|
| 1 | +#!/usr/bin/env python |
| 2 | +# -*- coding: utf-8 -*- |
| 3 | +# Author: Jackson O'Donnell |
| 4 | +# jacksonhodonnell@gmail.com |
| 5 | +''' |
| 6 | +Galaxy cluster pressure profiles. |
| 7 | +
|
| 8 | +This module implements pressure profiles presented by Battaglia et al. 2012 |
| 9 | +(https://ui.adsabs.harvard.edu/abs/2012ApJ...758...75B/abstract), referred to |
| 10 | +as BBPS. |
| 11 | +
|
| 12 | +Their best-fit pressure profile is implemented in the function |
| 13 | +`P_BBPS`, and projected profiles are implemented in `projected_P_BBPS` and |
| 14 | +`projected_P_BBPS_real`. The difference in the latter is that `projected_P_BBPS` |
| 15 | +makes an approximation that reduces cosmology dependence, and |
| 16 | +`projected_P_BBPS_real` interpolates over a table of comoving distances to |
| 17 | +obtain a more precise answer. |
| 18 | +''' |
| 19 | +import astropy.constants as c |
| 20 | +import astropy.units as u |
| 21 | +import numpy as np |
| 22 | +from scipy.integrate import quad |
| 23 | + |
| 24 | + |
| 25 | +def _rho_crit(z, omega_m, omega_lambda): |
| 26 | + ''' |
| 27 | + The critical density of the universe, in units of $Msun*Mpc^{-3}*h^{-2}$. |
| 28 | + ''' |
| 29 | + # The constant is 3 * (100 km / s / Mpc)**2 / (8 * pi * G) |
| 30 | + # in units of Msun h^2 Mpc^{-3} |
| 31 | + return 2.77536627e+11 * (omega_m * (1 + z)**3 + omega_lambda) |
| 32 | + |
| 33 | + |
| 34 | +def P_delta(M, z, omega_b, omega_m, omega_lambda, delta=200): |
| 35 | + ''' |
| 36 | + The pressure amplitude of a halo: |
| 37 | +
|
| 38 | + P_{delta} = G * M_{delta} * delta * rho_crit(z) \ |
| 39 | + * omega_b / omega_m / (2R_delta) |
| 40 | +
|
| 41 | + See BBPS, section 4.1 for details. |
| 42 | + Units: Msun s^{-2} Mpc^{-1} |
| 43 | + ''' |
| 44 | + return c.G * M * delta * _rho_crit(z, omega_m, omega_lambda) * \ |
| 45 | + omega_b / omega_m / 2 / R_delta(M, omega_m, omega_lambda, z, delta) |
| 46 | + |
| 47 | + |
| 48 | +def R_delta(M, z, omega_m, omega_lambda, delta=200): |
| 49 | + ''' |
| 50 | + The radius of a sphere of mass M (in Msun), which has a density `delta` |
| 51 | + times the critical density of the universe. |
| 52 | +
|
| 53 | + Units: Mpc h^(-2/3) |
| 54 | + ''' |
| 55 | + volume = M / (delta * _rho_crit(z, omega_m, omega_lambda)) |
| 56 | + return (3 * volume / (4 * np.pi))**(1./3) |
| 57 | + |
| 58 | + |
| 59 | +def P_simple_BBPS_generalized(x, M, z, P_0, x_c, beta, |
| 60 | + alpha=1, gamma=-0.3, delta=200): |
| 61 | + ''' |
| 62 | + The generalized dimensionless BBPS pressure profile. Input x should be |
| 63 | + `r / R_{delta}`. |
| 64 | + ''' |
| 65 | + return P_0 * (x / x_c)**gamma * (1 + (x / x_c)**alpha)**(-beta) |
| 66 | + |
| 67 | + |
| 68 | +def P_BBPS_generalized(r, M, z, omega_b, omega_m, omega_lambda, |
| 69 | + P_0, x_c, beta, alpha=1, gamma=-0.3, delta=200): |
| 70 | + r''' |
| 71 | + The generalized NFW form of the Battaglia profile, presented in BBPS2 |
| 72 | + equation 10 as: |
| 73 | +
|
| 74 | + P = P_{delta} P_0 (x / x_c)^\gamma [1 + (x / x_c)^\alpha]^{-\beta} |
| 75 | + ''' |
| 76 | + x = r / R_delta(M, z, omega_m, omega_lambda, delta=delta) |
| 77 | + Pd = P_delta(M, z, omega_b, omega_m, omega_lambda, delta=delta) |
| 78 | + return Pd * P_simple_BBPS_generalized(x, M, z, P_0, x_c, beta, |
| 79 | + alpha=alpha, gamma=gamma, delta=delta) |
| 80 | + |
| 81 | + |
| 82 | +def _A_BBPS(M, z, A_0, alpha_m, alpha_z): |
| 83 | + ''' |
| 84 | + Mass-Redshift dependency model for the generalized BBPS profile parameters, |
| 85 | + fit to simulated halos in that data. The best-fit parameters are presented |
| 86 | + in Table 1. of BBPS2 |
| 87 | + ''' |
| 88 | + return A_0 * (M / 10**14)**alpha_m * (1 + z)**alpha_z |
| 89 | + |
| 90 | + |
| 91 | +def P_simple_BBPS(x, M, z): |
| 92 | + ''' |
| 93 | + The best-fit pressure profile presented in BBPS2. |
| 94 | + ''' |
