|
| 1 | +# AWS Service Catalog Provisioning |
| 2 | + |
| 3 | +If you have an existing AWS Service Catalog Portfolio, or would like to create the Product manually, follow these steps: |
| 4 | + |
| 5 | +1. Sign in to the console with the data science account. |
| 6 | +2. On the AWS Service Catalog console, under **Administration**, choose **Portfolios**. |
| 7 | +3. Choose **Create a new portfolio**. |
| 8 | +4. Name the portfolio `SageMaker Organization Templates`. |
| 9 | +5. Download the [AB testing template](../ab-testing-pipeline.yml) to your computer. |
| 10 | +6. Choose the new portfolio. |
| 11 | +7. Choose **Upload a new product.** |
| 12 | +8. For **Product name**¸ enter `A/B Testing Deployment Pipeline`. |
| 13 | +9. For **Description**, enter `Amazon SageMaker Project for A/B Testing models`. |
| 14 | +10. For **Owner**, enter your name. |
| 15 | +11. Under **Version details**, for **Method**, choose **Use a template file**. |
| 16 | +12. Choose **Upload a template**. |
| 17 | +13. Upload the template you downloaded. |
| 18 | +14. For **Version title**, enter `1.0`. |
| 19 | + |
| 20 | +The remaining parameters are optional. |
| 21 | + |
| 22 | +15. Choose **Review**. |
| 23 | +16. Review your settings and choose **Create product**. |
| 24 | +17. Choose **Refresh** to list the new product. |
| 25 | +18. Choose the product you just created. |
| 26 | +19. On the **Tags** tab, add the following tag to the product: |
| 27 | + - **Key** – `sagemaker:studio-visibility` |
| 28 | + - **Value** – `True` |
| 29 | + |
| 30 | +Finally we need to add launch constraint and role permissions. |
| 31 | + |
| 32 | +20. On the **Constraints** tab, choose Create constraint. |
| 33 | +21. For **Product**, choose **AB Testing Pipeline** (the product you just created). |
| 34 | +22. For **Constraint type**, choose **Launch**. |
| 35 | +23. Under **Launch Constraint**, for **Method**, choose **Select IAM role**. |
| 36 | +24. Choose **AmazonSageMakerServiceCatalogProductsLaunchRole**. |
| 37 | +25. Choose **Create**. |
| 38 | +26. On the **Groups, roles, and users** tab, choose **Add groups, roles, users**. |
| 39 | +27. On the **Roles** tab, select the role you used when configuring your SageMaker Studio domain. |
| 40 | +28. Choose **Add access**. |
| 41 | + |
| 42 | +If you don’t remember which role you selected, in your data science account, go to the SageMaker console and choose **Amazon SageMaker Studio**. In the Studio **Summary** section, locate the attribute **Execution role**. Search for the name of this role in the previous step. |
0 commit comments