Repository containing analysis configurations for PocketCoffea
The first step is installing the main PocketCoffea package in your python environment.
Please have a look at the Installation guide.
The configs package has been created to separate the core of the framework from all the necessary configuration files
and customization code needed the different analyses. The configuration is structured as a python package to make easier
the import of customization code into the framework configuration and also to make the sharing of analysis code easier.
Once you have a PocketCoffea local installation, you can install the configs and utils package with:
cd AnalysisConfigs
pip install -e .This will install the configs package in editable mode.
- Simple Z-> mumu invariant mass analysis here
run_pocket_coffea <config_name> <config_file> <run_options> <output_dir> <--test>cd configs/HH4b
pocket-coffea run --cfg HH4b_parton_matching_config.py -e dask@T3_CH_PSI --custom-run-options params/t3_run_options_spanet_predict.yaml -o /work/mmalucch/out_test --executor-custom-setup onnx_executor.pycd configs/VBF_HH4b
pocket-coffea run --cfg VBF_HH4b_test_config.py -e dask@T3_CH_PSI --custom-run-options params/t3_run_options_spanet_predict.yaml -o /work/mmalucch/out_hh4b/out_vbf_jets_candidates/ --executor-custom-setup onnx_executor.pysbatch -p short --account=t3 --time=00:05:00 --mem 25gb --cpus-per-task=8 --wrap="python plot_2bMorphedvs4b.py -i <input_directory> -o <output_directory>"sbatch -p short --account=t3 --time=00:10:00 --mem 40gb --cpus-per-task=1 --wrap="python ~/AnalysisConfigs/scripts/plot_DNN_score.py -id ./ -im output_GluGlutoHHto4B_spanet_kl-1p00_kt-1p00_c2-0p00_2022_postEE.coffea -r2 -om /work/mmalucch/out_ML_pytorch/DNN_DHH_method_class_weights_e5drop75_postEE_allklambda_matteo/state_dict/model_best_epoch_19.onnx"