DUoQXsWEDMG8ecOoU0LUrMHcuMGaM4+tcYOvWrfjHP/6BY8eOISAgAElJSfjss8/QqVMnpKWl4e6778a1a9f4afJHjx7F3XffjdzcXLRo0YLfTeXjjz/GggULcOrUKZw5cwYRERF45ZVX8MMPP6CyshJ33XUX/vOf/6BLly4A6ndh+fLLLzFr1iz+usuXL+P111/HsWPHUF1djYSEBHz00Uf8NFeCIAhP0qxZM7z44ouYPXs2lixZgieeeEJX27XrgnnzAD8/+NX51eR2TpoDe78gXSE9oCQ1+NRS5utY3aewFVjq4lIto6buU6pjzSSu8RN8t7BM3OCZ1LJBsZ4cwuV/QubNm4elS5ciiNuWvQ5u+WJubi7vb4RbQsXBnRMvqTty5AjCw8NtltN5cimdeBnkYgBFsA78PQf7OpZrI2p48cUX8cwzzwCw9qOGDh3Kn+Pi6enpTvv90hNz5syx2SW9T58+AOp3SQ8MDMQnn3yC6dOn87ukf/jhh5g0aRJ/TYcOHbB582ZMnz4dixcvRrt27fDFF19gyJAhHtdHDQHV1daAxCATR3x8PE6cOOFwUEoPCO1HRUWF1ZcQZ3u4eyVCzW6sUr6i4mH7rAP1dla8o57Q49jq1atx7tw5DB06lH+GXfHdR7gRTfO4CIdT0LKzs/mws1N0uTyEefHhFi3qpyTOmaO63MK8nE0ndU4sU4qrCTuDJ3QrLy9nR44csVnWUV5WxlhJCWMlJazcbLYLC2X8sWaN7Q6K3OeaNfZp5fIoKWHMYrEpmxzcuW+//ZatX7+enT59mh0+fJgNGzaM3XLLLay2tpbt2LGDAbDZDe+3335jAFhubi4rLy9nK1asYIGBgeyOO+5g6enp7MiRI6y0tJQ9+OCDrEePHmzXrl0sMzOTDRkyhHXu3JlVVVUxxhh/3Z133snS09PZyZMnWWlpKdu2bRtbvnw5y8rKYidOnGDPPPMMi4qKYkVFRZLll1q+x9UPLZmR1l2uvbv6zLr6vKrNw1VbJJbJ6elrtkhKphc76yje0O3x8uXLLDg4mAFge/bscVhWsZxsUcP1jbKzsxkzGCSXZpRJXJMJ+6V3crswWSTS1gDsrCAs/MyVSX9Y5ntr6sootRRQrkzioxbWnaSklqY1xnI1Vw6l8iqd8wfYJMH9UKpTNW1EzbFhwwbJNiyMa7Wz7li+p8bONlV7pMUWqZXJ1X3+m29a29hf/ypbJ++99x4DwMaPH8/XqdlsVlUGteVXq4eUzN39B2654oULF6yCFSus9+iBBxhjzG63UzU7XR6Fvf2UOxwt1ePfJxr1ksPVemsKfXXafa+RqJYZCXYmD2FefDgsDCgutoY1ODpXWy6ldFLnxDKluJqwM3hKNzGstBRo3RoAIPzPwyD6lL6Y2X4++qhkMtk8SkqAut0MGJeH5NdYz40dO9ZG/tlnnyEuLg4nTpxQvE4Yrq6uxqJFi9C3b1+Ul5fjzz//xPfff4/09HTceeedAIA1a9YgNjYWGzduxPjx4/nrPv30U8THx/N53nPPPSgvL+cdV37++eeIjIzEzp07bf7tVdLNHc+anpG7P64+s+60cc6mUfu8KtkZRTvrJJ60RVptq6/o1pjt0Wg04pFHHsGKFSuwZMkSJCcnK5bNkZyoxy3tr2tX4OjR+vcmrP+EZ0uknwfrP+vif8yFTnC5600AOkiknQHrv+5zAHSr+555dTKpvJXO/QfW2U9i+R8A4iD9b78Q4Ywp8QwqSMiUZlU1BOLZS1sBPASrboD1HnOOhaV0eAFAEKyznsTnjgBoXpcXN99L7Mi4AtalkCMAxMK+jqXaiBpqamr4sCfeIWrRameJetzZf7CUlVkFBoPsfef6vvu4pX6Qnimll/6DwWBAaWlp/cwnbqZUVZXqWVGcLTkHq428GdKzU8W2UrhUT65sRqMRxXW/oz3Vn1VK19T66kqQTyk38/vvv7stD2FefFi4raKG5Xtqy6WUTuqcWKYUVxN2Bk/pJvZ/UMa9jBoZpXJw506fPo0JEyagY8eOCA8P53dkkPM3IXxhcHkEBQXxuzKUlZUhKysLzZo143f9AIBWrVqhW7duNmvCg4KCbHaUAKy7Rjz33HPo0qULIiIiEB4ejpKSErvyKOnmjmdNz8jdH1efWXfaOGfTqHlexTI5PX3RFollerKzjd0ep06dCsC6nXheXp5i2RzJiXrc0v7mzgUYg6VuWaXU0gyO72AdmDkKoLzu85+oX84lvH6GRNrRsPod+Q72vkik8h7t4NwsGfkMiTL5wdYfFmD740u8/FAsswBYA3t/VIC9XxYlX0tyaR35drkF1gG4m+rK418X3gDgqzpdxDp8BuuAlJR+8QA6wzogJfU3FXdfXgIwHdJ1LNVG1HD69Gk+7Il3iFq02lmiHnf2HwrOn7cKDAbZ+84NSgn7t1KDUnrpP3C6cct/z9bdo+Jr1/Drr7+qWqYn9BM1FPWDz0I4Wyn3rK9evRrz589HRkYGMjIyMH/+fGRnZyMuLs7j/VmldE2tr64EDUr5GkJn5+RTqnEJDbXOWCopwZVz5+zCQhl/9OoFiP2U+PkBt9xin1Yuj5IS63drYMSIEbh69Sr++9//Yt++ffjxxx8BWAfa/P2tZkA4K0lqdDskJMQpHytS1z355JM4duwYFi9ejD179iAzMxOtWrVqEMenBEEQaklMTMSdd96JmpoafP75541dHIfMnz8fd955J0JDQ3mfgGL8/Pzsjq+//tomTVpaGhITExEcHIzOnTtj5cqVDVZmo9Go2qcK9882AKvvxfXrcTkqym4wSArxgJLcwNBGibRyecrlvVHFObUDXFKDZ34A1P7n7A/rLGuho+8JUHYCrmagaQOAjyTkf4P0QJMUBsjPeJCbF10FYCCsM6V+h/2AnXAmlNKAIUG4G38VPqWio6PRum5VBWB1jB8QIOWSWx9wfqUeeOABJCUlYfqsWQCAoxkZeOyxx2Sv8wPwb9jaEtTF8yA9APVPyD/rPXr0QIcOHXin5R06dCC/Ud6O2nWFhBVH6yLLysr48Llz55jBYFC1ZtxgMPBbT3J5CPPiw/361a+dPXBAdbmFeTmbTuqcWKYUVxN2Bk/oVl5ezo4fP27j06i2tlYxLJTxrF8v7VNK4LdAiGQeGtLU1tbyW7Tu2rWLl+/cuZMBYN999x07ceIEA8COHz/On1+6dCkDrD6lamtr+S1+hbqdOnWKAWDp6en8dWazmYWEhLB169YxxuS3Bg4LC2MrV67k4yaTiQFgH330kaRuUj6luPppqn4TGFPWXa69u/rMuvq8qs3DVVsklsnp6Wu2SEqmFzvrKO6p9piSksIAsOjoaFZZWSmbTixvDFs0Z84c9uGHH7IZM2bIbsMOgK1YsYLl5eXxh9CWnj17loWGhrIZM2awEydOsCVLlrCAgAC2detW1eXQ0jdizNo/Sk9Pt/EtIhUX94sYYyw9Pd0p/0C+dIyW8IuSCWk/WWK/SnJ+lmokztUCrEAQFn6q9dek5aiV0MGRP67DovvCyYWfoxqoHoT9G3e9Q7T8NvDz82Nnzpxx+DxJnWuqfSOttkiNTK7uq155xdpWZ85UrJPBgwfzddqiRQvV5dKazhv6Dx07drRpw3+pe0b3S9i4TICVA+yPukPObpRB2iY6+k3tLf1ZpXRNoa+u1hbRTCk3s2vXLj4cFxeH7OxsLFmyhJ8+yB1C2ZIlS/gphcI8hHnxYSdnSgnzcjad1DmxTCmuJuwMntJNPOWUW5MsFxbKeOr+6UXv3tZ/Vnr3tu7GN1p6Er1kHhrSFBcXo2XLlmjVqhU+//xznDlzBtu3b7fZXrdz585o164d3n77bZw+fRqbN2/Gv//9b4e6denSBSNHjsSkSZOwe/duHDlyBI899hjatm2LkSNHKpa5S5cuWLVqFbKysrBv3z48+uijvH8ptbq52m70jtz9cfWZdcd9V5OHq8+rWCanpy/aIrFMT3bWG9rj2LFjERMTg0uXLmH9+vWy6RzJPcG8efMwffp03HLLLYrpIiMjER0dzR/CmUpLly5Fhw4d8O9//xs9evTA1KlTMW7cOHz00UduK6f4HsXFxaG4uNhm+22puLhfBIDfLc7TBAUFITU1FampqVi9ejV/vPPOO8jIyLCRz5w5E8uXL7fb9U4t38F+VtU8SM+gEs4gYJCeiQRYZxZI+apqLQgLP7XMi2YO4pzsHOSX10npJ1569x3UzYRavXq1ZN87NTXVZocwJQwGA3Jycvi4u94h3G8DcdmEvw2+/fZbhIaGgjGGxYsX2+Wh1c4S9bit/7BhA9jy5VbBypU4uWCB7HcmJCTwYblZonrpP4ifL279g9ASCmdtGgC0rzsskJ8JKWUTAeuzLn5+uN/U3tKfVUrX1PrqSpCjczdz9epVm3hcXBxatWplt9V9dnY2LxMOSAnzEObFh50clBKXy5l0UufEMqW4mrAzeEo3i8XWVAodYEqFhTIbxoyxHiqQzUNlmpqaGvj7++Prr7/Gyy+/jF69eqFbt2549913+YGjwMBALFu2DLNmzULv3r1x2223Yfbs2Xj66acd6rZixQq88sorGD58OKqqqjBw4EBs2bIFgYGBimX+3//+h6effhqJiYmIjY3FggUL8Nprr2nSzdV2o3fk7o+rz6w77ruaPFx9XsUyOT190RaJZXqys97QHvPy8vDggw9i2bJlWLhwIbp16wYAyMjIsFmGwW0j7Qu2aMqUKXj22WfRsWNHTJ48GU899RS/rHrv3r0YPHiwTfohQ4Zg2rRpsvlVVlaisrKSjxcVFSl+vzvr3tF3uYPVq1fzvhcBYOvWrXjsscckl3+kpKTY9fH8/f0xYcIE3HvvvTCbzfzW44C1fY0aNUrV+10INyAj5XidkwFAMOwdfR+H9UdhV9gvjQHUOxGuksk/QOJTjB/kncdvrEsjpd9GUT7fQdmJu8FgwIABA5Cenm5XLwBw6tQprF69mq8PDmEdAdbnOz09nY+78x0SFxcn2Za43waJiYkIDAzEyJEjsWTJErRq1QojRozg08nZIi1laKq4o/8QunUrsGgR+J5uQQH6/OMfQJ8+Nv17k8kEs9mMiIgIXubv7283sG40Gn22/8DpyCH+rXRH3ectsC4NXgXg74DdMj0LgPOwDk5JbSIhRWBgIAYMGMC3feFvazX6eKo/q5SuqfXVlaBBKTfTSmKgyJFMfJ6LS6bhHJ0HBgItWrhULq3p1OimFFcTdgZP6cb5XuJo1qyZYlgocxY1eSil4c4NHjzYZqe9wsJCGx9S/fr1s3FIV1hYiKeeeooPT5w4ERMnTkRhYaFNvi1btsSXX34p+/3cdWL69OmDtLQ0mxf1uHHjNOnmarvRO3L3x9Vn1h33XU0erj6vYpkmO+sknrJFYpme7Gxjt0fx7kBHjx5FUlISf/6NN97gwwaDAdnZ2V5vi9555x3cc889CA0NxU8//YQXX3wRJSUlePnllwEAly5dQlRUlM01UVFRKCoqstklVcjChQsxb579T4V169YhNDQUY8aMwbZt21BYWIg2bdqgRYsWSElJAWD122WxWHD58mWkpKRg5MiR2L17Ny5fvowff/wRAwcOxMaNG3H58mUcP34cgYGBfNphw4YhICAAgYGBDbbLGPdDZ+/evbBYLOjUqRO6d++O9PR0pKenY9CgQTCZTDh79iyaNWuGVq1aYf369aiqqkL79u3RqVMnvrz9+/cHYwxhYWHIzs7GhAkTsGnTJrzxxhto164dOnbsiLVr12L58uWqBqnkBmQ4GTcDQfyjbi7kdwb8A/Y7AMoNNP0H0rsI/hPAENQPJv0I4K+w/sAErDOkZsDWv5YW/cQEBARgxowZ6N69O9q3b8/vbMY5lU5PT8fly5dhsViQmpqK0tJStG3bFr169UJ6ejrCwsIQGRmJkpISHD9+HIC1X5KXl4eioiJERUWhc+fOfD1yNoBrw6NGjUJxcTFSUlJQXFyMsrIybNq0CZcvX0ZWVpbNwMPw4cOxf/9+FBQUICIiAvfeey82bNgAAOjVqxdCQ0Oxf/9+AEDz5s2xc+dOXLx4EeXl5QgICEBtbS3efvttvP322zb3QGiLAgMDcebMGezZsweXL1/GwYMH0Vy4MRLB447+Q8KmTYCfH/yEO1X7+cHvnXf4QSm5neby8/Nt3imA9V3y3//+1+nyq9VDSuZK/8HRbnqjAfyjLuwPoDeAD2XK7g+gDRwPTAv/MDhx4oTN4G5j9x+cSdfU+upK+DHhL1PCIUVFRYiIiEBhYSHCw8PtzpeVlSFU5ITakUx8notLppkyBfj0UyA6GhDtDKSEVBm0plOjm1JcTdgZPKFbRUUFcnJy0KlTJ37qbW1tLe+sUCoslDmLmjyU0sidE8uV4t6gW0VFBXJzc9GhQwf+/nP14+iZ1DNKusu1d1efWVefV6WyqU3T4HbWSTxlZ8UyvdhZR3FPtMdDhw7Z/WBQIiMjA927d3erLZo1axb++c9/KqbJyspC9+7d+fjKlSsxbdo0XL9+3WH+c+bMwYoVK3C+blekrl274qmnnsLs2bP5NFu2bMGwYcNQVlYmOSglNVMqNjbWpb6Rlro3m80wm812g2Z5eXk29yAyMhIxMTF25zi51KCbcNaJUvndqZtYn/Lycly/fh1jxozRvAHIaMj/qJM6JzdYJR5o4vJRyt9VAgMD8f7779c7t4dtHXI0b96cn8Eoh6+/Q5yxRYmJiU2+b+SJ32nMYICfwP7xGAxAeTkA7fW3e/du9OvXz2E6b+o/ONIxE9YZUuLZmbWo35mToxbW5bh9ZHOzwrVzqXI1dv/BmXRNoa+u1hb5y54hnGLTpk2aZeLzXFwyzYUL1s/8fCA+3uqPyMlyaU2nRjeluJqwM3hKt/K6Fw2HsOMrFVbz48ARavJQSiN3TixXinurbq62G70jd39cfWbdcd/V5OHq8yqWabKzTuIpWySW6cnOemt7bMjrxbz66qvIyspSPDp27Oh0/n379sWff/7JDypFR0cjPz/fJk1+fj7Cw8MlB6QAq9+Q8PBwm0MJd9d9XFwcEhMTYTKZbPxQDRs2DI8++ih/DBs2TPIcJxdfn5iYKLmsqqHbtVgfk8mEYcOG4fTp05J+kZR8Vcn5XpE7J+enaZZMPkr5a4Hz0SXU7cyZM3jllVdk65A71PgV0/M7pKHz0DPuqPvrUVF2O2kzPz/AwUCpEjt37lSVzpf6D+LlwkC9DzxH/uOksNmNVaJc3tx/UNsnl5N7q25a26MStHzPl9iwAeAqmDHg6FFg7Fir42yVPooIgiAIgvBeWrdubeMvxt1kZmaiZcuWvEPa5ORkbNmyxSbNzz//jOTk5AYrA6EOOd9Dp0+ftvHjAlhngjkzswpQv2xOiaCgIGzYsAE7d+7kl9Ht2bMHDzzwAGJiYnifTdyn1Iw0gvAFjo0ZgwGLFlmX7DFWv5Rv7tzGLppXcQr2M6VqAWQBeAeOZ1wKl+op+fUj9AENSrkZ4Q4LamXi81zcLs3DD9tmUmcIIVjDrKVcWtOp0U0pribsDJ7STfzPpHC6olTY1WmTavNQSiN3TixXinurbq62G2/hk08+wfvvv49Lly4hPj4eS5Yswe233+5yvnL3x9Vn1h33XU0erj6vYplqO+sCnrJFYpme7Ky3tseGvN4VTCYTrl69CpPJhNraWmRmZgKw7qoaFhaGH374Afn5+bjjjjtgMBjw888/220sMXnyZHz88ceYOXMmnn76aWzfvh3ffPMNNm/e7LZyNvX+g7vbtZrBKm7Ju3hJIwBUVVVh8uTJqgawxEvqiouLbd5R3Pdwg0wdO3bkf0gmJiby4ZCQEPTo0YP/dIWm/g5p6Dz0jDvq3vjcc8CAAaj8+99hOHcO6NYNfz7zDNrJ7KStBkfLUZXKqnSuMfsP8yC9NJgbgFKzYQFn50JCQuxsni/1H+TSqZV7q25a26MSNCjlZsTOsNXIxOe5uF2aU6fsv5AxIDvbqXJpTadGN6W4mrAzeEo3ADbOwf0EU3elwn6iqb3OoCYPpTRy58Rypbg36Cbl+s7VduMNrF27FjNmzMDSpUvRt29fLFq0CEOGDEF2djbatGnjUt5y98fVZ9Yd911NHu54Xp2ysy7gSVuk1bb6im7e2h4b8npXmDNnDlatWsXH+/TpAwDYsWMHBg0ahMDAQHzyySeYPn06GGPo3LkzPvzwQ0yaNIm/pkOHDti8eTOmT5+OxYsXo127dvjiiy8wZMgQt5WzqfcfPNWuhYNVjvwu3XvvvTh48CBuuukmyfN//PEHbrrpJrsZTdnZ2Tb5ir/HW55ZPb9DGjoPPeO2uh8zBuduvplv+6UqfospobZf7Uv9B7kdQzeK0nEzojibA9j79vMmO6v0nVrTNbW+umJemlITDpFa5+5IJj7Pxe3SdO1qt4YZKtcwq1l/7yidGt2U4mrCzuAJ3QIDA1FRUYGysjJeVlpaqhgWypxFTR5KaeTOieVKcW/QjbvvgYH8BrwutxtvgPtx+NRTT6Fnz55YunQpQkNDsXz5cpfzlrs/rj6z7rjvavJw1RaJZartrAt4ys6KZXqxs47ijdkeG/J6V1i5ciUYY3bHoEGDAABDhw7F4cOHUVxcjJKSEmRmZuL555+36ywOGjQIhw8fRmVlJXJyciR3TXWFptx/cBRvrHYdFxeHyspKO39N3MGdE89O8AXdHKXx9XdIQ+ehZ7y17k+ePKkqna/1Hxz5oONmRAltjhq7IyXzVluklK6p9dWVoJlSvsTcuVYfUn5+9Uv3aA2zRwgICMC1a9dQUFAAwLqsrKqqit8GVSoslDmLmjyU0sidE8uV4o2t25UrV1BQUIDIyEiXd/zzJqqqqpCRkWGz45W/vz8GDx6MvXv3NmLJCIIgCIIgCMJ9CH1EcZBvOYLDj0mtiyFkcbStYXFxMVq0aKFJJj7PxSXTbNhg9SGVnW2dITV3LqBiDbNUGbSmU6ObUlxN2Bk8pVtRURFKS0t53wwWi4X/t1kqLJQ5i5o8lNLInRPLleLeoFtkZCSio6Ntpjdz9eOr2x5fvHgRbdu2xZ49e2wcCs+cORM7d+7Evn377K7Rsg27XHt39Zl19XlVKpvaNA1uZ53EU7ZILNOTnW3s9qh1G++MjAx06dLFp22RO3BH30jP/YfGbtfOpKF3SOO+Q5yxRYmJiT7fN3KVRv+dVofW+tu1axcGDBjgMJ039R+cbaNy6NXOKqVrCnZWrS2imVJuZv/+/bj33ns1ycTnubhkmjFjnNppT6oMWtOp0U0pribsDJ7S7cCBA7j33nvRpk0bVFdXY+/evfxgglRYKHMWNXkopZE7J5YrxRtbt4EDB0rOkHK13fgiCxcuxLx59pvmrlu3DqGhoRgzZgy2bduGwsJClJWV4a9//StSU1MBWB3OWiwW/PLLLzAajRg5ciR2796N7OxsdO3aFQMHDsTGjRthNptxzz33IDAwED/++COMRiOGDRuGb7/9FiEhISguLsZTTz2Fb7/9FgBw8803IywsjB9EGzJkCI4dO4YLFy6gefPmGD58ONauXQvA6sjTaDRi06ZNMBqNGDx4ME6dOgWTyYTg4GCMGTMGa9euhcViQU1NDe655x7s2rULgHV5kclkwtmzZ3HlyhVMnToV69evR1VVFdq3bw+z2cwv9+zfvz8KCgqwZ88eGI1GTJgwAatXr0ZkZCTatWuHnj174quvvoLRaERQUBA6d+6MEydOwGw244UXXsDWrVtRXFyM6OhoJCYm8juT3XbbbaioqMDRo0cBAKNHj0ZaWhquXbsGo9GImpoaftCa8+1z+PBhAMCIESOwd+9emM1mlJSU4PHHH8d331ndfN5yyy0wGAw4cOAAzGYznnjiCRw6dAiXLl1CixYtEBwczDsv7tmzJyIiIvDDDz/AaDTi/vvvxw8//IDg4GCEhoYiLCyMn9FpsVgwcOBA7N69G2azGX/961+Rk5ODc+fOISgoCGPHjsW6detQU1ODjh07Ii4uDmlpaQCAgQMH4sKFC8jJyYG/vz+MRiMKCwtRWVmJuLg4dO3aFb/88gsAoF+/fjCbzcjOzobZbMaUKVOQmpqK0tJStG3bFr169cKPP/4Is9mMYcOGoaSkBMePHwcAtGrVCtXV1SgqKkJUVBQqKipQWFgIAEhKSsLhw4dhsVgAAC1btoSfnx+uXr2K0tJSPPLII1i5ciWMRiMSEhLg7+/PTxcfPnw49u/fj4KCAkRERODee+/Fhg0bAAC9evVCaGgo9u/fDwAIDw9HWFgYLl68iPz8fI1PJfgyxMTEaL62qdDU+w9adXPH+01NHlr1kpLrRTe39tWdxFP3pinjrXV//PhxVYNSDdmuG8rOqkWvdlYpXVOzs0rQoJSb4X4MaJGJz3NxpTTuKJfWdGp0U4qrCTuDp3ULCAhAQEAALl26BIPBAACSYaHMWdTkoZRG7pxYrhRvbN3kluy52m4aG6PRiICAALsfwfn5+YiOjpa8Zvbs2ZgxYwYf52ZKjR8/nv/34YEHHgAApKSkoEWLFpgwYYJNHpmZmbzs/vvvx5UrV3iHxhMmTEBKSgpuvvlmANZ/tbi0ISEh/PnAwEC7fDt27MiHBw4caHNOnJYbKAKA1q1bo1+/fvy5hx56iC9/27Ztba6NiYlB3759kZKSAgAYO3Ysfy4lJcUmbWxsLE6dOsXLIiMjbc5zZUhJSUF8fDzi4+ORkpKCZs2aYfjw4Yrl79WrFx8eOnSobBkAoHv37nz4vvvu49MZDAa7tJ07d0ZKSgoiIiJw9913K+YrvIfBwcF8WJg2JSUFsbGxvJ5RUVGIiorCnXfeyeczfvx4WV3btm3L77IlVQZhPC4uDomJiUhJSYG/vz8efPBBu7QpKSl8O+ndu7dkvuK4sA2KdQsNDbW5D4DtDkbizpC4/J06deLzGjZsGADrbnazZ89WtTzZYDDAaDTyZSgqKnJ4TVOF+g/adHPH+01NHlr1kpLrRTdv66sbjUYYDAZNtsgdZdA7nqp7rfVXXV3tMJ1cWZXOadFNq511to3KoVc7q5SuqdlZJWhQys1ERERolonPc3GlNO4ol9Z0anRTiqsJO4O36uaqXmrz0KqXlFxPuvkKQUFBSEpKwrZt2zBq1CgA1pkt27Ztw9SpUyWvCQ4ORnBwsKr8m1rdNyU7K5aRnXUNYR5xcXH8jC8xu3fvRv/+/fk45wvj2LFjLpdB71D/QR92VkquF9287R3ijC1yRxn0jqfqXqn+xBiNRtXvEW/qP6jVcffu3Rg1apRD31F6tbNK6ZqanVWCfEppxNG6yMrKSrsfjY5k4vNcXCmNVtRer5ROjW5KcTVhZ/BW3VzVy1GZ1aSRO6cn3XzZb8LatWvx5JNPYtmyZbj99tuxaNEifPPNNzh58iSioqIcXq+ke1Ooey0yPdlZsYzsbMO3R6V0erBFruKOvhH1H7zfzkrJ9aKb3t4hTdUe0e806j9Ixb29/+BI7q26udMWueapmLCD81mhRSY+z8WV0rijXFrTqdFNKa4m7AzeqpureqnNQ6teUnI96eZLPPTQQ/jggw8wZ84cJCQkIDMzE1u3blU1IOWIplb3TcnOimVkZ13DVd30YIsaGuo/eGe7pv6Depkvv0OIeppa3VP/QT7szf0HX9HNnbaIlu9phJtYJuc7oqyszO6cI5n4PBdXSqMVtdcrpVOjm1JcTdgZvFU3V/VyVGY1aeTO6Uk37ryvTvqcOnWq7HI9RyjZo6ZQ91pkerKzYhnZ2YZvj0rp9GKLXMEdfSPqP3i/nZWS60U3vb1Dmqo9ot9p1H+Qint7/8GR3Ft1c6ctouV7Gvnzzz8RGxvb2MUgCELE+fPn0a5du8Yuhkche0QQ3gfZIoIgvIWmZo/IFhGEd+LIFtGglEYsFgsuXryIFi1awM/Pz+78bbfdhgMHDmiSic9zce6zqMi6w9b58+edXhcuVQat6dTophSXCutVt23btrmsl6Myq0kjd05PujHGUFxcjBtvvBH+/v5Ol8cXUbJHTaHutcj0ZGfFMrKzDd8eldKRLXJP34j6D95vZ6XketFNb++QpmqP6Hca9R+k4t7ef3Ak91bd3GmLaPmeRvz9/RVH+QICAuwagCOZ+DwXF8vDw8OdblxSZdCaTo1uSnElnfWqmyt6OSqzmjRy5/SmW1PdbUbJHjWVulcr05OdFcvIzjZ8e1RKR7bIPX0j6j94v52VkutFNz2+Q5qiPaLfadR/kIr7Qv9BSe6turnTFjWdoXMPMWXKFM0y8XkuLnWdO8ulNZ0a3ZTiSjq7QlPXTateUnI96UZYaWp135TsrFjmLXXmKJ0v21mldGSLHKPXupc75yu6Uf9BvcyX3yFEPU2t7qn/oBx2lYbqP/iKbu60RbR8zwcoKtLvtq561U2vegH61o1QRs91T7r5HnrVi1CHXutfr3oBpBuhT/Rc93rVTa96Ab6rG82U8gGCg4Mxd+5cBAcHN3ZR3I5eddOrXoC+dSOU0XPdk26+h171ItSh1/rXq14A6UboEz3XvV5106tegO/qRjOlCIIgCIIgCIIgCIIgCI9DM6UIgiAIgiAIgiAIgiAIj0ODUgRBEARBEARBEARBEITHoUEpgiAIgiAIgiAIgiAIwuPQoBRBEARBEARBEARBEAThcWhQyscZPXo0WrZsiXHjxjV2UdzK+fPnMWjQIPTs2RO9e/fGunXrGrtIbuP69eu49dZbkZCQgF69euG///1vYxfJrZSVlaF9+/Z47bXXGrsohIfRoz0iW+TbkD1qmujRFgH6tUdkiwi9QrbI9yB71DjQ7ns+TlpaGoqLi7Fq1Sp8++23jV0ct5GXl4f8/HwkJCTg0qVLSEpKwqlTp9C8efPGLprL1NbWorKyEqGhoSgtLUWvXr1w8OBBtGrVqrGL5hbeeOMNnDlzBrGxsfjggw8auziEB9GjPSJb5NuQPWqa6NEWAfq1R2SLCL1Ctsj3IHvUONBMKR9n0KBBaNGiRWMXw+3ExMQgISEBABAdHQ2j0YirV682bqHcREBAAEJDQwEAlZWVYIxBL2PDp0+fxsmTJ/GXv/ylsYtCNAJ6tEdki3wXskdNFz3aIkC/9ohsEaFXyBb5HmSPGgcalGpEdu3ahREjRuDGG2+En58fNm7caJfmk08+wU033QSDwYC+ffti//79ni+oE7hTt4yMDNTW1iI2NraBS60Od+h2/fp1xMfHo127dnj99ddhNBo9VHp53KHXa6+9hoULF3qoxIQ70as9Ilvke7YIIHvUlNGrLQL0a4/IFpEt0iNki3zPFgFkj3zVHtGgVCNSWlqK+Ph4fPLJJ5Ln165dixkzZmDu3Lk4dOgQ4uPjMWTIEBQUFHi4pNpxl25Xr17FE088gc8//9wTxVaFO3SLjIzEkSNHkJubi6+++gr5+fmeKr4sruq1adMmdO3aFV27dvVksQk3oVd7RLbI92wRQPaoKaNXWwTo1x6RLSJbpEfIFvmeLQLIHvmsPWKEVwCAfffddzay22+/nU2ZMoWP19bWshtvvJEtXLjQJt2OHTvY2LFjPVFMp3BWt4qKCjZgwAD25ZdfeqqomnGl3jheeOEFtm7duoYspmac0WvWrFmsXbt2rH379qxVq1YsPDyczZs3z5PFJtyEXu0R2SLfs0WMkT1qyujVFjGmX3tEtohskR4hW+R7togxske+ZI9oppSXUlVVhYyMDAwePJiX+fv7Y/Dgwdi7d28jlsx11OjGGMPEiRNxzz334PHHH2+sompGjW75+fkoLi4GABQWFmLXrl3o1q1bo5RXLWr0WrhwIc6fP48//vgDH3zwASZNmoQ5c+Y0VpEJN6JXe0S2yPdsEUD2qCmjV1sE6NcekS0iW6RHyBb5ni0CyB55sz2iQSkvxWw2o7a2FlFRUTbyqKgoXLp0iY8PHjwY48ePx5YtW9CuXTufMIRqdEtPT8fatWuxceNGJCQkICEhAUePHm2M4mpCjW7nzp3DgAEDEB8fjwEDBuCll17CLbfc0hjFVY3a9kjoE73aI7JFvmeLALJHTRm92iJAv/aIbBGhR8gW+Z4tAsgeeTPNGrsAhGv88ssvjV2EBqF///6wWCyNXYwG4fbbb0dmZmZjF6NBmThxYmMXgWgE9GiPyBb5PmSPmh56tEWAfu0R2SJCr5At8j3IHjUONFPKSzEajQgICLBzrJafn4/o6OhGKpV7IN18D73qRahDr/WvV70A0o3QJ3que73qple9AH3rRiij57on3XwTX9eNBqW8lKCgICQlJWHbtm28zGKxYNu2bUhOTm7EkrkO6eZ76FUvQh16rX+96gWQboQ+0XPd61U3veoF6Fs3Qhk91z3p5pv4um60fK8RKSkpwZkzZ/h4bm4uMjMzccMNNyAuLg4zZszAk08+iVtvvRW33347Fi1ahNLSUjz11FONWGp1kG6+p5te9SLUodf616teAOnmq7oRyui57vWqm171AvStG6GMnuuedCPdvI7G3fyvabNjxw4GwO548skn+TRLlixhcXFxLCgoiN1+++3st99+a7wCa4B08z3d9KoXoQ691r9e9WKMdPNV3Qhl9Fz3etVNr3oxpm/dCGX0XPekG+nmbfgxxpj2oSyCIAiCIAiCIAiCIAiCcB7yKUUQBEEQBEEQBEEQBEF4HBqUIgiCIAiCIAiCIAiCIDwODUoRBEEQBEEQBEEQBEEQHocGpQiCIAiCIAiCIAiCIAiPQ4NSBEEQBEEQBEEQBEEQhMehQSmCIAiCIAiCIAiCIAjC49CgFEEQBEEQBEEQBEEQBOFxaFCKIAiCIAiCIAiCIAiC8Dg0KEUQBEEQBEEQBEEQBEF4HBqUInTJxIkTMWrUKJfySEtLg5+fH65fv66Ybtu2bejRowdqa2sd5rl161YkJCTAYrG4VDaCIHwDskUEQXgDZIsIgvAWyB4RYmhQimhUJk6cCD8/P/j5+SEoKAidO3fGO++8g5qaGpfyXbx4MVauXOmeQjpg5syZePPNNxEQEOAw7dChQxEYGIg1a9Z4oGQEQaiFbBFBEN4A2SKCILwFskeEp6BBKaLRGTp0KPLy8nD69Gm8+uqrePvtt/H+++87lVdtbS0sFgsiIiIQGRnp3oJKsHv3buTk5GDs2LGqr5k4cSL+85//NGCpCIJwBrJFBEF4A2SLCILwFsgeEZ6ABqWIRic4OBjR0dFo3749XnjhBQwePBjff/89AKCyshKvvfYa2rZti+bNm6Nv375IS0vjr125ciUiIyPx/fffo2fPnggODobJZLKbFlpZWYmXX34Zbdq0gcFgQP/+/XHgwAGbcmzZsgVdu3ZFSEgI7r77bvzxxx8Oy/7111/jvvvug8Fg4GVHjhzB3XffjRYtWiA8PBxJSUk4ePAgf37EiBE4ePAgcnJynLthBEE0CGSLCILwBsgWEQThLZA9IjwBDUoRXkdISAiqqqoAAFOnTsXevXvx9ddf4/fff8f48eMxdOhQnD59mk9fVlaGf/7zn/jiiy9w/PhxtGnTxi7PmTNnYv369Vi1ahUOHTqEzp07Y8iQIbh69SoA4Pz58xgzZgxGjBiBzMxMPPvss5g1a5bDsv7666+49dZbbWSPPvoo2rVrhwMHDiAjIwOzZs1CYGAgfz4uLg5RUVH49ddfnbo/BEF4BrJFBEF4A2SLCILwFsgeEQ0CI4hG5Mknn2QjR45kjDFmsVjYzz//zIKDg9lrr73Gzp07xwICAtiFCxdsrrn33nvZ7NmzGWOMrVixggFgmZmZsvmWlJSwwMBAtmbNGv58VVUVu/HGG9m//vUvxhhjs2fPZj179rTJ429/+xsDwK5duyZb/oiICPbll1/ayFq0aMFWrlypqHefPn3Y22+/rZiGIAjPQbaIIAhvgGwRQRDeAtkjwlM0a7zhMIKwkpqairCwMFRXV8NiseCRRx7B22+/jbS0NNTW1qJr16426SsrK9GqVSs+HhQUhN69e8vmn5OTg+rqavTr14+XBQYG4vbbb0dWVhYAICsrC3379rW5Ljk52WHZy8vLbaaEAsCMGTPw7LPP4v/+7/8wePBgjB8/Hp06dbJJExISgrKyMof5EwThOcgWEQThDZAtIgjCWyB7RHgCGpQiGp27774bn332GYKCgnDjjTeiWTNrsywpKUFAQAAyMjLsdkwICwvjwyEhIfDz8/NomTmMRiOuXbtmI3v77bfxyCOPYPPmzfh//+//Ye7cufj6668xevRoPs3Vq1fRunVrTxeXIAgFyBYRBOENkC0iCMJbIHtEeALyKUU0Os2bN0fnzp0RFxfHGzoA6NOnD2pra1FQUIDOnTvbHNHR0arz79SpE4KCgpCens7LqqurceDAAfTs2RMA0KNHD+zfv9/mut9++81h3n369MGJEyfs5F27dsX06dPx008/YcyYMVixYgV/rqKiAjk5OejTp49qHQiCaHjIFhEE4Q2QLSIIwlsge0R4AhqUIryWrl274tFHH8UTTzyBDRs2IDc3F/v378fChQuxefNm1fk0b94cL7zwAl5//XVs3boVJ06cwKRJk1BWVoZnnnkGADB58mScPn0ar7/+OrKzs/HVV19h5cqVDvMeMmQIdu/ezcfLy8sxdepUpKWl4dy5c0hPT8eBAwfQo0cPPs1vv/2G4OBgVdNOCYJofMgWEQThDZAtIgjCWyB7RLiVxnZqRTRthI7upKiqqmJz5sxhN910EwsMDGQxMTFs9OjR7Pfff2eMWR3oRUREOMy3vLycvfTSS8xoNLLg4GDWr18/tn//fptrfvjhB9a5c2cWHBzMBgwYwJYvX+7Qgd6VK1eYwWBgJ0+eZIwxVllZyR5++GEWGxvLgoKC2I033simTp3KysvL+Wuee+459vzzzzu+OQRBeAyyRQRBeANkiwiC8BbIHhGewo8xxhp3WIwgfJvXX38dRUVFWLZsmcO0ZrMZ3bp1w8GDB9GhQwcPlI4giKYC2SKCILwBskUEQXgLZI98A1q+RxAu8sYbb6B9+/awWCwO0/7xxx/49NNPydARBOF2yBYRBOENkC0iCMJbIHvkG9BMKYIgCIIgCIIgCIIgCMLj0EwpgiAIgiAIgiAIgiAIwuPQoBRBEARBEARBEARBEAThcWhQiiAIgiAIgiAIgiAIgvA4NChFEARBEARBEARBEARBeBwalCIIgiAIgiAIgiAIgiA8Dg1KEQRBEARBEARBEARBEB6HBqUIgiAIgiAIgiAIgiAIj0ODUgRBEARBEARBEARBEITHoUEpgiAIgiAIgiAIgiAIwuPQoBRBEARBEARBEARBEAThcf4/xyjw8v2zly8AAAAASUVORK5CYII=",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -3089,30 +3173,10 @@
}
],
"source": [
- "compare_two_z_files(\n",
- " z_file_path,\n",
- " archived_z_file,\n",
- " angle1=+13.2,\n",
- " label1=\"aurora\",\n",
- " label2=\"emtf\",\n",
- " scale_factor1=1,\n",
- " out_file=f\"{tf_file_base}compare.png\",\n",
- " markersize=3,\n",
- " rho_ylims=[1e0, 1e3],\n",
- " xlims=[0.99, 2000],\n",
- " rho_ax_label_size=12,\n",
- " phi_ax_label_size=12\n",
- ")"
+ "compare = CompareTF(archived_z_file, z_file_path)\n",
+ "compare.plot_two_transfer_functions()"
]
},
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "dca59e0a-69cf-453c-8c8b-461750c25deb",
- "metadata": {},
- "outputs": [],
- "source": []
- },
{
"cell_type": "markdown",
"id": "5fe72445-8acd-4fb0-8df6-6cce87b068f5",
@@ -3132,7 +3196,7 @@
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": 24,
"id": "729d27e8-61c3-4946-817b-fbee4217eb0d",
"metadata": {},
"outputs": [
@@ -3140,7 +3204,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m24:09:03T20:09:42 | INFO | line:771 |mth5.mth5 | close_mth5 | Flushing and closing 8P_CAS04_NVR08.h5\u001b[0m\n"
+ "\u001b[1m2026-01-18T11:08:47.902494-0800 | INFO | mth5.mth5 | close_mth5 | line: 896 | Flushing and closing 8P_CAS04_NVR08.h5\u001b[0m\n"
]
},
{
@@ -3350,7 +3414,7 @@
"6 NVR08 CONUS South "
]
},
- "execution_count": 25,
+ "execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
@@ -3372,7 +3436,7 @@
},
{
"cell_type": "code",
- "execution_count": 26,
+ "execution_count": 25,
"id": "dae34d63-e84a-4825-9535-a5e8eac48392",
"metadata": {},
"outputs": [
@@ -3380,11 +3444,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m24:09:03T20:09:42 | INFO | line:250 |mtpy.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column fc, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:42 | INFO | line:250 |mtpy.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column remote, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:42 | INFO | line:250 |mtpy.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column run_dataarray, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:42 | INFO | line:250 |mtpy.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column stft, adding and setting dtype to .\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:42 | INFO | line:250 |mtpy.processing.kernel_dataset | _add_columns | KernelDataset DataFrame needs column mth5_obj, adding and setting dtype to .\u001b[0m\n"
+ "\u001b[1m2026-01-18T11:08:49.553041-0800 | INFO | mth5.mth5 | close_mth5 | line: 896 | Flushing and closing 8P_CAS04_NVR08.h5\u001b[0m\n"
]
},
{
@@ -3471,7 +3531,7 @@
"3 2020-07-13 19:00:00+00:00 1034585.0 "
]
},
- "execution_count": 26,
+ "execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
@@ -3494,7 +3554,7 @@
},
{
"cell_type": "code",
- "execution_count": 27,
+ "execution_count": 26,
"id": "4ab4bbd5-ec58-4f69-8eff-1e10918f7098",
"metadata": {},
"outputs": [
@@ -3503,8 +3563,8 @@
"output_type": "stream",
"text": [
"file_info: \n",
- " os.stat_result(st_mode=33204, st_ino=89922093, st_dev=66306, st_nlink=1, st_uid=1001, st_gid=1001, st_size=107289751, st_atime=1725419382, st_mtime=1725419382, st_ctime=1725419382)\n",
- "file_size_before_fc_addition 107289751\n"
+ " os.stat_result(st_mode=33204, st_ino=89922093, st_dev=66306, st_nlink=1, st_uid=1001, st_gid=1001, st_size=107459085, st_atime=1768763329, st_mtime=1768763329, st_ctime=1768763329)\n",
+ "file_size_before_fc_addition 107459085\n"
]
}
],
@@ -3518,7 +3578,7 @@
},
{
"cell_type": "code",
- "execution_count": 28,
+ "execution_count": 27,
"id": "499693a7-e57b-4244-9e13-5da2f7fed74c",
"metadata": {},
"outputs": [
@@ -3526,7 +3586,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m24:09:03T20:09:42 | INFO | line:108 |aurora.config.config_creator | determine_band_specification_style | Bands not defined; setting to EMTF BANDS_DEFAULT_FILE\u001b[0m\n"
+ "\u001b[1m2026-01-18T11:08:50.198320-0800 | INFO | aurora.config.config_creator | determine_band_specification_style | line: 113 | Bands not defined; setting to EMTF BANDS_DEFAULT_FILE\u001b[0m\n"
]
}
],
@@ -3542,7 +3602,7 @@
},
{
"cell_type": "code",
- "execution_count": 29,
+ "execution_count": 28,
"id": "74c00db4-68b7-4964-9395-48fe508d079f",
"metadata": {
"tags": []
@@ -3560,20 +3620,21 @@
" \"channel_nomenclature.hx\": \"hx\",\n",
" \"channel_nomenclature.hy\": \"hy\",\n",
" \"channel_nomenclature.hz\": \"hz\",\n",
+ " \"channel_nomenclature.keyword\": \"default\",\n",
" \"decimations\": [\n",
" {\n",
" \"decimation_level\": {\n",
- " \"anti_alias_filter\": \"default\",\n",
" \"bands\": [\n",
" {\n",
" \"band\": {\n",
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.23828125,\n",
- " \"frequency_min\": 0.19140625,\n",
+ " \"frequency_max\": 0.119140625,\n",
+ " \"frequency_min\": 0.095703125,\n",
" \"index_max\": 30,\n",
- " \"index_min\": 25\n",
+ " \"index_min\": 25,\n",
+ " \"name\": \"0.107422\"\n",
" }\n",
" },\n",
" {\n",
@@ -3581,10 +3642,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.19140625,\n",
- " \"frequency_min\": 0.15234375,\n",
+ " \"frequency_max\": 0.095703125,\n",
+ " \"frequency_min\": 0.076171875,\n",
" \"index_max\": 24,\n",
- " \"index_min\": 20\n",
+ " \"index_min\": 20,\n",
+ " \"name\": \"0.085938\"\n",
" }\n",
" },\n",
" {\n",
@@ -3592,10 +3654,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.15234375,\n",
- " \"frequency_min\": 0.12109375,\n",
+ " \"frequency_max\": 0.076171875,\n",
+ " \"frequency_min\": 0.060546875,\n",
" \"index_max\": 19,\n",
- " \"index_min\": 16\n",
+ " \"index_min\": 16,\n",
+ " \"name\": \"0.068359\"\n",
" }\n",
" },\n",
" {\n",
@@ -3603,10 +3666,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.12109375,\n",
- " \"frequency_min\": 0.09765625,\n",
+ " \"frequency_max\": 0.060546875,\n",
+ " \"frequency_min\": 0.048828125,\n",
" \"index_max\": 15,\n",
- " \"index_min\": 13\n",
+ " \"index_min\": 13,\n",
+ " \"name\": \"0.054688\"\n",
" }\n",
" },\n",
" {\n",
@@ -3614,10 +3678,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.09765625,\n",
- " \"frequency_min\": 0.07421875,\n",
+ " \"frequency_max\": 0.048828125,\n",
+ " \"frequency_min\": 0.037109375,\n",
" \"index_max\": 12,\n",
- " \"index_min\": 10\n",
+ " \"index_min\": 10,\n",
+ " \"name\": \"0.042969\"\n",
" }\n",
" },\n",
" {\n",
@@ -3625,10 +3690,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.07421875,\n",
- " \"frequency_min\": 0.05859375,\n",
+ " \"frequency_max\": 0.037109375,\n",
+ " \"frequency_min\": 0.029296875,\n",
" \"index_max\": 9,\n",
- " \"index_min\": 8\n",
+ " \"index_min\": 8,\n",
+ " \"name\": \"0.033203\"\n",
" }\n",
" },\n",
" {\n",
@@ -3636,10 +3702,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.05859375,\n",
- " \"frequency_min\": 0.04296875,\n",
+ " \"frequency_max\": 0.029296875,\n",
+ " \"frequency_min\": 0.021484375,\n",
" \"index_max\": 7,\n",
- " \"index_min\": 6\n",
+ " \"index_min\": 6,\n",
+ " \"name\": \"0.025391\"\n",
" }\n",
" },\n",
" {\n",
@@ -3647,66 +3714,69 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 0,\n",
- " \"frequency_max\": 0.04296875,\n",
- " \"frequency_min\": 0.03515625,\n",
+ " \"frequency_max\": 0.021484375,\n",
+ " \"frequency_min\": 0.017578125,\n",
" \"index_max\": 5,\n",
- " \"index_min\": 5\n",
+ " \"index_min\": 5,\n",
+ " \"name\": \"0.019531\"\n",
" }\n",
" }\n",
" ],\n",
+ " \"channel_weight_specs\": [],\n",
+ " \"decimation.anti_alias_filter\": \"default\",\n",
" \"decimation.factor\": 1.0,\n",
" \"decimation.level\": 0,\n",
" \"decimation.method\": \"default\",\n",
" \"decimation.sample_rate\": 1.0,\n",
" \"estimator.engine\": \"RME_RR\",\n",
" \"estimator.estimate_per_channel\": true,\n",
- " \"extra_pre_fft_detrend_type\": \"linear\",\n",
" \"input_channels\": [\n",
" \"hx\",\n",
" \"hy\"\n",
" ],\n",
- " \"method\": \"fft\",\n",
- " \"min_num_stft_windows\": 2,\n",
" \"output_channels\": [\n",
" \"ex\",\n",
" \"ey\",\n",
" \"hz\"\n",
" ],\n",
- " \"pre_fft_detrend_type\": \"linear\",\n",
- " \"prewhitening_type\": \"first difference\",\n",
- " \"recoloring\": true,\n",
- " \"reference_channels\": [\n",
- " \"hx\",\n",
- " \"hy\"\n",
- " ],\n",
+ " \"reference_channels\": [],\n",
" \"regression.max_iterations\": 10,\n",
" \"regression.max_redescending_iterations\": 2,\n",
- " \"regression.minimum_cycles\": 10,\n",
+ " \"regression.minimum_cycles\": 1,\n",
" \"regression.r0\": 1.5,\n",
" \"regression.tolerance\": 0.005,\n",
" \"regression.u0\": 2.8,\n",
- " \"regression.verbosity\": 0,\n",
+ " \"regression.verbosity\": 1,\n",
" \"save_fcs\": true,\n",
" \"save_fcs_type\": \"h5\",\n",
- " \"window.clock_zero_type\": \"ignore\",\n",
- " \"window.num_samples\": 128,\n",
- " \"window.overlap\": 32,\n",
- " \"window.type\": \"hamming\"\n",
+ " \"stft.harmonic_indices\": null,\n",
+ " \"stft.method\": \"fft\",\n",
+ " \"stft.min_num_stft_windows\": 0,\n",
+ " \"stft.per_window_detrend_type\": \"linear\",\n",
+ " \"stft.pre_fft_detrend_type\": \"linear\",\n",
+ " \"stft.prewhitening_type\": \"first difference\",\n",
+ " \"stft.recoloring\": true,\n",
+ " \"stft.window.additional_args\": {},\n",
+ " \"stft.window.clock_zero_type\": \"ignore\",\n",
+ " \"stft.window.normalized\": true,\n",
+ " \"stft.window.num_samples\": 256,\n",
+ " \"stft.window.overlap\": 32,\n",
+ " \"stft.window.type\": \"hamming\"\n",
" }\n",
" },\n",
" {\n",
" \"decimation_level\": {\n",
- " \"anti_alias_filter\": \"default\",\n",
" \"bands\": [\n",
" {\n",
" \"band\": {\n",
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 1,\n",
- " \"frequency_max\": 0.0341796875,\n",
- " \"frequency_min\": 0.0263671875,\n",
+ " \"frequency_max\": 0.01708984375,\n",
+ " \"frequency_min\": 0.01318359375,\n",
" \"index_max\": 17,\n",
- " \"index_min\": 14\n",
+ " \"index_min\": 14,\n",
+ " \"name\": \"0.015137\"\n",
" }\n",
" },\n",
" {\n",
@@ -3714,10 +3784,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 1,\n",
- " \"frequency_max\": 0.0263671875,\n",
- " \"frequency_min\": 0.0205078125,\n",
+ " \"frequency_max\": 0.01318359375,\n",
+ " \"frequency_min\": 0.01025390625,\n",
" \"index_max\": 13,\n",
- " \"index_min\": 11\n",
+ " \"index_min\": 11,\n",
+ " \"name\": \"0.011719\"\n",
" }\n",
" },\n",
" {\n",
@@ -3725,10 +3796,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 1,\n",
- " \"frequency_max\": 0.0205078125,\n",
- " \"frequency_min\": 0.0166015625,\n",
+ " \"frequency_max\": 0.01025390625,\n",
+ " \"frequency_min\": 0.00830078125,\n",
" \"index_max\": 10,\n",
- " \"index_min\": 9\n",
+ " \"index_min\": 9,\n",
+ " \"name\": \"0.009277\"\n",
" }\n",
" },\n",
" {\n",
@@ -3736,10 +3808,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 1,\n",
- " \"frequency_max\": 0.0166015625,\n",
- " \"frequency_min\": 0.0126953125,\n",
+ " \"frequency_max\": 0.00830078125,\n",
+ " \"frequency_min\": 0.00634765625,\n",
" \"index_max\": 8,\n",
- " \"index_min\": 7\n",
+ " \"index_min\": 7,\n",
+ " \"name\": \"0.007324\"\n",
" }\n",
" },\n",
" {\n",
@@ -3747,10 +3820,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 1,\n",
- " \"frequency_max\": 0.0126953125,\n",
- " \"frequency_min\": 0.0107421875,\n",
+ " \"frequency_max\": 0.00634765625,\n",
+ " \"frequency_min\": 0.00537109375,\n",
" \"index_max\": 6,\n",
- " \"index_min\": 6\n",
+ " \"index_min\": 6,\n",
+ " \"name\": \"0.005859\"\n",
" }\n",
" },\n",
" {\n",
@@ -3758,66 +3832,69 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 1,\n",
- " \"frequency_max\": 0.0107421875,\n",
- " \"frequency_min\": 0.0087890625,\n",
+ " \"frequency_max\": 0.00537109375,\n",
+ " \"frequency_min\": 0.00439453125,\n",
" \"index_max\": 5,\n",
- " \"index_min\": 5\n",
+ " \"index_min\": 5,\n",
+ " \"name\": \"0.004883\"\n",
" }\n",
" }\n",
" ],\n",
+ " \"channel_weight_specs\": [],\n",
+ " \"decimation.anti_alias_filter\": \"default\",\n",
" \"decimation.factor\": 4.0,\n",
" \"decimation.level\": 1,\n",
" \"decimation.method\": \"default\",\n",
" \"decimation.sample_rate\": 0.25,\n",
" \"estimator.engine\": \"RME_RR\",\n",
" \"estimator.estimate_per_channel\": true,\n",
- " \"extra_pre_fft_detrend_type\": \"linear\",\n",
" \"input_channels\": [\n",
" \"hx\",\n",
" \"hy\"\n",
" ],\n",
- " \"method\": \"fft\",\n",
- " \"min_num_stft_windows\": 2,\n",
" \"output_channels\": [\n",
" \"ex\",\n",
" \"ey\",\n",
" \"hz\"\n",
" ],\n",
- " \"pre_fft_detrend_type\": \"linear\",\n",
- " \"prewhitening_type\": \"first difference\",\n",
- " \"recoloring\": true,\n",
- " \"reference_channels\": [\n",
- " \"hx\",\n",
- " \"hy\"\n",
- " ],\n",
+ " \"reference_channels\": [],\n",
" \"regression.max_iterations\": 10,\n",
" \"regression.max_redescending_iterations\": 2,\n",
- " \"regression.minimum_cycles\": 10,\n",
+ " \"regression.minimum_cycles\": 1,\n",
" \"regression.r0\": 1.5,\n",
" \"regression.tolerance\": 0.005,\n",
" \"regression.u0\": 2.8,\n",
- " \"regression.verbosity\": 0,\n",
