Skip to content

rfcx/arbimon-rfm

Repository files navigation

Random Forest Models

Locally

Download mock S3 data for core and legacy as described in Store.

Start up an Arbimon mock DB and Store, seed it.

make serve-up

Run the RFM training job

docker compose exec app bash
JOB_ID=100001 python -m rfm.train_legacy

Run the RFM classification job

JOB_ID=100003 python -m rfm.classify_legacy

Run the RFM classification job on a legacy model (currently errors!)

JOB_ID=100002 python -m rfm.classify_legacy

Testing on production

Setup an ssh tunnel to the database (e.g. on port 3310)

sss -L3310:[DB_HOSTNAME]:3306 ec2-user@[BASTION_IP]

Run a job locally, use FORCE_SEQUENTIAL_EXECUTION=1 for debugging

docker run \
      -v ${PWD}/rfm:/app/rfm \
      -e DB_HOST=host.docker.internal \
      -e DB_PORT=3310 \
      -e DB_NAME=arbimon2 \
      -e DB_USER=... \
      -e DB_PASSWORD=... \
      -e S3_BUCKET_NAME=rfcx-streams-production \
      -e S3_LEGACY_BUCKET_NAME=arbimon2 \
      -e AWS_ACCESS_KEY_ID=... \
      -e AWS_SECRET_ACCESS_KEY=... \
      -e FORCE_SEQUENTIAL_EXECUTION=1 \
      -e JOB_ID=110554 \
      rfm classify_legacy

About

Random forest models

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages