|
| 1 | +import argparse |
| 2 | +import codecs |
| 3 | +import json |
| 4 | +import logging |
| 5 | +import os |
| 6 | + |
| 7 | +import numpy as np |
| 8 | +from joblib import Parallel, delayed |
| 9 | +from shapely.geometry import Polygon |
| 10 | +from tqdm import tqdm |
| 11 | + |
| 12 | +""" |
| 13 | +Evaluate the accuracy of detection and Recognition results compared to samples |
| 14 | +
|
| 15 | +params: |
| 16 | + --gt_path: path to the test dataset label file. |
| 17 | + --pred_path: path to store running inference results. |
| 18 | + --parallel_num: parallel number, default is 32. |
| 19 | +
|
| 20 | +for example: |
| 21 | +python eval_script.py --gt_path=/xx/xx/icdar2019_lsvt/labels --pred_path=/xx/xx/pipeline_results.txt |
| 22 | +""" |
| 23 | + |
| 24 | + |
| 25 | +def transform_pred_to_dir(file_path): |
| 26 | + with open(file_path, encoding='utf-8') as file: |
| 27 | + file_path = os.path.join(os.getcwd(), 'temp') |
| 28 | + for line in tqdm(file.readlines()): |
| 29 | + line = line.strip() |
| 30 | + line_list = line.split('\t') |
| 31 | + file_name = line_list[0] |
| 32 | + res_list = json.loads(line_list[1]) if len(line_list) >= 2 else '' |
| 33 | + file_name = file_name.replace('gt', 'infer_img') |
| 34 | + file_name = file_name.replace('jpg', 'txt') |
| 35 | + |
| 36 | + if not os.path.exists(file_path): |
| 37 | + os.mkdir(file_path) |
| 38 | + with open(os.path.join(file_path, file_name), 'w', encoding='utf-8') as new_file: |
| 39 | + for res in res_list: |
| 40 | + transcription = res.get('transcription', '') |
| 41 | + points = res.get('points', []) |
| 42 | + if not transcription and not points: |
| 43 | + continue |
| 44 | + points_str = ','.join(str(x) for x in points) if isinstance(points, list) else '' |
| 45 | + new_file.writelines(points_str + ',' + transcription + '\n') |
| 46 | + return file_path |
| 47 | + |
| 48 | + |
| 49 | +def get_image_info_list(file_list, ratio_list=[1.0]): |
| 50 | + if isinstance(file_list, str): |
| 51 | + file_list = [file_list] |
| 52 | + else: |
| 53 | + raise NotImplementedError |
| 54 | + data_lines = [] |
| 55 | + for idx, file in enumerate(file_list): |
| 56 | + with open(file, "rb") as f: |
| 57 | + lines = f.readlines() |
| 58 | + if lines and lines[0][0:3] == codecs.BOM_UTF8: |
| 59 | + lines[0] = lines[0].replace(codecs.BOM_UTF8, b'') |
| 60 | + lines = lines[:int(len(lines) * ratio_list[idx])] |
| 61 | + data_lines.extend(lines) |
| 62 | + return data_lines |
| 63 | + |
| 64 | + |
| 65 | +def intersection(g, p): |
| 66 | + """ |
| 67 | + Intersection. |
| 68 | + """ |
| 69 | + g = Polygon(g[:8].reshape((4, 2))) |
| 70 | + p = Polygon(p[:8].reshape((4, 2))) |
| 71 | + g = g.buffer(0) |
| 72 | + p = p.buffer(0) |
| 73 | + if not g.is_valid or not p.is_valid: |
| 74 | + return 0 |
| 75 | + inter = Polygon(g).intersection(Polygon(p)).area |
| 76 | + union = g.area + p.area - inter |
| 77 | + if union == 0: |
| 78 | + return 0 |
| 79 | + else: |
| 80 | + return inter / union |
| 81 | + |
| 82 | + |
| 83 | +def process_words(items, prediction, thresh=0.5): |
| 84 | + """ |
| 85 | + :param items: list of word level group truth |
| 86 | + :param prediction: item of line level inference result |
| 87 | + :param thresh: threshold to decide whether word box belong to inference box |
| 88 | + :return: candidate words with covered area for line prediction ordered from left to right |
| 89 | + """ |
| 90 | + pred = np.array([int(j) for j in prediction[:8]]) |
| 91 | + pred_poly = Polygon(pred.reshape((4, 2))).buffer(0) |
| 92 | + if not pred_poly.is_valid: |
| 93 | + return 0 |
| 94 | + matched_count = 0 |
| 95 | + for it in items: |
| 96 | + gt = np.array([int(i) for i in it[:8]]).reshape((4, 2)) |
| 97 | + gt_poly = Polygon(gt).buffer(0) |
| 98 | + if not gt_poly.is_valid: |
| 99 | + return 0 |
| 100 | + inter = Polygon(gt_poly).intersection(Polygon(pred_poly)).area |
| 101 | + ratio = 0 |
| 102 | + if gt_poly.area: |
| 103 | + ratio = inter / gt_poly.area |
| 104 | + |
| 105 | + if ratio > thresh: |
| 106 | + # only with valid word label proves the validity of item |
| 107 | + word = it[8] |
| 108 | + if word and not word.startswith("###"): |
| 109 | + word = word.replace(" ", "") |
| 110 | + pred_word = prediction[8].replace(" ", "") |
| 111 | + if word in pred_word: |
| 112 | + matched_count += 1 |
| 113 | + return matched_count |
| 114 | + |
| 115 | + |
| 116 | +def process_box_2015(items, pred_poly, thresh=0.8): |
| 117 | + valid_count = 0 |
| 118 | + for k in range(len(items)): |
| 119 | + gt = np.array([int(j) for j in items[k][:8]]).reshape((4, 2)) |
| 120 | + gt_poly = Polygon(gt).buffer(0) |
| 121 | + inter = Polygon(gt_poly).intersection(pred_poly).area |
| 122 | + ratio = inter / gt_poly.area |
| 123 | + if ratio > thresh: |
| 124 | + valid_count += 1 |
| 125 | + |
| 126 | + return valid_count |
| 127 | + |
| 128 | + |
| 129 | +def process_box_2019(items, pred_poly, thresh=0.5): |
| 130 | + valid_count = 0 |
| 131 | + for item in items: |
| 132 | + gt = np.array([int(j) for j in item[:8]]).reshape((4, 2)) |
| 133 | + inter = Polygon(gt).intersection(pred_poly).area |
| 134 | + union = Polygon(gt).union(pred_poly).area |
| 135 | + |
| 136 | + if union > 0 and inter / union > thresh: |
| 137 | + valid_count += 1 |
| 138 | + return valid_count |
| 139 | + |
| 140 | + |
| 141 | +def process_files(filepath): |
| 142 | + items = [] |
| 143 | + data_lines = get_image_info_list(filepath) |
| 144 | + for data_line in data_lines: |
| 145 | + data_line = data_line.decode('utf-8').strip("\n").strip("\r").split(",") |
| 146 | + data_line = data_line[:8] + [','.join(data_line[8:])] |
| 147 | + items.append(data_line) |
| 148 | + return items |
| 149 | + |
| 150 | + |
| 151 | +def recognition_eval(gt_pth, pred_pth): |
| 152 | + gt_items = process_files(gt_pth) |
| 153 | + if os.path.exists(pred_pth): |
| 154 | + pred_items = process_files(pred_pth) |
| 155 | + else: |
| 156 | + pred_items = [] |
| 157 | + |
| 158 | + correct_num, total_num = 0, 0 |
| 159 | + for item in gt_items: |
| 160 | + if len(item) != 9: |
| 161 | + raise ValueError("invalid gt file!") |
| 162 | + if item[8] and not item[8].startswith("###"): |
| 163 | + total_num += 1 |
| 164 | + |
| 165 | + for prediction in pred_items: |
| 166 | + if len(prediction) != 9: |
| 167 | + raise ValueError("invalid pred file!") |
