AI-powered conversational search engine
Multi-model integration | Real-time conversational search | Deep Research support
SearChat is a modern AI-powered conversational search engine built with Turborepo monorepo architecture, integrating Node.js + Koa backend and Vue 3 + TypeScript frontend.
🎯 Key Features:
- 🤖 Multi-model Support - Compatible with OpenAI, Anthropic, Gemini APIs
- 🔍 Multiple Search Engines - Support for Bing, Google, SearXNG and more
- 💬 Conversational Search - Multi-turn chat-based search experience
- ⏰ Chat History - Conversation history cached in browser (IndexedDB/LocalStorage)
- 🧠 Deep Research Mode - Refactoring deep research functionality
- 🔌 MCP Support - (TODO) Support for external MCP services
- 🖼️ Image Search - (TODO) Support for image and video search
- 📂 File Parsing - (TODO) Support for document upload and content extraction
- Intelligent Research Mode - Deep research functionality
- Iterative Exploration - Workflow orchestration based on LangChain + LangGraph
- Comprehensive Report Generation - Automatically generate structured research reports
Important
To achieve the best results, the model must support Tool Call (Function Calling).
- OpenAI API compatible
- Google Gemini API compatible
- Anthropic API compatible
- Google Vertex AI compatible
- SearXNG - Open source aggregated search, no API key required
- Bing Search - Microsoft Bing web search API
- Google Search - Google web search API
- Tavily - Tavily web search API
- Exa - Exa.ai web search API
- Bocha - BochaAI web search API
- ChatGLM Web Search - Zhipu AI free search plugin
- Responsive Design - Perfect adaptation for desktop and mobile
- Dark/Light Theme - Support for automatic system theme switching
- Internationalization - Multi-language interface (i18n)
- Real-time Streaming - Typewriter effect answer display
- Contextual Conversation - Support for multi-turn dialogue and history
Deep Research mode uses AI-driven iterative search and analysis to generate comprehensive and in-depth research reports on any topic.
If you want to integrate Deep Research capabilities into your own Node.js project:
npm install deepsearcherDocumentation: DeepResearch NPM Package
- Install Docker and Docker Compose
- Prepare AI model API keys (configure in
model.json) - Optional: Configure search engine API keys (in
docker-compose.yaml) - Ensure network access to required services (SearXNG needs Google access)
1. Create docker-compose.yaml file
Please refer to the deploy/docker-compose.yaml file.
Edit the docker-compose.yaml file and modify the corresponding environment variables in the search_chat service:
services:
search_chat:
container_name: search_chat
image: docker.cnb.cool/aigc/aisearch:v1.2.0-alpha
environment:
# Server Configuration
- PORT=3000
# Search Engine API Keys (configure as needed)
- BING_SEARCH_KEY=your_bing_key
- GOOGLE_SEARCH_KEY=your_google_key
- GOOGLE_SEARCH_ID=your_google_cse_id
- TAVILY_KEY=your_tavily_key
- ZHIPU_KEY=your_zhipu_key
- EXA_KEY=your_exa_key
- BOCHA_KEY=your_bocha_key
# Web Content Extraction (optional)
- JINA_KEY=your_jina_key
# SearXNG Configuration (included by default, ready to use)
- SEARXNG_HOSTNAME=http://searxng:8080
- SEARXNG_SAFE=0
- SEARXNG_LANGUAGE=en
- SEARXNG_ENGINES=bing,google
- SEARXNG_IMAGES_ENGINES=bing,google
# DeepResearch Configuration
- DEEP_MAX_RESEARCH_LOOPS=3
- DEEP_NUMBER_OF_INITIAL_QUERIES=3
# Domain Whitelist (optional)
- WHITELIST_DOMAINS=
volumes:
- ./model.json:/app/apps/server/dist/model.json
ports:
- "3000:3000"
restart: alwaysCreate and edit the model.json file in the same directory as docker-compose.yaml to configure AI models and API keys:
[
{
"provider": "openai",
"type": "openai",
"baseURL": "https://api.openai.com/v1",
"apiKey": "sk-your-openai-api-key",
"models": [
{
"name": "gpt-4o-mini",
"alias": "GPT-4o Mini",
"description": "OpenAI GPT-4o Mini model",
"maxTokens": 262144,
"intentAnalysis": true
},
{
"name": "gpt-4o",
"alias": "GPT-4o",
"description": "OpenAI GPT-4o model",
"maxTokens": 262144
}
]
},
{
"provider": "anthropic",
"type": "anthropic",
"baseURL": "https://api.anthropic.com/v1",
"apiKey": "sk-your-anthropic-api-key",
"models": [
{
"name": "claude-sonnet-4-5",
"alias": "Claude Sonnet 4.5",
"description": "Anthropic Claude Sonnet 4.5",
"maxTokens": 131072
}
]
}
]Models with intentAnalysis: true will be used for search intent analysis and query rewriting. It's recommended to set smaller models here to improve response speed.
