EntSeg: Entropy-Guided Pseudo Label Denoising and Masked Image Consistency for Cross-Domain Remote Sensing Segmentation
- [2025/11/24] β¨β¨ Init Repo.
Install script
pip install torch==1.10.2+cu111 -f https://mirror.sjtu.edu.cn/pytorch-wheels/cu111/?mirror_intel_list
pip install torchvision==0.11.3+cu111 -f https://download.pytorch.org/whl/torch_stable.html
pip install mmcv-full==1.5.0 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.10.0/index.html
pip install kornia matplotlib prettytable timm yapf==0.40.1for CN user:
pip install torch==1.10.2+cu111 -f https://mirror.sjtu.edu.cn/pytorch-wheels/cu111/?mirror_intel_list
pip install torchvision==0.11.3+cu111 -f https://download.pytorch.org/whl/torch_stable.html
pip install mmcv-full==1.5.0 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.10.0/index.html
pip install kornia matplotlib prettytable timm yapf==0.40.1Installation of the reference document refer:
Torch and torchvision versions relationship.
Version relationship of mmcv and torch.
We selected Postsdam, Vaihingen and LoveDA as benchmark datasets and created train, val, test lists for researchers.
Potsdam download
The Potsdam dataset is for urban semantic segmentation used in the 2D Semantic Labeling Contest - Potsdam.
The dataset can be requested at the challenge homepage. The '2_Ortho_RGB.zip', '3_Ortho_IRRG.zip' and '5_Labels_all_noBoundary.zip' are required.
Vaihingen download
The Vaihingen dataset is for urban semantic segmentation used in the 2D Semantic Labeling Contest - Vaihingen.
The dataset can be requested at the challenge homepage. The 'ISPRS_semantic_labeling_Vaihingen.zip' and 'ISPRS_semantic_labeling_Vaihingen_ground_truth_eroded_COMPLETE.zip' are required.
Place the downloaded file in the corresponding path The format is as follows:
detals
ProSFDA/
βββ data/
βββ βββ Potsdam_IRRG_DA/
β β βββ 3_Ortho_IRRG.zip
β β βββ 5_Labels_all_noBoundary.zip
βββ βββ Vaihingen_IRRG_DA/
β β βββ ISPRS_semantic_labeling_Vaihingen.zip
β β βββ ISPRS_semantic_labeling_Vaihingen_ground_truth_eroded_COMPLETE.zip
after that we can convert dataset:
dataset convert
- Potsdam
python tools/convert_datasets/potsdam.py data/Potsdam_IRRG/ --clip_size 512 --stride_size 512
python tools/convert_datasets/potsdam.py data/Potsdam_RGB/ --clip_size 512 --stride_size 512- Vaihingen
python tools/convert_datasets/vaihingen.py data/Vaihingen_IRRG/ --clip_size 512 --stride_size 256This project is built upon OpenMMLab. We thank the OpenMMLab developers.
If you use Geoad in your research, please cite:
@article{,
title={},
author={},
journal={},
year={}
}