+ " \"regression.verbosity\": 1,\n",
" \"save_fcs\": true,\n",
" \"save_fcs_type\": \"h5\",\n",
- " \"window.clock_zero_type\": \"ignore\",\n",
- " \"window.num_samples\": 128,\n",
- " \"window.overlap\": 32,\n",
- " \"window.type\": \"hamming\"\n",
+ " \"stft.harmonic_indices\": null,\n",
+ " \"stft.method\": \"fft\",\n",
+ " \"stft.min_num_stft_windows\": 0,\n",
+ " \"stft.per_window_detrend_type\": \"linear\",\n",
+ " \"stft.pre_fft_detrend_type\": \"linear\",\n",
+ " \"stft.prewhitening_type\": \"first difference\",\n",
+ " \"stft.recoloring\": true,\n",
+ " \"stft.window.additional_args\": {},\n",
+ " \"stft.window.clock_zero_type\": \"ignore\",\n",
+ " \"stft.window.normalized\": true,\n",
+ " \"stft.window.num_samples\": 256,\n",
+ " \"stft.window.overlap\": 32,\n",
+ " \"stft.window.type\": \"hamming\"\n",
" }\n",
" },\n",
" {\n",
" \"decimation_level\": {\n",
- " \"anti_alias_filter\": \"default\",\n",
" \"bands\": [\n",
" {\n",
" \"band\": {\n",
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 2,\n",
- " \"frequency_max\": 0.008544921875,\n",
- " \"frequency_min\": 0.006591796875,\n",
+ " \"frequency_max\": 0.0042724609375,\n",
+ " \"frequency_min\": 0.0032958984375,\n",
" \"index_max\": 17,\n",
- " \"index_min\": 14\n",
+ " \"index_min\": 14,\n",
+ " \"name\": \"0.003784\"\n",
" }\n",
" },\n",
" {\n",
@@ -3825,10 +3902,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 2,\n",
- " \"frequency_max\": 0.006591796875,\n",
- " \"frequency_min\": 0.005126953125,\n",
+ " \"frequency_max\": 0.0032958984375,\n",
+ " \"frequency_min\": 0.0025634765625,\n",
" \"index_max\": 13,\n",
- " \"index_min\": 11\n",
+ " \"index_min\": 11,\n",
+ " \"name\": \"0.002930\"\n",
" }\n",
" },\n",
" {\n",
@@ -3836,10 +3914,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 2,\n",
- " \"frequency_max\": 0.005126953125,\n",
- " \"frequency_min\": 0.004150390625,\n",
+ " \"frequency_max\": 0.0025634765625,\n",
+ " \"frequency_min\": 0.0020751953125,\n",
" \"index_max\": 10,\n",
- " \"index_min\": 9\n",
+ " \"index_min\": 9,\n",
+ " \"name\": \"0.002319\"\n",
" }\n",
" },\n",
" {\n",
@@ -3847,10 +3926,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 2,\n",
- " \"frequency_max\": 0.004150390625,\n",
- " \"frequency_min\": 0.003173828125,\n",
+ " \"frequency_max\": 0.0020751953125,\n",
+ " \"frequency_min\": 0.0015869140625,\n",
" \"index_max\": 8,\n",
- " \"index_min\": 7\n",
+ " \"index_min\": 7,\n",
+ " \"name\": \"0.001831\"\n",
" }\n",
" },\n",
" {\n",
@@ -3858,10 +3938,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 2,\n",
- " \"frequency_max\": 0.003173828125,\n",
- " \"frequency_min\": 0.002685546875,\n",
+ " \"frequency_max\": 0.0015869140625,\n",
+ " \"frequency_min\": 0.0013427734375,\n",
" \"index_max\": 6,\n",
- " \"index_min\": 6\n",
+ " \"index_min\": 6,\n",
+ " \"name\": \"0.001465\"\n",
" }\n",
" },\n",
" {\n",
@@ -3869,66 +3950,69 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 2,\n",
- " \"frequency_max\": 0.002685546875,\n",
- " \"frequency_min\": 0.002197265625,\n",
+ " \"frequency_max\": 0.0013427734375,\n",
+ " \"frequency_min\": 0.0010986328125,\n",
" \"index_max\": 5,\n",
- " \"index_min\": 5\n",
+ " \"index_min\": 5,\n",
+ " \"name\": \"0.001221\"\n",
" }\n",
" }\n",
" ],\n",
+ " \"channel_weight_specs\": [],\n",
+ " \"decimation.anti_alias_filter\": \"default\",\n",
" \"decimation.factor\": 4.0,\n",
" \"decimation.level\": 2,\n",
" \"decimation.method\": \"default\",\n",
" \"decimation.sample_rate\": 0.0625,\n",
" \"estimator.engine\": \"RME_RR\",\n",
" \"estimator.estimate_per_channel\": true,\n",
- " \"extra_pre_fft_detrend_type\": \"linear\",\n",
" \"input_channels\": [\n",
" \"hx\",\n",
" \"hy\"\n",
" ],\n",
- " \"method\": \"fft\",\n",
- " \"min_num_stft_windows\": 2,\n",
" \"output_channels\": [\n",
" \"ex\",\n",
" \"ey\",\n",
" \"hz\"\n",
" ],\n",
- " \"pre_fft_detrend_type\": \"linear\",\n",
- " \"prewhitening_type\": \"first difference\",\n",
- " \"recoloring\": true,\n",
- " \"reference_channels\": [\n",
- " \"hx\",\n",
- " \"hy\"\n",
- " ],\n",
+ " \"reference_channels\": [],\n",
" \"regression.max_iterations\": 10,\n",
" \"regression.max_redescending_iterations\": 2,\n",
- " \"regression.minimum_cycles\": 10,\n",
+ " \"regression.minimum_cycles\": 1,\n",
" \"regression.r0\": 1.5,\n",
" \"regression.tolerance\": 0.005,\n",
" \"regression.u0\": 2.8,\n",
- " \"regression.verbosity\": 0,\n",
+ " \"regression.verbosity\": 1,\n",
" \"save_fcs\": true,\n",
" \"save_fcs_type\": \"h5\",\n",
- " \"window.clock_zero_type\": \"ignore\",\n",
- " \"window.num_samples\": 128,\n",
- " \"window.overlap\": 32,\n",
- " \"window.type\": \"hamming\"\n",
+ " \"stft.harmonic_indices\": null,\n",
+ " \"stft.method\": \"fft\",\n",
+ " \"stft.min_num_stft_windows\": 0,\n",
+ " \"stft.per_window_detrend_type\": \"linear\",\n",
+ " \"stft.pre_fft_detrend_type\": \"linear\",\n",
+ " \"stft.prewhitening_type\": \"first difference\",\n",
+ " \"stft.recoloring\": true,\n",
+ " \"stft.window.additional_args\": {},\n",
+ " \"stft.window.clock_zero_type\": \"ignore\",\n",
+ " \"stft.window.normalized\": true,\n",
+ " \"stft.window.num_samples\": 256,\n",
+ " \"stft.window.overlap\": 32,\n",
+ " \"stft.window.type\": \"hamming\"\n",
" }\n",
" },\n",
" {\n",
" \"decimation_level\": {\n",
- " \"anti_alias_filter\": \"default\",\n",
" \"bands\": [\n",
" {\n",
" \"band\": {\n",
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 3,\n",
- " \"frequency_max\": 0.00274658203125,\n",
- " \"frequency_min\": 0.00213623046875,\n",
+ " \"frequency_max\": 0.001373291015625,\n",
+ " \"frequency_min\": 0.001068115234375,\n",
" \"index_max\": 22,\n",
- " \"index_min\": 18\n",
+ " \"index_min\": 18,\n",
+ " \"name\": \"0.001221\"\n",
" }\n",
" },\n",
" {\n",
@@ -3936,10 +4020,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 3,\n",
- " \"frequency_max\": 0.00213623046875,\n",
- " \"frequency_min\": 0.00164794921875,\n",
+ " \"frequency_max\": 0.001068115234375,\n",
+ " \"frequency_min\": 0.000823974609375,\n",
