Skip to content

Conversation

@indietyp
Copy link
Member

@indietyp indietyp commented Dec 28, 2025

🌟 What is the purpose of this PR?

Add Interned::empty() for zero-length slices and use IdProducer in InternMap

The previous version of this PR was about switching the allocator for interning, I found that there was no benefit to do so, hence another optimization: canonical empty slices (something that needed to be done either way for correctness) has been implemented. Giving a ~5-12% boost in places that mostly deal with empty collections, such as MIR passes.

🔍 What does this change?

  • Adds Interned::empty() method that returns a canonical empty interned slice
  • Replaces AtomicU32 with IdProducer<T::Id> in InternMap for ID generation
  • Initializes LocalLock instances with fast_hash_map() instead of using default()
  • Optimizes intern_slice to return the canonical empty slice for empty inputs
  • Adds a test for the stable empty slice functionality
  • Updates the test:miri script to include the new stable_empty_slice test

Pre-Merge Checklist 🚀

🚢 Has this modified a publishable library?

This PR:

  • does not modify any publishable blocks or libraries, or modifications do not need publishing

📜 Does this require a change to the docs?

The changes in this PR:

  • are internal and do not require a docs change

🕸️ Does this require a change to the Turbo Graph?

The changes in this PR:

  • do not affect the execution graph

🛡 What tests cover this?

  • Added a new test stable_empty_slice to verify that empty slices share the same address
  • Existing tests cover the IdProducer changes

❓ How to test this?

  1. Run cargo test to verify all tests pass
  2. Run cargo miri nextest run -- stable_empty_slice to verify the new empty slice functionality
  3. Verify that interning empty slices returns the same reference regardless of element type

@vercel vercel bot temporarily deployed to Preview – petrinaut December 28, 2025 10:27 Inactive
@cursor
Copy link

cursor bot commented Dec 28, 2025

PR Summary

Introduces canonical empty slices and streamlines ID generation and map initialization.

  • Adds Interned::empty() returning a canonical empty interned slice; uses it in InternSet::intern_slice for empty inputs
  • Replaces AtomicU32 with IdProducer<T::Id> in InternMap and updates next_id() implementation
  • Initializes LocalLock maps with fast_hash_map() (and fast_hash_map_with_capacity in with_capacity) instead of default()
  • Adds test stable_empty_slice validating shared address across empty slice types; updates test:miri script to include it

Written by Cursor Bugbot for commit 75ba45f. This will update automatically on new commits. Configure here.

Copy link
Member Author

indietyp commented Dec 28, 2025

Warning

This pull request is not mergeable via GitHub because a downstack PR is open. Once all requirements are satisfied, merge this PR as a stack on Graphite.
Learn more

This stack of pull requests is managed by Graphite. Learn more about stacking.

@codecov
Copy link

codecov bot commented Dec 28, 2025

Codecov Report

✅ All modified and coverable lines are covered by tests.
✅ Project coverage is 60.04%. Comparing base (28d00a6) to head (75ba45f).

Additional details and impacted files
@@                                           Coverage Diff                                            @@
##           bm/be-260-hashql-switch-internal-allocator-implementation-to-scoping    #8223      +/-   ##
========================================================================================================
+ Coverage                                                                 60.02%   60.04%   +0.01%     
========================================================================================================
  Files                                                                      1054     1054              
  Lines                                                                    106560   106576      +16     
  Branches                                                                   4433     4434       +1     
========================================================================================================
+ Hits                                                                      63965    63989      +24     
+ Misses                                                                    41873    41865       -8     
  Partials                                                                    722      722              
Flag Coverage Δ
apps.hash-ai-worker-ts 1.40% <ø> (ø)
apps.hash-api 0.00% <ø> (ø)
local.hash-graph-sdk 10.88% <ø> (ø)
local.hash-isomorphic-utils 0.00% <ø> (ø)
rust.hash-graph-api 2.89% <ø> (ø)
rust.hashql-ast 87.25% <ø> (ø)
rust.hashql-compiletest 46.65% <ø> (ø)
rust.hashql-core 81.92% <100.00%> (+0.04%) ⬆️
rust.hashql-eval 68.54% <ø> (ø)
rust.hashql-hir 89.10% <ø> (ø)
rust.hashql-mir 88.51% <ø> (ø)
rust.hashql-syntax-jexpr 94.05% <ø> (ø)

Flags with carried forward coverage won't be shown. Click here to find out more.

