Skip to content

Conversation

@indietyp
Copy link
Member

@indietyp indietyp commented Jan 3, 2026

🌟 What is the purpose of this PR?

Implements the PostInline pass for HashQL MIR, which runs canonicalization optimizations after inlining to exploit newly exposed optimization opportunities such as constant propagation, dead code elimination, and branch simplification. Additionally, adds is_leaf recomputation after inlining to expose more bonuses and adjusts the config slightly.

🔍 What does this change?

  • Adds PostInline pass as a thin wrapper around Canonicalization with a higher iteration limit (16 vs 8 for PreInline) since inlining can expose more optimization opportunities
  • Ensures is_leaf status properly propagates through the call graph analysis during inlining
  • Adds IdVec::fill_to method for efficiently extending vectors to a specific length
  • Adds comprehensive UI tests covering:
    • Cascading simplification after inlining
    • Closure environment cleanup
    • Constant propagation after inlining
    • Dead code elimination from inlined functions
    • Nested branch elimination
    • Full showcase demonstrating complex nested conditionals collapsing to a single return value
  • Adds benchmark pipeline for post-inline pass

Pre-Merge Checklist 🚀

🚢 Has this modified a publishable library?

This PR:

  • does not modify any publishable blocks or libraries, or modifications do not need publishing

📜 Does this require a change to the docs?

The changes in this PR:

  • are internal and do not require a docs change

🕸️ Does this require a change to the Turbo Graph?

The changes in this PR:

  • do not affect the execution graph

@cursor
Copy link

cursor bot commented Jan 3, 2026

PR Summary

Implements a post-inlining optimization stage and aligns analysis/benchmarks accordingly.

  • Adds PostInline (wrapper over Canonicalization with max_iterations=16) and compiletest suite mir/pass/transform/post-inline
  • Updates inline analysis: BodyProperties now stores source; new FindApplyCall visitor; recompute is_leaf after inlining
  • Refines call graph queries to consider only Apply edges for leaf/single-caller/unique-caller checks
  • Adjusts inline heuristics defaults (always_inline=16, size_penalty_factor=0.9)
  • Extends IdVec with from_domain_derive(_in) for allocator-aware derivation
  • Benchmarks: support multi-body scenarios, add full PreInline → Inline → PostInline pipeline and an inlining-specific case
  • Adds UI tests validating post-inline effects (cascading simplification, closure env cleanup, constant propagation, dead code and nested branch elimination)

Written by Cursor Bugbot for commit 6cc07e5. This will update automatically on new commits. Configure here.

@github-actions github-actions bot added area/deps Relates to third-party dependencies (area) area/libs Relates to first-party libraries/crates/packages (area) type/eng > backend Owned by the @backend team area/tests New or updated tests labels Jan 3, 2026
Copy link
Member Author

indietyp commented Jan 3, 2026

Warning

This pull request is not mergeable via GitHub because a downstack PR is open. Once all requirements are satisfied, merge this PR as a stack on Graphite.
Learn more

This stack of pull requests is managed by Graphite. Learn more about stacking.

@github-actions github-actions bot removed the area/deps Relates to third-party dependencies (area) label Jan 3, 2026
@augmentcode
Copy link

augmentcode bot commented Jan 3, 2026

🤖 Augment PR Summary

Summary: Introduces a new post-inlining optimization stage for HashQL MIR to better capitalize on optimization opportunities exposed by inlining.

Changes:

  • Adds PostInline as a thin wrapper over Canonicalization with a higher iteration cap (16) and wires it into the MIR pass pipeline.
  • Extends the compiletest harness with a dedicated mir/pass/transform/post-inline suite (plus D2 rendering support) and adds multiple UI fixtures showcasing post-inline simplifications.
  • Updates MIR bench pipeline to run PreInline → Inline → PostInline and reuses a single GlobalTransformState across stages.
  • Refactors inlining analysis data: BodyProperties now carries source, and cost/loop metadata is grouped in CostEstimationResidual.
  • Recomputes is_leaf after inlining to unlock additional heuristic bonuses on newly simplified bodies.
  • Tweaks inlining heuristic defaults (always_inline and size_penalty_factor).
  • Adds a small IdVec helper (from_domain_derive*) to build property vectors from an existing domain.

