|
| 1 | +import os.path |
| 2 | +from tkinter import * |
| 3 | +from tkinter import ttk |
| 4 | + |
| 5 | +import search |
| 6 | + |
| 7 | +sys.path.append(os.path.join(os.path.dirname(__file__), '..')) |
| 8 | + |
| 9 | +LARGE_FONT = ('Verdana', 12) |
| 10 | +EXTRA_LARGE_FONT = ('Consolas', 36, 'bold') |
| 11 | + |
| 12 | +canvas_width = 800 |
| 13 | +canvas_height = 600 |
| 14 | + |
| 15 | +black = '#000000' |
| 16 | +white = '#ffffff' |
| 17 | +p_blue = '#042533' |
| 18 | +lp_blue = '#0c394c' |
| 19 | + |
| 20 | +# genetic algorithm variables |
| 21 | +# feel free to play around with these |
| 22 | +target = 'Genetic Algorithm' # the phrase to be generated |
| 23 | +max_population = 100 # number of samples in each population |
| 24 | +mutation_rate = 0.1 # probability of mutation |
| 25 | +f_thres = len(target) # fitness threshold |
| 26 | +ngen = 1200 # max number of generations to run the genetic algorithm |
| 27 | + |
| 28 | +generation = 0 # counter to keep track of generation number |
| 29 | + |
| 30 | +u_case = [chr(x) for x in range(65, 91)] # list containing all uppercase characters |
| 31 | +l_case = [chr(x) for x in range(97, 123)] # list containing all lowercase characters |
| 32 | +punctuations1 = [chr(x) for x in range(33, 48)] # lists containing punctuation symbols |
| 33 | +punctuations2 = [chr(x) for x in range(58, 65)] |
| 34 | +punctuations3 = [chr(x) for x in range(91, 97)] |
| 35 | +numerals = [chr(x) for x in range(48, 58)] # list containing numbers |
| 36 | + |
| 37 | +# extend the gene pool with the required lists and append the space character |
| 38 | +gene_pool = [] |
| 39 | +gene_pool.extend(u_case) |
| 40 | +gene_pool.extend(l_case) |
| 41 | +gene_pool.append(' ') |
| 42 | + |
| 43 | + |
| 44 | +# callbacks to update global variables from the slider values |
| 45 | +def update_max_population(slider_value): |
| 46 | + global max_population |
| 47 | + max_population = slider_value |
| 48 | + |
| 49 | + |
| 50 | +def update_mutation_rate(slider_value): |
| 51 | + global mutation_rate |
| 52 | + mutation_rate = slider_value |
| 53 | + |
| 54 | + |
| 55 | +def update_f_thres(slider_value): |
| 56 | + global f_thres |
| 57 | + f_thres = slider_value |
| 58 | + |
| 59 | + |
| 60 | +def update_ngen(slider_value): |
| 61 | + global ngen |
| 62 | + ngen = slider_value |
| 63 | + |
| 64 | + |
| 65 | +# fitness function |
| 66 | +def fitness_fn(_list): |
| 67 | + fitness = 0 |
| 68 | + # create string from list of characters |
| 69 | + phrase = ''.join(_list) |
| 70 | + # add 1 to fitness value for every matching character |
| 71 | + for i in range(len(phrase)): |
| 72 | + if target[i] == phrase[i]: |
| 73 | + fitness += 1 |
| 74 | + return fitness |
| 75 | + |
| 76 | + |
| 77 | +# function to bring a new frame on top |
| 78 | +def raise_frame(frame, init=False, update_target=False, target_entry=None, f_thres_slider=None): |
| 79 | + frame.tkraise() |
| 80 | + global target |
| 81 | + if update_target and target_entry is not None: |
| 82 | + target = target_entry.get() |
| 83 | + f_thres_slider.config(to=len(target)) |
| 84 | + if init: |
| 85 | + population = search.init_population(max_population, gene_pool, len(target)) |
| 86 | + genetic_algorithm_stepwise(population) |
| 87 | + |
| 88 | + |
| 89 | +# defining root and child frames |
| 90 | +root = Tk() |
| 91 | +f1 = Frame(root) |
| 92 | +f2 = Frame(root) |
| 93 | + |
| 94 | +# pack frames on top of one another |
| 95 | +for frame in (f1, f2): |
| 96 | + frame.grid(row=0, column=0, sticky='news') |
| 97 | + |
| 98 | +# Home Screen (f1) widgets |
| 99 | +target_entry = Entry(f1, font=('Consolas 46 bold'), exportselection=0, foreground=p_blue, justify=CENTER) |
| 100 | +target_entry.insert(0, target) |
| 101 | +target_entry.pack(expand=YES, side=TOP, fill=X, padx=50) |
| 102 | +target_entry.focus_force() |
| 103 | + |
| 104 | +max_population_slider = Scale(f1, from_=3, to=1000, orient=HORIZONTAL, label='Max population', |
| 105 | + command=lambda value: update_max_population(int(value))) |
| 106 | +max_population_slider.set(max_population) |
