Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions linear_operator/operators/matmul_linear_operator.py
Original file line number Diff line number Diff line change
Expand Up @@ -135,4 +135,10 @@ def _transpose_nonbatch(
def to_dense(
self: LinearOperator, # shape: (*batch, M, N)
) -> Tensor: # shape: (*batch, M, N)
# Use element-wise multiplication for DiagLinearOperators
if isinstance(self.left_linear_op, DiagLinearOperator):
return self.left_linear_op._diag.unsqueeze(-1) * self.right_linear_op.to_dense()
if isinstance(self.right_linear_op, DiagLinearOperator):
return self.left_linear_op.to_dense() * self.right_linear_op._diag.unsqueeze(-2)

return torch.matmul(self.left_linear_op.to_dense(), self.right_linear_op.to_dense())
57 changes: 56 additions & 1 deletion test/operators/test_matmul_linear_operator.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@

import torch

from linear_operator.operators import MatmulLinearOperator
from linear_operator.operators import DenseLinearOperator, DiagLinearOperator, MatmulLinearOperator
from linear_operator.test.linear_operator_test_case import LinearOperatorTestCase, RectangularLinearOperatorTestCase


Expand Down Expand Up @@ -56,5 +56,60 @@ def evaluate_linear_op(self, linear_op):
return linear_op.left_linear_op.tensor.matmul(linear_op.right_linear_op.tensor)


class TestMatmulLinearOperatorDiagOptimization(unittest.TestCase):
"""Tests for efficient diagonal matrix multiplication in to_dense()."""

def test_diag_left_matmul_to_dense(self):
"""Test D @ A uses element-wise multiplication."""
diag = torch.tensor([1.0, 2.0, 3.0, 4.0])
A = torch.randn(4, 5)

D = DiagLinearOperator(diag)
result = MatmulLinearOperator(D, DenseLinearOperator(A))

expected = torch.diag(diag) @ A
self.assertTrue(torch.allclose(result.to_dense(), expected))

def test_diag_right_matmul_to_dense(self):
"""Test A @ D uses element-wise multiplication."""
diag = torch.tensor([1.0, 2.0, 3.0, 4.0, 5.0])
A = torch.randn(4, 5)

D = DiagLinearOperator(diag)
result = MatmulLinearOperator(DenseLinearOperator(A), D)

expected = A @ torch.diag(diag)
self.assertTrue(torch.allclose(result.to_dense(), expected))

def test_diag_sandwich_to_dense(self):
"""Test D1 @ A @ D2 uses element-wise multiplication (the main bug fix)."""
diag1 = torch.tensor([1.0, 2.0, 3.0, 4.0])
diag2 = torch.tensor([0.5, 1.5, 2.5, 3.5])
A = torch.randn(4, 4)

D1 = DiagLinearOperator(diag1)
D2 = DiagLinearOperator(diag2)

result = D1 @ DenseLinearOperator(A) @ D2
expected = torch.diag(diag1) @ A @ torch.diag(diag2)
self.assertTrue(torch.allclose(result.to_dense(), expected))

def test_diag_sandwich_batch(self):
"""Test D1 @ A @ D2 with batch dimensions."""
batch_size = 3
n = 4

diag1 = torch.randn(batch_size, n).abs()
diag2 = torch.randn(batch_size, n).abs()
A = torch.randn(batch_size, n, n)

D1 = DiagLinearOperator(diag1)
D2 = DiagLinearOperator(diag2)

result = D1 @ DenseLinearOperator(A) @ D2
expected = torch.diag_embed(diag1) @ A @ torch.diag_embed(diag2)
self.assertTrue(torch.allclose(result.to_dense(), expected))


if __name__ == "__main__":
unittest.main()