Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions chebai/preprocessing/bin/smiles_token/tokens.txt
Original file line number Diff line number Diff line change
Expand Up @@ -4373,3 +4373,5 @@ b
[CaH2]
[NH3]
[OH2]
[TlH2+]
[SbH6+3]
48 changes: 40 additions & 8 deletions chebai/result/classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,15 +7,18 @@
import torch
from torch import Tensor
from torchmetrics.classification import (
MultilabelF1Score,
MultilabelPrecision,
MultilabelRecall,
MultilabelAUROC,
BinaryF1Score,
BinaryAUROC,
BinaryAveragePrecision,
BinaryF1Score,
BinaryRecall,
MultilabelAUROC,
MultilabelAveragePrecision,
MultilabelF1Score,
MultilabelPrecision,
MultilabelRecall,
MultilabelSpecificity,
)
from torchmetrics.functional import specificity

from chebai.callbacks.epoch_metrics import BalancedAccuracy, MacroF1

Expand Down Expand Up @@ -130,13 +133,39 @@ def metrics_classification_multilabel(
f1_micro = MacroF1(preds.shape[1]).to(device=device)
my_auc_roc = MultilabelAUROC(preds.shape[1]).to(device=device)
my_av_prec = MultilabelAveragePrecision(preds.shape[1]).to(device=device)
my_macro_specificity = MultilabelSpecificity(preds.shape[1], average="macro").to(
device=device
)
my_micro_specificity = MultilabelSpecificity(preds.shape[1], average="micro").to(
device=device
)
my_macro_sensitivity = MultilabelRecall(preds.shape[1], average="macro").to(
device=device
)
my_micro_sensitivity = MultilabelRecall(preds.shape[1], average="micro").to(
device=device
)

macro_f1 = my_f1_macro(preds, labels).cpu().numpy()
micro_f1 = f1_micro(preds, labels).cpu().numpy()
auc_roc = my_auc_roc(preds, labels).cpu().numpy()
prc_auc = my_av_prec(preds, labels).cpu().numpy()

return auc_roc, macro_f1, micro_f1, bal_acc, prc_auc
specificity_macro = my_macro_specificity(preds, labels).cpu().numpy()
specificity_micro = my_micro_specificity(preds, labels).cpu().numpy()
sensitivity_macro = my_macro_sensitivity(preds, labels).cpu().numpy()
sensitivity_micro = my_micro_sensitivity(preds, labels).cpu().numpy()

return (
auc_roc,
macro_f1,
micro_f1,
bal_acc,
prc_auc,
sensitivity_macro,
sensitivity_micro,
specificity_macro,
specificity_micro,
)


def metrics_classification_binary(
Expand All @@ -151,12 +180,15 @@ def metrics_classification_binary(
my_f1 = BinaryF1Score().to(device=device)
my_av_prec = BinaryAveragePrecision().to(device=device)
my_bal_acc = BalancedAccuracy(preds.shape[1]).to(device=device)
my_sensitivity = BinaryRecall().to(device=device)

bal_acc = my_bal_acc(preds, labels).cpu().numpy()
auc_roc = my_auc_roc(preds, labels).cpu().numpy()
# my_auc_roc.update(preds.cpu()[:, 0], labels.cpu()[:, 0])
# auc_roc = my_auc_roc.compute().numpy()
f1_score = my_f1(preds, labels).cpu().numpy()
prc_auc = my_av_prec(preds, labels).cpu().numpy()
sensitivity = my_sensitivity(preds, labels).cpu().numpy()
specificity_result = specificity(preds, labels, task="binary").cpu().numpy()

return auc_roc, f1_score, bal_acc, prc_auc
return auc_roc, f1_score, bal_acc, prc_auc, sensitivity, specificity_result