@@ -63,7 +63,7 @@ pub use lapack_traits::{Pivot, UPLO};
6363/// If you plan to solve many equations with the same Hermitian (or real
6464/// symmetric) coefficient matrix `A` but different `b` vectors, it's faster to
6565/// factor the `A` matrix once using the `FactorizeH` trait, and then solve
66- /// using the `FactorizedH ` struct.
66+ /// using the `BKFactorized ` struct.
6767pub trait SolveH < A : Scalar > {
6868 /// Solves a system of linear equations `A * x = b` with Hermitian (or real
6969 /// symmetric) matrix `A`, where `A` is `self`, `b` is the argument, and
@@ -89,12 +89,12 @@ pub trait SolveH<A: Scalar> {
8989
9090/// Represents the Bunch–Kaufman factorization of a Hermitian (or real
9191/// symmetric) matrix as `A = P * U * D * U^H * P^T`.
92- pub struct FactorizedH < S : Data > {
92+ pub struct BKFactorized < S : Data > {
9393 pub a : ArrayBase < S , Ix2 > ,
9494 pub ipiv : Pivot ,
9595}
9696
97- impl < A , S > SolveH < A > for FactorizedH < S >
97+ impl < A , S > SolveH < A > for BKFactorized < S >
9898where
9999 A : Scalar ,
100100 S : Data < Elem = A > ,
@@ -136,25 +136,25 @@ where
136136pub trait FactorizeH < S : Data > {
137137 /// Computes the Bunch–Kaufman factorization of a Hermitian (or real
138138 /// symmetric) matrix.
139- fn factorizeh ( & self ) -> Result < FactorizedH < S > > ;
139+ fn factorizeh ( & self ) -> Result < BKFactorized < S > > ;
140140}
141141
142142/// An interface for computing the Bunch–Kaufman factorization of Hermitian (or
143143/// real symmetric) matrices.
144144pub trait FactorizeHInto < S : Data > {
145145 /// Computes the Bunch–Kaufman factorization of a Hermitian (or real
146146 /// symmetric) matrix.
147- fn factorizeh_into ( self ) -> Result < FactorizedH < S > > ;
147+ fn factorizeh_into ( self ) -> Result < BKFactorized < S > > ;
148148}
149149
150150impl < A , S > FactorizeHInto < S > for ArrayBase < S , Ix2 >
151151where
152152 A : Scalar ,
153153 S : DataMut < Elem = A > ,
154154{
155- fn factorizeh_into ( mut self ) -> Result < FactorizedH < S > > {
155+ fn factorizeh_into ( mut self ) -> Result < BKFactorized < S > > {
156156 let ipiv = unsafe { A :: bk ( self . layout ( ) ?, UPLO :: Upper , self . as_allocated_mut ( ) ?) ? } ;
157- Ok ( FactorizedH {
157+ Ok ( BKFactorized {
158158 a : self ,
159159 ipiv : ipiv,
160160 } )
@@ -166,10 +166,10 @@ where
166166 A : Scalar ,
167167 Si : Data < Elem = A > ,
168168{
169- fn factorizeh ( & self ) -> Result < FactorizedH < OwnedRepr < A > > > {
169+ fn factorizeh ( & self ) -> Result < BKFactorized < OwnedRepr < A > > > {
170170 let mut a: Array2 < A > = replicate ( self ) ;
171171 let ipiv = unsafe { A :: bk ( a. layout ( ) ?, UPLO :: Upper , a. as_allocated_mut ( ) ?) ? } ;
172- Ok ( FactorizedH { a : a, ipiv : ipiv } )
172+ Ok ( BKFactorized { a : a, ipiv : ipiv } )
173173 }
174174}
175175
@@ -197,7 +197,7 @@ pub trait InverseHInto {
197197 fn invh_into ( self ) -> Result < Self :: Output > ;
198198}
199199
200- impl < A , S > InverseHInto for FactorizedH < S >
200+ impl < A , S > InverseHInto for BKFactorized < S >
201201where
202202 A : Scalar ,
203203 S : DataMut < Elem = A > ,
@@ -217,15 +217,15 @@ where
217217 }
218218}
219219
220- impl < A , S > InverseH for FactorizedH < S >
220+ impl < A , S > InverseH for BKFactorized < S >
221221where
222222 A : Scalar ,
223223 S : Data < Elem = A > ,
224224{
225225 type Output = Array2 < A > ;
226226
227227 fn invh ( & self ) -> Result < Self :: Output > {
228- let f = FactorizedH {
228+ let f = BKFactorized {
229229 a : replicate ( & self . a ) ,
230230 ipiv : self . ipiv . clone ( ) ,
231231 } ;
0 commit comments