Skip to content

fortyfive-labs/ml-dash

Repository files navigation

ML-Dash

A simple and flexible SDK for ML experiment tracking and data storage.

Features

  • Three Usage Styles: Pre-configured singleton (dxp), context manager, or direct instantiation
  • Dual Operation Modes: Remote (API server) or local (filesystem)
  • OAuth2 Authentication: Secure device flow authentication for CLI and SDK
  • Auto-creation: Automatically creates namespace, project, and folder hierarchy
  • Upsert Behavior: Updates existing experiments or creates new ones
  • Experiment Lifecycle: Automatic status tracking (RUNNING, COMPLETED, FAILED, CANCELLED)
  • Organized File Storage: Prefix-based file organization with unique snowflake IDs
  • Rich Metadata: Tags, bindrs, descriptions, and custom metadata support
  • Simple API: Minimal configuration, maximum flexibility

Installation

Using uv (recommended) Using pip
uv add ml-dash
pip install ml-dash

Quick Start

1. Authenticate (Required for Remote Mode)

ml-dash login

This opens your browser for secure OAuth2 authentication. Your credentials are stored securely in your system keychain.

2. Start Tracking Experiments

Option A: Use the Pre-configured Singleton (Easiest)

from ml_dash import dxp

# Start experiment (uploads to https://api.dash.ml by default)
with dxp.run:
    dxp.log().info("Training started")
    dxp.params.set(learning_rate=0.001, batch_size=32)

    for epoch in range(10):
        loss = train_one_epoch()
        dxp.metrics("loss").append(value=loss, epoch=epoch)

Option B: Create Your Own Experiment

from ml_dash import Experiment

with Experiment(
    name="my-experiment",
    project="my-project",
    remote="https://api.dash.ml"  # token auto-loaded
).run as experiment:
    experiment.log().info("Hello!")
    experiment.params.set(lr=0.001)

Option C: Local Mode (No Authentication Required)

from ml_dash import Experiment

with Experiment(
    name="my-experiment",
    project="my-project",
    local_path=".ml-dash"
).run as experiment:
    experiment.log().info("Running locally")

See docs/getting-started.md for more examples.

Development Setup

Installing Dev Dependencies

To contribute to ML-Dash or run tests, install the development dependencies:

Using uv (recommended) Using pip
uv sync --extra dev
pip install -e ".[dev]"

This installs:

  • pytest>=8.0.0 - Testing framework
  • pytest-asyncio>=0.23.0 - Async test support
  • sphinx>=7.2.0 - Documentation builder
  • sphinx-rtd-theme>=2.0.0 - Read the Docs theme
  • sphinx-autobuild>=2024.0.0 - Live preview for documentation
  • myst-parser>=2.0.0 - Markdown support for Sphinx
  • ruff>=0.3.0 - Linter and formatter
  • mypy>=1.9.0 - Type checker

Running Tests

Using uv Using pytest directly
uv run pytest
pytest

Building Documentation

Documentation is built using Sphinx with Read the Docs theme.

Build docs Live preview Clean build
uv run python -m sphinx -b html docs docs/_build/html
uv run sphinx-autobuild docs docs/_build/html
rm -rf docs/_build

The live preview command starts a local server and automatically rebuilds when files change.

Alternatively, you can use the Makefile from within the docs directory:

cd docs
make html          # Build HTML documentation
make clean         # Clean build files

For maintainers, to build and publish a new release: uv build && uv publish

About

Scalable Training Telemetry and Metrics Visualization

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •