Runtime type validation with TypeScript type inference
Validate unknown data at runtime and get automatic TypeScript type narrowing—without separate schema objects or class instances.
Runtime validation libraries typically require you to define schemas separately and instantiate them before use. This creates distance between where you validate and where you consume the data.
Valdex takes a different approach: validate inline, exactly where you need it. No jumping between schema definitions and usage points. No maintaining separate DTO classes or validator instances.
// Traditional approach - schema defined elsewhere
const userSchema = z.object({ name: z.string(), age: z.number() });
const user = userSchema.parse(data);
// valdex - validate at point of use
validate(data, { name: String, age: Number });
// data is now typed as { name: string, age: number }This is particularly useful when working with:
- Database query results (mysql2, pg, etc.)
- External API responses (axios, fetch)
- Message queue payloads
- Any
unknownoranytyped data that needs runtime verification
npm install valdex- Zero dependencies: No external dependencies
- Type inference: Automatic TypeScript type narrowing after validation
- Inline validation: Validate where you use, not where you define
- Nested structures: Full support for nested objects and arrays
- Optional/Nullable: Flexible handling of optional and nullable fields
import { validate } from 'valdex';
const data: unknown = await fetchData();
validate(data, {
name: String,
age: Number,
active: Boolean
});
// TypeScript now knows the exact type of data
data.name // string
data.age // number
data.active // booleanvalidate(data, {
user: {
id: Number,
profile: {
name: String,
email: String
}
}
});
data.user.profile.name // stringvalidate(data, {
tags: [String], // string[]
items: [{ // { id: number, name: string }[]
id: Number,
name: String
}]
});
data.tags[0] // string
data.items[0].id // numberUse Optional() to allow undefined values:
import { validate, Optional } from 'valdex';
validate(data, {
required: String,
optional: Optional(String), // string | undefined
optionalObject: Optional({ // { id: number } | undefined
id: Number
}),
optionalArray: Optional([Number]) // number[] | undefined
});Use Nullable() to allow null values:
import { validate, Nullable } from 'valdex';
validate(data, {
required: String,
nullable: Nullable(String), // string | null
nullableObject: Nullable({ // { id: number } | null
id: Number
})
});import { validate, Optional, Nullable } from 'valdex';
validate(data, {
field: Optional(Nullable(String)) // string | undefined | null
});| Constructor | TypeScript Type |
|---|---|
String |
string |
Number |
number |
Boolean |
boolean |
Array |
any[] |
Object |
object |
Date |
Date |
When validation fails, a RuntimeTypeError is thrown:
import { validate, RuntimeTypeError } from 'valdex';
try {
validate(data, { count: Number });
} catch (error) {
if (error instanceof RuntimeTypeError) {
console.error(error.message);
// "count must be Number, but got String. Actual value: hello"
}
}- Fields not declared in the schema but present in data are ignored
- All declared fields are required by default (no
undefinedornull) - Use
Optional()to allowundefined - Use
Nullable()to allownull NaNis not considered a validNumber
MIT