Skip to content

fetchflow/cpln-py

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

40 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Control Plane SDK for Python (cpln-py)

Python 3.9+ License: Apache 2.0 PyPI version codecov

A comprehensive Python library for interacting with the Control Plane API. This SDK provides a Pythonic interface to manage GVCs (Global Virtual Clouds), workloads, images, and other Control Plane resources programmatically.

Features

  • πŸš€ Easy-to-use client interface - Simple Python client for Control Plane API
  • πŸ”§ Workload Management - Create, deploy, manage, and execute commands in workloads
  • πŸ–ΌοΈ Image Management - Handle container images in Control Plane registry
  • 🌐 GVC Operations - Manage Global Virtual Clouds and their configurations
  • ⚑ WebSocket Support - Real-time command execution with proper error handling
  • πŸ” Authentication - Secure API access with token-based authentication
  • πŸ§ͺ Well-tested - Comprehensive test suite with high coverage
  • πŸ“š Type Hints - Full type annotation support for better development experience

Installation

Using pip (when published):

pip install cpln-py

Development Installation:

This project uses PDM for dependency management:

# Clone the repository
git clone https://github.com/dave6892/cpln-py.git
cd cpln-py

# Install dependencies
make install

# Run examples to verify installation
pdm run python examples/example_cpln_gvc.py
pdm run python examples/example_cpln_images.py
pdm run python examples/example_cpln_workload.py

Requirements

  • Python 3.9+ (supports 3.9, 3.10, 3.11, 3.12, 3.13)
  • Control Plane account with API access
  • Service Account Key for authentication

Quick Start

1. Authentication Setup

First, you'll need a Control Plane Service Account Key. See the official documentation for how to create one.

Create a .env file in your project:

CPLN_TOKEN=your_service_account_key_here
CPLN_ORG=your_organization_name
CPLN_BASE_URL=https://api.cpln.io  # Optional, defaults to this

2. Basic Usage

import cpln

# Initialize client from environment variables
client = cpln.CPLNClient.from_env()

# Or initialize with explicit parameters
client = cpln.CPLNClient(
    token="your_token_here",
    org="your_org_here",
    base_url="https://api.cpln.io"  # Optional
)

Usage Examples

Managing GVCs (Global Virtual Clouds)

# List all GVCs
gvcs = client.gvcs.list()
for gvc in gvcs:
    print(f"GVC: {gvc.attrs['name']}")

# Get a specific GVC
gvc = client.gvcs.get("my-gvc")
print(f"GVC Details: {gvc.get()}")

# Create a new GVC
new_gvc = client.gvcs.model(
    attrs={"name": "test-gvc", "description": "Test GVC"}
)
new_gvc.create()

# Delete a GVC
gvc.delete()

Managing Container Images

# List all images in the registry
images = client.images.list()
for image in images:
    print(f"Image: {image.attrs['name']}")

# Get a specific image
image = client.images.get("my-image")
print(f"Image Details: {image.get()}")

# Delete an image
image.delete()

Managing Workloads

from cpln.config import WorkloadConfig

# List workloads in a GVC
workloads = client.workloads.list(gvc="my-gvc")
for name, workload in workloads.items():
    print(f"Workload: {name}")

# Get a specific workload
config = WorkloadConfig(gvc="my-gvc", workload_id="my-workload")
workload = client.workloads.get(config)

# Create a new workload
client.workloads.create(
    name="new-workload",
    gvc="my-gvc",
    description="A new workload",
    image="nginx:latest",
    container_name="web",
    workload_type="serverless"
)

# Execute commands in a workload
try:
    result = workload.exec("ls -la", location="aws-us-west-2")
    print(f"Command output: {result}")
except WebSocketExitCodeError as e:
    print(f"Command failed: {e}")

# Clone a workload
workload.clone(
    name="cloned-workload",
    gvc="target-gvc",
    workload_type="standard"
)

# Suspend/unsuspend workloads
workload.suspend()
workload.unsuspend()

# Get workload information
replicas = workload.get_replicas(location="aws-us-west-2")
containers = workload.get_containers(location="aws-us-west-2")
remote_url = workload.get_remote(location="aws-us-west-2")

# Ping a workload to check connectivity
ping_result = workload.ping(location="aws-us-west-2")
if ping_result["status"] == 200:
    print("Workload is responsive")
else:
    print(f"Workload ping failed: {ping_result['message']}")

# Export workload configuration
config_data = workload.export()
print(f"Workload config: {config_data}")

Managing Containers (Workload-Centric)

# List containers for a specific workload (workload-centric approach)
containers = client.containers.list(gvc="my-gvc", workload_name="my-workload")
for container in containers:
    print(f"Container: {container.name} ({container.image})")
    print(f"  Workload: {container.workload_name}")
    print(f"  Location: {container.location}")
    print(f"  Healthy: {container.is_healthy()}")

# List containers for specific workload in specific location
containers = client.containers.list(
    gvc="my-gvc",
    workload_name="my-workload",
    location="aws-us-west-2"
)

# Access containers through workloads (recommended pattern)
from cpln.config import WorkloadConfig

config = WorkloadConfig(gvc="my-gvc", workload_id="my-workload")
workload = client.workloads.get(config)
containers = workload.get_container_objects()

# Advanced container listing with caching, retry logic, and filtering (workload-centric)
from cpln.models.containers import AdvancedListingOptions

options = AdvancedListingOptions(
    enable_cache=True,
    cache_ttl_seconds=300,
    enable_retry=True,
    max_retries=3,
    filter_unhealthy=True
)

containers, stats = client.containers.list_advanced(
    gvc="my-gvc",
    workload_name="my-workload",
    options=options
)

print(f"Found {len(containers)} containers in {stats.duration_seconds:.2f}s")
print(f"API calls: {stats.api_calls_made}, Cache hits: {stats.cache_hits}")

# Count containers efficiently for a specific workload
count = client.containers.count_containers(gvc="my-gvc", workload_name="my-workload")
print(f"Total containers in workload: {count}")

# For multi-workload operations, iterate through workloads individually
workloads = client.workloads.list(gvc="my-gvc")
all_containers = []

for workload in workloads:
    workload_containers = workload.get_container_objects()
    all_containers.extend(workload_containers)
    print(f"Workload {workload.attrs['name']}: {len(workload_containers)} containers")

# Get container details
for container in containers:
    utilization = container.get_resource_utilization()
    if utilization["cpu"] or utilization["memory"]:
        print(f"Resource usage - CPU: {utilization['cpu']}%, Memory: {utilization['memory']}%")

Advanced Workload Operations

# Create workload with custom metadata
metadata = {
    "name": "custom-workload",
    "description": "Custom workload with specific configuration",
    "spec": {
        "type": "standard",
        "containers": [
            {
                "name": "app",
                "image": "my-app:latest",
                "env": [
                    {"name": "ENV", "value": "production"}
                ]
            }
        ],
        "defaultOptions": {
            "autoscaling": {
                "metric": "cpu",
                "minReplicas": 1,
                "maxReplicas": 10
            },
            "capacityAI": False
        }
    }
}

client.workloads.create(
    name="custom-workload",
    gvc="my-gvc",
    metadata=metadata
)

Error Handling

from cpln.errors import APIError, NotFound, WebSocketExitCodeError

try:
    # API operations
    workload = client.workloads.get(config)
    result = workload.exec("some-command", location="aws-us-west-2")
except NotFound:
    print("Resource not found")
except APIError as e:
    print(f"API error: {e}")
except WebSocketExitCodeError as e:
    print(f"Command execution failed with exit code {e.exit_code}: {e}")

Configuration

Environment Variables

The SDK supports the following environment variables:

  • CPLN_TOKEN: Your Control Plane service account token (required)
  • CPLN_ORG: Your organization name (required)
  • CPLN_BASE_URL: API base URL (optional, defaults to https://api.cpln.io)

Client Configuration

# Custom timeout and other options
client = cpln.CPLNClient(
    token="your_token",
    org="your_org",
    base_url="https://api.cpln.io",
    timeout=30  # Custom timeout in seconds
)

Development

Running Tests

# Run all tests
make test

# Run with coverage
pdm run pytest --cov=src/cpln

# Run specific test file
pdm run pytest tests/unit/cpln/models/test_workloads.py

Code Quality

# Format code
pdm run ruff format src/ tests/

# Lint code
pdm run flake8 src/ tests/
pdm run ruff check src/ tests/

# Type checking
pdm run mypy src/

Documentation

# Build and serve documentation
make docs

API Reference

For detailed API documentation, see:

Architecture

The SDK is organized into several key components:

  • Client Layer (cpln.client): High-level client interface
  • API Layer (cpln.api): Low-level REST API client with authentication
  • Models (cpln.models): Resource models for GVCs, Images, and Workloads
  • Utils (cpln.utils): WebSocket communication, exit code handling, and utilities
  • Configuration (cpln.config): Configuration management for different resource types

Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Make your changes
  4. Add tests for your changes
  5. Ensure all tests pass (make test)
  6. Run code quality checks (make lint and make format)
  7. Commit your changes (git commit -m 'Add amazing feature')
  8. Push to the branch (git push origin feature/amazing-feature)
  9. Open a Pull Request

License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.

Support

For support and questions:

Changelog

See CHANGELOG.md for version history and changes.

About

A Python library for the Control Plane API

Resources

Stars

Watchers

Forks

Packages

No packages published