Technical Notes: The PR also adjusts call-graph “single/unique caller” logic to consider only Apply edges and adds tracing as a dependency for MIR instrumentation.

🤖 Was this summary useful? React with 👍 or 👎

Copy link

@augmentcode augmentcode bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Review completed. 2 suggestions posted.

Fix All in Augment

Comment augment review to trigger a new review at any time.

@codspeed-hq
Copy link

codspeed-hq bot commented Jan 3, 2026

CodSpeed Performance Report

Merging #8240 will degrade performance by 24.47%

Comparing bm/be-271-hashql-implement-postinline-pass (6cc07e5) with bm/be-269-hashql-move-out-most-of-preinline-into-a-canonicalization (0a15246)

Summary

❌ 3 (👁 3) regressions
✅ 14 untouched
🆕 1 new
🗄️ 12 archived benchmarks run1

Benchmarks breakdown

Benchmark BASE HEAD Efficiency
👁 diamond 68.7 µs 84.5 µs -18.68%
🆕 inline N/A 232.3 µs N/A
👁 complex 99.8 µs 119.1 µs -16.22%
👁 linear 38.2 µs 50.6 µs -24.47%

Footnotes

  1. 12 benchmarks were run, but are now archived. If they were deleted in another branch, consider rebasing to remove them from the report. Instead if they were added back, click here to restore them.

@codecov
Copy link

codecov bot commented Jan 3, 2026

Codecov Report

❌ Patch coverage is 96.70330% with 3 lines in your changes missing coverage. Please review.
✅ Project coverage is 65.00%. Comparing base (0a15246) to head (6cc07e5).

Files with missing lines Patch % Lines
...local/hashql/mir/src/pass/transform/inline/find.rs 84.21% 2 Missing and 1 partial ⚠️
Additional details and impacted files
@@                                           Coverage Diff                                           @@
##           bm/be-269-hashql-move-out-most-of-preinline-into-a-canonicalization    #8240      +/-   ##
=======================================================================================================
+ Coverage                                                                64.96%   65.00%   +0.03%     
=======================================================================================================
  Files                                                                      736      737       +1     
  Lines                                                                    63019    63085      +66     
  Branches                                                                  3680     3681       +1     
=======================================================================================================
+ Hits                                                                     40939    41007      +68     
+ Misses                                                                   21600    21597       -3     
- Partials                                                                   480      481       +1     
Flag Coverage Δ
rust.hashql-compiletest 46.65% <ø> (ø)
rust.hashql-mir 89.77% <96.70%> (+0.08%) ⬆️

Flags with carried forward coverage won't be shown. Click here to find out more.

☔ View full report in Codecov by Sentry.
📢 Have feedback on the report? Share it here.

🚀 New features to boost your workflow:
  • ❄️ Test Analytics: Detect flaky tests, report on failures, and find test suite problems.
  • 📦 JS Bundle Analysis: Save yourself from yourself by tracking and limiting bundle sizes in JS merges.

@vercel vercel bot temporarily deployed to Preview – petrinaut January 4, 2026 15:06 Inactive
@vercel vercel bot temporarily deployed to Preview – petrinaut January 4, 2026 15:46 Inactive
@graphite-app graphite-app bot requested review from a team January 4, 2026 16:05
@github-actions
Copy link
Contributor