☔ View full report in Codecov by Sentry.
📢 Have feedback on the report? Share it here.

🚀 New features to boost your workflow:
  • ❄️ Test Analytics: Detect flaky tests, report on failures, and find test suite problems.
  • 📦 JS Bundle Analysis: Save yourself from yourself by tracking and limiting bundle sizes in JS merges.

@codspeed-hq
Copy link

codspeed-hq bot commented Dec 28, 2025

CodSpeed Performance Report

Merging #8223 will improve performance by 12.05%

Comparing bm/be-262-hashql-use-heap-to-store-interners (75ba45f) with bm/be-260-hashql-switch-internal-allocator-implementation-to-scoping (28d00a6)

Summary

⚡ 1 improvement
✅ 28 untouched

Benchmarks breakdown

Benchmark BASE HEAD Efficiency
diamond 7.1 µs 6.3 µs +12.05%

@augmentcode
Copy link

augmentcode bot commented Dec 28, 2025

🤖 Augment PR Summary

Summary: Refactors HashQL interning collections to allocate their backing hash tables in the arena Heap and to centralize sequential ID generation.

Changes:

  • InternMap: replace the manual AtomicU32 counter with IdProducer<T::Id> and generate IDs via IdProducer::next()
  • InternMap: build inner/lookup via fast_hash_map_in / fast_hash_map_with_capacity_in, and carry &Heap as the map allocator parameter
  • InternSet: allocate the internal map via the same *_in helpers and update the map type to include the allocator parameter

Technical Notes: This keeps hash map bucket allocations scoped to the Heap lifetime and removes duplicated atomic counter logic in favor of the shared ID utility.

🤖 Was this summary useful? React with 👍 or 👎

Copy link

@augmentcode augmentcode bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Review completed. No suggestions at this time.

Comment augment review to trigger a new review at any time.

@indietyp indietyp force-pushed the bm/be-262-hashql-use-heap-to-store-interners branch from 93ccc9e to e14f024 Compare December 28, 2025 11:17
@indietyp indietyp force-pushed the bm/be-260-hashql-switch-internal-allocator-implementation-to-scoping branch from a7e9d27 to 6580280 Compare December 28, 2025 11:17
@vercel vercel bot temporarily deployed to Preview – petrinaut December 28, 2025 11:18 Inactive
@indietyp indietyp force-pushed the bm/be-262-hashql-use-heap-to-store-interners branch from e14f024 to c3d8d0f Compare December 28, 2025 11:31
@vercel vercel bot temporarily deployed to Preview – petrinaut December 28, 2025 11:31 Inactive
@indietyp indietyp changed the title BE-262: HashQL: Use heap allocator for InternMap and InternSet collections BE-262: HashQL: Do not intern empty collections Dec 28, 2025
@indietyp indietyp changed the title BE-262: HashQL: Do not intern empty collections BE-262: HashQL: Do not intern empty slices Dec 28, 2025
@graphite-app graphite-app bot requested review from a team December 28, 2025 12:56
@github-actions
Copy link
Contributor