| 168 | + if not prediction: |
| 169 | + continue |
| 170 | + matched_num = process_words(gt_items, prediction) |
| 171 | + correct_num += matched_num |
| 172 | + return correct_num, total_num |
| 173 | + |
| 174 | + |
| 175 | +def detection_eval(box_func, gt_pth, pred_pth): |
| 176 | + gt_items = process_files(gt_pth) |
| 177 | + if os.path.exists(pred_pth): |
| 178 | + pred_items = process_files(pred_pth) |
| 179 | + else: |
| 180 | + pred_items = [] |
| 181 | + valid_items = [] |
| 182 | + matched = 0 |
| 183 | + for item in gt_items: |
| 184 | + if len(item) != 9: |
| 185 | + continue |
| 186 | + gt = np.array([int(j) for j in item[:8]]).reshape((4, 2)) |
| 187 | + gt_poly = Polygon(gt) |
| 188 | + if not gt_poly.is_valid or not gt_poly.is_simple: |
| 189 | + continue |
| 190 | + word = item[8] |
| 191 | + if word in ["*", "###"]: |
| 192 | + continue |
| 193 | + valid_items.append(item) |
| 194 | + for prediction in pred_items: |
| 195 | + pred = np.array([int(i) for i in prediction[:8]]) |
| 196 | + pred_poly = Polygon(pred.reshape((4, 2))).buffer(0) |
| 197 | + if not pred_poly.is_valid or not pred_poly.is_simple: |
| 198 | + continue |
| 199 | + matched += box_func(valid_items, pred_poly) |
| 200 | + return { |
| 201 | + "matched": matched, |
| 202 | + "gt_num": len(valid_items), |
| 203 | + "det_num": len(pred_items) |
| 204 | + } |
| 205 | + |
| 206 | + |
| 207 | +def eval_each_det(gt_file, eval_func, gt, pred, box_func): |
| 208 | + gt_pth = os.path.join(gt, gt_file) |
| 209 | + pred_pth = os.path.join(pred, "infer_{}".format(gt_file.split('_', 1)[1])) |
| 210 | + return eval_func(box_func, gt_pth, pred_pth) |
| 211 | + |
| 212 | + |
| 213 | +def eval_each_rec(gt_file, gt, pred, eval_func): |
| 214 | + gt_pth = os.path.join(gt, gt_file) |
| 215 | + pred_pth = os.path.join(pred, "infer_{}".format(gt_file.split('_', 1)[1])) |
| 216 | + correct, total = eval_func(gt_pth, pred_pth) |
| 217 | + return correct, total |
| 218 | + |
| 219 | + |
| 220 | +def eval_rec(eval_func, gt, pred, parallel_num): |
| 221 | + """ |
| 222 | + :param eval_func: |
| 223 | + detection_eval:评估检测指标 |
| 224 | + recognition_eval: 评估识别指标 |
| 225 | + :param gt: 标签路径 |
| 226 | + :param pred: 预测路径 |
| 227 | + :param parallel_num: 并行度 |
| 228 | + :return: 指标评估结果 |
| 229 | + """ |
| 230 | + gt_list = os.listdir(gt) |
| 231 | + res = Parallel(n_jobs=parallel_num, backend="multiprocessing")(delayed(eval_each_rec)( |
| 232 | + gt_file, gt, pred, eval_func) for gt_file in tqdm(gt_list)) |
| 233 | + res = np.array(res) |
| 234 | + correct_num = sum(res[:, 0]) |
| 235 | + total_num = sum(res[:, 1]) |
| 236 | + acc = correct_num / total_num if total_num else 0 |
| 237 | + return { |
| 238 | + "acc:": acc, |
| 239 | + "correct_num:": correct_num, |
| 240 | + "total_num:": total_num |
| 241 | + } |
| 242 | + |
| 243 | + |
| 244 | +def eval_det(eval_func, box_func, gt, pred, parallel_num): |
| 245 | + """ |
| 246 | + :param eval_func: |
| 247 | + detection_eval:评估检测指标 |
| 248 | + recognition_eval: 评估识别指标 |
| 249 | + :param gt: 标签路径 |
| 250 | + :param pred: 预测路径 |
| 251 | + :return: 指标评估结果 |
| 252 | + """ |
| 253 | + gt_list = os.listdir(gt) |