github-actions bot commented Jan 4, 2026

Benchmark results

@rust/hash-graph-benches – Integrations

policy_resolution_large

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 2002 $$24.7 \mathrm{ms} \pm 136 \mathrm{μs}\left({\color{lightgreen}-25.882 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$3.20 \mathrm{ms} \pm 14.9 \mathrm{μs}\left({\color{gray}-2.534 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 1001 $$11.8 \mathrm{ms} \pm 73.9 \mathrm{μs}\left({\color{gray}0.411 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: high, policies: 3314 $$41.3 \mathrm{ms} \pm 315 \mathrm{μs}\left({\color{gray}-0.217 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: low, policies: 1 $$13.8 \mathrm{ms} \pm 76.8 \mathrm{μs}\left({\color{gray}-4.784 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: medium, policies: 1526 $$22.7 \mathrm{ms} \pm 144 \mathrm{μs}\left({\color{gray}-0.563 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 2078 $$25.8 \mathrm{ms} \pm 147 \mathrm{μs}\left({\color{lightgreen}-38.837 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$3.59 \mathrm{ms} \pm 15.0 \mathrm{μs}\left({\color{lightgreen}-81.725 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 1033 $$13.3 \mathrm{ms} \pm 63.3 \mathrm{μs}\left({\color{lightgreen}-51.233 \mathrm{\%}}\right) $$ Flame Graph

policy_resolution_medium

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 102 $$3.65 \mathrm{ms} \pm 18.3 \mathrm{μs}\left({\color{gray}0.095 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$2.86 \mathrm{ms} \pm 11.0 \mathrm{μs}\left({\color{gray}1.74 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 51 $$3.21 \mathrm{ms} \pm 15.9 \mathrm{μs}\left({\color{gray}1.38 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: high, policies: 269 $$4.97 \mathrm{ms} \pm 24.3 \mathrm{μs}\left({\color{gray}0.182 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: low, policies: 1 $$3.38 \mathrm{ms} \pm 15.9 \mathrm{μs}\left({\color{gray}0.380 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: medium, policies: 107 $$3.91 \mathrm{ms} \pm 15.6 \mathrm{μs}\left({\color{gray}0.080 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 133 $$4.38 \mathrm{ms} \pm 26.9 \mathrm{μs}\left({\color{gray}2.49 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$3.28 \mathrm{ms} \pm 14.4 \mathrm{μs}\left({\color{gray}1.51 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 63 $$3.95 \mathrm{ms} \pm 20.0 \mathrm{μs}\left({\color{gray}2.24 \mathrm{\%}}\right) $$ Flame Graph

policy_resolution_none

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 2 $$2.59 \mathrm{ms} \pm 11.4 \mathrm{μs}\left({\color{red}8.95 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$2.54 \mathrm{ms} \pm 14.7 \mathrm{μs}\left({\color{red}8.74 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 1 $$2.68 \mathrm{ms} \pm 15.3 \mathrm{μs}\left({\color{red}11.3 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 8 $$2.76 \mathrm{ms} \pm 10.3 \mathrm{μs}\left({\color{red}5.72 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$2.67 \mathrm{ms} \pm 8.53 \mathrm{μs}\left({\color{red}6.66 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 3 $$2.90 \mathrm{ms} \pm 14.8 \mathrm{μs}\left({\color{red}8.03 \mathrm{\%}}\right) $$ Flame Graph

policy_resolution_small

Function Value Mean Flame graphs
resolve_policies_for_actor user: empty, selectivity: high, policies: 52 $$2.94 \mathrm{ms} \pm 13.1 \mathrm{μs}\left({\color{red}6.67 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: low, policies: 1 $$2.61 \mathrm{ms} \pm 9.28 \mathrm{μs}\left({\color{red}7.65 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: empty, selectivity: medium, policies: 25 $$2.79 \mathrm{ms} \pm 11.4 \mathrm{μs}\left({\color{red}7.75 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: high, policies: 94 $$3.26 \mathrm{ms} \pm 15.0 \mathrm{μs}\left({\color{red}5.87 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: low, policies: 1 $$2.91 \mathrm{ms} \pm 15.2 \mathrm{μs}\left({\color{red}8.34 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: seeded, selectivity: medium, policies: 26 $$3.07 \mathrm{ms} \pm 14.8 \mathrm{μs}\left({\color{red}6.69 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: high, policies: 66 $$3.22 \mathrm{ms} \pm 20.9 \mathrm{μs}\left({\color{red}6.65 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: low, policies: 1 $$2.80 \mathrm{ms} \pm 12.2 \mathrm{μs}\left({\color{red}6.34 \mathrm{\%}}\right) $$ Flame Graph
resolve_policies_for_actor user: system, selectivity: medium, policies: 29 $$3.11 \mathrm{ms} \pm 18.4 \mathrm{μs}\left({\color{red}8.54 \mathrm{\%}}\right) $$ Flame Graph