Benchmark results

@rust/hash-graph-benches – Integrations

policy_resolution_large

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 2002 $$27.3 \mathrm{ms} \pm 123 \mathrm{μs}\left({\color{gray}-3.157 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$3.31 \mathrm{ms} \pm 14.6 \mathrm{μs}\left({\color{gray}-0.455 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 1001 $$12.3 \mathrm{ms} \pm 85.8 \mathrm{μs}\left({\color{lightgreen}-5.341 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: high, policies: 3314 $$41.9 \mathrm{ms} \pm 325 \mathrm{μs}\left({\color{gray}-2.037 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: low, policies: 1 $$13.9 \mathrm{ms} \pm 78.9 \mathrm{μs}\left({\color{gray}-2.669 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: medium, policies: 1526 $$23.8 \mathrm{ms} \pm 168 \mathrm{μs}\left({\color{gray}-3.204 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 2078 $$24.1 \mathrm{ms} \pm 136 \mathrm{μs}\left({\color{lightgreen}-47.017 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$5.16 \mathrm{ms} \pm 34.2 \mathrm{μs}\left({\color{lightgreen}-74.989 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 1033 $$15.9 \mathrm{ms} \pm 113 \mathrm{μs}\left({\color{lightgreen}-49.969 \mathrm{\%}}\right) $$ Flame Graph

policy_resolution_medium

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 102 $$3.66 \mathrm{ms} \pm 17.2 \mathrm{μs}\left({\color{gray}-0.805 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$2.90 \mathrm{ms} \pm 19.3 \mathrm{μs}\left({\color{gray}-0.250 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 51 $$3.25 \mathrm{ms} \pm 15.0 \mathrm{μs}\left({\color{gray}-0.675 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: high, policies: 269 $$5.04 \mathrm{ms} \pm 24.5 \mathrm{μs}\left({\color{gray}-2.325 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: low, policies: 1 $$3.43 \mathrm{ms} \pm 15.7 \mathrm{μs}\left({\color{gray}-1.436 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: medium, policies: 107 $$3.97 \mathrm{ms} \pm 19.2 \mathrm{μs}\left({\color{gray}-2.806 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 133 $$4.33 \mathrm{ms} \pm 25.8 \mathrm{μs}\left({\color{gray}0.368 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$3.30 \mathrm{ms} \pm 12.8 \mathrm{μs}\left({\color{gray}-1.550 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 63 $$3.88 \mathrm{ms} \pm 19.1 \mathrm{μs}\left({\color{gray}-2.703 \mathrm{\%}}\right) $$ Flame Graph

policy_resolution_none

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 2 $$2.58 \mathrm{ms} \pm 10.6 \mathrm{μs}\left({\color{red}5.49 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$2.51 \mathrm{ms} \pm 11.6 \mathrm{μs}\left({\color{red}5.10 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 1 $$2.66 \mathrm{ms} \pm 12.2 \mathrm{μs}\left({\color{red}7.19 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 8 $$2.82 \mathrm{ms} \pm 16.3 \mathrm{μs}\left({\color{red}5.08 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$2.72 \mathrm{ms} \pm 14.8 \mathrm{μs}\left({\color{gray}4.20 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 3 $$2.88 \mathrm{ms} \pm 12.7 \mathrm{μs}\left({\color{gray}2.98 \mathrm{\%}}\right) $$ Flame Graph

policy_resolution_small

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 52 $$2.95 \mathrm{ms} \pm 14.3 \mathrm{μs}\left({\color{gray}4.27 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$2.65 \mathrm{ms} \pm 16.0 \mathrm{μs}\left({\color{red}6.35 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 25 $$2.83 \mathrm{ms} \pm 14.3 \mathrm{μs}\left({\color{red}7.02 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: high, policies: 94 $$3.32 \mathrm{ms} \pm 17.4 \mathrm{μs}\left({\color{red}5.71 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: low, policies: 1 $$2.86 \mathrm{ms} \pm 12.1 \mathrm{μs}\left({\color{red}5.48 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: medium, policies: 26 $$3.16 \mathrm{ms} \pm 17.7 \mathrm{μs}\left({\color{red}7.69 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 66 $$3.22 \mathrm{ms} \pm 18.3 \mathrm{μs}\left({\color{red}5.28 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$2.83 \mathrm{ms} \pm 14.9 \mathrm{μs}\left({\color{gray}3.91 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 29 $$3.08 \mathrm{ms} \pm 15.5 \mathrm{μs}\left({\color{red}5.83 \mathrm{\%}}\right) $$ Flame Graph

