Skip to content
/ EntSeg Public

[Official Repo] EntSeg: Entropy-Guided Pseudo Label Denoising and Masked Image Consistency for Cross-Domain Remote Sensing Segmentation

Notifications You must be signed in to change notification settings

woldier/EntSeg

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

3 Commits
Β 
Β 
Β 
Β 

Repository files navigation

EntSeg: Entropy-Guided Pseudo Label Denoising and Masked Image Consistency for Cross-Domain Remote Sensing Segmentation


Static Badge Static Badge Static Badge Static Badge
GitHub Issues or Pull Requests GitHub Issues or Pull Requests GitHub forks GitHub Repo stars


EntSeg
Network Overview

πŸ”οΈπŸ”οΈ NEWS

  • [2025/11/24] ✨✨ Init Repo.

1. Creating Virtual Environment


Install script
pip install torch==1.10.2+cu111 -f https://mirror.sjtu.edu.cn/pytorch-wheels/cu111/?mirror_intel_list
pip install torchvision==0.11.3+cu111 -f https://download.pytorch.org/whl/torch_stable.html 
pip install mmcv-full==1.5.0 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.10.0/index.html
pip install kornia matplotlib prettytable timm yapf==0.40.1

for CN user:

pip install torch==1.10.2+cu111 -f https://mirror.sjtu.edu.cn/pytorch-wheels/cu111/?mirror_intel_list
pip install torchvision==0.11.3+cu111 -f https://download.pytorch.org/whl/torch_stable.html 
pip install mmcv-full==1.5.0 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.10.0/index.html
pip install kornia matplotlib prettytable timm yapf==0.40.1

Installation of the reference document refer:

Torch and torchvision versions relationship.

Official Repo CSDN

Version relationship of mmcv and torch.

MMCV

2.Preparation of data sets


We selected Postsdam, Vaihingen and LoveDA as benchmark datasets and created train, val, test lists for researchers.

2.1 Download of datasets

ISPRS Potsdam

Potsdam download

The Potsdam dataset is for urban semantic segmentation used in the 2D Semantic Labeling Contest - Potsdam.

The dataset can be requested at the challenge homepage. The '2_Ortho_RGB.zip', '3_Ortho_IRRG.zip' and '5_Labels_all_noBoundary.zip' are required.

ISPRS Vaihingen

Vaihingen download

The Vaihingen dataset is for urban semantic segmentation used in the 2D Semantic Labeling Contest - Vaihingen.

The dataset can be requested at the challenge homepage. The 'ISPRS_semantic_labeling_Vaihingen.zip' and 'ISPRS_semantic_labeling_Vaihingen_ground_truth_eroded_COMPLETE.zip' are required.

2.2 Data set preprocessing

Place the downloaded file in the corresponding path The format is as follows:

detals
ProSFDA/
β”œβ”€β”€ data/
β”œβ”€β”€ β”œβ”€β”€ Potsdam_IRRG_DA/
β”‚   β”‚   β”œβ”€β”€ 3_Ortho_IRRG.zip
β”‚   β”‚   └── 5_Labels_all_noBoundary.zip
β”œβ”€β”€ β”œβ”€β”€ Vaihingen_IRRG_DA/
β”‚   β”‚   β”œβ”€β”€ ISPRS_semantic_labeling_Vaihingen.zip
β”‚   β”‚   └── ISPRS_semantic_labeling_Vaihingen_ground_truth_eroded_COMPLETE.zip

after that we can convert dataset:

dataset convert
  • Potsdam
python tools/convert_datasets/potsdam.py data/Potsdam_IRRG/ --clip_size 512 --stride_size 512
python tools/convert_datasets/potsdam.py data/Potsdam_RGB/ --clip_size 512 --stride_size 512
  • Vaihingen
python tools/convert_datasets/vaihingen.py data/Vaihingen_IRRG/ --clip_size 512 --stride_size 256

Acknowledgements

This project is built upon OpenMMLab. We thank the OpenMMLab developers.

Citation

If you use Geoad in your research, please cite:

@article{,
  title={},
  author={},
  journal={},
  year={}
}

About

[Official Repo] EntSeg: Entropy-Guided Pseudo Label Denoising and Masked Image Consistency for Cross-Domain Remote Sensing Segmentation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published