Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -1,11 +1,17 @@
__author__ = 'Pranay'
import lemmatization, minimize_desc, remove_nondecodable_chars, removePunctuation

from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize

def transform(desc):
print 'Description Transformation Started: '
desc = remove_nondecodable_chars.removeNondecodableChars(desc)
desc = minimize_desc.minimizeDescription(desc)
desc = removePunctuation.removePunctuation(desc)
desc = lemmatization.lemmatizeDescription(desc)
stop_words = set(stopwords.words('english'))
word_tokens = word_tokenize(desc)
filtered_sentence = [w for w in word_tokens if not w.lower() in stop_words]
desc=' '.join(filtered_sentence)
# print 'Description Transformation Ended '
return desc
9 changes: 6 additions & 3 deletions Model Training/get_accuracy.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,7 +96,7 @@ def get_recommendations(username, prev_sub, no_recomm, no_test):

with open('accuracy_val.csv', 'w') as f:
writer = csv.writer(f)
writer.writerow(['prev_sub', 'no_recomm', 'no_test', 'tp', 'tn', 'fp', 'fn', 'precision', 'recall', 'f1_score'])
writer.writerow(['prev_sub', 'no_recomm', 'no_test', 'tp', 'tn', 'fp', 'fn', 'precision', 'recall', 'f1_score','Specificity','False_Positive_Rate','True_Negative_Rate','False_Negative_Rate'])

prev_sub = 5
no_recomm = 10
Expand All @@ -117,10 +117,13 @@ def get_recommendations(username, prev_sub, no_recomm, no_test):
precision = tp/(tp + fp)
recall = tp/(tp + fn)
f1_score = 2 * precision * recall / (precision + recall)

Specificity = tn / tn + fp
False_Positive_Rate = fp / fp + tn
True_Negative_Rate = tn / tn + fp
False_Negative_Rate = fn / fn + tp
print "Precision - " + str(precision)
print "Recall - " + str(recall)
print "F1score - " + str(f1_score)

dat = [prev_sub, no_recomm, no_test, tp, tn, fp, fn, precision, recall, f1_score]
dat = [prev_sub, no_recomm, no_test, tp, tn, fp, fn, precision, recall, f1_score,Specificity,False_Positive_Rate,True_Negative_Rate,False_Negative_Rate]
writer.writerow(dat)