Iris is a Go SDK and CLI for building AI-powered applications. It provides a unified interface for working with large language models (LLMs), making it easy to integrate AI capabilities into your Go projects.
Building AI applications often requires:
- Managing multiple LLM provider APIs with different interfaces
- Handling streaming responses, retries, and error normalization
- Securely storing and managing API keys
- Building reusable chat and tool-driven workflows
Iris solves these problems by providing:
- Unified SDK: A consistent Go API across providers (OpenAI, Anthropic, Google Gemini, xAI Grok, Z.ai GLM, Perplexity, Ollama)
- Fluent Builder Pattern: Intuitive, chainable API for constructing requests
- Built-in Streaming: First-class support for streaming responses with proper channel handling
- Secure Key Management: Encrypted local storage for API keys
- CLI Tool: Quickly test models and manage projects from the command line
- Fluent chat builder with
System(),User(),Assistant(),Temperature(),MaxTokens(), andTools() - Non-streaming and streaming response modes
- Tool/function calling support
- Tool middleware stack for logging, timeout, rate limiting, cache, validation, retry, and circuit breaking
- Responses API support for GPT-5+ models with reasoning, built-in tools (web search, code interpreter), and response chaining
- Automatic retry with exponential backoff
- Telemetry hooks for observability
- Configurable non-fatal warning routing with
core.WithWarningHandler(...) - Normalized error types across providers
iris chat- Send chat completions from the terminaliris keys- Securely manage API keys with AES-256-GCM encryption and Argon2id key derivationiris init- Scaffold new Iris projects
go get github.com/petal-labs/irisgo install github.com/petal-labs/iris/cli/cmd/iris@v0.1.0package main
import (
"context"
"fmt"
"os"
"github.com/petal-labs/iris/core"
"github.com/petal-labs/iris/providers/openai"
)
func main() {
// Create a provider
provider := openai.New(os.Getenv("OPENAI_API_KEY"))
// Create a client
client := core.NewClient(provider)
// Send a chat request
resp, err := client.Chat("gpt-4o").
System("You are a helpful assistant.").
User("What is the capital of France?").
Temperature(0.7).
GetResponse(context.Background())
if err != nil {
fmt.Fprintln(os.Stderr, "Error:", err)
os.Exit(1)
}
fmt.Println(resp.Output)
fmt.Printf("Tokens used: %d\n", resp.Usage.TotalTokens)
}package main
import (
"context"
"fmt"
"os"
"github.com/petal-labs/iris/core"
"github.com/petal-labs/iris/providers/anthropic"
)
func main() {
// Create an Anthropic provider
provider := anthropic.New(os.Getenv("ANTHROPIC_API_KEY"))
// Create a client
client := core.NewClient(provider)
// Send a chat request
resp, err := client.Chat("claude-sonnet-4-5").
System("You are a helpful assistant.").
User("What is the capital of France?").
GetResponse(context.Background())
if err != nil {
fmt.Fprintln(os.Stderr, "Error:", err)
os.Exit(1)
}
fmt.Println(resp.Output)
}package main
import (
"context"
"fmt"
"os"
"github.com/petal-labs/iris/core"
"github.com/petal-labs/iris/providers/gemini"
)
func main() {
// Create a Gemini provider
provider := gemini.New(os.Getenv("GEMINI_API_KEY"))
// Create a client
client := core.NewClient(provider)
// Send a chat request
resp, err := client.Chat("gemini-2.5-flash").
System("You are a helpful assistant.").
User("What is the capital of France?").
GetResponse(context.Background())
if err != nil {
fmt.Fprintln(os.Stderr, "Error:", err)
os.Exit(1)
}
fmt.Println(resp.Output)
}Gemini models with thinking/reasoning support:
// Use reasoning with Gemini 2.5 models (budget-based)
resp, err := client.Chat("gemini-2.5-pro").
User("Solve this complex problem step by step").
ReasoningEffort(core.ReasoningEffortHigh).
GetResponse(ctx)
// Access reasoning if available
if resp.Reasoning != nil && resp.Reasoning.Output != "" {
fmt.Println("Thinking:", resp.Reasoning.Output)
}package main
import (
"context"
"fmt"
"os"
"github.com/petal-labs/iris/core"
"github.com/petal-labs/iris/providers/xai"
)
func main() {
// Create an xAI provider
provider := xai.New(os.Getenv("XAI_API_KEY"))
// Create a client
client := core.NewClient(provider)
// Send a chat request using Grok 4
resp, err := client.Chat(xai.ModelGrok4).
System("You are a helpful assistant.").
User("What is the capital of France?").
GetResponse(context.Background())
if err != nil {
fmt.Fprintln(os.Stderr, "Error:", err)
os.Exit(1)
}
fmt.Println(resp.Output)
}xAI Grok models with reasoning support:
// Use reasoning with grok-3-mini (only model that exposes reasoning_content)
resp, err := client.Chat(xai.ModelGrok3Mini).
User("Solve this step by step: If I have 5 apples and give away half...").
ReasoningEffort(core.ReasoningEffortHigh).
GetResponse(ctx)
// Access reasoning if available (grok-3-mini only)
if resp.Reasoning != nil && len(resp.Reasoning.Summary) > 0 {
fmt.Println("Thinking:", resp.Reasoning.Summary[0])
}package main
import (
"context"
"fmt"
"os"
"github.com/petal-labs/iris/core"
"github.com/petal-labs/iris/providers/zai"
)
func main() {
// Create a Z.ai provider
provider := zai.New(os.Getenv("ZAI_API_KEY"))
// Create a client
client := core.NewClient(provider)
// Send a chat request using GLM-4.7
resp, err := client.Chat(zai.ModelGLM47).
System("You are a helpful assistant.").
User("What is the capital of France?").
GetResponse(context.Background())
if err != nil {
fmt.Fprintln(os.Stderr, "Error:", err)
os.Exit(1)
}
fmt.Println(resp.Output)
}Z.ai GLM models with thinking support:
// Use thinking mode with GLM-4.7 (enabled by default)
resp, err := client.Chat(zai.ModelGLM47).
User("Solve this step by step: What is 15% of 240?").
ReasoningEffort(core.ReasoningEffortHigh).
GetResponse(ctx)
// Access reasoning if available
if resp.Reasoning != nil && len(resp.Reasoning.Summary) > 0 {
fmt.Println("Thinking:", resp.Reasoning.Summary[0])
}package main
import (
"context"
"fmt"
"os"
"github.com/petal-labs/iris/core"
"github.com/petal-labs/iris/providers/perplexity"
)
func main() {
// Create a Perplexity provider
provider := perplexity.New(os.Getenv("PERPLEXITY_API_KEY"))
// Create a client
client := core.NewClient(provider)
// Send a search-grounded chat request
resp, err := client.Chat(perplexity.ModelSonar).
System("You are a helpful assistant.").
User("What are the latest developments in AI?").
GetResponse(context.Background())
if err != nil {
fmt.Fprintln(os.Stderr, "Error:", err)
os.Exit(1)
}
fmt.Println(resp.Output)
}package main
import (
"context"
"fmt"
"os"
"github.com/petal-labs/iris/core"
"github.com/petal-labs/iris/providers/ollama"
)
func main() {
// Create a local Ollama provider (no API key needed)
provider := ollama.New()
// Or connect to a remote Ollama instance:
// provider := ollama.New(ollama.WithBaseURL("http://remote-host:11434"))
// Or use Ollama Cloud:
// provider := ollama.New(
// ollama.WithCloud(),
// ollama.WithAPIKey(os.Getenv("OLLAMA_API_KEY")),
// )
// Create a client
client := core.NewClient(provider)
// Send a chat request - use any model you have pulled
resp, err := client.Chat("llama3.2").
System("You are a helpful assistant.").
User("What is the capital of France?").
GetResponse(context.Background())
if err != nil {
fmt.Fprintln(os.Stderr, "Error:", err)
os.Exit(1)
}
fmt.Println(resp.Output)
}Ollama models with thinking support:
// Use thinking with models like qwen3
resp, err := client.Chat("qwen3").
User("Solve this step by step: What is 15% of 240?").
ReasoningEffort(core.ReasoningEffortHigh).
GetResponse(ctx)
// Access reasoning if available
if resp.Reasoning != nil && len(resp.Reasoning.Summary) > 0 {
fmt.Println("Thinking:", resp.Reasoning.Summary[0])
}stream, err := client.Chat("gpt-4o").
User("Write a short poem about Go.").
Stream(context.Background())
if err != nil {
log.Fatal(err)
}
// Print chunks as they arrive
for chunk := range stream.Ch {
fmt.Print(chunk.Delta)
}
fmt.Println()
// Or use DrainStream to collect everything
resp, err := core.DrainStream(ctx, stream)Route non-fatal SDK warnings (for example, mismatched tool result IDs) into your application logger:
client := core.NewClient(provider,
core.WithWarningHandler(func(msg string) {
log.Printf("iris warning: %s", msg)
}),
)// Define a tool
weatherTool := mytools.NewWeatherTool()
resp, err := client.Chat("gpt-4o").
User("What's the weather in San Francisco?").
Tools(weatherTool).
GetResponse(ctx)
if len(resp.ToolCalls) > 0 {
// Handle tool calls
for _, call := range resp.ToolCalls {
fmt.Printf("Tool: %s, Args: %s\n", call.Name, call.Arguments)
}
}Wrap tools with middleware before passing them to Tools(...) or invoking them directly:
logger := log.New(os.Stdout, "tool ", 0)
weatherTool := mytools.NewWeatherTool()
wrappedTool := tools.ApplyMiddleware(
weatherTool,
tools.WithBasicValidation(),
tools.WithTimeout(5*time.Second),
tools.WithLogging(logger),
)
resp, err := client.Chat("gpt-4o").
User("What's the weather in San Francisco?").
Tools(wrappedTool).
GetResponse(ctx)Use tools.WithValidation(...) with a custom schema validator when you want JSON-schema enforcement. Tool schemas are propagated automatically through ToolContext.
Generate images using OpenAI's image models:
provider := openai.New(os.Getenv("OPENAI_API_KEY"))
// Generate an image
resp, err := provider.GenerateImage(ctx, &core.ImageGenerateRequest{
Model: openai.ModelGPTImage1,
Prompt: "A serene mountain landscape at sunset",
Size: core.ImageSize1024x1024,
Quality: core.ImageQualityHigh,
})
// Save the image
data, _ := resp.Data[0].GetBytes()
os.WriteFile("landscape.png", data, 0644)stream, _ := provider.StreamImage(ctx, &core.ImageGenerateRequest{
Model: openai.ModelGPTImage1,
Prompt: "A futuristic cityscape",
PartialImages: 3,
})
for chunk := range stream.Ch {
// Process partial image
fmt.Printf("Partial %d received\n", chunk.PartialImageIndex)
}
final := <-stream.Final
// Save final imageimageData, _ := os.ReadFile("input.png")
resp, _ := provider.EditImage(ctx, &core.ImageEditRequest{
Model: openai.ModelGPTImage1,
Prompt: "Add a rainbow in the sky",
Images: []core.ImageInput{
{Data: imageData},
},
InputFidelity: core.ImageInputFidelityHigh,
})| Model | Description |
|---|---|
gpt-image-1.5 |
Latest GPT Image model |
gpt-image-1 |
Standard GPT Image |
gpt-image-1-mini |
Fast, cost-effective |
dall-e-3 |
High quality (deprecated May 2026) |
dall-e-2 |
Lower cost, inpainting (deprecated May 2026) |
GPT-5 models automatically use OpenAI's Responses API, which provides advanced features like reasoning, built-in tools, and response chaining.
// GPT-5 uses the Responses API automatically
resp, err := client.Chat("gpt-5").
Instructions("You are a helpful research assistant.").
User("What are the latest developments in quantum computing?").
ReasoningEffort(core.ReasoningEffortHigh).
WebSearch().
GetResponse(ctx)
if err != nil {
log.Fatal(err)
}
fmt.Println(resp.Output)
// Access reasoning summary if available
if resp.Reasoning != nil {
for _, summary := range resp.Reasoning.Summary {
fmt.Println("Reasoning:", summary)
}
}
// Response chaining - continue from a previous response
followUp, err := client.Chat("gpt-5").