read_scaling_complete

Function Value Mean Flame graphs
entity_by_id;one_depth 1 entities $$39.3 \mathrm{ms} \pm 147 \mathrm{μs}\left({\color{gray}-2.863 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 10 entities $$77.6 \mathrm{ms} \pm 406 \mathrm{μs}\left({\color{gray}-0.126 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 25 entities $$44.8 \mathrm{ms} \pm 208 \mathrm{μs}\left({\color{gray}1.46 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 5 entities $$47.3 \mathrm{ms} \pm 303 \mathrm{μs}\left({\color{gray}0.380 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 50 entities $$55.0 \mathrm{ms} \pm 341 \mathrm{μs}\left({\color{gray}0.290 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 1 entities $$41.1 \mathrm{ms} \pm 197 \mathrm{μs}\left({\color{gray}-1.259 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 10 entities $$413 \mathrm{ms} \pm 913 \mathrm{μs}\left({\color{gray}-1.779 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 25 entities $$98.5 \mathrm{ms} \pm 403 \mathrm{μs}\left({\color{gray}-0.395 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 5 entities $$85.3 \mathrm{ms} \pm 348 \mathrm{μs}\left({\color{gray}-0.929 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 50 entities $$288 \mathrm{ms} \pm 858 \mathrm{μs}\left({\color{gray}0.531 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 1 entities $$15.2 \mathrm{ms} \pm 71.2 \mathrm{μs}\left({\color{gray}1.73 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 10 entities $$15.4 \mathrm{ms} \pm 86.0 \mathrm{μs}\left({\color{gray}1.86 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 25 entities $$15.8 \mathrm{ms} \pm 92.7 \mathrm{μs}\left({\color{gray}0.783 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 5 entities $$15.4 \mathrm{ms} \pm 62.2 \mathrm{μs}\left({\color{gray}0.839 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 50 entities $$18.6 \mathrm{ms} \pm 108 \mathrm{μs}\left({\color{gray}3.93 \mathrm{\%}}\right) $$ Flame Graph

read_scaling_linkless

Function Value Mean Flame graphs
entity_by_id 1 entities $$15.5 \mathrm{ms} \pm 92.5 \mathrm{μs}\left({\color{gray}2.35 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 10 entities $$15.7 \mathrm{ms} \pm 69.8 \mathrm{μs}\left({\color{gray}4.21 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 100 entities $$15.6 \mathrm{ms} \pm 86.2 \mathrm{μs}\left({\color{gray}3.35 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 1000 entities $$15.7 \mathrm{ms} \pm 79.2 \mathrm{μs}\left({\color{gray}-0.009 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 10000 entities $$22.8 \mathrm{ms} \pm 138 \mathrm{μs}\left({\color{gray}-2.396 \mathrm{\%}}\right) $$ Flame Graph

representative_read_entity

Function Value Mean Flame graphs
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/block/v/1 $$30.1 \mathrm{ms} \pm 329 \mathrm{μs}\left({\color{gray}-0.863 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/book/v/1 $$31.3 \mathrm{ms} \pm 324 \mathrm{μs}\left({\color{gray}1.10 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/building/v/1 $$30.9 \mathrm{ms} \pm 317 \mathrm{μs}\left({\color{gray}1.81 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/organization/v/1 $$30.2 \mathrm{ms} \pm 278 \mathrm{μs}\left({\color{gray}-2.884 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/page/v/2 $$29.8 \mathrm{ms} \pm 292 \mathrm{μs}\left({\color{gray}-0.566 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/person/v/1 $$30.4 \mathrm{ms} \pm 266 \mathrm{μs}\left({\color{gray}2.54 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/playlist/v/1 $$30.4 \mathrm{ms} \pm 308 \mathrm{μs}\left({\color{lightgreen}-5.185 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/song/v/1 $$30.8 \mathrm{ms} \pm 272 \mathrm{μs}\left({\color{gray}-1.173 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/uk-address/v/1 $$29.8 \mathrm{ms} \pm 324 \mathrm{μs}\left({\color{gray}-1.905 \mathrm{\%}}\right) $$ Flame Graph

