Dependencies (other than common ones):
diffeomorphismhttps://github.com/pcsl-epfl/diffeomorphism- Experiments are run using
gridhttps://github.com/mariogeiger/grid/tree/master/grid
The list of parameters includes:
- Dataset (see below) -
ptrindicates the train-set size. - Architecture (see below)
- Optimizer (
sgd,adam) - lr and lr scheduler (
cosineannealing,none) - loss function (
crossentropyfor multi-class,hingefor one class) - training in feature or lazy regime with
alpha-trick (featlazyto 1 and varyalpha) - ...
Example:
python main.py --epochs 200 --save_best_net 1 --save_dynamics 0 --diffeo 0 --batch_size 32 --net:str 'EfficientNetB0' --dataset:str 'cifar10' --seed_init 0 --ptr 1024
| Datasets |
|---|
| mnist |
| fashionmnist |
| cifar10 |
| svhn |
| tiny-imagenet |
Models impelementations are based on github.com/kuangliu/pytorch-cifar. The list includes:
| Models |
|---|
| Fully Connected |
| LeNet |
| AlexNet |
| VGG16 |
| ResNet18 |
| ResNet50 |
| ResNet101 |
| RegNetX_200MF |
| RegNetY_400MF |
| MobileNetV2 |
| ResNeXt29(32x4d) |
| ResNeXt29(2x64d) |
| SimpleDLA |
| DenseNet121 |
| PreActResNet18 |
| DPN92 |
| DLA |