|
| 1 | +/* |
| 2 | + * @lc app=leetcode.cn id=338 lang=golang |
| 3 | + * |
| 4 | + * [338] 比特位计数 |
| 5 | + * |
| 6 | + * https://leetcode.cn/problems/counting-bits/description/ |
| 7 | + * |
| 8 | + * algorithms |
| 9 | + * Easy (78.65%) |
| 10 | + * Likes: 1280 |
| 11 | + * Dislikes: 0 |
| 12 | + * Total Accepted: 316.7K |
| 13 | + * Total Submissions: 402.6K |
| 14 | + * Testcase Example: '2' |
| 15 | + * |
| 16 | + * 给你一个整数 n ,对于 0 <= i <= n 中的每个 i ,计算其二进制表示中 1 的个数 ,返回一个长度为 n + 1 的数组 ans |
| 17 | + * 作为答案。 |
| 18 | + * |
| 19 | + * |
| 20 | + * |
| 21 | + * |
| 22 | + * |
| 23 | + * 示例 1: |
| 24 | + * |
| 25 | + * |
| 26 | + * 输入:n = 2 |
| 27 | + * 输出:[0,1,1] |
| 28 | + * 解释: |
| 29 | + * 0 --> 0 |
| 30 | + * 1 --> 1 |
| 31 | + * 2 --> 10 |
| 32 | + * |
| 33 | + * |
| 34 | + * 示例 2: |
| 35 | + * |
| 36 | + * |
| 37 | + * 输入:n = 5 |
| 38 | + * 输出:[0,1,1,2,1,2] |
| 39 | + * 解释: |
| 40 | + * 0 --> 0 |
| 41 | + * 1 --> 1 |
| 42 | + * 2 --> 10 |
| 43 | + * 3 --> 11 |
| 44 | + * 4 --> 100 |
| 45 | + * 5 --> 101 |
| 46 | + * |
| 47 | + * |
| 48 | + * |
| 49 | + * |
| 50 | + * 提示: |
| 51 | + * |
| 52 | + * |
| 53 | + * 0 <= n <= 10^5 |
| 54 | + * |
| 55 | + * |
| 56 | + * |
| 57 | + * |
| 58 | + * 进阶: |
| 59 | + * |
| 60 | + * |
| 61 | + * 很容易就能实现时间复杂度为 O(n log n) 的解决方案,你可以在线性时间复杂度 O(n) 内用一趟扫描解决此问题吗? |
| 62 | + * 你能不使用任何内置函数解决此问题吗?(如,C++ 中的 __builtin_popcount ) |
| 63 | + * |
| 64 | + * |
| 65 | + * |
| 66 | + * |
| 67 | + */ |
| 68 | +package jzoffer |
| 69 | + |
| 70 | +import ( |
| 71 | + "math/bits" |
| 72 | +) |
| 73 | + |
| 74 | +// @lc code=start |
| 75 | +func countBitsBuiltIn(n int) (res []int) { |
| 76 | + |
| 77 | + // fmt.Printf("%b,%b,%b", 63&(1<<7-1), (1<<7 - 1), 1<<7) |
| 78 | + |
| 79 | + res = make([]int, n+1) |
| 80 | + for i := 0; i <= n; i++ { |
| 81 | + res[i] = bits.OnesCount32(uint32(i)) |
| 82 | + } |
| 83 | + return res |
| 84 | +} |
| 85 | + |
| 86 | +// 使用Brain Kcrnighan算法每次将最低位的二进制位1置为0,直到x为0 |
| 87 | +// 如 二进制数 101 & 100 => 100 11 & 10 => 10 |
| 88 | +func onesCount(x int) (ones int) { |
| 89 | + for ; x > 0; x &= x - 1 { |
| 90 | + ones++ |
| 91 | + } |
| 92 | + return |
| 93 | +} |
| 94 | + |
| 95 | +func countBitsBKAlgorithm(n int) []int { |
| 96 | + bits := make([]int, n+1) |
| 97 | + for i := range bits { |
| 98 | + bits[i] = onesCount(i) |
| 99 | + } |
| 100 | + return bits |
| 101 | +} |
| 102 | + |
| 103 | +// 动态规划,上面的BK算法需要O(nlog(n))时间复杂度 |
| 104 | +// 最低设置位 x & (x-1) 会将最低位的1置为0 |
| 105 | +func countBits(n int) []int { |
| 106 | + bits := make([]int, n+1) |
| 107 | + for i := 1; i <= n; i++ { |
| 108 | + bits[i] = bits[i&(i-1)] + 1 |
| 109 | + } |
| 110 | + return bits |
| 111 | +} |
| 112 | + |
| 113 | +// @lc code=end |
0 commit comments