representative_read_entity_type

Function Value Mean Flame graphs
get_entity_type_by_id Account ID: bf5a9ef5-dc3b-43cf-a291-6210c0321eba $$8.26 \mathrm{ms} \pm 38.6 \mathrm{μs}\left({\color{gray}-0.722 \mathrm{\%}}\right) $$ Flame Graph

representative_read_multiple_entities

Function Value Mean Flame graphs
entity_by_property traversal_paths=0 0 $$47.3 \mathrm{ms} \pm 220 \mathrm{μs}\left({\color{gray}-1.462 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=255 1,resolve_depths=inherit:1;values:255;properties:255;links:127;link_dests:126;type:true $$95.7 \mathrm{ms} \pm 375 \mathrm{μs}\left({\color{gray}-1.547 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:0;link_dests:0;type:false $$53.2 \mathrm{ms} \pm 289 \mathrm{μs}\left({\color{gray}-2.549 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:1;link_dests:0;type:true $$61.2 \mathrm{ms} \pm 367 \mathrm{μs}\left({\color{gray}-2.668 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:2;links:1;link_dests:0;type:true $$69.1 \mathrm{ms} \pm 334 \mathrm{μs}\left({\color{gray}-3.228 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:2;properties:2;links:1;link_dests:0;type:true $$77.0 \mathrm{ms} \pm 307 \mathrm{μs}\left({\color{gray}-1.448 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=0 0 $$49.7 \mathrm{ms} \pm 256 \mathrm{μs}\left({\color{gray}-3.718 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=255 1,resolve_depths=inherit:1;values:255;properties:255;links:127;link_dests:126;type:true $$79.8 \mathrm{ms} \pm 361 \mathrm{μs}\left({\color{gray}-0.505 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:0;link_dests:0;type:false $$57.6 \mathrm{ms} \pm 278 \mathrm{μs}\left({\color{gray}-3.108 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:1;link_dests:0;type:true $$64.9 \mathrm{ms} \pm 300 \mathrm{μs}\left({\color{gray}-4.370 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:2;links:1;link_dests:0;type:true $$67.6 \mathrm{ms} \pm 377 \mathrm{μs}\left({\color{gray}-1.118 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:2;properties:2;links:1;link_dests:0;type:true $$67.7 \mathrm{ms} \pm 308 \mathrm{μs}\left({\color{gray}1.11 \mathrm{\%}}\right) $$

scenarios

Function Value Mean Flame graphs
full_test query-limited $$136 \mathrm{ms} \pm 494 \mathrm{μs}\left({\color{gray}-1.856 \mathrm{\%}}\right) $$ Flame Graph
full_test query-unlimited $$135 \mathrm{ms} \pm 540 \mathrm{μs}\left({\color{gray}-2.129 \mathrm{\%}}\right) $$ Flame Graph
linked_queries query-limited $$40.0 \mathrm{ms} \pm 189 \mathrm{μs}\left({\color{lightgreen}-61.447 \mathrm{\%}}\right) $$ Flame Graph
linked_queries query-unlimited $$587 \mathrm{ms} \pm 1.11 \mathrm{ms}\left({\color{gray}1.07 \mathrm{\%}}\right) $$ Flame Graph

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

area/libs Relates to first-party libraries/crates/packages (area) type/eng > backend Owned by the @backend team

Development

Successfully merging this pull request may close these issues.

2 participants