@@ -90,6 +90,8 @@ BivariateGramMatrix(W::WT, X::XT, Y::YT) where {T, WT <: AbstractMatrix{T}, XT <
9090@inline blockbandwidths (G:: BivariateGramMatrix ) = blockbandwidths (G. W)
9191@inline subblockbandwidths (G:: BivariateGramMatrix ) = subblockbandwidths (G. W)
9292@inline MemoryLayout (G:: BivariateGramMatrix ) = MemoryLayout (G. W)
93+ @inline symmetricdata (G:: BivariateGramMatrix ) = symmetricdata (G. W)
94+ @inline symmetricuplo (G:: BivariateGramMatrix ) = symmetricuplo (G. W)
9395@inline blockrowsupport (G:: BivariateGramMatrix , j) = blockrowsupport (MemoryLayout (G), G. W, j)
9496@inline blockcolsupport (G:: BivariateGramMatrix , j) = blockcolsupport (MemoryLayout (G), G. W, j)
9597
@@ -101,7 +103,7 @@ function BivariateGramMatrix(μ::AbstractBlockVector{T}, X::XT, Y::YT, p0::T) wh
101103 @assert blockbandwidths (X) == blockbandwidths (Y) == (1 , 1 )
102104 @assert subblockbandwidths (X) == (0 , 0 )
103105 @assert subblockbandwidths (Y) == (1 , 1 )
104- W = BlockMatrix {T} (undef, 1 : N, 1 : N)
106+ W = BlockedMatrix {T} (undef, 1 : N, 1 : N)
105107 if n > 0
106108 for m in 1 : N
107109 W[Block (m, 1 )] = p0* μ[Block (m, 1 )]
@@ -119,7 +121,7 @@ function BivariateGramMatrix(μ::AbstractBlockVector{T}, X::XT, Y::YT, p0::T) wh
119121 end
120122 symmetrize_block! (view (W, Block (n, n)))
121123 end
122- WN = BlockMatrix {T} (undef, 1 : n, 1 : n)
124+ WN = BlockedMatrix {T} (undef, 1 : n, 1 : n)
123125 for j in 1 : n
124126 for k in j: n
125127 WN[Block (k, j)] = viewblock (W, Block (k, j))
0 commit comments