| 254 | + res = Parallel(n_jobs=parallel_num, backend="multiprocessing")(delayed(eval_each_det)( |
| 255 | + gt_file, eval_func, gt, pred, box_func) for gt_file in tqdm(gt_list)) |
| 256 | + |
| 257 | + matched_num = 0 |
| 258 | + gt_num = 0 |
| 259 | + det_num = 0 |
| 260 | + for result in res: |
| 261 | + matched_num += result['matched'] |
| 262 | + gt_num += result['gt_num'] |
| 263 | + det_num += result['det_num'] |
| 264 | + |
| 265 | + precision = 0 if not det_num else float(matched_num) / det_num |
| 266 | + recall = 0 if not gt_num else float(matched_num) / gt_num |
| 267 | + h_mean = 0 if not precision + recall else 2 * float(precision * recall) / (precision + recall) |
| 268 | + return { |
| 269 | + "precision:": precision, |
| 270 | + "recall:": recall, |
| 271 | + "Hmean:": h_mean, |
| 272 | + "matched:": matched_num, |
| 273 | + "det_num": det_num, |
| 274 | + "gt_num": gt_num |
| 275 | + } |
| 276 | + |
| 277 | + |
| 278 | +def parse_args(): |
| 279 | + parser = argparse.ArgumentParser() |
| 280 | + parser.add_argument('--gt_path', required=True, type=str, help="label storage path") |
| 281 | + parser.add_argument('--pred_path', required=True, type=str, help="predicted file or folder path") |
| 282 | + parser.add_argument('--parallel_num', required=False, type=int, default=32, help="parallelism, default value is 32") |
| 283 | + return parser.parse_args() |
| 284 | + |
| 285 | + |
| 286 | +def custom_islink(path): |
| 287 | + """Remove ending path separators before checking soft links. |
| 288 | +
|
| 289 | + e.g. /xxx/ -> /xxx |
| 290 | + """ |
| 291 | + return os.path.islink(os.path.abspath(path)) |
| 292 | + |
| 293 | + |
| 294 | +def check_directory_ok(pathname: str): |
| 295 | + safe_name = os.path.relpath(pathname) |
| 296 | + if not os.path.exists(pathname): |
| 297 | + raise ValueError(f'input path {safe_name} does not exist!') |
| 298 | + if custom_islink(pathname): |
| 299 | + raise ValueError(f'Error! {safe_name} cannot be a soft link!') |
| 300 | + if not os.path.isdir(pathname): |
| 301 | + raise NotADirectoryError(f'Error! Please check if {safe_name} is a dir.') |
| 302 | + if not os.access(pathname, mode=os.R_OK): |
| 303 | + raise ValueError(f'Error! Please check if {safe_name} is readable.') |
| 304 | + if not os.listdir(pathname): |
| 305 | + raise ValueError(f'input path {safe_name} should contain at least one file!') |
| 306 | + |
| 307 | + |
| 308 | +if __name__ == '__main__': |
| 309 | + logging.getLogger().setLevel(logging.INFO) |
| 310 | + args = parse_args() |
| 311 | + gt_path = args.gt_path |
| 312 | + pred_path = args.pred_path |
| 313 | + parallel_num = args.parallel_num |
| 314 | + |
| 315 | + check_directory_ok(gt_path) |
| 316 | + |
| 317 | + if os.path.isfile(pred_path): |
| 318 | + pred_path = transform_pred_to_dir(pred_path) |
| 319 | + check_directory_ok(pred_path) |
| 320 | + |
| 321 | + result = eval_det(detection_eval, process_box_2019, gt_path, pred_path, parallel_num) |
| 322 | + logging.info(f'det: {result}') |
| 323 | + |
| 324 | + result = eval_rec(recognition_eval, gt_path, pred_path, parallel_num) |
| 325 | + logging.info(f'rec: {result}') |
0 commit comments