ContinueFrom(resp.ID).
User("Can you elaborate on the most promising approach?").
GetResponse(ctx)# Set up your API key (stored encrypted)
iris keys set openai
iris keys set anthropic
iris keys set gemini
iris keys set xai
iris keys set zai
iris keys set ollama # Only needed for Ollama Cloud
# Chat with OpenAI
iris chat --provider openai --model gpt-4o --prompt "Hello, world!"
# Chat with Anthropic Claude
iris chat --provider anthropic --model claude-sonnet-4-5 --prompt "Hello, world!"
# Chat with Google Gemini
iris chat --provider gemini --model gemini-2.5-flash --prompt "Hello, world!"
# Chat with xAI Grok
iris chat --provider xai --model grok-4 --prompt "Hello, world!"
# Chat with Z.ai GLM
iris chat --provider zai --model glm-4.7-flash --prompt "Hello, world!"
# Chat with local Ollama (no API key needed)
iris chat --provider ollama --model llama3.2 --prompt "Hello, world!"
# Chat with GPT-5 (uses Responses API automatically)
iris chat --provider openai --model gpt-5 --prompt "Explain quantum entanglement"
# Stream responses
iris chat --provider openai --model gpt-4o --prompt "Tell me a story" --stream
iris chat --provider anthropic --model claude-sonnet-4-5 --prompt "Tell me a story" --stream
# Get JSON output
iris chat --provider openai --model gpt-4o --prompt "Hello" --json
# Initialize a new project
iris init myprojectiris/
├── core/ # Core SDK types and client
├── providers/ # LLM provider implementations
│ ├── internal/ # Shared provider internals (normalize, toolcalls, etc.)
│ ├── openai/ # OpenAI provider
│ ├── anthropic/ # Anthropic Claude provider
│ ├── gemini/ # Google Gemini provider
│ ├── xai/ # xAI Grok provider
│ ├── zai/ # Z.ai GLM provider
│ ├── perplexity/ # Perplexity Search provider
│ └── ollama/ # Ollama provider (local and cloud)
├── tools/ # Tool/function calling framework + middleware
├── cli/ # Command-line interface
│ ├── cmd/iris/ # CLI entry point
│ ├── commands/ # CLI commands
│ ├── config/ # Configuration loading
│ └── keystore/ # Encrypted key storage
└── tests/
└── integration/ # Provider integration + conformance harness
Iris looks for configuration at ~/.iris/config.yaml:
default_provider: openai
default_model: gpt-5 # or gpt-4o for older models
providers:
openai:
api_key_env: OPENAI_API_KEY
anthropic:
api_key_env: ANTHROPIC_API_KEY
gemini:
api_key_env: GEMINI_API_KEY
xai:
api_key_env: XAI_API_KEY
zai:
api_key_env: ZAI_API_KEY
ollama:
# For local Ollama, no API key needed
# For Ollama Cloud, set api_key_env: OLLAMA_API_KEY
# Custom base URL: base_url: http://localhost:11434For production use, set a master encryption key for the keystore:
# Generate a strong random key
export IRIS_KEYSTORE_KEY=$(openssl rand -base64 32)
# Add to your shell profile for persistence
echo 'export IRIS_KEYSTORE_KEY="your-key-here"' >> ~/.bashrcWhen IRIS_KEYSTORE_KEY is set, Iris uses the V2 keystore format with:
- Argon2id key derivation (OWASP recommended parameters)
- AES-256-GCM authenticated encryption
- Per-file random salt and nonce
Without IRIS_KEYSTORE_KEY, Iris falls back to V1 mode which derives keys from machine-specific data. This is convenient for development but less secure for production.
