This repository is forked from GMR
This repository has been modified to add
IK-CONFIG auto-generation from GMR_autoik
Dataset Slicing
function for your own humanoid robots.
| Assigned ID | Robot/Data Format | Robot DoF | SMPLX (AMASS, OMOMO) | BVH LAFAN1 | FBX (OptiTrack) | BVH Nokov | PICO (XRoboToolkit) | More formats coming soon |
|---|---|---|---|---|---|---|---|---|
| 0 | Unitree G1 unitree_g1 |
Leg (2*6) + Waist (3) + Arm (2*7) = 29 | ✅ | ✅ | ✅ | ✅ | ✅ | |
| 1 | Unitree G1 with Hands unitree_g1_with_hands |
Leg (2*6) + Waist (3) + Arm (2*7) + Hand (2*7) = 43 | ✅ | ✅ | ✅ | TBD | TBD | |
| 2 | Roboparty atom_01 |
Leg (2*6) + Waist (1) + Arm (2*5) = 23 | ✅ | TBD | TBD | TBD | TBD |
Note
The code is tested on Ubuntu 22.04/20.04.
First create your conda environment:
conda create -n gmr python=3.10 -y
conda activate gmrThen, install GMR:
pip install -e .After installing SMPLX, change ext in smplx/body_models.py from npz to pkl if you are using SMPL-X pkl files.
And to resolve some possible rendering issues:
conda install -c conda-forge libstdcxx-ng -y[SMPLX body model] download SMPL-X body models to assets/body_models from SMPL-X and then structure as follows:
- assets/body_models/smplx/
-- SMPLX_NEUTRAL.pkl
-- SMPLX_FEMALE.pkl
-- SMPLX_MALE.pkl[AMASS motion data] download raw SMPL-X data to any folder you want from AMASS. NOTE: Do not download SMPL+H data.
[OMOMO motion data] download raw OMOMO data to any folder you want from this google drive file. And process the data into the SMPL-X format using scripts/convert_omomo_to_smplx.py.
[LAFAN1 motion data] download raw LAFAN1 bvh files from the official repo, i.e., lafan1.zip.
To better use this library, you can first have an understanding of the human motion data we use and the robot motion data we obtain.
Each frame of human motion data is formulated as a dict of (human_body_name, 3d global translation + global rotation). The rotation is usually represented as quaternion (with wxyz order by default, to align with mujoco).
Each frame of robot motion data can be understood as a tuple of (robot_base_translation, robot_base_rotation, robot_joint_positions).
This function is implemented in the ik_config_manager folder to generate optimized human_scale and pos/quat_offset parameters.
- Add a {robot}_tpose.json file in the pose_inits folder (to set the robot's initial pose to T-pose).
- Add the bvh/smplx_to_robot_origin.json file to the ik_configs folder (primarily requiring joint_match to fully align the humanoid robot with human_data in T-pose).
- Then,
For BVH Format:
python ik_config_manager/generate_keypoint_mapping_bvh.py \
--bvh_file ik_config_manager/TPOSE.bvh \
--robot unitree_g1 \
--loop \
--robot_qpos_init ik_config_manager/pose_inits/unitree_g1_tpose.json \
--ik_config_in general_motion_retargeting/ik_configs/bvh_lafan1_to_g1.json \
--ik_config_out general_motion_retargeting/ik_configs/bvh_lafan1_to_g1_auto.jsonFor SMPLX Format:
python ik_config_manager/generate_keypoint_mapping_smplx.py \
--smplx_file ik_config_manager/SMPLX_TPOSE_UNIFIED_AMASS.npz \
--robot unitree_g1 \
--loop \
--robot_qpos_init ik_config_manager/pose_inits/unitree_g1_tpose.json \
--ik_config_in general_motion_retargeting/ik_configs/smplx_to_g1.json \
--ik_config_out general_motion_retargeting/ik_configs/smplx_to_g1_auto.jsonThis function is added in smplx_to_robot.py, bvh_to_robot.py, gvhmr_to_robot.py to obtain dataset slices.
