Skip to content

Collection of laboratories I did during Ironhack's Data Analytics bootcamp.

Notifications You must be signed in to change notification settings

280220/Ironhack-Labs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

104 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Ironhack Data Analytics Bootcamp

This repo contains all of the practical exercises I did during the Data Analytics Bootcamp @ Ironhack in Mexico City. The entire part time + 400 hours course lasted for 6 months (Sept 2020 - March 2021). It was divided into 3 modules:

Module 1 - Data Extraction & Transformation;

Module 2 - Data Analysis & Visualization;

Module 3 - Data Modeling.

Lab Index

In the table below constituts an index of all exercises ("labs") grouped by bootcamp module and week, which contains a link to the exercises, the programming language, libraries used and the main topics covered or methods used by me to solve the problems.

Module Lab Language Libraries Topics/Methods
M1 resolving-git-conflicts Git, Command Line, Bash - GitHub, add, commit, push, pull, merge, conflicts, pull requests
M1 tuple-set-dict Python random, operator, pandas random.sample, operator.itemgetter, pd.DataFrame
M1 list-comprehensions Python os, numpy, pandas os.listdir, os.path.join, pd.concat,np.array, _get_numeric_data
M1 string-operations Python re, math f-strings, str.lower, str.endswith, str.join, str.split, str.replace, re.findall, re.search, bag of words
M1 advanced-regex-expressions Python re re.findall, re.sub
M1 lambda-functions Python - functions, lambda, zip, sorted, dict.items
M1 numpy Python numpy, np.random (random, rand, sample), np.ones, size, shape, np.reshape, np.transpose, np.array_equal, max, min, mean, np.empty, np.nditer,
M1 functions Python iter functions, iterators, generators, yield
M1 intro-pandas Python pandas, numpy pd.Series, pd.DataFrame, df.columns, subsetting, df.mean, df.max, df.median, df.sum
M1 error-handling Python math try-except, if-else, functions
M1 object-oriented-programming Python objects, functions
M1 map-reduce-filter Python numpy, pandas, functools functions, map, reduce, filter
M1 import-export Python pandas pd.read_csv, pd.to_csv, pd.read_excel, df.head, df.value_counts
M1 dataframe-calculations Python pandas, numpy, zipfile df.shape, df.unique, str.contains, df.astype, df.isnull, df.apply, df.sort_values, df.equals, pd.get_dummies, df.corr, df.drop, pd.groupby.agg, df.quantile,
M1 my-sql-select SQL - aliases, inner join, left join, sum, coalesce,
M1 my-sql SQL - db design, table relationships, db seeding, forward engineering schemas, one-to-many, many-to-one, many-to-many, linking tables
M1 advanced-mysql SQL - temporary tables, subqueries, permanent tables
M1 mongo db MongoDB - -
M1 web-scraping Python, APIs requests, beautifulsoup, tweepy requests.get, requests.get.content, BeautifulSoup, soup.find_all, soup.tag.text, soup.tag.get, soup.tag.find, tweepy.get_user, tweepy.user_timeline, tweepy.user.statuses_count, tweepy.user.follower_count
M1 web-scraping-deep dive Python, APIs requests, beautifulsoup, tweepy requests.get, requests.get.content, BeautifulSoup, soup.find_all, soup.tag.text, soup.tag.get, soup.tag.find, tweepy.get_user, tweepy.user_timeline, tweepy.user.statuses_count, tweepy.user.follower_count
M1 parsing-api Python, APIs requests, pandas requests.get, requests.get.content
M1 api-scavenger Python, APIs, Command Line pandas, pandas.io.json curl, pd.read_json, json_normalize, pd.to_datetime
M1 parsing-rss-feeds Python pandas, feedparser feedparser.parse
M1 data-cleaning Python pandas, sqlalchemy, pymysql create_engine, pd.read_sql_query
M2 subsetting-and-descriptive-stats Python pandas, matplotlib, seaborn df.loc, df.groupby.agg, df.quantile, df.describe, random.choice, plt.hist, plt.vlines, np.mean, np.std
M2 df-calculation-and-transformation Python pandas, matplotlib pd.get_dummies, pd.concat, pd.corr
M2 pandas-deep-dive Python pandas df.describe, df.groupby.agg, df.apply
M2 intro-to-scipy Python scipy, numpy stats.tmean, stats.fisher_exact, scipy.interpolate, interpolate.interp1d, np.arange
M2 pivot-table-and-correlation Python pandas, scipy.stats df.pivot_table(index, columns, aggfunc), stats.linregress, plt.scatter, stats.pearsonr, stats.speamanr
