Skip to content

InterDigitalInc/CompressAI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

License PyPI Downloads

CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research.

CompressAI currently provides:

  • custom operations, layers and models for deep learning based data compression
  • a partial port of the official TensorFlow compression library
  • pre-trained end-to-end compression models for learned image compression
  • evaluation scripts to compare learned models against classical image/video compression codecs

PSNR performances plot on Kodak

Note: Multi-GPU support is now experimental.

Installation

CompressAI supports python 3.8+ and PyTorch 1.7+.

pip:

pip install compressai

Note: wheels are available for Linux and MacOS.

From source:

A C++17 compiler, a recent version of pip (19.0+), and common python packages are also required (see setup.py for the full list).

To get started locally and install the development version of CompressAI, run the following commands in a virtual environment:

git clone https://github.com/InterDigitalInc/CompressAI compressai
cd compressai
pip install -U pip && pip install -e .

For a custom installation, you can also run one of the following commands:

  • pip install -e '.[dev]': install the packages required for development (testing, linting, docs)
  • pip install -e '.[tutorials]': install the packages required for the tutorials (notebooks)

Note: Docker images will be released in the future. Conda environments are not officially supported.

Documentation

Usage

Examples

Script and notebook examples can be found in the examples/ directory.

To encode/decode images with the provided pre-trained models, run the codec.py example:

python3 examples/codec.py --help

An examplary training script with a rate-distortion loss is provided in examples/train.py. You can replace the model used in the training script with your own model implemented within CompressAI, and then run the script for a simple training pipeline:

python3 examples/train.py -d /path/to/my/image/dataset/ --epochs 300 -lr 1e-4 --batch-size 16 --cuda --save

Note: the training example uses a custom ImageFolder structure.

A jupyter notebook illustrating the usage of a pre-trained model for learned image compression is also provided in the examples directory:

pip install -U ipython jupyter ipywidgets matplotlib
jupyter notebook examples/

Evaluation

To evaluate a trained model on your own dataset, CompressAI provides an evaluation script:

python3 -m compressai.utils.eval_model checkpoint /path/to/images/folder/ -a $ARCH -p $MODEL_CHECKPOINT...

To evaluate provided pre-trained models:

python3 -m compressai.utils.eval_model pretrained /path/to/images/folder/ -a $ARCH -q $QUALITY_LEVELS...

To plot results from bench/eval_model simulations (requires matplotlib by default):

python3 -m compressai.utils.plot --help

To evaluate traditional codecs:

python3 -m compressai.utils.bench --help
python3 -m compressai.utils.bench bpg --help
python3 -m compressai.utils.bench vtm --help

For video, similar tests can be run, CompressAI only includes ssf2020 for now:

python3 -m compressai.utils.video.eval_model checkpoint /path/to/video/folder/ -a ssf2020 -p $MODEL_CHECKPOINT...
python3 -m compressai.utils.video.eval_model pretrained /path/to/video/folder/ -a ssf2020 -q $QUALITY_LEVELS...
python3 -m compressai.utils.video.bench x265 --help
python3 -m compressai.utils.video.bench VTM --help
python3 -m compressai.utils.video.plot --help

Tests

Run tests with pytest:

pytest -sx --cov=compressai --cov-append --cov-report term-missing tests

Slow tests can be skipped with the -m "not slow" option.

License

CompressAI is licensed under the BSD 3-Clause Clear License

Contributing

We welcome feedback and contributions. Please open a GitHub issue to report bugs, request enhancements or if you have any questions.

Before contributing, please read the CONTRIBUTING.md file.

Authors

  • Jean BĂ©gaint, Fabien RacapĂ©, Simon Feltman and Hyomin Choi, InterDigital AI Lab.

Citation

If you use this project, please cite the relevant original publications for the models and datasets, and cite this project as:

@article{begaint2020compressai,
	title={CompressAI: a PyTorch library and evaluation platform for end-to-end compression research},
	author={B{\'e}gaint, Jean and Racap{\'e}, Fabien and Feltman, Simon and Pushparaja, Akshay},
	year={2020},
	journal={arXiv preprint arXiv:2011.03029},
}

For any work related to the variable bitrate models, please cite

@article{kamisli2024dcc_vbrlic,
	title={Variable-Rate Learned Image Compression with Multi-Objective Optimization and Quantization-Reconstruction Offsets},
	author={Kamisli, Fatih and Racap{\'e}, Fabien and Choi, Hyomin},
	year={2024},
	booktitle={2024 Data Compression Conference (DCC)},
	eprint={2402.18930},
}

Related links