Configuration Description:
provider: Model provider nametype: API type (openai/anthropic/google etc.)baseURL: API base URLapiKey: Your API keymodels: Model list with name, alias, description and max tokens
docker compose up -dOpen your browser and visit: http://localhost:3000
# Stop services
docker compose down
# Pull latest image
docker pull docker.cnb.cool/aigc/searchchat:latest
# Restart
docker compose up -dThe project supports multiple search engines. Choose the appropriate search source based on your needs. SearXNG is recommended.
Advantages: Completely free, no API key required, aggregates multiple search sources, protects privacy
SearXNG is an open-source metasearch engine that aggregates results from multiple search services without tracking users. Built into Docker deployment, ready to use out of the box.
Configuration Options:
SEARXNG_ENGINES: Set search engines (default: bing,google)SEARXNG_LANGUAGE: Search language (zh=Chinese, en-US=English, all=all)SEARXNG_SAFE: Safe search level (0=off, 1=moderate, 2=strict)
[!IMPORTANT]
Make sure to activate the json format to use the API. This can be done by adding the following line to the searxng/settings.yml file:
search:
formats:
- html
- json- Node.js >= 20
- Package Manager yarn@3.5.1
- Build Tool Turborepo
search_with_ai/
├── apps/
│ ├── server/ # Backend service (Koa + TypeScript)
│ │ ├── src/
│ │ │ ├── app.ts # Application entry
│ │ │ ├── controller.ts # Route controllers
│ │ │ ├── interface.ts # Type definitions
│ │ │ └── model.json # Model configuration
│ │ └── package.json
│ └── web/ # Frontend application (Vue 3 + TypeScript)
│ ├── src/
│ │ ├── pages/ # Page components
│ │ ├── stores/ # Pinia state management
│ │ └── components/ # Common components
│ └── package.json
├── deploy/ # Deployment configuration
│ ├── docker-compose.yaml
│ ├── .env.docker
│ └── model.json
└── package.json # Root configuration
# Clone project
git clone https://github.com/sear-chat/SearChat.git
cd SearChat
# Install dependencies (run in root, will install all sub-project dependencies)
yarn installCopy and edit server environment configuration:
# Copy environment configuration template
cp apps/server/.env apps/server/.env.local
# Edit configuration file
vim apps/server/.env.local# Start both frontend and backend development servers
yarn dev
# Or use Turborepo command
turbo devAccess URLs:
- Frontend: http://localhost:5173
- Backend: http://localhost:3000
# Build all applications
yarn build
# Or
turbo build- Framework: Koa.js + TypeScript
- AI Integration: LangChain + LangGraph
- Search Engines: Multi-engine adapter pattern
- Framework: Vue 3 + Composition API
- Build: Vite + TypeScript
- UI Library: TDesign Vue Next
- State Management: Pinia + persistence
- Styling: Tailwind CSS + Less
Welcome to contribute to the project! Please follow these steps:
- Fork the project to your GitHub account
- Create a feature branch
git checkout -b feature/amazing-feature - Commit your changes
git commit -m 'Add amazing feature' - Push the branch
git push origin feature/amazing-feature - Create a Pull Request
- GitHub Issues - Report bugs or feature requests
- GitHub Discussions - Technical discussions and Q&A
This project is licensed under the MIT License.
- SearXNG - Open source search engine
- LangChain - AI application development framework
- Tencent EdgeOne - CDN acceleration support
⭐ If this project helps you, please give it a Star!