read_scaling_complete

Function Value Mean Flame graphs
entity_by_id;one_depth 1 entities $$39.2 \mathrm{ms} \pm 155 \mathrm{μs}\left({\color{gray}1.16 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 10 entities $$75.5 \mathrm{ms} \pm 382 \mathrm{μs}\left({\color{gray}0.634 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 25 entities $$43.7 \mathrm{ms} \pm 183 \mathrm{μs}\left({\color{gray}4.36 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 5 entities $$45.3 \mathrm{ms} \pm 182 \mathrm{μs}\left({\color{gray}1.04 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;one_depth 50 entities $$53.6 \mathrm{ms} \pm 230 \mathrm{μs}\left({\color{gray}1.23 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 1 entities $$40.2 \mathrm{ms} \pm 159 \mathrm{μs}\left({\color{gray}-0.225 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 10 entities $$412 \mathrm{ms} \pm 750 \mathrm{μs}\left({\color{gray}0.094 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 25 entities $$94.4 \mathrm{ms} \pm 419 \mathrm{μs}\left({\color{gray}0.087 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 5 entities $$84.7 \mathrm{ms} \pm 330 \mathrm{μs}\left({\color{gray}1.28 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;two_depth 50 entities $$283 \mathrm{ms} \pm 719 \mathrm{μs}\left({\color{gray}2.93 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 1 entities $$14.5 \mathrm{ms} \pm 61.4 \mathrm{μs}\left({\color{gray}0.446 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 10 entities $$14.9 \mathrm{ms} \pm 68.2 \mathrm{μs}\left({\color{gray}2.85 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 25 entities $$15.1 \mathrm{ms} \pm 69.2 \mathrm{μs}\left({\color{gray}1.29 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 5 entities $$14.7 \mathrm{ms} \pm 56.7 \mathrm{μs}\left({\color{gray}1.09 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id;zero_depth 50 entities $$17.9 \mathrm{ms} \pm 114 \mathrm{μs}\left({\color{gray}2.62 \mathrm{\%}}\right) $$ Flame Graph

read_scaling_linkless

Function Value Mean Flame graphs
entity_by_id 1 entities $$14.7 \mathrm{ms} \pm 75.5 \mathrm{μs}\left({\color{gray}2.24 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 10 entities $$14.8 \mathrm{ms} \pm 78.2 \mathrm{μs}\left({\color{gray}3.03 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 100 entities $$14.6 \mathrm{ms} \pm 57.1 \mathrm{μs}\left({\color{gray}2.12 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 1000 entities $$15.3 \mathrm{ms} \pm 67.0 \mathrm{μs}\left({\color{gray}2.63 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id 10000 entities $$22.1 \mathrm{ms} \pm 146 \mathrm{μs}\left({\color{gray}0.892 \mathrm{\%}}\right) $$ Flame Graph

representative_read_entity

Function Value Mean Flame graphs
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/block/v/1 $$31.1 \mathrm{ms} \pm 321 \mathrm{μs}\left({\color{red}6.35 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/book/v/1 $$29.6 \mathrm{ms} \pm 253 \mathrm{μs}\left({\color{gray}-2.718 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/building/v/1 $$30.8 \mathrm{ms} \pm 252 \mathrm{μs}\left({\color{red}7.47 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/organization/v/1 $$28.8 \mathrm{ms} \pm 278 \mathrm{μs}\left({\color{gray}-3.766 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/page/v/2 $$30.1 \mathrm{ms} \pm 316 \mathrm{μs}\left({\color{gray}4.39 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/person/v/1 $$30.0 \mathrm{ms} \pm 260 \mathrm{μs}\left({\color{gray}-0.701 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/playlist/v/1 $$29.9 \mathrm{ms} \pm 266 \mathrm{μs}\left({\color{gray}0.729 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/song/v/1 $$30.5 \mathrm{ms} \pm 261 \mathrm{μs}\left({\color{gray}4.55 \mathrm{\%}}\right) $$ Flame Graph
entity_by_id entity type ID: https://blockprotocol.org/@alice/types/entity-type/uk-address/v/1 $$30.5 \mathrm{ms} \pm 238 \mathrm{μs}\left({\color{gray}2.95 \mathrm{\%}}\right) $$ Flame Graph

