Source code for WWW2021 paper "Graph Structure Estimation Neural Networks"
- python == 3.6.9
- torch == 1.6.0
- k: k of knn graph
- threshold: threshold for adjacency matrix
- tolerance: tolerance to stop EM algorithm
- iter: number of iterations to train the GEN
- base: backbone GNNs
- seed: random seed
- lr: learning rate
- weight_decay: weight decay (L2 loss on parameters)
- hidden: embedding dimension
- dropout: dropout rate
- activation: activation function selection
- dataset: str in ['cora', 'citeseer', 'pubmed', 'chameleon', 'squirrel', 'actor', 'sbm']
- epoch: number of epochs to train the base model
GEN/
βββ code/
β βββ train.py: training the GEN model
β βββ models.py: implementation of GEN and backbone GNNs
β βββ utils.py
β βββ generator.py: generating dataset based on attribute SBM
β βββ nx.py: saving graph structure as .gexf files for Gephi
β βββ heatmap.py: generating heatmaps of community matrices
βββ data/
β βββ ind.cora.x: cora dataset
β βββ ind.cora.y
β βββ ind.cora.tx
β βββ ind.cora.ty
β βββ ind.cora.allx
β βββ ind.cora.ally
β βββ ind.cora.graph
β βββ ind.cora.test.index
β βββ ind.citeseer.x: citeseer dataset
β βββ ind.citeseer.y
β βββ ind.citeseer.tx
β βββ ind.citeseer.ty
β βββ ind.citeseer.allx
β βββ ind.citeseer.ally
β βββ ind.citeseer.graph
β βββ ind.citeseer.test.index
β βββ ind.pubmed.x: pubmed dataset
β βββ ind.pubmed.y
β βββ ind.pubmed.tx
β βββ ind.pubmed.ty
β βββ ind.pubmed.allx
β βββ ind.pubmed.ally
β βββ ind.pubmed.graph
β βββ ind.pubmed.test.index
β βββ squirrel_node_feature_label.txt: squirrel dataset
β βββ squirrel_graph_edges.txt
β βββ chameleon_node_feature_label.txt: chameleon dataset
β βββ chameleon_graph_edges.txt
β βββ actor_node_feature_label.txt: actor dataset
β βββ actor_graph_edges.txt
β βββ sbm.p: synthetic dataset
β βββ sbm_adj.p: graph structure estimated by GEN
βββ README.md
python ./code/train.py
There are three key hyper-parameters: k, threshold and tolerance.
- k: [3, 4, 5 β¦, 14, 15]
- threshold: [0.1, 0.2, 0.3, β¦, 0.8, 0.9]
- tolerance: [0.1, 0.01]
For the hyper-parameter settings of six benchmark datasets used in this paper, please refer to Section 4.4.
@inproceedings{wang2021graph,
title={Graph Structure Estimation Neural Networks},
author={Wang, Ruijia and Mou, Shuai and Wang, Xiao and Xiao, Wanpeng and Ju, Qi and Shi, Chuan and Xie, Xing},
booktitle={Proceedings of the Web Conference 2021},
pages={342--353},
year={2021}
}