\begin{tikzpicture}[line cap=round, line join=round, >=latex] \def\xL{-5} \def\xR{5} \def\yB{-3} \def\yT{3} \def\xs{-3} \def\xe{3} \def\ys{-2} \def\ye{2} \def\yin{1.8} \def\win{0.8}
\draw[very thick] (\xL,\yB) rectangle (\xR,\yT); \draw[very thick] (\xs,\ys) rectangle (\xe,\ye);
\node at (0,0) {$\Omega_s$}; \node at (0,-2.6) {$\Omega_f$};
\draw[line width=3pt,red] (\xL,\yin) -- (\xL,{\yin+\win}); \draw[line width=3pt,red] (\xL,{-\yin-\win}) -- (\xL,{-\yin}); \draw[line width=3pt,red] (\xR,\yin) -- (\xR,{\yin+\win}); \draw[line width=3pt,red] (\xR,{-\yin-\win}) -- (\xR,{-\yin});
\node[anchor=east] at (\xL,{\yin+0.4}) {$\Gamma_{\text{in}}^{(1)}$}; \node[anchor=east] at (\xL,{-\yin-0.4}) {$\Gamma_{\text{in}}^{(2)}$}; \node[anchor=west] at (\xR,{\yin+0.4}) {$\Gamma_{\text{out}}^{(1)}$}; \node[anchor=west] at (\xR,{-\yin-0.4}) {$\Gamma_{\text{out}}^{(2)}$};
\node at (0,3.3) {$\Gamma_w$}; \node at (0,-3.3) {$\Gamma_w$};
\node at (3.4,0) {$\Gamma_{fs}$}; \node at (-3.4,0) {$\Gamma_{fs}$}; \end{tikzpicture}% }
TL;DR
2D conjugate heat transfer (CHT) setup: an outer channel with two inlet/outlet “tabs” on each vertical wall and a centered solid plate (inner square).
This repo includes:
- A clean mathematical model (strong & weak forms).
- FreeFEM scripts to generate matching meshes for fluid and solid (shared interface nodes).
- A LaTeX project you can extend into a report.
Conjugate heat transfer couples:
-
Fluid mechanics (incompressible Navier–Stokes) in the fluid domain
$\Omega_f$ , and -
Heat conduction in the solid
$\Omega_s$ ,
with thermal exchange across the common interface
- Outer rectangle (channel):
$[x_L, x_R] \times [y_B, y_T] = [0,1.5]\times[-1,0]$ , with two rectangular tabs on each vertical side (slots you can later label as inlets/outlets). - Inner solid plate: centered square
$[x_s, x_e]\times[y_s, y_e]=[0.10,1.40]\times[-0.90,-0.10]$ .
Notation:
-
$\Omega_f$ : fluid domain (outer region minus inner square). -
$\Omega_s$ : solid domain (the inner square). -
$\Gamma_{fs} = \overline{\Omega_f}\cap\overline{\Omega_s}$ : fluid–solid interface (square boundary). -
$\Gamma_w$ : remaining channel walls (outer boundary). - Optionally:
$\Gamma_{\text{in}}^{(1,2)}$ ,$\Gamma_{\text{out}}^{(1,2)}$ on tab segments.
Boundary labels in meshes
-
30→$\Gamma_w$ (outer walls) -
40→$\Gamma_{fs}$ (fluid–solid interface)
Orientation (important for BAMG)
- Outer boundary: CCW.
- Inner boundary for the fluid (hole): CW.
- Inner boundary for the solid (filled): CCW.
- Same discretization count on
$\Gamma_{fs}$ for fluid and solid ⇒ shared interface nodes.
Unknowns (in
- Fluid: velocity
$\mathbf{u}(x,t)$ , pressure$p(x,t)$ , and temperature$T_f(x,t)$ in$\Omega_f$ . - Solid: temperature
$T_s(x,t)$ in$\Omega_s$ .
Parameters:
-
$\rho$ : density;$\mu$ : dynamic viscosity. -
$\kappa$ : thermal diffusivity (solid);$\hat\kappa$ : thermal diffusivity (fluid). -
$\alpha$ : interface heat transfer coefficient (Robin coupling).
Solid (heat conduction) in
Fluid (incompressible Navier–Stokes) in
with no-slip
On inlet/outlet windows you can use do-nothing tractions or prescribe profiles.
Fluid temperature (advection–diffusion) in
Coupling and BCs
- Interface (Robin–Robin) on
$\Gamma_{fs}$ :
- Walls
$\Gamma_w$ :$\mathbf{u}=\mathbf{0}$ ,$\partial_{\mathbf{n}}T_f=0$ . - Inlet/Outlet tabs: optional temperature Dirichlet
$T_f=T_{\text{in/out}}$ or natural. - Initial data: $\mathbf{u}(x,0)=\mathbf{u}0(x)$, $T_f(x,0)=T{f,0}(x)$,
$T_s(x,0)=T_{s,0}(x)$ .
Spaces:
Con
Solid heat
Fluid temperature
Navier–Stokes
This matches the LaTeX derivation included in the project.