" \"index_max\": 17,\n",
- " \"index_min\": 14\n",
+ " \"index_min\": 14,\n",
+ " \"name\": \"0.000946\"\n",
" }\n",
" },\n",
" {\n",
@@ -3947,10 +4032,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 3,\n",
- " \"frequency_max\": 0.00164794921875,\n",
- " \"frequency_min\": 0.00115966796875,\n",
+ " \"frequency_max\": 0.000823974609375,\n",
+ " \"frequency_min\": 0.000579833984375,\n",
" \"index_max\": 13,\n",
- " \"index_min\": 10\n",
+ " \"index_min\": 10,\n",
+ " \"name\": \"0.000702\"\n",
" }\n",
" },\n",
" {\n",
@@ -3958,10 +4044,11 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 3,\n",
- " \"frequency_max\": 0.00115966796875,\n",
- " \"frequency_min\": 0.00079345703125,\n",
+ " \"frequency_max\": 0.000579833984375,\n",
+ " \"frequency_min\": 0.000396728515625,\n",
" \"index_max\": 9,\n",
- " \"index_min\": 7\n",
+ " \"index_min\": 7,\n",
+ " \"name\": \"0.000488\"\n",
" }\n",
" },\n",
" {\n",
@@ -3969,51 +4056,54 @@
" \"center_averaging_type\": \"geometric\",\n",
" \"closed\": \"left\",\n",
" \"decimation_level\": 3,\n",
- " \"frequency_max\": 0.00079345703125,\n",
- " \"frequency_min\": 0.00054931640625,\n",
+ " \"frequency_max\": 0.000396728515625,\n",
+ " \"frequency_min\": 0.000274658203125,\n",
" \"index_max\": 6,\n",
- " \"index_min\": 5\n",
+ " \"index_min\": 5,\n",
+ " \"name\": \"0.000336\"\n",
" }\n",
" }\n",
" ],\n",
+ " \"channel_weight_specs\": [],\n",
+ " \"decimation.anti_alias_filter\": \"default\",\n",
" \"decimation.factor\": 4.0,\n",
" \"decimation.level\": 3,\n",
" \"decimation.method\": \"default\",\n",
" \"decimation.sample_rate\": 0.015625,\n",
" \"estimator.engine\": \"RME_RR\",\n",
" \"estimator.estimate_per_channel\": true,\n",
- " \"extra_pre_fft_detrend_type\": \"linear\",\n",
" \"input_channels\": [\n",
" \"hx\",\n",
" \"hy\"\n",
" ],\n",
- " \"method\": \"fft\",\n",
- " \"min_num_stft_windows\": 2,\n",
" \"output_channels\": [\n",
" \"ex\",\n",
" \"ey\",\n",
" \"hz\"\n",
" ],\n",
- " \"pre_fft_detrend_type\": \"linear\",\n",
- " \"prewhitening_type\": \"first difference\",\n",
- " \"recoloring\": true,\n",
- " \"reference_channels\": [\n",
- " \"hx\",\n",
- " \"hy\"\n",
- " ],\n",
+ " \"reference_channels\": [],\n",
" \"regression.max_iterations\": 10,\n",
" \"regression.max_redescending_iterations\": 2,\n",
- " \"regression.minimum_cycles\": 10,\n",
+ " \"regression.minimum_cycles\": 1,\n",
" \"regression.r0\": 1.5,\n",
" \"regression.tolerance\": 0.005,\n",
" \"regression.u0\": 2.8,\n",
- " \"regression.verbosity\": 0,\n",
+ " \"regression.verbosity\": 1,\n",
" \"save_fcs\": true,\n",
" \"save_fcs_type\": \"h5\",\n",
- " \"window.clock_zero_type\": \"ignore\",\n",
- " \"window.num_samples\": 128,\n",
- " \"window.overlap\": 32,\n",
- " \"window.type\": \"hamming\"\n",
+ " \"stft.harmonic_indices\": null,\n",
+ " \"stft.method\": \"fft\",\n",
+ " \"stft.min_num_stft_windows\": 0,\n",
+ " \"stft.per_window_detrend_type\": \"linear\",\n",
+ " \"stft.pre_fft_detrend_type\": \"linear\",\n",
+ " \"stft.prewhitening_type\": \"first difference\",\n",
+ " \"stft.recoloring\": true,\n",
+ " \"stft.window.additional_args\": {},\n",
+ " \"stft.window.clock_zero_type\": \"ignore\",\n",
+ " \"stft.window.normalized\": true,\n",
+ " \"stft.window.num_samples\": 256,\n",
+ " \"stft.window.overlap\": 32,\n",
+ " \"stft.window.type\": \"hamming\"\n",
" }\n",
" }\n",
" ],\n",
@@ -4220,7 +4310,7 @@
"}"
]
},
- "execution_count": 29,
+ "execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
@@ -4231,7 +4321,7 @@
},
{
"cell_type": "code",
- "execution_count": 30,
+ "execution_count": 29,
"id": "117661a7-9918-4dca-9cc5-b142fa906417",
"metadata": {},
"outputs": [],
@@ -4241,7 +4331,7 @@
},
{
"cell_type": "code",
- "execution_count": 31,
+ "execution_count": 30,
"id": "ef23917a-6db4-4c11-896d-2457f36c0b24",
"metadata": {
"tags": []
@@ -4251,53 +4341,247 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m24:09:03T20:09:42 | INFO | line:277 |aurora.pipelines.transfer_function_kernel | show_processing_summary | Processing Summary Dataframe:\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:42 | INFO | line:278 |aurora.pipelines.transfer_function_kernel | show_processing_summary | \n",
- " duration has_data n_samples run station survey run_hdf5_reference station_hdf5_reference fc remote stft mth5_obj dec_level dec_factor sample_rate window_duration num_samples_window num_samples num_stft_windows\n",
- "0 11266.0 True 11267 a CAS04 CONUS South False False None None 0 1.0 1.000000 128.0 128 11266.0 117.0\n",
- "1 11266.0 True 11267 a CAS04 CONUS South False False None None 1 4.0 0.250000 512.0 128 2816.0 29.0\n",
- "2 11266.0 True 11267 a CAS04 CONUS South False False None None 2 4.0 0.062500 2048.0 128 704.0 7.0\n",
- "3 11266.0 True 11267 a CAS04 CONUS South False False None None 3 4.0 0.015625 8192.0 128 176.0 1.0\n",
- "4 847648.0 True 847649 b CAS04 CONUS South False False None None 0 1.0 1.000000 128.0 128 847648.0 8829.0\n",
- "5 847648.0 True 847649 b CAS04 CONUS South False False None None 1 4.0 0.250000 512.0 128 211912.0 2207.0\n",
- "6 847648.0 True 847649 b CAS04 CONUS South False False None None 2 4.0 0.062500 2048.0 128 52978.0 551.0\n",
- "7 847648.0 True 847649 b CAS04 CONUS South False False None None 3 4.0 0.015625 8192.0 128 13244.0 137.0\n",
- "8 1638042.0 True 1638043 c CAS04 CONUS South False False None None 0 1.0 1.000000 128.0 128 1638042.0 17062.0\n",
- "9 1638042.0 True 1638043 c CAS04 CONUS South False False None None 1 4.0 0.250000 512.0 128 409510.0 4265.0\n",
- "10 1638042.0 True 1638043 c CAS04 CONUS South False False None None 2 4.0 0.062500 2048.0 128 102377.0 1066.0\n",
- "11 1638042.0 True 1638043 c CAS04 CONUS South False False None None 3 4.0 0.015625 8192.0 128 25594.0 266.0\n",
- "12 1034585.0 True 1034586 d CAS04 CONUS South False False None None 0 1.0 1.000000 128.0 128 1034585.0 10776.0\n",
- "13 1034585.0 True 1034586 d CAS04 CONUS South False False None None 1 4.0 0.250000 512.0 128 258646.0 2693.0\n",