To use this feature, please set --save_slice to True and manully set start and end frame using --slice_motion_start_end.
For AMP, pleased set --save_as_pkl to True to save dataset with .pkl.
For BeyondMimic, pleased set --save_as_csv to True to save dataset with .csv.
Retarget a single motion:
python scripts/smplx_to_robot.py --smplx_file <path_to_smplx_data> --robot <path_to_robot_data> --save_path <path_to_save_robot_data.pkl> --rate_limitBy default you should see the visualization of the retargeted robot motion in a mujoco window.
If you want to record video, add --record_video and --video_path <your_video_path,mp4>.
--rate_limitis used to limit the rate of the retargeted robot motion to keep the same as the human motion. If you want it as fast as possible, remove--rate_limit.
Retarget a folder of motions:
python scripts/smplx_to_robot_dataset.py --src_folder <path_to_dir_of_smplx_data> --tgt_folder <path_to_dir_to_save_robot_data> --robot <robot_name>By default there is no visualization for batch retargeting.
First, install GVHMR by following their official instructions.
And run their demo that can extract human pose from monocular video:
cd path/to/GVHMR
python tools/demo/demo.py --video=docs/example_video/tennis.mp4 -sThen you should obtain the saved human pose data in GVHMR/outputs/demo/tennis/hmr4d_results.pt.
Then, run the command below to retarget the extracted human pose data to your robot:
python scripts/gvhmr_to_robot.py --gvhmr_pred_file <path_to_hmr4d_results.pt> --robot unitree_g1 --record_videoRetarget a single motion:
# single motion
python scripts/bvh_to_robot.py --bvh_file <path_to_bvh_data> --robot <path_to_robot_data> --save_path <path_to_save_robot_data.pkl> --rate_limit --format <format>By default you should see the visualization of the retargeted robot motion in a mujoco window.
--rate_limitis used to limit the rate of the retargeted robot motion to keep the same as the human motion. If you want it as fast as possible, remove--rate_limit.--formatis used to specify the format of the BVH data. Supported formats arelafan1andnokov.
Retarget a folder of motions:
python scripts/bvh_to_robot_dataset.py --src_folder <path_to_dir_of_bvh_data> --tgt_folder <path_to_dir_to_save_robot_data> --robot <robot_name>By default there is no visualization for batch retargeting.
Retarget a single motion:
-
Install
fbx_sdkby following these instructions and these instructions. You will probably need a new conda environment for this. -
Activate the conda environment where you installed
fbx_sdk. Use the following command to extract motion data from your.fbxfile:
cd third_party
python poselib/fbx_importer.py --input <path_to_fbx_file.fbx> --output <path_to_save_motion_data.pkl> --root-joint <root_joint_name> --fps <fps>- Then, run the command below to retarget the extracted motion data to your robot:
conda activate gmr
# single motion
python scripts/fbx_offline_to_robot.py --motion_file <path_to_saved_motion_data.pkl> --robot <path_to_robot_data> --save_path <path_to_save_robot_data.pkl> --rate_limitBy default you should see the visualization of the retargeted robot motion in a mujoco window.
--rate_limitis used to limit the rate of the retargeted robot motion to keep the same as the human motion. If you want it as fast as possible, remove--rate_limit.
Install PICO SDK:
- On your PICO, install PICO SDK: see here.
- On your own PC,
- Download deb package for ubuntu 22.04, or build from the repo source.
- To install, use command
then you should see
sudo dpkg -i XRoboToolkit_PC_Service_1.0.0_ubuntu_22.04_amd64.deb
xrobotoolkit-pc-servicein your APPs. remember to start this app before you do teleopperation. - Build PICO PC Service SDK and Python SDK for PICO streaming:
conda activate gmr git clone https://github.com/YanjieZe/XRoboToolkit-PC-Service-Pybind.git cd XRoboToolkit-PC-Service-Pybind mkdir -p tmp cd tmp git clone https://github.com/XR-Robotics/XRoboToolkit-PC-Service.git cd XRoboToolkit-PC-Service/RoboticsService/PXREARobotSDK bash build.sh cd ../../../.. mkdir -p lib mkdir -p include cp tmp/XRoboToolkit-PC-Service/RoboticsService/PXREARobotSDK/PXREARobotSDK.h include/ cp -r tmp/XRoboToolkit-PC-Service/RoboticsService/PXREARobotSDK/nlohmann include/nlohmann/ cp tmp/XRoboToolkit-PC-Service/RoboticsService/PXREARobotSDK/build/libPXREARobotSDK.so lib/ # rm -rf tmp # Build the project conda install -c conda-forge pybind11 pip uninstall -y xrobotoolkit_sdk python setup.py install
You should be all set!
To try it, check this script from TWIST2:
bash teleop.shYou should be able to see the retargeted robot motion in a mujoco window.
We provide the script to use OptiTrack MoCap data for real-time streaming and retargeting.
Usually you will have two computers, one is the server that installed with Motive (Desktop APP for OptiTrack) and the other is the client that installed with GMR.
Find the server ip (the computer that installed with Motive) and client ip (your computer). Set the streaming as follows:
And then run:
python scripts/optitrack_to_robot.py --server_ip <server_ip> --client_ip <client_ip> --use_multicast False --robot unitree_g1You should see the visualization of the retargeted robot motion in a mujoco window.
Visualize a single motions:
python scripts/vis_robot_motion.py --robot <robot_name> --robot_motion_path <path_to_save_robot_data.pkl>If you want to record video, add --record_video and --video_path <your_video_path,mp4>.
Visualize a folder of motions:
python scripts/vis_robot_motion_dataset.py --robot <robot_name> --robot_motion_folder <path_to_save_robot_data_folder>After launching the MuJoCo visualization window and clicking on it, you can use the following keyboard controls::
[: play the previous motion]: play the next motionspace: toggle play/pause
| CPU | Retargeting Speed |
|---|---|
| AMD Ryzen Threadripper 7960X 24-Cores | 60~70 FPS |
| 13th Gen Intel Core i9-13900K 24-Cores | 35~45 FPS |
| TBD | TBD |
If you find our code useful, please consider citing our related papers:
@article{joao2025gmr,
title={Retargeting Matters: General Motion Retargeting for Humanoid Motion Tracking},
author= {Joao Pedro Araujo and Yanjie Ze and Pei Xu and Jiajun Wu and C. Karen Liu},
year= {2025},
journal= {arXiv preprint arXiv:2510.02252}
}@article{ze2025twist,
title={TWIST: Teleoperated Whole-Body Imitation System},
author= {Yanjie Ze and Zixuan Chen and João Pedro Araújo and Zi-ang Cao and Xue Bin Peng and Jiajun Wu and C. Karen Liu},
year= {2025},
journal= {arXiv preprint arXiv:2505.02833}
}and this github repo:
@software{ze2025gmr,
title={GMR: General Motion Retargeting},
author= {Yanjie Ze and João Pedro Araújo and Jiajun Wu and C. Karen Liu},
year= {2025},
url= {https://github.com/YanjieZe/GMR},
note= {GitHub repository}
}Designing a single config for all different humans is not trivial. We observe some motions might have bad retargeting results. If you observe some bad results, please let us know! We now have a collection of such motions in TEST_MOTIONS.md.
GMR: General Motion Retargeting: MIT license
GMR: General Motion Retargeting(Fork for IK-CONFIG auto-generation): MIT license
Our IK solver is built upon mink and mujoco.
Our visualization is built upon mujoco.
The human motion data we try includes AMASS, OMOMO, and LAFAN1.
The original robot models can be found at the following locations:


