Skip to content

fix(deps): update python: non-major updates#274

Open
renovate[bot] wants to merge 1 commit intomainfrom
renovate/python-non-major
Open

fix(deps): update python: non-major updates#274
renovate[bot] wants to merge 1 commit intomainfrom
renovate/python-non-major

Conversation

@renovate
Copy link
Contributor

@renovate renovate bot commented Feb 9, 2026

ℹ️ Note

This PR body was truncated due to platform limits.

This PR contains the following updates:

Package Type Update Change OpenSSF Age Confidence
fastapi (changelog) project.dependencies minor ==0.128.0==0.129.0 OpenSSF Scorecard age confidence
gliner project.optional-dependencies patch ==0.2.24==0.2.25 OpenSSF Scorecard age confidence
gradio project.optional-dependencies minor ==6.4.0==6.5.1 OpenSSF Scorecard age confidence
huggingface-hub project.dependencies minor ==1.3.4==1.4.1 OpenSSF Scorecard age confidence
ipykernel dependency-groups minor ==7.1.0==7.2.0 OpenSSF Scorecard age confidence
onnxruntime project.optional-dependencies minor ==1.23.2==1.24.1 age confidence
onnxruntime-gpu project.optional-dependencies minor ==1.23.2==1.24.1 age confidence
pydantic-settings (changelog) project.dependencies minor ==2.12.0==2.13.0 OpenSSF Scorecard age confidence
ruff (source, changelog) dependency-groups minor ==0.14.14==0.15.1 OpenSSF Scorecard age confidence
ty (changelog) dependency-groups patch ==0.0.13==0.0.17 OpenSSF Scorecard age confidence

Release Notes

fastapi/fastapi (fastapi)

v0.129.0

Compare Source

Breaking Changes
Refactors
Docs
Internal

v0.128.8

Compare Source

Docs
Internal

v0.128.7

Compare Source

Features
Refactors
  • ♻️ Simplify reading files in memory, do it sequentially instead of (fake) parallel. PR #​14884 by @​tiangolo.
Docs
Internal

v0.128.6

Compare Source

Fixes
Translations
Internal

v0.128.5

Compare Source

Refactors
  • ♻️ Refactor and simplify Pydantic v2 (and v1) compatibility internal utils. PR #​14862 by @​tiangolo.
Internal
  • ✅ Add inline snapshot tests for OpenAPI before changes from Pydantic v2. PR #​14864 by @​tiangolo.

v0.128.4

Compare Source

Refactors
  • ♻️ Refactor internals, simplify Pydantic v2/v1 utils, create_model_field, better types for lenient_issubclass. PR #​14860 by @​tiangolo.
  • ♻️ Simplify internals, remove Pydantic v1 only logic, no longer needed. PR #​14857 by @​tiangolo.
  • ♻️ Refactor internals, cleanup unneeded Pydantic v1 specific logic. PR #​14856 by @​tiangolo.
Translations
Internal

v0.128.3

Compare Source

Refactors
  • ♻️ Re-implement on_event in FastAPI for compatibility with the next Starlette, while keeping backwards compatibility. PR #​14851 by @​tiangolo.
Upgrades
  • ⬆️ Upgrade Starlette supported version range to starlette>=0.40.0,<1.0.0. PR #​14853 by @​tiangolo.
Translations
Internal
  • 👷 Run tests with Starlette from git. PR #​14849 by @​tiangolo.
  • 👷 Run tests with lower bound uv sync, upgrade fastapi[all] minimum dependencies: ujson >=5.8.0, orjson >=3.9.3. PR #​14846 by @​tiangolo.

v0.128.2

Compare Source

Features
Fixes
Docs
Translations
Internal

v0.128.1

Compare Source

Features
  • ✨ Add viewport meta tag to improve Swagger UI on mobile devices. PR #​14777 by @​Joab0.
  • 🚸 Improve error message for invalid query parameter type annotations. PR #​14479 by @​retwish.
Fixes
Refactors
Docs
Translations
Internal
urchade/GLiNER (gliner)

v0.2.25

Compare Source

What's Changed
New Contributors

Full Changelog: urchade/GLiNER@v0.2.24...v0.2.25

gradio-app/gradio (gradio)

v6.5.1

Compare Source

Fixes

v6.5.0

Compare Source

Features
Fixes
huggingface/huggingface_hub (huggingface-hub)

v1.4.1: [v1.4.1] Fix file corruption when server ignores Range header on download retry

Compare Source

Fix file corruption when server ignores Range header on download retry.
Full details in #​3778 by @​XciD.

Full Changelog: huggingface/huggingface_hub@v1.4.0...v1.4.1

v1.4.0: [v1.4.0] Building the HF CLI for You and your AI Agents

Compare Source

🧠 hf skills add CLI Command

A new hf skills add command installs the hf-cli skill for AI coding assistants (Claude Code, Codex, OpenCode). Your AI Agent now knows how to search the Hub, download models, run Jobs, manage repos, and more.

> hf skills add --help
Usage: hf skills add [OPTIONS]

  Download a skill and install it for an AI assistant.

Options:
  --claude      Install for Claude.
  --codex       Install for Codex.
  --opencode    Install for OpenCode.
  -g, --global  Install globally (user-level) instead of in the current
                project directory.
  --dest PATH   Install into a custom destination (path to skills directory).
  --force       Overwrite existing skills in the destination.
  --help        Show this message and exit.

Examples
  $ hf skills add --claude
  $ hf skills add --claude --global
  $ hf skills add --codex --opencode

Learn more
  Use `hf <command> --help` for more information about a command.
  Read the documentation at
  https://huggingface.co/docs/huggingface_hub/en/guides/cli

The skill is composed of two files fetched from the huggingface_hub docs: a CLI guide (SKILL.md) and the full CLI reference (references/cli.md). Files are installed to a central .agents/skills/hf-cli/ directory, and relative symlinks are created from agent-specific directories (e.g., .claude/skills/hf-cli/../../.agents/skills/hf-cli/). This ensures a single source of truth when installing for multiple agents.

🖥️ Improved CLI Help Output

The CLI help output has been reorganized to be more informative and agent-friendly:

  • Commands are now grouped into Main commands and Help commands
  • Examples section showing common usage patterns
  • Learn more section with links to documentation
> hf cache --help
Usage: hf cache [OPTIONS] COMMAND [ARGS]...

  Manage local cache directory.

Options:
  --help  Show this message and exit.

Main commands:
  ls      List cached repositories or revisions.
  prune   Remove detached revisions from the cache.
  rm      Remove cached repositories or revisions.
  verify  Verify checksums for a single repo revision from cache or a local
          directory.

Examples
  $ hf cache ls
  $ hf cache ls --revisions
  $ hf cache ls --filter "size>1GB" --limit 20
  $ hf cache ls --format json
  $ hf cache prune
  $ hf cache prune --dry-run
  $ hf cache rm model/gpt2
  $ hf cache rm <revision_hash>
  $ hf cache rm model/gpt2 --dry-run
  $ hf cache rm model/gpt2 --yes
  $ hf cache verify gpt2
  $ hf cache verify gpt2 --revision refs/pr/1
  $ hf cache verify my-dataset --repo-type dataset

Learn more
  Use `hf <command> --help` for more information about a command.
  Read the documentation at
  https://huggingface.co/docs/huggingface_hub/en/guides/cli

📊 Evaluation Results Module

The Hub now has a decentralized system for tracking model evaluation results. Benchmark datasets (like MMLU-Pro, HLE, GPQA) host leaderboards, and model repos store evaluation scores in .eval_results/*.yaml files. These results automatically appear on both the model page and the benchmark's leaderboard. See the Evaluation Results documentation for more details.

We added helpers in huggingface_hub to work with this format:

  • EvalResultEntry dataclass representing evaluation scores
  • eval_result_entries_to_yaml() to serialize entries to YAML format
  • parse_eval_result_entries() to parse YAML data back into EvalResultEntry objects
import yaml
from huggingface_hub import EvalResultEntry, eval_result_entries_to_yaml, upload_file

entries = [
    EvalResultEntry(dataset_id="cais/hle", task_id="default", value=20.90),
    EvalResultEntry(dataset_id="Idavidrein/gpqa", task_id="gpqa_diamond", value=0.412),
]
yaml_content = yaml.dump(eval_result_entries_to_yaml(entries))
upload_file(
    path_or_fileobj=yaml_content.encode(),
    path_in_repo=".eval_results/results.yaml",
    repo_id="your-username/your-model",
)

🖥️ Other CLI Improvements

New hf papers ls command to list daily papers on the Hub, with support for filtering by date and sorting by trending or publication date.

hf papers ls                       # List most recent daily papers
hf papers ls --sort=trending       # List trending papers
hf papers ls --date=2025-01-23     # List papers from a specific date
hf papers ls --date=today          # List today's papers

New hf collections commands for managing collections from the CLI:

# List collections
hf collections ls --owner nvidia --limit 5
hf collections ls --sort trending

# Create a collection
hf collections create "My Models" --description "Favorites" --private

# Add items
hf collections add-item user/my-coll models/gpt2 model
hf collections add-item user/my-coll datasets/squad dataset --note "QA dataset"

# Get info
hf collections info user/my-coll

# Delete
hf collections delete user/my-coll

Other CLI-related improvements:

📊 Jobs

Multi-GPU training commands are now supported with torchrun and accelerate launch:

> hf jobs uv run --with torch -- torchrun train.py
> hf jobs uv run --with accelerate -- accelerate launch train.py

You can also pass local config files alongside your scripts:

> hf jobs uv run script.py config.yml
> hf jobs uv run --with torch torchrun script.py config.yml

New hf jobs hardware command to list available hardware options:

> hf jobs hardware
NAME         PRETTY NAME            CPU      RAM     ACCELERATOR      COST/MIN COST/HOUR 
------------ ---------------------- -------- ------- ---------------- -------- --------- 
cpu-basic    CPU Basic              2 vCPU   16 GB   N/A              $0.0002  $0.01     
cpu-upgrade  CPU Upgrade            8 vCPU   32 GB   N/A              $0.0005  $0.03     
t4-small     Nvidia T4 - small      4 vCPU   15 GB   1x T4 (16 GB)    $0.0067  $0.40     
t4-medium    Nvidia T4 - medium     8 vCPU   30 GB   1x T4 (16 GB)    $0.0100  $0.60     
a10g-small   Nvidia A10G - small    4 vCPU   15 GB   1x A10G (24 GB)  $0.0167  $1.00     
a10g-large   Nvidia A10G - large    12 vCPU  46 GB   1x A10G (24 GB)  $0.0250  $1.50     
a10g-largex2 2x Nvidia A10G - large 24 vCPU  92 GB   2x A10G (48 GB)  $0.0500  $3.00     
a10g-largex4 4x Nvidia A10G - large 48 vCPU  184 GB  4x A10G (96 GB)  $0.0833  $5.00     
a100-large   Nvidia A100 - large    12 vCPU  142 GB  1x A100 (80 GB)  $0.0417  $2.50     
a100x4       4x Nvidia A100         48 vCPU  568 GB  4x A100 (320 GB) $0.1667  $10.00    
a100x8       8x Nvidia A100         96 vCPU  1136 GB 8x A100 (640 GB) $0.3333  $20.00    
l4x1         1x Nvidia L4           8 vCPU   30 GB   1x L4 (24 GB)    $0.0133  $0.80     
l4x4         4x Nvidia L4           48 vCPU  186 GB  4x L4 (96 GB)    $0.0633  $3.80     
l40sx1       1x Nvidia L40S         8 vCPU   62 GB   1x L40S (48 GB)  $0.0300  $1.80     
l40sx4       4x Nvidia L40S         48 vCPU  382 GB  4x L40S (192 GB) $0.1383  $8.30     
l40sx8       8x Nvidia L40S         192 vCPU 1534 GB 8x L40S (384 GB) $0.3917  $23.50  

Better filtering with label support and negation:

> hf jobs ps -a --filter status!=error
> hf jobs ps -a --filter label=fine-tuning
> hf jobs ps -a --filter label=model=Qwen3-06B

⚡️ Inference

🔧 QoL Improvements

📖 Documentation

🐛 Bug and typo fixes


Configuration

📅 Schedule: Branch creation - Between 12:00 AM and 03:59 AM, only on Monday ( * 0-3 * * 1 ) in timezone Europe/Berlin, Automerge - At any time (no schedule defined).

🚦 Automerge: Disabled by config. Please merge this manually once you are satisfied.

Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.

👻 Immortal: This PR will be recreated if closed unmerged. Get config help if that's undesired.


  • If you want to rebase/retry this PR, check this box

This PR was generated by Mend Renovate. View the repository job log.

@renovate renovate bot added lifecycle Update or deprecate something renovate labels Feb 9, 2026
@renovate renovate bot requested a review from freinold February 9, 2026 01:29
@renovate renovate bot force-pushed the renovate/python-non-major branch 7 times, most recently from f932b57 to def5a78 Compare February 13, 2026 18:41
@renovate renovate bot force-pushed the renovate/python-non-major branch from def5a78 to fa822c3 Compare February 15, 2026 13:59
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

lifecycle Update or deprecate something renovate

Projects

None yet

Development

Successfully merging this pull request may close these issues.

0 participants