Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 9 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@ Below are the features and tasks of this framework:
- [Recode](https://github.com/amazon-science/recode/tree/main) applied to the HumanEval benchmark. It evaluates the robustness of code-generation models.
- [Pal](https://github.com/reasoning-machines/pal) Program-aided Language Models evaluation for grade school math problems : [GSM8K](https://huggingface.co/datasets/gsm8k) and [GSM-HARD](https://huggingface.co/datasets/reasoning-machines/gsm-hard). These problems are solved by generating reasoning chains of text and code.
- Code to text task from [CodeXGLUE](https://huggingface.co/datasets/code_x_glue_ct_code_to_text) (zero-shot & fine-tuning) for 6 languages: **Python, Go, Ruby, Java, JavaScript and PHP.** Documentation translation task from [CodeXGLUE](https://huggingface.co/datasets/code_x_glue_tt_text_to_text).
- [Code-to-Code Translation](https://huggingface.co/datasets/google/code_x_glue_cc_code_to_code_trans) task from CodeXGLUE for translating between **Java** and **C#**, evaluated using the [CodeBLEU](https://github.com/k4black/codebleu) metric.
- [CoNaLa](https://huggingface.co/datasets/neulab/conala) for **Python** code generation (2-shot setting and evaluation with BLEU score).
- [Concode](https://huggingface.co/datasets/code_x_glue_tc_text_to_code) for **Java** code generation (2-shot setting and evaluation with BLEU score).
- 3 multilingual downstream classification tasks: [Java Complexity prediction](https://huggingface.co/datasets/codeparrot/codecomplex), [Java code equivalence prediction](https://huggingface.co/datasets/code_x_glue_cc_clone_detection_big_clone_bench), [C code defect prediction](https://huggingface.co/datasets/code_x_glue_cc_defect_detection).
Expand All @@ -51,6 +52,14 @@ Install [`torch`](https://pytorch.org/get-started/locally/) based on your device
```
pip install -e .
```

### CodeBLEU Installation (for Code-to-Code Translation)
To run the `codexglue_code_to_code_trans` task, you need to install the [CodeBLEU](https://github.com/k4black/codebleu) metric. Due to a [dependency conflict](https://github.com/k4black/codebleu/issues/62) between `codebleu` and newer `tree-sitter` versions, we first install `codebleu` without its dependencies, then install the remaining requirements which include compatible `tree-sitter` packages:
```bash
pip install -r requirements-codebleu.txt --no-deps
pip install -r requirements.txt
```

To run the `DS-1000` benchmark, additional constraints must be resolved.
```
# python version must be 3.7.10
Expand Down
3 changes: 2 additions & 1 deletion bigcode_eval/tasks/__init__.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import inspect
from pprint import pprint

from . import (apps, codexglue_code_to_text, codexglue_text_to_text, conala,
from . import (apps, codexglue_code_to_text, codexglue_text_to_text, codexglue_code_to_code_trans, conala,
concode, ds1000, gsm, humaneval, humanevalplus, humanevalpack,
instruct_humaneval, instruct_wizard_humaneval, mbpp, mbppplus,
multiple, parity, python_bugs, quixbugs, recode, santacoder_fim,
Expand All @@ -11,6 +11,7 @@
**apps.create_all_tasks(),
**codexglue_code_to_text.create_all_tasks(),
**codexglue_text_to_text.create_all_tasks(),
**codexglue_code_to_code_trans.create_all_tasks(),
**multiple.create_all_tasks(),
"codexglue_code_to_text-python-left": codexglue_code_to_text.LeftCodeToText,
"conala": conala.Conala,
Expand Down
257 changes: 257 additions & 0 deletions bigcode_eval/tasks/codexglue_code_to_code_trans.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,257 @@
"""CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding and Generation
https://arxiv.org/abs/2102.04664

Code-to-Code Translation task from CodeXGLUE:
Translating code between Java and C# programming languages.
The dataset is collected from several public repos including Lucene, POI, JGit and Antlr.

Dataset: https://huggingface.co/datasets/google/code_x_glue_cc_code_to_code_trans
- 10,300 training samples
- 500 validation samples
- 1,000 test samples

This is a zero-shot or few-shot task evaluated with CodeBLEU score.
CodeBLEU is a metric specifically designed for code generation that considers:
- N-gram matching (like BLEU)
- Weighted n-gram matching based on syntax
- Syntax match using AST
- Dataflow match for semantic similarity

Reference: https://arxiv.org/abs/2009.10297
"""
import json

from codebleu import calc_codebleu

from bigcode_eval.base import Task

_CITATION = """
@article{DBLP:journals/corr/abs-2102-04664,
author = {Shuai Lu and
Daya Guo and
Shuo Ren and
Junjie Huang and
Alexey Svyatkovskiy and
Ambrosio Blanco and
Colin B. Clement and
Dawn Drain and
Daxin Jiang and
Duyu Tang and
Ge Li and
Lidong Zhou and
Linjun Shou and
Long Zhou and
Michele Tufano and
Ming Gong and
Ming Zhou and
Nan Duan and
Neel Sundaresan and
Shao Kun Deng and
Shengyu Fu and
Shujie Liu},
title = {CodeXGLUE: {A} Machine Learning Benchmark Dataset for Code Understanding
and Generation},
journal = {CoRR},
volume = {abs/2102.04664},
year = {2021}
}
"""

# Translation directions supported
# Note: codebleu_lang uses the language identifier expected by the codebleu package
TRANSLATION_DIRECTIONS = {
"java_cs": {
"source": "java",
"target": "cs",
"source_name": "Java",
"target_name": "C#",
"codebleu_lang": "c_sharp", # Target language for CodeBLEU evaluation
},
"cs_java": {
"source": "cs",
"target": "java",
"source_name": "C#",
"target_name": "Java",
"codebleu_lang": "java", # Target language for CodeBLEU evaluation
},
}


def create_all_tasks():
"""Creates a dictionary of tasks for both translation directions.