Iris uses a Secret type that prevents accidental logging of API keys:
secret := core.NewSecret(os.Getenv("OPENAI_API_KEY"))
fmt.Println(secret) // Prints: [REDACTED]
apiKey := secret.Expose() // Access actual value when neededSee docs/SECURITY.md for comprehensive security documentation.
| Provider | Status | Features |
|---|---|---|
| OpenAI | Supported | Chat, Streaming, Tools, Responses API (GPT-5+) |
| Anthropic | Supported | Chat, Streaming, Tools |
| Google Gemini | Supported | Chat, Streaming, Tools, Reasoning |
| xAI Grok | Supported | Chat, Streaming, Tools, Reasoning |
| Z.ai GLM | Supported | Chat, Streaming, Tools, Thinking |
| Perplexity | Supported | Chat, Streaming, Tools, Web Search |
| Ollama | Supported | Chat, Streaming, Tools, Thinking |
| Model ID | Features |
|---|---|
grok-3 |
Chat, Streaming, Tools, Reasoning |
grok-3-mini |
Chat, Streaming, Tools, Reasoning (exposes reasoning_content) |
grok-4 |
Chat, Streaming, Tools, Reasoning (latest) |
grok-4-fast-non-reasoning |
Chat, Streaming, Tools |
grok-4-fast-reasoning |
Chat, Streaming, Tools, Reasoning |
grok-code-fast |
Chat, Streaming, Tools (code-optimized) |
grok-4-1-fast-non-reasoning |
Chat, Streaming, Tools (default for CLI) |
grok-4-1-fast-reasoning |
Chat, Streaming, Tools, Reasoning |
| Model ID | Features |
|---|---|
glm-4.7 |
Chat, Streaming, Tools, Thinking (latest flagship) |
glm-4.7-flash |
Chat, Streaming, Tools (default for CLI) |
glm-4.7-flashx |
Chat, Streaming, Tools |
glm-4.6 |
Chat, Streaming, Tools, Thinking |
glm-4.6v |
Chat, Streaming, Tools, Thinking, Vision |
glm-4.6v-flash |
Chat, Streaming, Tools, Vision |
glm-4.6v-flashx |
Chat, Streaming, Tools, Vision |
glm-4.5 |
Chat, Streaming, Tools, Thinking |
glm-4.5v |
Chat, Streaming, Tools, Thinking, Vision |
glm-4.5-x |
Chat, Streaming, Tools |
glm-4.5-air |
Chat, Streaming, Tools |
glm-4.5-airx |
Chat, Streaming, Tools |
glm-4.5-flash |
Chat, Streaming, Tools |
glm-4-32b-0414-128k |
Chat, Streaming, Tools (128K context) |
| Model ID | Features |
|---|---|
sonar |
Chat, Streaming, Tools, Web Search (lightweight) |
sonar-pro |
Chat, Streaming, Tools, Web Search (advanced) |
sonar-reasoning-pro |
Chat, Streaming, Tools, Web Search, Reasoning |
sonar-deep-research |
Chat, Streaming, Web Search, Reasoning (research) |
| Model ID | Features |
|---|---|
gemini-3-pro-preview |
Chat, Streaming, Tools, Reasoning (thinkingLevel) |
gemini-3-flash-preview |
Chat, Streaming, Tools, Reasoning (thinkingLevel) |
gemini-2.5-pro |
Chat, Streaming, Tools, Reasoning (thinkingBudget) |
gemini-2.5-flash |
Chat, Streaming, Tools, Reasoning (thinkingBudget) |
gemini-2.5-flash-lite |
Chat, Streaming, Tools, Reasoning (thinkingBudget) |
Ollama supports any model you have pulled locally. Use ollama pull <model> to download models.
| Model ID | Features |
|---|---|
llama3.2 |
Chat, Streaming, Tools |
llama3.2:70b |
Chat, Streaming, Tools |
mistral |
Chat, Streaming, Tools |
mixtral |
Chat, Streaming, Tools |
qwen3 |
Chat, Streaming, Tools, Thinking |
gemma3 |
Chat, Streaming |
deepseek-coder |
Chat, Streaming |
codellama |
Chat, Streaming |
See https://ollama.com/library for all available models.