M2 matplotlib-seaborn Python matplotlib.pyplot, seaborn, numpy, pandas plt.plot, plt.show, plt.subplots, plt.legend, plt.bar, plt.barh, plt.pie, plt.boxplot, plt.xticks, ax.set_title, ax.set_xlabel, sns.set, sns.distplot, sns.barplot, sns.despine, sns.violinplot, sns.catplot, sns.heatmap, np.linspace, pd.select_dtypes, pd.Categorical, df.cat.codes, np.triu, sns.diverging_palette
M2 plotting-multiple-data-series Python matplotlib.pyplot, seaborn, numpy, pandas pd.groupby().sum().plot(), pd. groupby().mean().plot(), pd.pivot_table()
M2 introduction-to-powerbi-and-tableau Tableau, PowerBI - -
M2 tableau Tableau - -
M2 discrete-probability-distribution Python scipy.stats, numpy stats.binom, stats.poisson
M2 continuous-probability-distribution Python scipy.stats, numpy stats.uniform, stats.norm, stats.expon, np.random.exponential, stats.rvs, stats.cdf, stats.pdf, stats.ppf
M2 calculating-odds Python scipy.stats, numpy comb
M2 hypothesis-testing Python scipy.stats, numpy, pandas, statsmodels stats.ttest_1samp, stats.sem, stats.t.interval, pd.crosstab, statsmodels.proportions_ztest
M2 two-sample-hypothesis-tests Python pandas, scipy.stats stats.ttest_ind, stats.ttest_rel, stats.ttest_1samp, stats.chi2_contingency, np.where
M2 correlation-tests-with-scipy Python pandas, scipy.stats, statsmodels.api statsmodels.api.stats.anova_lm
M2 regression-analysis Python numpy, pandas, scipy, sklearn.linear_model, matplotlib, seaborn plt.scatter, df.corr, scipy.stats.linregress, sns.heatmap, sklearn.LinearRegression, lm.fit, lm.score, lm.coef_, lm.intercept
M2 bayesian-statistics Python pandas, numpy, matplotlib -
M2 principal-component-analysis Python pandas, numpy, statsmodels.multivariate.pca, sklearn.preprocessing sklearn.preprocessing.StandardScaler, PCA
M2 time series analysis Python pandas, numpy, pandas.plotting, statsmodels.tsa.stattools, statsmodels.tsa.arima_model, statsmodels.tools.eval_measures statsmodels.api.tsa.seasonal_decompose
M2 introduction-to-recommender-systems Python pandas, numpy, scipy.spatial.distance -
M2 survival-analysis Python pandas, numpy, chart_studio.plotly, cufflinks lifelines.KaplanMeierFitter
M3 introduction-to-machine-learning Python pandas, numpy, datetime, sklearn.model_selection, sklearn.linear_model, sklearn.pipeline, sklearn.metrics, sklearn.preprocessing, feature_engine.encoding, feature_engine, feature_engine.discretisation, datetime pd.to_numeric, df.interpolate, np.where, dt.strptime, dt.toordinal, train_test_split
M3 introduction-to-sklearn Python pandas, sklearn.linear_model, sklearn.datasets, sklearn.preprocessing, sklearn.model_selection, statsmodels.api, sklearn.metrics, sklearn.feature_selection LinearRegression, load_diabetes, PolynomialFeatures, StandardScaler, train_test_split, sm.OLS, r2_score, RFE
M3 supervised-learning Python pandas, seaborn, sklearn.model_selection, sklearn.linear_model, LogisticRegression, sklearn.neighbors, sklearn.preprocessing df.corr, sns.heatmap, df.drop, df.dropna, pd.get_dummies, train_test_split, LogisticRegression, confusion_matrix, accuracy_score, KNeighborsClassifier, RobustScaler
M3 supervised-classification Python pandas, numpy, matplotlib, sklearn.model_selection, sklearn.linear_model, sklearn.tree, sklearn.neighbors, sklearn.naive_bayes, sklearn.metrics, sklearn.ensemble, sklearn.svm, sklearn.multi_class train_test_split, LogisticRegression, KNeighborsClassifier, DecisionTreeClassifier, GaussianNB, RandomForestClassifier, LinearSVC, OneVsOneClassifier
M3 supervised-model-evaluation Python pandas, sklearn.model_selection, sklearn.linear_model, sklearn.metrics, sklearn.neighbors train_test_split, LinearRegression, LogisticRegression, KNeighborsClassifier
M3 sklearn-and-unsupervised-learning Python pandas, numpy, matplotlib, sklearn.preprocessing, sklearn.cluster, mpl_toolkits.mplot3d LabelEncoder, KMeans, fig.gca(projection='3d')
M3 unsupervised-learning Python pandas, numpy, matplotlib, sklearn.preprocessing, sklearn.cluster, sklearn.metrics StandardScaler, KMeans, DBSCAN
M3 unsupervised-learning-deep dive Python pandas, numpy, matplotlib, math, sklearn.preprocessing, sklearn.cluster, scipy.cluster.hierarchy, hdbscan pd.get_dummies, np.percentile, StandardScaler, KMeans
M3 unsupervised-learning-evaluation Python pandas, numpy, matplotlib, seaborn, sklearn.cluster, sklearn.manifold, yellowbrick.cluster, sklearn.decomposition KElbowVisualizer, AgglomerativeClustering, PCA, KMeans, TSNE

About

Collection of laboratories I did during Ironhack's Data Analytics bootcamp.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published