:return: {task_name: task}
e.g. {codexglue_code_to_code_trans-java_cs: Task, codexglue_code_to_code_trans-cs_java: Task}
"""
return {
f"codexglue_code_to_code_trans-{direction}": create_task(direction)
for direction in TRANSLATION_DIRECTIONS
}


def create_task(direction):
class CodeToCodeTransTask(CodeToCodeTrans):
def __init__(self, **kwargs):
super().__init__(direction, **kwargs)

return CodeToCodeTransTask


class CodeToCodeTrans(Task):
"""Code-to-Code Translation task for Java ↔ C# translation.

A task represents an entire benchmark including its dataset, problems,
answers, generation settings and evaluation methods.
"""

DATASET_PATH = "code_x_glue_cc_code_to_code_trans"
DATASET_NAME = None

def __init__(self, direction):
"""Initialize the code translation task.

:param direction: str
Translation direction, either 'java_cs' or 'cs_java'
"""
self.direction = direction
self.direction_config = TRANSLATION_DIRECTIONS[direction]
super().__init__(
stop_words=["\n\n", "\n//", "\n/*", "\n#"], # Stop at blank lines or comments
requires_execution=False,
)

def get_dataset(self):
"""Returns dataset for the task or an iterable of any object, that get_prompt can handle."""
return self.dataset["test"]

def fewshot_examples(self):
"""Loads and returns the few-shot examples for the task if they exist."""
with open(
"bigcode_eval/tasks/few_shot_examples/codexglue_code_to_code_trans_few_shot_prompts.json",
"r",
) as file:
examples = json.load(file)
return examples[self.direction]

@staticmethod
def two_shot_prompt(entry, source_code, examples, source_name, target_name):
"""Two shot prompt format with source and target code examples.

:param entry: str
Instruction prefix for the task
:param source_code: str
The source code to translate
:param examples: dict
Few-shot examples containing source1, target1, source2, target2
:param source_name: str
Name of the source language (e.g., 'Java')
:param target_name: str
Name of the target language (e.g., 'C#')
:return: str
The complete prompt
"""
prompt = f"""{entry}
{source_name}:
{examples['source1']}
{target_name}:
{examples['target1']}

{source_name}:
{examples['source2']}
{target_name}:
{examples['target2']}

{source_name}:
{source_code}
{target_name}:
"""
return prompt

def get_prompt(self, doc):
"""Builds the prompt for the LM to generate from.

:param doc: dict[str: str]
sample from the test dataset
:return: str
"""
source_name = self.direction_config["source_name"]
target_name = self.direction_config["target_name"]
source_field = self.direction_config["source"]

source_code = doc[source_field].strip()
entry = f"Translate the following code from {source_name} to {target_name}:\n"
examples = self.fewshot_examples()
prompt = self.two_shot_prompt(entry, source_code, examples, source_name, target_name)
return prompt

def get_reference(self, doc):
"""Builds the reference solution for the doc (sample from the test dataset).

:param doc: dict[str: str]
sample from the test dataset
:return: str
"""
target_field = self.direction_config["target"]
return doc[target_field].strip()

def postprocess_generation(self, generation, idx):
"""Defines the postprocessing for a LM generation.

:param generation: str
code generation from LM
:param idx: int
index of doc in the dataset to which the generation belongs
(not used for this task)
:return: str
"""
target_name = self.direction_config["target_name"]
# Extract the generated code after the last target language marker
marker = f"{target_name}:\n"
if marker in generation:
output = generation.split(marker)[-1]
else:
output = generation

# Clean up the output - take first complete function/method
output = output.strip()

# Stop at double newlines or comment markers that might indicate end of function
for stop in ["\n\n", "\n//", "\n/*"]:
if stop in output:
output = output.split(stop)[0]

return output.strip()

def process_results(self, generations, references):
"""Takes the list of LM generations and evaluates them against ground truth references,
returning the CodeBLEU metric for the generations.

CodeBLEU combines:
- ngram_match_score: Standard n-gram matching (like BLEU)
- weighted_ngram_match_score: N-gram matching weighted by syntax
- syntax_match_score: AST-based syntax matching
- dataflow_match_score: Semantic dataflow matching
- codebleu: Combined score (weighted average of above)

:param generations: list(list(str))
list of lists containing generations
:param references: list(str)
list of str containing references
:return: dict[str: float]
"""
# Extract the first generation from each list
predictions = [gen[0] for gen in generations]

# Get the target language for CodeBLEU evaluation
lang = self.direction_config["codebleu_lang"]

# Compute CodeBLEU score
# calc_codebleu expects references as list of strings (one per sample)
# and predictions as list of strings (one per sample)
results = calc_codebleu(
references=references,
predictions=predictions,
lang=lang,
)

return results

1 change: 1 addition & 0 deletions requirements-codebleu.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
codebleu==0.7.0
3 changes: 3 additions & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -6,3 +6,6 @@ pyext==0.5
mosestokenizer==1.0.0
huggingface_hub>=0.11.1
fsspec>=2023.12.2
tree-sitter==0.25.2
tree-sitter-c-sharp==0.23.1
tree-sitter-java==0.23.5