| 107 | +max_population_slider.pack(expand=YES, side=TOP, fill=X, padx=40) |
| 108 | + |
| 109 | +mutation_rate_slider = Scale(f1, from_=0, to=1, orient=HORIZONTAL, label='Mutation rate', resolution=0.0001, |
| 110 | + command=lambda value: update_mutation_rate(float(value))) |
| 111 | +mutation_rate_slider.set(mutation_rate) |
| 112 | +mutation_rate_slider.pack(expand=YES, side=TOP, fill=X, padx=40) |
| 113 | + |
| 114 | +f_thres_slider = Scale(f1, from_=0, to=len(target), orient=HORIZONTAL, label='Fitness threshold', |
| 115 | + command=lambda value: update_f_thres(int(value))) |
| 116 | +f_thres_slider.set(f_thres) |
| 117 | +f_thres_slider.pack(expand=YES, side=TOP, fill=X, padx=40) |
| 118 | + |
| 119 | +ngen_slider = Scale(f1, from_=1, to=5000, orient=HORIZONTAL, label='Max number of generations', |
| 120 | + command=lambda value: update_ngen(int(value))) |
| 121 | +ngen_slider.set(ngen) |
| 122 | +ngen_slider.pack(expand=YES, side=TOP, fill=X, padx=40) |
| 123 | + |
| 124 | +button = ttk.Button(f1, text='RUN', |
| 125 | + command=lambda: raise_frame(f2, init=True, update_target=True, target_entry=target_entry, |
| 126 | + f_thres_slider=f_thres_slider)).pack(side=BOTTOM, pady=50) |
| 127 | + |
| 128 | +# f2 widgets |
| 129 | +canvas = Canvas(f2, width=canvas_width, height=canvas_height) |
| 130 | +canvas.pack(expand=YES, fill=BOTH, padx=20, pady=15) |
| 131 | +button = ttk.Button(f2, text='EXIT', command=lambda: raise_frame(f1)).pack(side=BOTTOM, pady=15) |
| 132 | + |
| 133 | + |
| 134 | +# function to run the genetic algorithm and update text on the canvas |
| 135 | +def genetic_algorithm_stepwise(population): |
| 136 | + root.title('Genetic Algorithm') |
| 137 | + for generation in range(ngen): |
| 138 | + # generating new population after selecting, recombining and mutating the existing population |
| 139 | + population = [ |
| 140 | + search.mutate(search.recombine(*search.select(2, population, fitness_fn)), gene_pool, mutation_rate) for i |
| 141 | + in range(len(population))] |
| 142 | + # genome with the highest fitness in the current generation |
| 143 | + current_best = ''.join(max(population, key=fitness_fn)) |
| 144 | + # collecting first few examples from the current population |
| 145 | + members = [''.join(x) for x in population][:48] |
| 146 | + |
| 147 | + # clear the canvas |
| 148 | + canvas.delete('all') |
| 149 | + # displays current best on top of the screen |
| 150 | + canvas.create_text(canvas_width / 2, 40, fill=p_blue, font='Consolas 46 bold', text=current_best) |
| 151 | + |
| 152 | + # displaying a part of the population on the screen |
| 153 | + for i in range(len(members) // 3): |
| 154 | + canvas.create_text((canvas_width * .175), (canvas_height * .25 + (25 * i)), fill=lp_blue, |
| 155 | + font='Consolas 16', text=members[3 * i]) |
| 156 | + canvas.create_text((canvas_width * .500), (canvas_height * .25 + (25 * i)), fill=lp_blue, |
| 157 | + font='Consolas 16', text=members[3 * i + 1]) |
| 158 | + canvas.create_text((canvas_width * .825), (canvas_height * .25 + (25 * i)), fill=lp_blue, |
| 159 | + font='Consolas 16', text=members[3 * i + 2]) |
| 160 | + |
| 161 | + # displays current generation number |
| 162 | + canvas.create_text((canvas_width * .5), (canvas_height * 0.95), fill=p_blue, font='Consolas 18 bold', |
| 163 | + text=f'Generation {generation}') |
| 164 | + |
| 165 | + # displays blue bar that indicates current maximum fitness compared to maximum possible fitness |
| 166 | + scaling_factor = fitness_fn(current_best) / len(target) |
| 167 | + canvas.create_rectangle(canvas_width * 0.1, 90, canvas_width * 0.9, 100, outline=p_blue) |
| 168 | + canvas.create_rectangle(canvas_width * 0.1, 90, canvas_width * 0.1 + scaling_factor * canvas_width * 0.8, 100, |
| 169 | + fill=lp_blue) |
| 170 | + canvas.update() |
| 171 | + |
| 172 | + # checks for completion |
| 173 | + fittest_individual = search.fitness_threshold(fitness_fn, f_thres, population) |
| 174 | + if fittest_individual: |
| 175 | + break |
| 176 | + |
| 177 | + |
| 178 | +raise_frame(f1) |
| 179 | +root.mainloop() |
0 commit comments