- "14 1034585.0 True 1034586 d CAS04 CONUS South False False None None 2 4.0 0.062500 2048.0 128 64661.0 673.0\n",
- "15 1034585.0 True 1034586 d CAS04 CONUS South False False None None 3 4.0 0.015625 8192.0 128 16165.0 168.0\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:42 | INFO | line:411 |aurora.pipelines.transfer_function_kernel | validate_processing | No RR station specified, switching RME_RR to RME\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:42 | INFO | line:411 |aurora.pipelines.transfer_function_kernel | validate_processing | No RR station specified, switching RME_RR to RME\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:42 | INFO | line:411 |aurora.pipelines.transfer_function_kernel | validate_processing | No RR station specified, switching RME_RR to RME\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:42 | INFO | line:411 |aurora.pipelines.transfer_function_kernel | validate_processing | No RR station specified, switching RME_RR to RME\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:42 | INFO | line:654 |aurora.pipelines.transfer_function_kernel | memory_check | Total memory: 62.74 GB\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:42 | INFO | line:658 |aurora.pipelines.transfer_function_kernel | memory_check | Total Bytes of Raw Data: 0.026 GB\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:42 | INFO | line:661 |aurora.pipelines.transfer_function_kernel | memory_check | Raw Data will use: 0.042 % of memory\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:42 | INFO | line:517 |aurora.pipelines.process_mth5 | process_mth5_legacy | Processing config indicates 4 decimation levels\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:42 | INFO | line:445 |aurora.pipelines.transfer_function_kernel | valid_decimations | After validation there are 4 valid decimation levels\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:48 | INFO | line:889 |mtpy.processing.kernel_dataset | initialize_dataframe_for_processing | Dataset dataframe initialized successfully\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:48 | INFO | line:143 |aurora.pipelines.transfer_function_kernel | update_dataset_df | Dataset Dataframe Updated for decimation level 0 Successfully\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:48 | INFO | line:364 |aurora.pipelines.process_mth5 | save_fourier_coefficients | Saving FC level\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:50 | INFO | line:364 |aurora.pipelines.process_mth5 | save_fourier_coefficients | Saving FC level\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:51 | INFO | line:364 |aurora.pipelines.process_mth5 | save_fourier_coefficients | Saving FC level\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:53 | INFO | line:364 |aurora.pipelines.process_mth5 | save_fourier_coefficients | Saving FC level\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:53 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 25.728968s (0.038867Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:53 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 19.929573s (0.050177Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:54 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 15.164131s (0.065945Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:54 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 11.746086s (0.085135Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:55 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 9.195791s (0.108745Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:55 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 7.362526s (0.135823Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:56 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 5.856115s (0.170762Hz)\u001b[0m\n",
- "\u001b[1m24:09:03T20:09:58 | INFO | line:35 |aurora.time_series.frequency_band_helpers | get_band_for_tf_estimate | Processing band 4.682492s (0.213562Hz)\u001b[0m\n"
+ "\u001b[31m\u001b[1m2026-01-18T11:08:50.269210-0800 | ERROR | aurora.time_series.window_helpers | available_number_of_windows_in_array | line: 50 | Window is longer than the time series -- no complete windows can be returned\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:50.281245-0800 | INFO | aurora.pipelines.transfer_function_kernel | show_processing_summary | line: 290 | Processing Summary Dataframe:\u001b[0m\n",
+ "\u001b[1m2026-01-18T11:08:50.292741-0800 | INFO | aurora.pipelines.transfer_function_kernel | show_processing_summary | line: 291 | \n",
+ " duration has_data n_samples run station survey run_hdf5_reference station_hdf5_reference fc remote stft mth5_obj dec_level dec_factor sample_rate window_duration num_samples_window num_samples num_stft_windows\n",
+ "0 11266.0 True 11267 a CAS04 CONUS South False None None 0 1.0 1.000000 256.0 256 11266.0 50.0\n",
+ "1 11266.0 True 11267 a CAS04 CONUS South False None None 1 4.0 0.250000 1024.0 256 2816.0 12.0\n",
+ "2 11266.0 True 11267 a CAS04 CONUS South False None None 2 4.0 0.062500 4096.0 256 704.0 3.0\n",
+ "3 11266.0 True 11267 a CAS04 CONUS South False None None 3 4.0 0.015625 16384.0 256 176.0 0.0\n",
+ "4 847648.0 True 847649 b CAS04 CONUS South False None None 0 1.0 1.000000 256.0 256 847648.0 3784.0\n",
+ "5 847648.0 True 847649 b CAS04 CONUS South False None None 1 4.0 0.250000 1024.0 256 211912.0 945.0\n",
+ "6 847648.0 True 847649 b CAS04 CONUS South False None None 2 4.0 0.062500 4096.0 256 52978.0 236.0\n",
+ "7 847648.0 True 847649 b CAS04 CONUS South False None None 3 4.0 0.015625 16384.0 256 13244.0 58.0\n",
+ "8 1638042.0 True 1638043 c CAS04 CONUS South False None None 0 1.0 1.000000 256.0 256 1638042.0 7312.0\n",
+ "9 1638042.0 True 1638043 c CAS04 CONUS South False None None 1 4.0 0.250000 1024.0 256 409510.0 1828.0\n",
+ "10 1638042.0 True 1638043 c CAS04 CONUS South False None None 2 4.0 0.062500 4096.0 256 102377.0 456.0\n",
+ "11 1638042.0 True 1638043 c CAS04 CONUS South False None None 3 4.0 0.015625 16384.0 256 25594.0 114.0\n",
+ "12 1034585.0 True 1034586 d CAS04 CONUS South