- Go 1.24 or later
- Make (optional, for using Makefile commands)
# Clone the repository
git clone https://github.com/petal-labs/iris.git
cd iris
# Install git hooks (recommended - prevents formatting issues)
make install-hooks
# or: ./scripts/setup-hooks.shmake build # Build all packages
make test # Run all tests
make test-v # Run tests with verbose output
make test-cover # Run tests with coverage
make lint # Check formatting and run go vet
make fmt # Auto-fix formatting issues
make vet # Run go vet
make install-hooks # Install git pre-commit hooks
make build-cli # Build CLI to bin/iris (with version info)
make install-cli # Install CLI locally (with version info)
make test-integration # Run integration tests
make help # Show all available commandsThe CLI is built with version information injected at build time:
# Build with version info
make build-cli
# Check version
./bin/iris version
# Output: iris v0.3.0 (abc1234) built 2026-01-30T12:00:00Z
# JSON output
./bin/iris version --json# Build everything (SDK + examples)
go build ./...
# Run tests
go test ./...
# Check formatting
gofmt -l .
# Fix formatting
gofmt -w .
# Build CLI with version injection
VERSION=$(git describe --tags --always --dirty)
COMMIT=$(git rev-parse --short HEAD)
DATE=$(date -u +"%Y-%m-%dT%H:%M:%SZ")
go build -ldflags "-X github.com/petal-labs/iris/cli/commands.Version=$VERSION \
-X github.com/petal-labs/iris/cli/commands.Commit=$COMMIT \
-X github.com/petal-labs/iris/cli/commands.BuildDate=$DATE" \
-o bin/iris ./cli/cmd/iris# Run unit tests
go test ./...
# Run with verbose output
go test -v ./...
# Run with coverage
go test -cover ./...Integration tests require API keys and make real API calls:
# Set required environment variables
export OPENAI_API_KEY=your-key
export ANTHROPIC_API_KEY=your-key # optional
export GEMINI_API_KEY=your-key # optional
export XAI_API_KEY=your-key # optional
export ZAI_API_KEY=your-key # optional
export HF_TOKEN=your-token # optional
# Run integration tests
go test -tags=integration ./tests/integration/...CI Behavior: In CI environments, integration tests fail loudly if required secrets are missing (instead of silently skipping). Set IRIS_SKIP_INTEGRATION=1 to explicitly skip integration tests in CI.
Provider chat conformance scenarios are centralized in tests/integration/chat_conformance_test.go and reused by provider-specific integration files.
The repository includes a pre-commit hook that automatically checks:
gofmt- Ensures all Go files are properly formattedgo vet- Catches common mistakes
Install the hooks after cloning:
make install-hooksThis prevents CI failures due to formatting issues.
Iris uses a Go workspace with two modules:
iris/
├── go.mod # Main SDK module (github.com/petal-labs/iris)
├── go.work # Workspace file for local development
└── examples/
└── go.mod # Examples module (github.com/petal-labs/iris/examples)
The workspace allows you to develop on both modules simultaneously. When you run go build ./... or go test ./... from the root, it builds/tests both modules.
Importing the SDK:
import (
"github.com/petal-labs/iris/core"
"github.com/petal-labs/iris/providers/openai"
"github.com/petal-labs/iris/providers/anthropic"
"github.com/petal-labs/iris/providers/gemini"
"github.com/petal-labs/iris/providers/xai"
"github.com/petal-labs/iris/providers/zai"
"github.com/petal-labs/iris/providers/perplexity"
"github.com/petal-labs/iris/providers/ollama"
"github.com/petal-labs/iris/tools"
)Examples are in a separate module but can be run from the project root thanks to the Go workspace:
# Run from project root
go run ./examples/chat/basic
go run ./examples/chat/streaming
go run ./examples/chat/responses-api
go run ./examples/chat/ollama-basic
go run ./examples/chat/huggingface-basic
go run ./examples/chat/xai-basic
go run ./examples/chat/zai-basic
go run ./examples/tools/weather
# Or from the examples directory
cd examples
go run ./chat/basic
go run ./chat/responses-api
go run ./chat/ollama-basicSee examples/README.md for detailed documentation on each example.
Providers self-register via init() functions, making it easy to add new providers:
// In providers/myprovider/register.go
func init() {
providers.Register("myprovider", func(apiKey string) core.Provider {
return New(apiKey)
})
}List registered providers:
import "github.com/petal-labs/iris/providers"
fmt.Println(providers.List()) // [anthropic gemini huggingface ollama openai perplexity xai zai]MIT License - see LICENSE for details.
Contributions are welcome. See CONTRIBUTING.md for setup, test tiers, and PR expectations.