| 95 | + params_P = (18.1, 0.154, -0.758) |
| 96 | + params_x_c = (0.497, -0.00865, 0.731) |
| 97 | + params_beta = (4.35, 0.0393, 0.415) |
| 98 | + P_0 = _A_BBPS(M, z, *params_P) |
| 99 | + x_c = _A_BBPS(M, z, *params_x_c) |
| 100 | + beta = _A_BBPS(M, z, *params_beta) |
| 101 | + return P_simple_BBPS_generalized(x, M, z, P_0, x_c, beta) |
| 102 | + |
| 103 | + |
| 104 | +def P_BBPS(r, M, z, omega_b, omega_m, omega_lambda): |
| 105 | + ''' |
| 106 | + The best-fit pressure profile presented in BBPS2. |
| 107 | +
|
| 108 | + Args: |
| 109 | + r (float): Radius from the cluster center, in Mpc. |
| 110 | + M (float): Cluster M_{200}, in Msun. |
| 111 | + z (float): Cluster redshift. |
| 112 | + omega_b (float): Baryon fraction. |
| 113 | + omega_m (float): Matter fraction. |
| 114 | + omega_lambda (float): Dark energy fraction. |
| 115 | +
|
| 116 | + Returns: |
| 117 | + float: Pressure at distance `r` from the cluster, in units of \ |
| 118 | + Msun s^{-2} Mpc^{-1}. |
| 119 | + ''' |
| 120 | + # These are the best-fit parameters from BBPS2 Table 1, under AGN Feedback |
| 121 | + # \Delta = 200 |
| 122 | + params_P = (18.1, 0.154, -0.758) |
| 123 | + params_x_c = (0.497, -0.00865, 0.731) |
| 124 | + params_beta = (4.35, 0.0393, 0.415) |
| 125 | + |
| 126 | + P_0 = _A_BBPS(M, z, *params_P) |
| 127 | + x_c = _A_BBPS(M, z, *params_x_c) |
| 128 | + beta = _A_BBPS(M, z, *params_beta) |
| 129 | + return P_BBPS_generalized(r, M, z, omega_b, omega_m, omega_lambda, |
| 130 | + P_0, x_c, beta) |
| 131 | + |
| 132 | + |
| 133 | +def projected_P_BBPS(r, M, z, omega_b, omega_m, omega_lambda, |
| 134 | + dist=8): |
| 135 | + ''' |
| 136 | + Computes the projected line-of-sight density of a cluster at a radius r |
| 137 | + from the cluster center. |
| 138 | +
|
| 139 | + Args: |
| 140 | + r (float): Radius from the cluster center, in Mpc. |
| 141 | + M (float): Cluster M_{200}, in Msun. |
| 142 | + z (float): Cluster redshift. |
| 143 | + omega_b (float): Baryon fraction. |
| 144 | + omega_m (float): Matter fraction. |
| 145 | + omega_lambda (float): Dark energy fraction. |
| 146 | +
|
| 147 | + Returns: |
| 148 | + float: Integrated line-of-sight pressure at distance `r` from the \ |
| 149 | + cluster, in units of Msun s^{-2}. |
| 150 | + ''' |
| 151 | + R_del = R_delta(M, z, omega_m, omega_lambda) |
| 152 | + return quad(lambda x: P_BBPS(np.sqrt(x*x + r*r), M, z, |
| 153 | + omega_b, omega_m, |
| 154 | + omega_lambda).value, |
| 155 | + -dist * R_del, dist * R_del, |
| 156 | + epsrel=1e-3)[0] / (1 + z) |
| 157 | + |
| 158 | + |
| 159 | +def projected_P_BBPS_real(r, M, z, omega_b, omega_m, omega_lambda, chis, zs, |
| 160 | + dist=8): |
| 161 | + ''' |
| 162 | + Computes the projected line-of-sight density of a cluster at a radius r |
| 163 | + from the cluster center. |
| 164 | +
|
| 165 | + Args: |
| 166 | + r (float): Radius from the cluster center, in Mpc. |
| 167 | + M (float): Cluster M_{200}, in Msun. |
| 168 | + z (float): Cluster redshift. |
| 169 | + omega_b (float): Baryon fraction. |
| 170 | + omega_m (float): Matter fraction. |
| 171 | + omega_lambda (float): Dark energy fraction. |
| 172 | + chis (1d array of floats): The comoving line-of-sight distance, in Mpc. |
| 173 | + zs (1d array of floats): The redshifts corresponding to `chis`. |
| 174 | +
|
| 175 | + Returns: |
| 176 | + float: Integrated line-of-sight pressure at distance `r` from the \ |
| 177 | + cluster, in units of Msun s^{-2}. |
| 178 | + ''' |
| 179 | + R_del = R_delta(M, z, omega_m, omega_lambda) |
| 180 | + chi_cluster = np.interp(z, zs, chis) |
| 181 | + return quad(lambda x: P_BBPS(np.sqrt((x - chi_cluster)**2 + r*r), |
| 182 | + M, z, |
| 183 | + omega_b, omega_m, |
| 184 | + omega_lambda).value |
| 185 | + / (1 + np.interp(x, chis, zs)), |
| 186 | + chi_cluster - dist * R_del, |
| 187 | + chi_cluster + dist * R_del, |
| 188 | + epsrel=1e-3)[0] |
0 commit comments