representative_read_entity_type

Function Value Mean Flame graphs
get_entity_type_by_id Account ID: bf5a9ef5-dc3b-43cf-a291-6210c0321eba $$8.18 \mathrm{ms} \pm 34.0 \mathrm{μs}\left({\color{gray}1.99 \mathrm{\%}}\right) $$ Flame Graph

representative_read_multiple_entities

Function Value Mean Flame graphs
entity_by_property traversal_paths=0 0 $$47.9 \mathrm{ms} \pm 226 \mathrm{μs}\left({\color{red}5.72 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=255 1,resolve_depths=inherit:1;values:255;properties:255;links:127;link_dests:126;type:true $$95.6 \mathrm{ms} \pm 385 \mathrm{μs}\left({\color{gray}2.93 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:0;link_dests:0;type:false $$52.8 \mathrm{ms} \pm 299 \mathrm{μs}\left({\color{gray}3.94 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:1;link_dests:0;type:true $$60.3 \mathrm{ms} \pm 297 \mathrm{μs}\left({\color{gray}2.29 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:2;links:1;link_dests:0;type:true $$70.5 \mathrm{ms} \pm 509 \mathrm{μs}\left({\color{gray}4.40 \mathrm{\%}}\right) $$
entity_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:2;properties:2;links:1;link_dests:0;type:true $$75.7 \mathrm{ms} \pm 374 \mathrm{μs}\left({\color{gray}2.55 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=0 0 $$50.7 \mathrm{ms} \pm 278 \mathrm{μs}\left({\color{gray}4.58 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=255 1,resolve_depths=inherit:1;values:255;properties:255;links:127;link_dests:126;type:true $$76.8 \mathrm{ms} \pm 401 \mathrm{μs}\left({\color{gray}1.89 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:0;link_dests:0;type:false $$58.6 \mathrm{ms} \pm 345 \mathrm{μs}\left({\color{red}5.34 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:0;links:1;link_dests:0;type:true $$65.4 \mathrm{ms} \pm 374 \mathrm{μs}\left({\color{gray}3.77 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:0;properties:2;links:1;link_dests:0;type:true $$67.1 \mathrm{ms} \pm 354 \mathrm{μs}\left({\color{gray}2.51 \mathrm{\%}}\right) $$
link_by_source_by_property traversal_paths=2 1,resolve_depths=inherit:0;values:2;properties:2;links:1;link_dests:0;type:true $$67.0 \mathrm{ms} \pm 306 \mathrm{μs}\left({\color{gray}2.85 \mathrm{\%}}\right) $$

scenarios

Function Value Mean Flame graphs
full_test query-limited $$131 \mathrm{ms} \pm 493 \mathrm{μs}\left({\color{gray}2.69 \mathrm{\%}}\right) $$ Flame Graph
full_test query-unlimited $$129 \mathrm{ms} \pm 502 \mathrm{μs}\left({\color{gray}-0.697 \mathrm{\%}}\right) $$ Flame Graph
linked_queries query-limited $$41.0 \mathrm{ms} \pm 204 \mathrm{μs}\left({\color{lightgreen}-60.579 \mathrm{\%}}\right) $$ Flame Graph
linked_queries query-unlimited $$568 \mathrm{ms} \pm 1.20 \mathrm{ms}\left({\color{lightgreen}-6.786 \mathrm{\%}}\right) $$ Flame Graph

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

area/libs Relates to first-party libraries/crates/packages (area) area/tests New or updated tests type/eng > backend Owned by the @backend team

Development

Successfully merging this pull request may close these issues.

2 participants