|
16 | 16 |
|
17 | 17 | from absl.testing import parameterized |
18 | 18 |
|
| 19 | +import pytest |
19 | 20 | import tensorflow as tf |
20 | 21 | from tensorflow_addons.utils import test_utils |
21 | 22 | import numpy as np |
|
25 | 26 |
|
26 | 27 | def _maybe_serialized(lr_decay, serialize_and_deserialize): |
27 | 28 | if serialize_and_deserialize: |
28 | | - serialized = tf.keras.optimizers.learning_rate_schedule.serialize(lr_decay) |
29 | | - return tf.keras.optimizers.learning_rate_schedule.deserialize(serialized) |
| 29 | + serialized = tf.keras.optimizers.schedules.serialize(lr_decay) |
| 30 | + return tf.keras.optimizers.schedules.deserialize(serialized) |
30 | 31 | else: |
31 | 32 | return lr_decay |
32 | 33 |
|
33 | 34 |
|
34 | | -@test_utils.run_all_in_graph_and_eager_modes |
35 | | -@parameterized.named_parameters(("NotSerialized", False), ("Serialized", True)) |
36 | | -class CyclicalLearningRateTest(tf.test.TestCase, parameterized.TestCase): |
37 | | - def testTriangularCyclicalLearningRate(self, serialize): |
38 | | - self.skipTest("Failing. See https://github.com/tensorflow/addons/issues/1203") |
39 | | - initial_learning_rate = 0.1 |
40 | | - maximal_learning_rate = 1 |
41 | | - step_size = 4000 |
42 | | - step = tf.resource_variable_ops.ResourceVariable(0) |
43 | | - triangular_cyclical_lr = cyclical_learning_rate.TriangularCyclicalLearningRate( |
44 | | - initial_learning_rate=initial_learning_rate, |
45 | | - maximal_learning_rate=maximal_learning_rate, |
46 | | - step_size=step_size, |
47 | | - ) |
48 | | - triangular_cyclical_lr = _maybe_serialized(triangular_cyclical_lr, serialize) |
| 35 | +@pytest.mark.parametrize("serialize", [True, False]) |
| 36 | +def test_triangular_cyclical_learning_rate(serialize): |
| 37 | + initial_learning_rate = 0.1 |
| 38 | + max_learning_rate = 1 |
| 39 | + step_size = 40 |
| 40 | + triangular_cyclical_lr = cyclical_learning_rate.TriangularCyclicalLearningRate( |
| 41 | + initial_learning_rate=initial_learning_rate, |
| 42 | + maximal_learning_rate=max_learning_rate, |
| 43 | + step_size=step_size, |
| 44 | + ) |
| 45 | + triangular_cyclical_lr = _maybe_serialized(triangular_cyclical_lr, serialize) |
49 | 46 |
|
50 | | - self.evaluate(tf.compat.v1.global_variables_initializer()) |
51 | | - expected = np.concatenate( |
52 | | - [ |
53 | | - np.linspace(initial_learning_rate, maximal_learning_rate, num=2001)[1:], |
54 | | - np.linspace(maximal_learning_rate, initial_learning_rate, num=2001)[1:], |
55 | | - ] |
56 | | - ) |
| 47 | + expected = np.concatenate( |
| 48 | + [ |
| 49 | + np.linspace(initial_learning_rate, max_learning_rate, num=step_size + 1), |
| 50 | + np.linspace(max_learning_rate, initial_learning_rate, num=step_size + 1)[ |
| 51 | + 1: |
| 52 | + ], |
| 53 | + ] |
| 54 | + ) |
| 55 | + |
| 56 | + for step, expected_value in enumerate(expected): |
| 57 | + np.testing.assert_allclose(triangular_cyclical_lr(step), expected_value, 1e-6) |
57 | 58 |
|
58 | | - for expected_value in expected: |
59 | | - self.assertAllClose( |
60 | | - self.evaluate(triangular_cyclical_lr(step)), expected_value, 1e-6 |
61 | | - ) |
62 | | - self.evaluate(step.assign_add(1)) |
63 | 59 |
|
| 60 | +@test_utils.run_all_in_graph_and_eager_modes |
| 61 | +@parameterized.named_parameters(("NotSerialized", False), ("Serialized", True)) |
| 62 | +class CyclicalLearningRateTest(tf.test.TestCase, parameterized.TestCase): |
64 | 63 | def testTriangular2CyclicalLearningRate(self, serialize): |
65 | 64 | self.skipTest("Failing. See https://github.com/tensorflow/addons/issues/1203") |
66 | 65 | initial_learning_rate = 0.1 |
|
0 commit comments