- Monitoring Safety Equipment through a object detection model
- 객체 탐지 모델을 통한 공사 현장 안전 장구류 착용 모니터링 서비스
- Tool / Dataset
- Training
- demo
Dataset
- AI Hub (공사현장 안전 장비 인식 이미지)
- total 6000 images
- classes to detect(6 classes)
- 안전 벨트 착용 여부(착용/미착용)
- 안전화 착용 여부(착용/미착용)
- 안전모 착용 여부(착용/미착용)
Tools
-
Especially hard to detect "Hard / No hard , Belt / No Belt" classes
- hard to detect Hard/No Hard classes(안전화 착용 여부 탐지) since safety shoes are ..
- small objects
- A small difference between safety shoes and sneakers
Solution→ Not just resize Cropped images into 640 x 640. Apply Super Resolution techniques on cropped images. Our team thought that restoring cropped images into high resolution images by super resolution techniques can lead to a high-performance.
- hard to detect Hard/No Hard classes(안전화 착용 여부 탐지) since safety shoes are ..
- 전반적인 mAP 결과
- 클래스 별 결과
framework
Streamlit - development of a prototype
library
openCV - input real-time images from the webcam into the model










